7. Vorlesung. Bipartite Kerne Das kopierende Modell Bow-tie Struktur des Web Random Sampling von Web Seiten

Größe: px
Ab Seite anzeigen:

Download "7. Vorlesung. Bipartite Kerne Das kopierende Modell Bow-tie Struktur des Web Random Sampling von Web Seiten"

Transkript

1 7. Vorlesung Bipartite Kerne Das kopierende Modell Bow-tie Struktur des Web Random Sampling von Web Seiten Seite 179

2 Web als ein Soziales Netzwerk Small-world Netzwerk: Niedriger (Durchschnitts) Durchmesser Hoher Clustering Koeffizient v Viele Nachbarn von v sind auch selbst Nachbarn. Grund: Web besteht aus Communities. Seite 180

3 Cyber Communities Cyber Community: Eine Gruppe von Menschen, die ein gemeinsames Interesse teilen. Web-Seiten, die von diesen Menschen erzeugt/zitiert werden. Beispiele Große Autohersteller Ölverschmutzung an Japans Küste Britney Spears Fans Seite 181

4 Struktur von Cyber Communities [Kumar et al, 1999] Hubs: Resourcen für das von der Community geteiltem Interesse Beispiele: Yahoo! Autos Ölverschmutzung in der Nähe von Japan: bookmarks Donna s Britney Spears Links Authorities: Zentrale Seiten für das von der Community geteiltem Interesse Beispiele: Mazda.com Britney Spears: The official site Seite 182

5 Dichte Bipartite Subgraphen Hubs Zitieren viele Autoritäten Haben überlappende Zitate Hubs Autoritäten Autoritäten Werden von vielen Hubs zitiert Oft zusammen zitiert Deshalb: eine Cyber Community wird durch einen dichten gerichteten bipartiten Subgraphen charakterisiert. Seite 183

6 Bipartite Kerne (i,j)-bipartiter Kern: (H,A ) H : Teilmenge von H der Größe i A : Teilmenge von A der Größe j Subgraph induziert auf (H,A ) ist ein vollständiger bipartiter Graph Hypothese: Die meisten dichten bipartiten Teilgraphen des Webs haben Kerne. H A Deshalb: bipartite Kerne sind Fingerabdrücke von Cyber Communities. Seite 184

7 Finden von Cyber Communities Bipartite Kerne können effizient durch einen Crawl gefunden werden Das Web hat eine Vielfalt von Cyber Communities Etwa 200k disjunkte (3,*)-Kerne in einem 1996 crawl Crawl hatte ~200M Seiten Für einen zufälligen Graphen dieser Größe ist es unwahrscheinliche auch nur einen (3,3) Kern zu enthalten! Seite 185

8 Das kopierende Modell [Kleinberg et al 1999] [Kumar et al 2000] Initialisierung: Ein Knoten Entwicklung: In jedem Schritt wird ein neuer Knoten v hinzugefügt. v verbindet sich zu d Nachbarn mit ausgehenden Kanten. Prototyp Auswahl: v wählt einen zufälligen Knoten u aus dem Graph. Bernoulli Kopieren: Für alle i = 1,,d, v wirft Münze mit Wahrscheinlichkeit α für Kopf Falls Kopf, v verbindet sich zu zufälligem Knoten Falls Zahl, v verbindet sich zum i-ten Nachbarn von u Seite 186

9 Das kopierende Modell : Motivation Wenn eine neue Seite erstellt wird, hat der Autor ein Thema im Kopf Autor wählt Links von einem Prototyp u über das Thema Autor fügt durch das Einfügen von zufälligen Links eigene Ideen hinzu. Seite 187

10 Das kopierende Modell: Gradverteilung Falls α = 0, dann ist der i-te Nachbar von v der Knoten u mit Wahrscheinlichkeit indeg(u )/Σ w indeg(w) Identisch zum Modell der bevorzugten Verbindung Im Grenzwert ist der Anteil der Seiten mit Eingangsgrad k die Wahrscheinlichkeit 1/k 2. Für beliebige α Anteil der Seiten mit Eingangsgrad k ist 1/k (2-α)/(1 - α) Seite 188

11 Erdős-Rényi Zufallsgraphen: G n,p mit p = d/n Bipartite Kerne Für feste A,B G n,p, A = i, B =j Wahrscheinlichkeit daß A,B einen kompleten bipartite graph bilden: # solcher Paare A,B: Erwartete # (i,j)-bipartiter Kerne ist höchstens Seite 189

12 Bow Tie Struktur des Web [Broder et al 2000] Seite 193

13 Random Sampling von Web Seiten Seite 194

14 Überblick Problem Definition Random sampling von Web Seiten bezüglich ihres PageRank Uniform Sampling von Web Seiten (Henzinger et al) Uniform Sampling von web Seiten (Bar-Yossef et al) Seite 195

15 Random Sampling von Web Seiten W = ein Schnappschuss des indizierbaren Webs Betrachte nur statische HTML web Seiten π = Wahrscheinlichkeitsverteilung von W Ziel: effiziente Algorithmus für das Generieren von Stichproben von W bezüglich der Verteilung π. Fokus: π = PageRank π = Uniform Indexable web Seite 196

16 Random Sampling von Web Seiten Motivation Berechne Statistiken über das Web Wie hoch ist der Anteil der Web Seiten von.de? Wie hoch ist der Anteil der Web Seiten in Chinesisch? Wie hoch ist der Anteil der Werbelinks? Vergleich der Abdeckung von Suchmaschinen Ist Google größer als MSN? Wie hoch ist der Schnitt zwischen Google and Yahoo? Data mining im Web Wie oft referenzieren Informatikseiten Biologieseiten? Wie hoch ist der Anteil der Seiten für ein Thema? Seite 197

17 Random Sampling von Web Seiten Herausforderungen Einfache Lösung: Crawl, Index, Sample Crawls können nie vollständig sein Web ändert sich ständig Crawling ist langsam und teuer Ziele: Genauigkeit: Erzeuge eine Stichprobe von einem Schnappschuss des gesamten indizierbaren Webs Geschwindigkeit: Stichprobe soll schnell erzeugt werden Geringe Kosten: Verfahren soll auf einem Standard PC laufen können Seite 198

18 Random Walk Ansatz Erzeuge Random Walk auf W mit stationärer Verteilung π P = Übergangsmatrix des Random Walk πp = π Iteriere Random Walk hinreichend viele Schritte Für jede initiale Verteilung q, Mixing time: # der Schritte um dem Grenzwert nahe zu kommen Nutze erreichten Knoten als Element der Stichprobe Wiederhole, bis Stichprobe hinreichend groß ist Seite 199

19 Random Walk Ansatz : Vorteile & Probleme Vorteile: Genauigkeit: Random Walk kann im Prinzip jede Seite im Web erreichen Geschwindigkeit: Gesamtes Web braucht nicht geladen werden Geringe Kosten: geringe Speicher und CPU Kosten Probleme: Wie soll der Random Walk entworfen werden, dass er zu π konvergiert? Wie kann die Mixing Time des Random Walks bestimmt werden? Seite 200

20 PageRank Sampling [Henzinger et al 1999] Nutze den Random Surfer Random Walk: Starte an einen initiale Knoten v 0 Wenn eine Seite v besucht wird Wirf eine Münze mit Wahrscheinlichkeit α für Kopf Fall Kopf, gehe zu einer gleichverteilt gewählten Seite Falls Zahl, gehe zu einem zufälligen Nachbarn von v Grenzwert Verteilung: PageRank Mixing Time: schnell Seite 201

21 PageRank Sampling: Realität Problem: Wie wird eine Seite zufällig gleichverteilt gewählt? Lösungen: Springe zu einer frühren Seite aus dem Walk Erzeugt Bias zu dichten Webdomäns Wähle einen zufälligen Server aus den Servern auf dem bisherigen Walk und springe zu einer zufälligen Seite dieses Servers Konvergiert nicht mehr zu PageRank Experimente zeigen, dass es trotzdem funktioniert Seite 202

22 Uniform Sampling via PageRank Sampling [Henzinger et al 2000] Algorithmus: 1. Nutze vorherigen Random Walk um ein Element w bezüglich PageRank Verteilung zu erzeugen 2. Wirf eine Münze mit Wahrscheinlkeit für Kopf 3. Falls Kopf, gib w als ein Element aus 4. Falls Zahl, gehe zu Schritt 1 Analyse: Braucht C/ W Iterationen um ein Element zu bekommen Seite 203

23 Uniform Sampling via PageRank Sampling: Reality Wie wird PR(w) bestimmt? Nutze den Random Walk selbst: VR(w) = Visit Ratio von w (# der Besuche von w auf dem Walk geteilt durch die Länge des Walk) Approximation ist sehr ungenau Nutze den durch die besuchten Knoten aufgespannten Teilgraph um PageRank zu berechnen Bias zu der Nachbarschaft der Startseite Nutze Google Seite 204

24 Uniform Sampling mittels RW auf regulären Graphen [Bar-Yossef et al 2000] Fakt: Ein Random Walk auf einem ungerichteten, zusammenhängendem, nicht-bipartiten Graphen konvergiert gegen eine Gleichverteilung. Beweis: P: Random Walk Übergangsmatrix P ist stochastisch 1 ist ein rechter Eigenvektor mit Eigenwert 1: P1 = 1 Graph ist zusammenhängend RW ist nicht reduzierbar Graph ist nicht-bipartit RW ist aperiodisch Somit ist RW ergodisch und hat deshalb eine stationäre Verteilung π: π ist ein linker Eigenvektor von P mit Eigenwert 1: πp = π Seite 205

25 Random Walks auf Regulären Graphen Beweis Fortsetzung: d: der Grad des Graphen, A: Adjazenzmatrix des Graphen Symmetrisch, da dergraph ungerichtet ist P = (1/d) A P ist auch symmetrisch Linke und rechte Eigenvektoren sind gleich π = (1/n) 1 Seite 206

26 Web als Regulärer Graph Probleme Web ist nicht zusammenhängend Web ist gerichtet Web ist nicht regulär Lösungen Betrachte nur das indizierbare Web, das zusammenhängend ist Ignoriere Richtung derlinks Füge eine gewichtete Schleife zu jedem Knoten hinzu weight(w) = deg max deg(w) Alle Seiten haben dann den Grad deg max Überschätzen von deg max macht nichts Seite 207

27 Beispiel Random Walk auf dem Web amazon.com Folgene einem zufälligen Out-link in 1 jedem Schritt netscape.com Kann in Senken oder dichten Web Communities feststecken Bevorzugt populäre Seiten Konvergiert nur langsam, wenn überhaupt Seite 208

28 Ungerichteter regulärer Random Walk auf dem Web Folge einem zufälligem In oder OutLink in jedem Schritt Nutze gewichtete Schleifen um den Grad den Seite zu kompensieren netscape.com amazon.com w(v) = deg max -deg(v) 4 Seite 209

29 Mixing Time Analyse Satz Mixing time eines Random Walk ist log( W ) / (1 - λ 2 ) 1 -λ 2 : spektrale Lücke von P Experiment (mit großem Web Crawl): 1 λ 2 ~ 1/100,000 log( W ) ~ 34 Deshalb: mixing time ~ 3.4 Millionen Schritte Schleifenschritte sind frei Etwa 1 bis 30,000 Schritte sind keine Schleifen (deg max ~ 300,000, deg avg ~ 10) Tatsächliche mixing time: ~ 115 steps! Seite 210

30 Random Walks auf Regulären Graphen: Realität Wie bekommt man die eingehenden Links? Suchmaschinen Beeinflußt durch den Index der Suchmaschine Ergibt keine vollständige Liste der eingehenden Links Teure Kommunikation Geschichte des Random Walk Wichtig zum Vermeiden von Sackgassen Erfordert Speicherplatz Wie kann deg(w) geschätzt werden? Lösung: Random Walk auf dem Teilgraphen von W, der durch die verfügbaren Links aufgespannt wird Teilgraph muß nicht mehr gute mixing time Eigenschaften haben Seite 211

31 Top 20 Internet Domains (Summer 2003) 60% 50% 51.15% 40% 30% 20% 10% 10.36% 9.19% 5.57% 4.15%3.01% 0% 0.61%.com.org.net.edu.de.uk.au.us.es.jp.ca.nl.it.ch.pl.il.nz.gov.info.mx Seite 212

32 Search Engine Coverage (Summer 2000) 80% 70% 68% 60% 50% 54% 50% 50% 48% 40% 38% 30% 20% 10% 0% Google AltaVista Alexander Fast Hinneburg, Lycos HotBot Go Seite 213

6. Vorlesung. Power Laws Modell der bevorzugten Verbindung Small World-Phänomen und -Netze Watts-Strogatz Modell. Kompression des Web-Graphen

6. Vorlesung. Power Laws Modell der bevorzugten Verbindung Small World-Phänomen und -Netze Watts-Strogatz Modell. Kompression des Web-Graphen 6. Vorlesung Web Struktur I Power Laws Modell der bevorzugten Verbindung Small World-Phänomen und -Netze Watts-Strogatz Modell Kompression des Web-Graphen Seite 146 Beobachtete Phänomene Wenige Multi-Milliardäre,

Mehr

16. November 2011 Zentralitätsmaße. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 87

16. November 2011 Zentralitätsmaße. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 87 16. November 2011 Zentralitätsmaße H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 87 Darstellung in spektraler Form Zentralität genügt Ax = κ 1 x (Herleitung s. Tafel), daher ist x der Eigenvektor

Mehr

Arbeit: Page, Brin, Motwani, Winograd (1998). Ziel: Maß für absolute

Arbeit: Page, Brin, Motwani, Winograd (1998). Ziel: Maß für absolute 3.4 PageRank Arbeit: Page, Brin, Motwani, Winograd (1998). Ziel: Maß für absolute Wichtigkeit von Webseiten; nicht Relevanz bezüglich Benutzeranfrage. Anfrageunabhängiges Ranking. Ausgangspunkt: Eingangsgrad.

Mehr

5 Suchmaschinen Page Rank. Page Rank. Information Retrieval und Text Mining FH Bonn-Rhein-Sieg, SS Suchmaschinen Page Rank

5 Suchmaschinen Page Rank. Page Rank. Information Retrieval und Text Mining FH Bonn-Rhein-Sieg, SS Suchmaschinen Page Rank Page Rank Google versucht die Bedeutung von Seiten durch den sogenannten Page Rank zu ermitteln. A C Page Rank basiert auf der Verweisstruktur des Webs. Das Web wird als großer gerichteter Graph betrachtet.

Mehr

Eigenwerte und Netzwerkanalyse. Page Rank

Eigenwerte und Netzwerkanalyse. Page Rank A Google versucht die Bedeutung von Webseiten mithilfe des sogenannten zu ermitteln. Der einer Seite basiert ausschließlich auf der Verweisstruktur des Webs. Der Inhalt einer Seite hat dagegen keinen direkten

Mehr

Randomisierte Algorithmen

Randomisierte Algorithmen Randomisierte Algorithmen Randomisierte Algorithmen Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2018/2019 1 / 40 Überblick Überblick Grundlegendes zu Markov-Ketten

Mehr

DisMod-Repetitorium Tag 3

DisMod-Repetitorium Tag 3 DisMod-Repetitorium Tag 3 Markov-Ketten 21. März 2018 1 Markov-Ketten Was ist eine Markov-Kette? Was gehört alles dazu? Darstellung als Graph und als Matrix Stationäre Verteilung und Grenzverteilung Ergodizität

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Thema 8: Verbesserte Suchstrategien im WWW. Bearbeiter: Robert Barsch Betreuer: Dr. Oliver Ernst

Thema 8: Verbesserte Suchstrategien im WWW. Bearbeiter: Robert Barsch Betreuer: Dr. Oliver Ernst Thema 8: Verbesserte Suchstrategien im WWW Bearbeiter: Robert Barsch Betreuer: Dr. Oliver Ernst Inhaltsverzeichnis 1. Einleitung 2. Grundlagen 3. Google PageRank Algorithmus 4. IBM Clever HITS Algorithmus

Mehr

Seminar: Data Mining. Referat: Andere Möglichkeiten des Data Mining in verteilten Systemen. Ein Vortrag von Mathias Rohde. 11.

Seminar: Data Mining. Referat: Andere Möglichkeiten des Data Mining in verteilten Systemen. Ein Vortrag von Mathias Rohde. 11. Referat: Andere Möglichkeiten des Data Mining in verteilten Systemen 11. Juni 2009 Gliederung 1 Problemstellung 2 Vektorprodukt Approximationen Samplesammlung 3 Schritte Lokalität und Nachrichtenkomplexität

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Duplikatfilterung und Sampling von Webseiten

Duplikatfilterung und Sampling von Webseiten Duplikatfilterung und Sampling von Webseiten Seminar Suchmaschinen, Wintersemester 2007/2008 Martin Sauerhoff Lehrstuhl 2, Universität Dortmund Übersicht 1. Duplikatfilterung: 1.1 Gleichheitstest mit Fingerabdrücken

Mehr

Betriebswirtschaftliche Optimierung

Betriebswirtschaftliche Optimierung Institut für Statistik und OR Uni Graz 1 Approximationsalgorithmen auf metrischen Instanzen Minimum Spanning Tree Definition (Spannbaum) Ein Spannbaum in einem Graphen G = (V,E) ist ein kreisfreier Teilgraph

Mehr

SCHNITTERHALTUNG (SPEKTRALE APPROXIMATION)

SCHNITTERHALTUNG (SPEKTRALE APPROXIMATION) Vorlesung 12 AUSDÜNNUNG VON GRAPHEN SCHNITTERHALTUNG (SPEKTRALE APPROXIMATION) 387 Wiederholung: Approximative Schnitterhaltung Ziel: Approximationsalgorithmus: A(S(G)) Ziele bei Eingabe eines dichten

Mehr

Betriebliche Optimierung

Betriebliche Optimierung Betriebliche Optimierung Joachim Schauer Institut für Statistik und OR Uni Graz Joachim Schauer ( Institut für Statistik und OR Uni Graz Betriebliche ) Optimierung 1 / 21 1 Approximationsalgorithmen auf

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Randomisierte Algorithmen

Randomisierte Algorithmen Randomisierte Algorithmen Randomisierte Algorithmen Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2018/2019 1 / 25 Überblick Überblick Metropolis-Algorithmus

Mehr

Theoretische Überlegungen zur Ausbreitung von Infektionserregern auf Kontaktnetzen. Hartmut Lentz, Maria Kasper, Ansgar Aschfalk und Thomas Selhorst

Theoretische Überlegungen zur Ausbreitung von Infektionserregern auf Kontaktnetzen. Hartmut Lentz, Maria Kasper, Ansgar Aschfalk und Thomas Selhorst Theoretische Überlegungen zur Ausbreitung von Infektionserregern auf Kontaktnetzen Hartmut Lentz, Maria Kasper, Ansgar Aschfalk und Thomas Selhorst Netzwerke / Graphen verschiedene Typen von Graphen: einfache

Mehr

Die Mathematik hinter Google

Die Mathematik hinter Google Die Mathematik hinter Google Wolfram Decker TU Kaiserslautern Neustadt, 5. Dezember 05 Elemente einer Suchmaschine WWW Crawler Module Page Repository User query independent Indexing Module 000 000 000

Mehr

2. November Gradfolgen Zusammenhang Kürzeste Wege. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 37

2. November Gradfolgen Zusammenhang Kürzeste Wege. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 37 2. November 2011 Gradfolgen Zusammenhang Kürzeste Wege H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 37 Satz von Erdős und Gallai Eine Partition einer natürlichen Zahl ist genau dann die Gradfolge

Mehr

für die Wahrscheinlichkeit, dass die Markov-Kette in t Schritten von Zustand i in Zustand j übergeht. Es ist also P (t) = (P t ) ij.

für die Wahrscheinlichkeit, dass die Markov-Kette in t Schritten von Zustand i in Zustand j übergeht. Es ist also P (t) = (P t ) ij. 8 Markov-Ketten 8.1 Grundlegendes zu Markov-Ketten Eine Markov-Kette ist ein stochastischer Prozess, der in diskreten Zeitschritten abläuft. Dabei wird jeweils von einem Zustand in einen nächsten übergegangen.

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

Markov-Ketten und Google s Page-Rank 1 / 70

Markov-Ketten und Google s Page-Rank 1 / 70 Markov-Ketten und Google s Page-Rank 1 / 70 Zielstellung 1 Wir geben einen kurzen Überblick über die Arbeitsweise von Suchmaschinen für das Internet. Eine Suchmaschine erwartet als Eingabe ein Stichwort

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 7 und 8: Euler- und Hamilton-Graphen Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 17. April 2018 1/96 WIEDERHOLUNG Eulersche

Mehr

Nachbarschaft, Grad, regulär, Inzidenz

Nachbarschaft, Grad, regulär, Inzidenz Nachbarschaft, Grad, regulär, Inzidenz Definition Eigenschaften von Graphen Sei G = (V, E) ein ungerichteter Graph. 1 Die Nachbarschaftschaft Γ(u) eines Knoten u V ist Γ(u) := {v V {u, v} E}. 2 Der Grad

Mehr

Rolf Wanka Sommersemester Vorlesung

Rolf Wanka Sommersemester Vorlesung Peer-to to-peer-netzwerke Rolf Wanka Sommersemester 2007 12. Vorlesung 12.07.2007 rwanka@cs.fau.de basiert auf einer Vorlesung von Christian Schindelhauer an der Uni Freiburg Aufbau Viceroy Knoten in Viceroy

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Markov-Ketten und Google s Page-Rank 1 / 70

Markov-Ketten und Google s Page-Rank 1 / 70 Markov-Ketten und Google s Page-Rank 1 / 70 Zielstellung 1 Wir geben einen kurzen Überblick über die Arbeitsweise von Suchmaschinen für das Internet. Eine Suchmaschine erwartet als Eingabe ein Stichwort

Mehr

Effiziente Algorithmen I

Effiziente Algorithmen I 9. Präsenzaufgabenblatt, WiSe 2013/14 Übungstunden am 13.01. & 15.01.2014 Aufgabe Q Gegeben sei ein Fluss-Netzwerk mit Digraph D = (V, A), Knotenkapazitäten c(u, v) 0, Quelle s und Senke t. Kann sich der

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

die Relevanz von Webseiten bestimmt Alexander Pohl

die Relevanz von Webseiten bestimmt Alexander Pohl Wie die Relevanz von Webseiten bestimmt Alexander Pohl Gliederung 1. Einleitung 2. Das Web als Graph 3. Das Random Surfer Modell 4. Gleichgewicht im Random Surfer Modell (?) 5. Vervollständigung des Modells:

Mehr

Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen)

Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen) WS 2015/16 Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

Vorlesungstermin 2: Graphentheorie II. Markus Püschel David Steurer. Algorithmen und Datenstrukturen, Herbstsemester 2018, ETH Zürich

Vorlesungstermin 2: Graphentheorie II. Markus Püschel David Steurer. Algorithmen und Datenstrukturen, Herbstsemester 2018, ETH Zürich Vorlesungstermin 2: Graphentheorie II Markus Püschel David Steurer Algorithmen und Datenstrukturen, Herbstsemester 2018, ETH Zürich Wiederholung: Vollständige Induktion Ziel: zeige n N. A(n) für eine Aussage

Mehr

Gambler s Ruin. B ist die Bank ) 4/40

Gambler s Ruin. B ist die Bank ) 4/40 Gambler s Ruin Zwei Spieler A und B spielen ein Spiel um m Franken. Spieler A hat a Franken, Spieler B hat b = m a Franken. In jeder Runde wird um 1 Franken gespielt. A gewinnt eine Runde mit W keit p,

Mehr

Der Ergodensatz. Hendrik Hülsbusch

Der Ergodensatz. Hendrik Hülsbusch Der Ergodensatz Hendrik Hülsbusch 1..212 Inhaltsverzeichnis Einleitung 3 5 Stationäre Verteilungen 5 6 Reversible Markovketten 11 2 Einleitung In meinem Vortrag beschäftigen wir uns mit dem asymptotischen

Mehr

Rolf Wanka Sommersemester Vorlesung

Rolf Wanka Sommersemester Vorlesung Peer-to to-peer-netzwerke Rolf Wanka Sommersemester 2007 9. Vorlesung 26.06.2007 rwanka@cs.fau.de basiert auf einer Vorlesung von Christian Schindelhauer an der Uni Freiburg Inhalte Kurze Geschichte der

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Dr. Hanjo Täubig Lehrstuhl für Eziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester 2007/08

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Prof. Martin Lercher Institut für Informatik Heinrich-Heine-Universität Düsseldorf Teil 9 Graphen Version vom 13. Dezember 2016 1 / 1 Vorlesung Fortsetzung 13. Dezember

Mehr

Klausur zur Vorlesung Grundbegriffe der Informatik 14. September 2015

Klausur zur Vorlesung Grundbegriffe der Informatik 14. September 2015 Klausur zur Vorlesung Grundbegriffe der Informatik 14. September 2015 Klausurnummer Nachname: Vorname: Matr.-Nr.: Diese Klausur ist mein 1. Versuch 2. Versuch in GBI Email-Adr.: nur falls 2. Versuch Aufgabe

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Suche im Web. Tobias Scheffer

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Suche im Web. Tobias Scheffer Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Suche im Web Tobias Scheffer WWW 1990 am CERN von Tim Berners Lee zum besseren Zugriff auf Papers entwickelt. HTTP, URLs, HTML,

Mehr

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 1: Grundlagen der algorithmischen Graphentheorie

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 1: Grundlagen der algorithmischen Graphentheorie Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 1: Grundlagen der algorithmischen Graphentheorie Dipl-Math. Wolfgang Kinzner 2.4.2012 Kapitel 1: Grundlagen der algorithmischen Graphgentheorie

Mehr

Seien u, v V, u v. Da G zusammenhängend ist, muss mindestens ein Pfad zwischen u und v existieren.

Seien u, v V, u v. Da G zusammenhängend ist, muss mindestens ein Pfad zwischen u und v existieren. Beweis: 1. 2. Seien u, v V, u v. Da G zusammenhängend ist, muss mindestens ein Pfad zwischen u und v existieren. Widerspruchsannahme: Es gibt zwei verschiedene Pfade zwischen u und v. Dann gibt es einen

Mehr

Hyperlink Induced Topic Search- HITS. Ying Ren Universität Heidelberg, Seminar Infomation Retrieval

Hyperlink Induced Topic Search- HITS. Ying Ren Universität Heidelberg, Seminar Infomation Retrieval Hyperlink Induced Topic Search- HITS Hyperlink-basiertes Ranking Ying Ren 25.01.2010 Universität Heidelberg, Seminar Infomation Retrieval Grundgedanken zum Link-basierten Rankingverfahren

Mehr

Vorlesung Wissensentdeckung

Vorlesung Wissensentdeckung Vorlesung Wissensentdeckung Closed Sets, Web Mining Katharina Morik, Claus Weihs 28.4.2015 Katharina Morik, Claus Weihs DMV 1 / 31 Gliederung 1 Closed Sets 2 Web Mining Finden von häufigen Subgraphen Ranking

Mehr

Vorlesung Big Data Analytics in Theorie und Praxis Theorieteil

Vorlesung Big Data Analytics in Theorie und Praxis Theorieteil Vorlesung Big Data Analytics in Theorie und Praxis Theorieteil Prof. Dr. Nicole Schweikardt Lehrstuhl Logik in der Informatik Institut für Informatik Humboldt-Universität zu Berlin Kapitel 1: PageRank:

Mehr

Dieser Graph hat 3 Zusammenhangskomponenten

Dieser Graph hat 3 Zusammenhangskomponenten Vl 2, Informatik B, 19. 04. 02 1.1.3 Definitionen und wichtige Graphen Sei im folgenden G =(V;E) ein schlichter ungerichteter Graph. Definition: Der Grad eines Knoten v in einem ungerichteten Graphen ist

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 16 Programm: Einführung

Mehr

Übung zur Vorlesung Diskrete Strukturen I

Übung zur Vorlesung Diskrete Strukturen I Technische Universität München WS 00/0 Institut für Informatik Aufgabenblatt Prof. Dr. J. Csirik. November 00 Brandt & Stein Übung zur Vorlesung Diskrete Strukturen I Abgabetermin: Tutorübungen am. und.

Mehr

Suchmaschinen und Markov-Ketten 1 / 42

Suchmaschinen und Markov-Ketten 1 / 42 Suchmaschinen und Markov-Ketten 1 / 42 Zielstellung 1 Wir geben einen kurzen Überblick über die Arbeitsweise von Suchmaschinen für das Internet. Eine Suchmaschine erwartet als Eingabe ein Stichwort oder

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Boltzmann Maschine David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2014 Übersicht Boltzmann Maschine Neuronale Netzwerke Die Boltzmann Maschine Gibbs

Mehr

Wiederholung zu Flüssen

Wiederholung zu Flüssen Universität Konstanz Methoden der Netzwerkanalyse Fachbereich Informatik & Informationswissenschaft SS 2008 Prof. Dr. Ulrik Brandes / Melanie Badent Wiederholung zu Flüssen Wir untersuchen Flüsse in Netzwerken:

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V.

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V. Kapitel 4 Graphenalgorithmen 4.1 Definitionen Definition 4.1.1. Der Graph G = (V, E) ist über die beiden Mengen V und E definiert, wobei V die Menge der Knoten und E die Menge der Kanten in dem Graph ist.

Mehr

\ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E.

\ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E. Das Komplement Ḡ = (V, ( V ) \ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E. Ein Graph H = (V, E )

Mehr

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 12, Henning Meyerhenke

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 12, Henning Meyerhenke Algorithmische Methoden zur Netzwerkanalyse Vorlesung 12, 25.01.2012 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum

Mehr

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008 Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 15 Computergraphik & Visualisierung Prof. Dr. Rüdiger Westermann Dr. Werner Meixner Wintersemester 2007/08 Lösungsblatt 8

Mehr

Diskrete Mathematik Graphentheorie (Übersicht)

Diskrete Mathematik Graphentheorie (Übersicht) Diskrete Mathematik Graphentheorie (Übersicht) Dr. C. Löh 2. Februar 2010 0 Graphentheorie Grundlagen Definition (Graph, gerichteter Graph). Ein Graph ist ein Paar G = (V, E), wobei V eine Menge ist (die

Mehr

Netzwerkstatistiken. Informatik-Seminar Netzwerkanalyse : Kapitel 11 - Netzwerkstatistiken. Jean Botev (SS 2005)

Netzwerkstatistiken. Informatik-Seminar Netzwerkanalyse : Kapitel 11 - Netzwerkstatistiken. Jean Botev (SS 2005) Netzwerkstatistiken 1 Übersicht - Motivation - Gradbasierte Statistiken - Abstandsbasierte Statistiken - Anzahl kürzester Pfade - Verzerrung - Clustering-Koeffizient und Transitivität - Netzwerkstatistik-Typen

Mehr

12. Graphen. Notation, Repräsentation, Traversieren (DFS, BFS), Topologisches Sortieren, Ottman/Widmayer, Kap ,Cormen et al, Kap.

12. Graphen. Notation, Repräsentation, Traversieren (DFS, BFS), Topologisches Sortieren, Ottman/Widmayer, Kap ,Cormen et al, Kap. 254 12. Graphen Notation, Repräsentation, Traversieren (DFS, BFS), Topologisches Sortieren, Ottman/Widmayer, Kap. 9.1-9.4,Cormen et al, Kap. 22 Königsberg 1736 255 Königsberg 1736 255 Königsberg 1736 255

Mehr

Ein Zustand i mit f i = 1 heißt rekurrent. DWT 2.5 Stationäre Verteilung 420/476 c Ernst W. Mayr

Ein Zustand i mit f i = 1 heißt rekurrent. DWT 2.5 Stationäre Verteilung 420/476 c Ernst W. Mayr Definition 140 Wir bezeichnen einen Zustand i als absorbierend, wenn aus ihm keine Übergänge herausführen, d.h. p ij = 0 für alle j i und folglich p ii = 1. Ein Zustand i heißt transient, wenn f i < 1,

Mehr

UNABHÄNGIGER LASTEN. Vorlesung 9 BALANCIERUNG DYNAMISCHER. Graphenalgorithmen und lineare Algebra Hand in Hand

UNABHÄNGIGER LASTEN. Vorlesung 9 BALANCIERUNG DYNAMISCHER. Graphenalgorithmen und lineare Algebra Hand in Hand Vorlesung 9 BALANCIERUNG DYNAMISCHER UNABHÄNGIGER LASTEN 266 Lastbalancierung Motivation! Ein paralleles System besteht aus! verschiedenen Recheneinheiten,! die miteinander kommunizieren können! Warum

Mehr

Theorie der Informatik Übersicht. Theorie der Informatik SAT Graphenprobleme Routing-Probleme. 21.

Theorie der Informatik Übersicht. Theorie der Informatik SAT Graphenprobleme Routing-Probleme. 21. Theorie der Informatik 19. Mai 2014 21. einige NP-vollständige Probleme Theorie der Informatik 21. einige NP-vollständige Probleme 21.1 Übersicht 21.2 Malte Helmert Gabriele Röger 21.3 Graphenprobleme

Mehr

Simulation von Zufallszahlen. Grundlage: zufällige Quelle von Zufallszahlen, durch einfachen rekursiven Algorithmus am Computer erzeugt

Simulation von Zufallszahlen. Grundlage: zufällige Quelle von Zufallszahlen, durch einfachen rekursiven Algorithmus am Computer erzeugt Simulation von Zufallszahlen Grundlage: zufällige Quelle von Zufallszahlen, durch einfachen rekursiven Algorithmus am Computer erzeugt Definition: Eine Folge von Pseudo-Zufallszahlen U i ist eine deterministische

Mehr

= n (n 1) 2 dies beruht auf der Auswahl einer zweielementigen Teilmenge aus V = n. Als Folge ergibt sich, dass ein einfacher Graph maximal ( n E = 2

= n (n 1) 2 dies beruht auf der Auswahl einer zweielementigen Teilmenge aus V = n. Als Folge ergibt sich, dass ein einfacher Graph maximal ( n E = 2 1 Graphen Definition: Ein Graph G = (V,E) setzt sich aus einer Knotenmenge V und einer (Multi)Menge E V V, die als Kantenmenge bezeichnet wird, zusammen. Falls E symmetrisch ist, d.h.( u,v V)[(u,v) E (v,u)

Mehr

Algorithmen und Datenstrukturen 2-1. Seminar -

Algorithmen und Datenstrukturen 2-1. Seminar - Algorithmen und Datenstrukturen 2-1. Seminar - Dominic Rose Bioinformatics Group, University of Leipzig Sommersemster 2010 Outline 1. Übungsserie: 3 Aufgaben, insgesamt 30 28 Punkte A1 Spannbäume (10 8

Mehr

Kapitel IV Minimale Spannbäume

Kapitel IV Minimale Spannbäume Kapitel IV Minimale Spannbäume 1. Grundlagen Ein Graph G = (V, E) besteht aus einer Menge V von Knoten und einer Menge E von Kanten. Wir werden nur endliche Knoten- (und damit auch Kanten-) Mengen betrachten.

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 4: Suchstrategien Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 14. April 2017 HALBORDNUNG TOPOLOGISCHE ORDNUNG TOPOLOGISCHES

Mehr

9. November ZHK in dynamischen Graphen Zentralitäten. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 67

9. November ZHK in dynamischen Graphen Zentralitäten. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 67 9. November 2011 ZHK in dynamischen Graphen Zentralitäten H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 67 ZHK in dynamischen Graphen Ungerichteter schlichter dynamischer Graph Dynamisch:

Mehr

Algorithmische Methoden für schwere Optimierungsprobleme

Algorithmische Methoden für schwere Optimierungsprobleme Algorithmische Methoden für schwere Optimierungsprobleme Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza)

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza) WS 2013/14 Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2013ws/ds/uebung/ 22. Januar 2014 ZÜ DS ZÜ XIII

Mehr

12. Graphen. Königsberg Zyklen. [Multi]Graph

12. Graphen. Königsberg Zyklen. [Multi]Graph Königsberg 76. Graphen, Repräsentation, Traversieren (DFS, BFS), Topologisches Sortieren, Ottman/Widmayer, Kap. 9. - 9.,Cormen et al, Kap. [Multi]Graph Zyklen C Kante Gibt es einen Rundweg durch die Stadt

Mehr

5. Vorlesung. Das Ranking Problem PageRank HITS (Hubs & Authorities) Markov Ketten und Random Walks PageRank und HITS Berechnung

5. Vorlesung. Das Ranking Problem PageRank HITS (Hubs & Authorities) Markov Ketten und Random Walks PageRank und HITS Berechnung 5. Vorlesung Das Ranking Problem PageRank HITS (Hubs & Authorities) Markov Ketten und Random Walks PageRank und HITS Berechnung Seite 120 The Ranking Problem Eingabe: D: Dokumentkollektion Q: Anfrageraum

Mehr

Naiver Algorithmus für Hamiltonkreis

Naiver Algorithmus für Hamiltonkreis Naiver Algorithmus für Hamiltonkreis Algorithmus HAMILTON EINGABE: G = ([n], E) in Adjazenzmatrixdarstellung 1 Für alle Permutationen π : [n] [n]. 1 Falls (π(1), π(2),..., π(n)) ein Kreis in G ist, AUSGABE

Mehr

Websuche. Linkanalyse

Websuche. Linkanalyse Websuche Linkanalyse 1 Bibliometrik: Zitatanalyse Viele Dokumente enthalten Bibliographien (oder Referenzen), d.h. eindeutige Zitierungen anderer vorher veröffentlichter Dokumente. Bei Verwendung von Zitaten

Mehr

Ranking Functions im Web: PageRank & HITS

Ranking Functions im Web: PageRank & HITS im Web: PageRank & HITS 28. Januar 2013 Universität Heidelberg Institut für Computerlinguistik Information Retrieval 4 / 30 Idee PageRank Entstehung: Larry Page & Sergey Brin, 1998, genutzt von Google

Mehr

Richtig oder falsch? Richtig oder falsch? Richtig oder falsch? Mit dynamischer Programmierung ist das Knapsack- Problem in Polynomialzeit lösbar.

Richtig oder falsch? Richtig oder falsch? Richtig oder falsch? Mit dynamischer Programmierung ist das Knapsack- Problem in Polynomialzeit lösbar. Gegeben sei ein Netzwerk N = (V, A, c, s, t) wie in der Vorlesung. Ein maximaler s-t-fluss kann immer mit Hilfe einer Folge von höchstens A Augmentationsschritten gefunden werden. Wendet man den Dijkstra-Algorithmus

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Bäume & Graphen Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr, o.n.v. Sommersemester

Mehr

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 10, Henning Meyerhenke

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 10, Henning Meyerhenke Algorithmische Methoden zur Netzwerkanalyse Vorlesung 10, 11.01.2012 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum

Mehr

1 Stochastische Konvergenz 2

1 Stochastische Konvergenz 2 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

Informatik II, SS 2016

Informatik II, SS 2016 Informatik II - SS 2016 (Algorithmen & Datenstrukturen) Vorlesung 13 (8.6.2016) Graphenalgorithmen I Algorithmen und Komplexität Graphen Knotenmenge V, typischerweise n V Kantenmenge E, typischerweise

Mehr

Knoten-Partitionierung in feste Eigenschaften ist NP-schwer

Knoten-Partitionierung in feste Eigenschaften ist NP-schwer Knoten-Partitionierung in feste Eigenschaften ist NP-schwer Seminar: Ausgewählte Kapitel der Informatik bei Prof. Dr. R. Schrader Seminarvortrag von Nils Rosjat Wintersemester 09 / 10 1 Einleitung Dieser

Mehr

Programmierkurs Python

Programmierkurs Python Programmierkurs Python Stefan Thater Michaela Regneri 2010-0-29 Heute Ein wenig Graph-Theorie (in aller Kürze) Datenstrukturen für Graphen Tiefen- und Breitensuche Nächste Woche: mehr Algorithmen 2 Was

Mehr

Programmierkurs Python II

Programmierkurs Python II Programmierkurs Python II Stefan Thater & Michaela Regneri FR.7 Allgemeine Linguistik (Computerlinguistik) Universität des Saarlandes Sommersemester 011 Heute Ein wenig Graph-Theorie (in aller Kürze) Datenstrukturen

Mehr

D 1 D 2 D 3 D 4 D 5... D m S S S S n

D 1 D 2 D 3 D 4 D 5... D m S S S S n Page-Rank Wir wollte in einem Corpus von Texten, wie z.b. Bücher, Webseiten, Anleitung usw., nach bestimmten Inhalten aus einer Menge von Schlüsselworten suchen Sei S = {S,S,...,S n,s n } eine eine alphabeitsch

Mehr

durch Einfügen von Knoten konstruiert werden kann.

durch Einfügen von Knoten konstruiert werden kann. Satz von Kuratowski Definition Unterteilung eines Graphen Sei G = (V, E) und e = {u, v} E. 1 Das Einfügen eines neuen Knoten w in die Kante e führt zum Graphen G = (V {w}, E \ e {{u, w}, {w, v}}). 2 Der

Mehr

Programmiertechnik II

Programmiertechnik II Graph-Algorithmen Anwendungsgebiete "Verbundene Dinge" oft Teilproblem/Abstraktion einer Aufgabenstellung Karten: Wie ist der kürzeste Weg von Sanssouci nach Kunnersdorf? Hypertext: Welche Seiten sind

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2010

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 4 Prof. Peter F. Stadler & Dr. Christian Höner zu Siederdissen Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität

Mehr

Vorlesung 2: Graphentheorie

Vorlesung 2: Graphentheorie Vorlesung 2: Graphentheorie Markus Püschel David Steurer Peter Widmayer Algorithmen und Datenstrukturen, Herbstsemester 2017, ETH Zürich Funktionsgraph bekannt aus der Schule hat aber leider nichts mit

Mehr

verschiedenen Recheneinheiten, die miteinander kommunizieren können

verschiedenen Recheneinheiten, die miteinander kommunizieren können Vorlesung 9 BALANCIERUNG DYNAMISCHER UNABHÄNGIGER LASTEN 293 Lastbalancierung Motivation Ein paralleles System besteht aus verschiedenen Recheneinheiten, die miteinander kommunizieren können Warum parallel

Mehr

Graphentheorie. Zusammenhang. Zusammenhang. Zusammenhang. Rainer Schrader. 13. November 2007

Graphentheorie. Zusammenhang. Zusammenhang. Zusammenhang. Rainer Schrader. 13. November 2007 Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 13. November 2007 1 / 84 2 / 84 Gliederung stest und Schnittkanten älder und Bäume minimal aufspannende Bäume Der Satz von Menger 2-zusammenhängende

Mehr

Problemlösen in grafischen Strukturen

Problemlösen in grafischen Strukturen Problemlösen in grafischen Strukturen Modul 31801 - Zusammenfassung Version vom 01.04.2019 Fernstudium Guide - Problemlösen in graphischen Strukturen - Seite 1 Impressum Herausgeber: FSGU AKADEMIE - Ein

Mehr

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 8, Henning Meyerhenke

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 8, Henning Meyerhenke Algorithmische Methoden zur Netzwerkanalyse Vorlesung 8, 07.12.2011 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum

Mehr

Übungsblatt 6. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17

Übungsblatt 6. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 6 Vorlesung Theoretische Grundlagen der Informatik im WS 16/17 Ausgabe 22. Dezember 2016 Abgabe 17. Januar 2017, 11:00 Uhr

Mehr

Der Metropolis-Hastings Algorithmus

Der Metropolis-Hastings Algorithmus Der Algorithmus Michael Höhle Department of Statistics University of Munich Numerical Methods for Bayesian Inference WiSe2006/07 Course 30 October 2006 Markov-Chain Monte-Carlo Verfahren Übersicht 1 Einführung

Mehr