T = {t 1,..., t n } sei die Menge der Terme. D = {d 1,..., d m } sei die Menge der Dokumente.

Größe: px
Ab Seite anzeigen:

Download "T = {t 1,..., t n } sei die Menge der Terme. D = {d 1,..., d m } sei die Menge der Dokumente."

Transkript

1 Vektorraummodell T = {t 1,..., t n } sei die Menge der Terme. D = {d 1,..., d m } sei die Menge der Dokumente. Dokumente und Anfragen werden als Vektoren in einem Vektorraum aufgefaßt. Der Vektorraum wird durch die in der Datenbank enthaltenen Terme aufgespannt (pro Term eine Dimension). Beim Retrieval wird nach Dokumenten gesucht, deren Dokumentvektor ähnlich zum Anfragevektor ist. Definition 3.4. [Vektorraummodell] Für d i D und t k T bezeichnet w i,k IR das Gewicht von Term t k in Dokument d i. Der Vektor w i = (w i,1,..., w i,n ) IR n heißt Dokumentvektor von d i. Ein Anfragevektor q ist ein beliebiger Vektor IR n. Zwischen zwei Dokumenten (bzw. einer Anfrage und einem Dokument) wird durch eine Ähnlichkeitsfunktion s : IR n IR n IR eine Ähnlichkeit definiert. Die Ähnlichkeit wird durch eine geeignete Funktion definiert. Information Retrieval FH Bonn-Rhein-Sieg, SS Information Retrieval FH Bonn-Rhein-Sieg, SS Im Gegensatz zum boolschen Retrieval hat das Vektorraummodell die folgenden Eigenschaften: Terme erhalten von vornherein unterschiedliche Gewichtungen. Für jedes Dokument und jeden Term wird versucht, die Bedeutung des Terms in diesem Dokument zu berücksichtigen. Erstellung einer Rangfolge für die Dokumente der Antwortmenge. Bezeichnungen: n sei die Anzahl der verschiedenen Terme in einer Datenbank. m sei die Anzahl der Dokumente. Information Retrieval FH Bonn-Rhein-Sieg, SS Information Retrieval FH Bonn-Rhein-Sieg, SS 04 98

2 Bemerkungen: Anhand der Ähnlichkeitsfunktion werden Anfragen und Dokumente (oder auch zwei Dokumente) miteinander verglichen. Der sich ergebende Ähnlichkeitswert kann für die Erstellung einer Rangfolge benutzt werden. Die Ähnlichkeitsfunktion hat typischerweise die Eigenschaft, daß ein hoher Wert eine große Ähnlichkeit anzeigt und ein niedriger Wert (evtl. sogar kleiner als Null) eine geringe Ähnlichkeit. Beispiel 3.1. [Vektorraummodell mit Skalarprodukt] text search in knowledge retrieval, but not in lexicons Rangfolge: d 3, d 1, d 4, d 2 t i q k w 1,k w 2,k w 3,k w 4,k text search knowledge retrieval lexicon -2 1 Skalarprodukt Beispielanfrage: In der Praxis kommen verschiedene Ähnlichkeitsfunktionen zur Anwendung. Information Retrieval FH Bonn-Rhein-Sieg, SS Information Retrieval FH Bonn-Rhein-Sieg, SS Eine (allerdings nicht unbedingt geeignete) Möglichkeit zur Definition einer Ähnlichkeitsfunktion besteht in der Verwendung des Skalarprodukts: Definition 3.5. [Skalarprodukt] Das Skalarprodukt < w i, q > für einen Anfragevektor q = (q 1,..., q n ) und einen Dokumentvektor w i = (w i,1,..., w i,n ) ist definiert durch: < w i, q >= n w i,k q k Vektorraummodell vs. boolsches Retrieval Das boolsche Retrieval stellt einen Spezialfall des Vektorraummodells dar. Hierzu erlaubt man in den Dokument- und Anfragevektoren nur die Gewichte 0 und 1, mit w i,j = 1 gdw. Term t j in Dokument d i auftritt. Analog repräsentiert man eine aus mehreren Termen zusammengesetzte Anfrage, d.h. q k = 1 gilt gdw. t k ein Anfrageterm von q ist. Liegt eine konjunktive boolsche Anfrage aus r Termen vor, so ergibt sich die Antwortmenge als die Menge aller Dokumente d i, für die gilt: < w i, q >= r. Bei einer disjunktiven boolschen Anfrage besteht die Anwortmenge aus allen Dokumenten d i, für die gilt: < w i, q > 1. Information Retrieval FH Bonn-Rhein-Sieg, SS Information Retrieval FH Bonn-Rhein-Sieg, SS

3 Beispiel 3.2. [Vektorraummodell vs. boolsches Retrieval] t 1 t 2 t 3 Skalarprodukt d d d d d d d d d d d q q 1 q 2 q 3 Venn-Diagramm: t3 d9 d11 d1 d2 t1 d5 d3 d10 d4 d6 d8 d7 t2 Definition 3.6. [Cosinusmaß] Es sei w i der Dokumentvektor von d i, und es sei q ein Anfragevektor. Dann ist das Cosinusmaß cos(w i, q) gegeben durch: Bemerkungen: cos(w i, q) = w i,kq k n w2 i,k q2 k = < w i, q > w i 2 q 2 Zur Normalisierung der Ähnlichkeit auf der Basis des Skalarprodukts werden die euklidischen Längen von Dokument- und Anfragevektor benutzt. Die Ähnlichkeitswerte sind beim Cosinusmaß unabhängig von der Länge der Vektoren. Information Retrieval FH Bonn-Rhein-Sieg, SS Information Retrieval FH Bonn-Rhein-Sieg, SS Ähnlichkeitsfunktionen Das Skalarprodukt als Ähnlichkeitsfunktion für das Vektorraummodell hat den Nachteil, daß die euklidische Länge eines Dokumentvektors einen starken Einfluß auf den Ähnlichkeitswert hat. Ergeben sich die Gewichte w i,j z.b. auf der Basis der Häufigkeit von t j in d i, so werden im Mittel lange Dokumente bevorzugt. Will man dies vermeiden, dann bieten sich Ähnlichkeitsfunktionen an, die die Länge der Dokument- bzw. Anfragevektoren berücksichtigen. Die wohl am häufigsten benutzte Ähnlichkeitsfunktion im Vektorraummodell ist das Cosinusmaß. Allgemein gilt für x, y IR n : < x, y >= x 2 y 2 cos α Hierbei ist α der Winkel, der durch die beiden Vektoren x und y aufgespannt wird. Das Cosinusmaß stellt demnach den Winkel zwischen Dokumentund Anfragevektor dar. Es gilt: 1 cos(w i, q) 1 Der größte Wert für cos(w i, q) ergibt sich, wenn Dokument- und Anfragevektor in die gleiche Richtung zeigen. Der kleinste Wert für cos(w i, q) ergibt sich, wenn Dokument- und Anfragevektor genau in entgegengesetzte Richtungen zeigen. Information Retrieval FH Bonn-Rhein-Sieg, SS Information Retrieval FH Bonn-Rhein-Sieg, SS

4 Definition 3.7. [Pseudo-Cosinusmaß] Es sei w i der Dokumentvektor von d i, und es sei q ein Anfragevektor. Dann ist das Pseudo- Cosinusmaß gegeben durch: pcos(w i, q) = w i,kq k ( w i,k) ( q k ) = < w i, q > w i 1 q 1 Es wird hier davon ausgegangen, daß negative Werte nur im Anfragevektor auftreten können. Beim Pseudo-Cosinusmaß wird für die Normalisierung die sogenannte Summennorm (L 1 -Norm) verwendet. Diese Ähnlichkeitsfunktion reagiert weniger stark auf große Gewichte im Dokument- oder Anfragevektor. Das Jaccard-Maß ist gegeben durch: jaccard(w i, q) = w i,kq k n w i,k + q k w i,kq k Diesen Ähnlichkeitsmaßen liegen die folgenden Ideen zur Definition einer Ähnlichkeit zwischen zwei Mengen Q und D zu Grunde: Skalarprodukt: Cosinusmaß: Dice-Maß: Q 1/2 D 1/2 2 Q + D Overlap-Maß: Jaccard-Maß: min{ Q, D } Q D Information Retrieval FH Bonn-Rhein-Sieg, SS Information Retrieval FH Bonn-Rhein-Sieg, SS Weiterhin werden im IR die folgenden Ähnlichkeitsfunktionen verwendet: Definition 3.8. [Dice-Maß] es sei q ein Anfragevektor. Das Dice-Maß ist gegeben durch: dice(w i, q) = Das Overlap-Maß ist gegeben durch: Es sei w i der Dokumentvektor von d i, und 2 w i,kq k w i,k + q k overlap(w i, q) = min{w i,k, q k } min{ w i,k, q k } Beispiel 3.3. [Vergleich der Ähnlichkeitsmaße] t 1 t 2 t 3 Sk.-P. cos pcos dice over. jac. d d d d d d d d d d d q q 1 q 2 q 3 Information Retrieval FH Bonn-Rhein-Sieg, SS Information Retrieval FH Bonn-Rhein-Sieg, SS

5 Rangfolgen: Skalarprodukt: 5 {3 10} 1 {6 9 11} {7 8} {2 4} Cosinus: {3 10} 5 {9 11} 1 6 {7 8} {2 4} Pseudo-Cosinus: {9 11} {3 10} { } 6 {2 4} Dice: 5 {3 10} 1 {9 11} 6 {7 8} {2 4} Overlap: { } Jaccard: 5 {3 10} 1 {9 11} 6 {7 8} {2 4} Information Retrieval FH Bonn-Rhein-Sieg, SS

3. Retrievalmodelle Grundkonzept des Vektorraummodells. Vektorraummodell. Dokumente und Anfragen werden als Vektoren in einem Vektorraum aufgefaßt.

3. Retrievalmodelle Grundkonzept des Vektorraummodells. Vektorraummodell. Dokumente und Anfragen werden als Vektoren in einem Vektorraum aufgefaßt. 3. Retrievalmodelle Grundkonzept des Vektorraummodells Vektorraummodell Dokumente und Anfragen werden als Vektoren in einem Vektorraum aufgefaßt. Der Vektorraum wird durch die in der Datenbank enthaltenen

Mehr

Erweitertes boolsches Retrieval

Erweitertes boolsches Retrieval Erweitertes boolsches Retrieval In diesem Unterabschnitt werden andere Ansätze zur Verbesserung des boolschen Retrievals vorgestellt. Im Gegensatz zum Vektorraummodell wird bei diesen Ansätzen versucht,

Mehr

Information Retrieval, Vektorraummodell

Information Retrieval, Vektorraummodell Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Information Retrieval, Vektorraummodell Tobias Scheffer Paul Prasse Michael Großhans Uwe Dick Information Retrieval Konstruktion

Mehr

Boole'sches Modell <is web>

Boole'sches Modell <is web> Boole'sches Modell basiert auf Mengentheorie und Boole'scher Algebra sehr einfaches Modell mit klarer Semantik Dokumente als Mengen von Indextermen Termgewichte sind binär: im Dokument enthalten oder nicht

Mehr

Information Retrieval,

Information Retrieval, Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Information Retrieval, Vektorraummodell Tobias Scheffer Uwe Dick Peter Haider Paul Prasse Information Retrieval Konstruktion von

Mehr

Nachteile Boolesches Retrieval

Nachteile Boolesches Retrieval Nachteile Boolesches Retrieval Komplizierte Anfragen Häufigkeit bzw. Relevanz der Terme in den Dokumenten nicht berücksichtigt 2 von 3 UND-verknüpften Termen im Dokument so schlecht wie 0 Terme Keine Rangfolge

Mehr

Indexvokabular {Korsika, Sardinien, Strand, Ferienwohnung, Gebirge} Verknüpfung von Enthaltenseinsbedingungen mittels Boole'scher Junktoren.

Indexvokabular {Korsika, Sardinien, Strand, Ferienwohnung, Gebirge} Verknüpfung von Enthaltenseinsbedingungen mittels Boole'scher Junktoren. Boole'sches Modell Boole'sches Modell: Beispiel basiert auf Mengentheorie und Boole'scher Algebra sehr einfaches Modell mit klarer Semantik Dokumente als Mengen von Indextermen Termgewichte sind binär:

Mehr

Rückblick. Aufteilung in Dokumente anwendungsabhängig. Tokenisierung und Normalisierung sprachabhängig

Rückblick. Aufteilung in Dokumente anwendungsabhängig. Tokenisierung und Normalisierung sprachabhängig 3. IR-Modelle Rückblick Aufteilung in Dokumente anwendungsabhängig Tokenisierung und Normalisierung sprachabhängig Gesetz von Zipf sagt aus, dass einige Wörter sehr häufig vorkommen; Stoppwörter können

Mehr

Kapitel IR:III (Fortsetzung)

Kapitel IR:III (Fortsetzung) Kapitel IR:III (Fortsetzung) III. Retrieval-Modelle Modelle und Prozesse im IR Klassische Retrieval-Modelle Bool sches Modell Vektorraummodell Retrieval-Modelle mit verborgenen Variablen Algebraisches

Mehr

Rückblick. Aufteilung in Dokumente anwendungsabhängig. Tokenisierung und Normalisierung sprachabhängig

Rückblick. Aufteilung in Dokumente anwendungsabhängig. Tokenisierung und Normalisierung sprachabhängig 3. IR-Modelle Rückblick Aufteilung in Dokumente anwendungsabhängig Tokenisierung und Normalisierung sprachabhängig Gesetz von Zipf sagt aus, dass einige Wörter sehr häufig vorkommen; Stoppwörter können

Mehr

Übungen zu Multimedia-Datenbanken Aufgabenblatt 2 - Musterlösungen

Übungen zu Multimedia-Datenbanken Aufgabenblatt 2 - Musterlösungen Übungen zu Multimedia-Datenbanken Aufgabenblatt 2 - Musterlösungen Übung: Dipl.-Inform. Tina Walber Vorlesung: Dr.-Ing. Marcin Grzegorzek Fachbereich Informatik, Universität Koblenz Landau Ausgabe: 03.05.200

Mehr

Multimedia-Datenbanken im SS 2010 Ähnlichkeitsmaße II

Multimedia-Datenbanken im SS 2010 Ähnlichkeitsmaße II Multimedia-Datenbanken im SS 2010 Ähnlichkeitsmaße II Dr.-Ing. Marcin Grzegorzek 22.06.2010 Inhalte und Termine 1. Einführung in MMDB 1.1 Grundlegende Begriffe 1.2 Suche in einem MMDBS 1.3 MMDBMS-Anwendungen

Mehr

Klassisches Information Retrieval Jan Schrader

Klassisches Information Retrieval Jan Schrader Klassisches Information Retrieval 27.10.2011 Jan Schrader Information Retrieval (IR) Information retrieval (IR) is finding material (usually documents) of an unstructured nature (usually text) that satisfies

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 6 4. Mai 2010 Definition 69. Der Vektor f 3 x 2 (x 1, x 2, x 3 ) f 2 x 3 (x 1, x 2, x 3 ) f 1 x 3 (x 1, x 2, x 3 ) f 3 x 1 (x 1, x 2, x 3 ) f 2 x

Mehr

9. Vorlesung Lineare Algebra, SVD und LSI

9. Vorlesung Lineare Algebra, SVD und LSI 9. Vorlesung Lineare Algebra, SVD und LSI Grundlagen lineare Algebra Vektornorm, Matrixnorm Eigenvektoren und Werte Lineare Unabhängigkeit, Orthogonale Matrizen SVD, Singulärwerte und Matrixzerlegung LSI:Latent

Mehr

Multimedia Retrieval im WS 2011/2012

Multimedia Retrieval im WS 2011/2012 Multimedia Retrieval im WS 2011/2012 2. Prinzipien des Information Retrieval Prof. Dr.-Ing. Marcin Grzegorzek Juniorprofessur für Mustererkennung Institut für Bildinformatik im Department ETI Fakultät

Mehr

Kapitel 5. Vektorräume mit Skalarprodukt

Kapitel 5. Vektorräume mit Skalarprodukt Kapitel 5 Vektorräume mit Skalarprodukt 119 120 Kapitel V: Vektorräume mit Skalarprodukt 5.1 Elementare Eigenschaften des Skalarprodukts Dienstag, 20. April 04 Wollen wir in einem Vektorraum wie in der

Mehr

Lineare Transformationen und Determinanten. 10-E Ma 1 Lubov Vassilevskaya

Lineare Transformationen und Determinanten. 10-E Ma 1 Lubov Vassilevskaya Lineare Transformationen und Determinanten 10-E Ma 1 Lubov Vassilevskaya Lineare Transformation cc Definition: V und W sind zwei Vektorräume. Eine Funktion T nennt man eine lineare Transformation von V

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015 Inhalt Mathematik für Chemiker II Lineare Algebra Vorlesung im Sommersemester 5 Rostock, April Juli 5 Vektoren und Matrizen Abbildungen 3 Gleichungssysteme 4 Eigenwerte 5 Funktionen mehrerer Variabler

Mehr

1 Euklidische und unitäre Vektorräume

1 Euklidische und unitäre Vektorräume 1 Euklidische und unitäre Vektorräume In diesem Abschnitt betrachten wir reelle und komplexe Vektorräume mit Skalarprodukt. Dieses erlaubt uns die Länge eines Vektors zu definieren und (im Fall eines reellen

Mehr

Probabilistic Ranking Principle besagt, dass Rangfolge gemäß dieser Wahrscheinlichkeiten optimal ist

Probabilistic Ranking Principle besagt, dass Rangfolge gemäß dieser Wahrscheinlichkeiten optimal ist Rückblick Probabilistisches IR bestimmt die Wahrscheinlichkeit, dass ein Dokument d zur Anfrage q relevant ist Probabilistic Ranking Principle besagt, dass Rangfolge gemäß dieser Wahrscheinlichkeiten optimal

Mehr

Information Retrieval als Fachgebiet in der Schnittmenge zwischen Informationswissenschaft, Informatik und Computerlinguistik

Information Retrieval als Fachgebiet in der Schnittmenge zwischen Informationswissenschaft, Informatik und Computerlinguistik Rückblick Information Retrieval als Fachgebiet in der Schnittmenge zwischen Informationswissenschaft, Informatik und Computerlinguistik Präzision und Ausbeute als elementare Gütemaße Zerlegung und Normalisierung

Mehr

Klassen von Retrieval-Modellen. Boolesche und Vektorraum- Modelle. Weitere Modell-Dimensionen. Retrieval-Modelle. Boolesche Modelle (Mengen-basiert)

Klassen von Retrieval-Modellen. Boolesche und Vektorraum- Modelle. Weitere Modell-Dimensionen. Retrieval-Modelle. Boolesche Modelle (Mengen-basiert) Klassen von Retrieval-Modellen Boolesche und Vektorraum- Modelle Boolesche Modelle (Mengen-basiert) Erweitertes Boolesches Modell Vektorraummodelle (vector space) (statistisch-algebraischer Ansatz) Latente

Mehr

Boolesche- und Vektorraum- Modelle

Boolesche- und Vektorraum- Modelle Boolesche- und Vektorraum- Modelle Viele Folien in diesem Abschnitt sind eine deutsche Übersetzung der Folien von Raymond J. Mooney (http://www.cs.utexas.edu/users/mooney/ir-course/). 1 Retrieval Modelle

Mehr

Vektoren und Matrizen

Vektoren und Matrizen Universität Basel Wirtschaftswissenschaftliches Zentrum Vektoren und Matrizen Dr. Thomas Zehrt Inhalt: 1. Vektoren (a) Einführung (b) Linearkombinationen (c) Länge eines Vektors (d) Skalarprodukt (e) Geraden

Mehr

Skalarprodukt, Norm & Metrik

Skalarprodukt, Norm & Metrik Skalarprodukt, Norm & Metrik Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 11. Mai 2016 Stefan Ruzika 5: Skalarprodukt, Norm & Metrik 11. Mai 2016 1 / 13 Gliederung 1

Mehr

Retrieval Modelle. Boolesche- und Vektorraum- Modelle. Weitere Modell-Dimensionen. Klassen von Retrieval Modellen. Boolesche Modelle (Mengentheorie)

Retrieval Modelle. Boolesche- und Vektorraum- Modelle. Weitere Modell-Dimensionen. Klassen von Retrieval Modellen. Boolesche Modelle (Mengentheorie) Retrieval Modelle Boolesche- und Vektorraum- Modelle Ein Retrieval-Modell spezifiziert die Details der: Repräsentation von Dokumenten Repräsentation von Anfragen Retrievalfunktion Legt die Notation des

Mehr

Projektgruppe. Clustering und Fingerprinting zur Erkennung von Ähnlichkeiten

Projektgruppe. Clustering und Fingerprinting zur Erkennung von Ähnlichkeiten Projektgruppe Jennifer Post Clustering und Fingerprinting zur Erkennung von Ähnlichkeiten 2. Juni 2010 Motivation Immer mehr Internet-Seiten Immer mehr digitale Texte Viele Inhalte ähnlich oder gleich

Mehr

12. R n als EUKLIDISCHER VEKTORRAUM

12. R n als EUKLIDISCHER VEKTORRAUM 12. R n als EUKLIDISCHER VEKTORRAUM 1 Orthogonalität in der Ebene. Die Vektoren in der Ebene, die (im üblichen Sinne) senkrecht zu einem Vektor x = (x 1, x 2 ) T stehen, lassen sich leicht angeben. Sie

Mehr

Übersicht Kapitel 9. Vektorräume

Übersicht Kapitel 9. Vektorräume Vektorräume Definition und Geometrie von Vektoren Übersicht Kapitel 9 Vektorräume 9.1 Definition und Geometrie von Vektoren 9.2 Teilräume 9.3 Linearkombinationen und Erzeugendensysteme 9.4 Lineare Abhängigkeiten

Mehr

2 Euklidische Vektorräume

2 Euklidische Vektorräume Sei V ein R Vektorraum. 2 Euklidische Vektorräume Definition: Ein Skalarprodukt auf V ist eine Abbildung σ : V V R, (v, w) σ(v, w) mit folgenden Eigenschaften ( Axiome des Skalarprodukts) (SP1) σ ist bilinear,

Mehr

44 Orthogonale Matrizen

44 Orthogonale Matrizen 44 Orthogonale Matrizen 44.1 Motivation Im euklidischen Raum IR n haben wir gesehen, dass Orthonormalbasen zu besonders einfachen und schönen Beschreibungen führen. Wir wollen das Konzept der Orthonormalität

Mehr

1.2 Abstände und Winkel

1.2 Abstände und Winkel 5 1.2 Abstände und Winkel Im Folgenden werde zunächst der n-dimensionale affine Standardraum A n = (R n, R n, τ) zugrunde gelegt und in der Regel auch A n = R n gesetzt. Im Vektorraum R n stehen das (euklidische)

Mehr

Vektorprodukt. Der Vektor. ist zu a und b orthogonal, gemäß der. Rechten-Hand-Regel orientiert und hat die Länge c = a b

Vektorprodukt. Der Vektor. ist zu a und b orthogonal, gemäß der. Rechten-Hand-Regel orientiert und hat die Länge c = a b Vektorprodukt Der Vektor c = a b ist zu a und b orthogonal, gemäß der Rechten-Hand-Regel orientiert und hat die Länge c = a b sin( ( a, b)), die dem Flächeninhalt des von den Vektoren a und b aufgespannten

Mehr

Tag-basierte Ähnlichkeitsbestimmung bei ARTigo

Tag-basierte Ähnlichkeitsbestimmung bei ARTigo Tag-basierte Ähnlichkeitsbestimmung bei ARTigo Crowdsourcing, Swarm Intelligence, Data Mining Referentin: Elena Levushkina Centrum für Informations- und Sprachverarbeitung ARTigo Online-Spiel zur Verschlagwortung

Mehr

Algorithmische Anwendungen WS 05/06 Document Ranking

Algorithmische Anwendungen WS 05/06 Document Ranking Algorithmische Anwendungen WS 05/06 Document Ranking Ulrich Schulte (ai641@gm.fh-koeln.de) Harald Wendel (ai647@gm.fh-koeln.de) Seite 1/17 Inhaltsverzeichnis Algorithmische Anwendungen WS 05/06 1. Document

Mehr

Vortrag 20: Kurze Vektoren in Gittern

Vortrag 20: Kurze Vektoren in Gittern Seminar: Wie genau ist ungefähr Vortrag 20: Kurze Vektoren in Gittern Kerstin Bauer Sommerakademie Görlitz, 2007 Definition und Problembeschreibung Definition: Gitter Seien b 1,,b k Q n. Dann heißt die

Mehr

Latent Semantic Indexing: Einführung und Experiment

Latent Semantic Indexing: Einführung und Experiment Latent Semantic Indexing: Einführung und Experiment Jonathan Geiger, Felix Hieber HS: Information Retrieval Dr. Haenelt 12.01.2009 WS 08/09 Motivation Grundsätzlich stecken zwei Ideen hinter, eine praktischer

Mehr

Boole sches Retrieval als frühes, aber immer noch verbreitetes IR-Modell mit zahlreichen Erweiterungen

Boole sches Retrieval als frühes, aber immer noch verbreitetes IR-Modell mit zahlreichen Erweiterungen Rückblick Boole sches Retrieval als frühes, aber immer noch verbreitetes IR-Modell mit zahlreichen Erweiterungen Vektorraummodell stellt Anfrage und Dokumente als Vektoren in gemeinsamen Vektorraum dar

Mehr

Kapitel 1. Vektoren und Matrizen. 1.1 Vektoren

Kapitel 1. Vektoren und Matrizen. 1.1 Vektoren Kapitel 1 Vektoren und Matrizen In diesem Kapitel stellen wir die Hilfsmittel aus der linearen Algebra vor, die in den folgenden Kapiteln öfters benötigt werden. Dabei wird angenommen, dass Sie die elementaren

Mehr

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat.

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. 1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. übliche Beispiele: Ort r = r( x; y; z; t ) Kraft F Geschwindigkeit

Mehr

Anwendung von Vektormodell und boolschem Modell in Kombination

Anwendung von Vektormodell und boolschem Modell in Kombination Anwendung von Vektormodell und boolschem Modell in Kombination Julia Kreutzer Seminar Information Retrieval Institut für Computerlinguistik Universität Heidelberg 12.01.2015 Motivation Welche Filme sind

Mehr

2 Evaluierung von Retrievalsystemen

2 Evaluierung von Retrievalsystemen 2. Evaluierung von Retrievalsystemen Relevanz 2 Evaluierung von Retrievalsystemen Die Evaluierung von Verfahren und Systemen spielt im IR eine wichtige Rolle. Gemäß der Richtlinien für IR der GI gilt es,...

Mehr

Kapitel 17 Skalar- und Vektorprodukt

Kapitel 17 Skalar- und Vektorprodukt Kapitel 17 Skalar- und Vektorprodukt Mathematischer Vorkurs TU Dortmund Seite 1 / 22 Bisher hatten wir die Möglichkeit Vektoren des R n zu addieren und Vektoren mit rellen Zahlen zu multiplizieren. Man

Mehr

Vorlesung Mathematik 2 für Informatik

Vorlesung Mathematik 2 für Informatik Vorlesung Mathematik für Informatik Inhalt: Lineare Algebra Rechnen mit Vektoren und Matrizen Lineare Gleichungssysteme, GauÿAlgorithmus Vektorräume, Lineare Abbildungen Eigenwerte und Eigenvektoren Literatur

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 9 20. Mai 2010 Kapitel 9. Matrizen und Determinanten Der Begriff der Matrix Die transponierte Matrix Definition 84. Unter einer (reellen) m n-matrix

Mehr

Gesucht und Gefunden: Die Funktionsweise einer Suchmaschine

Gesucht und Gefunden: Die Funktionsweise einer Suchmaschine Gesucht und Gefunden: Die Funktionsweise einer Suchmaschine Prof. Dr. Peter Becker FH Bonn-Rhein-Sieg Fachbereich Informatik peter.becker@fh-bonn-rhein-sieg.de Vortrag im Rahmen des Studieninformationstags

Mehr

Mathematische Grundlagen

Mathematische Grundlagen Kapitel 2 Mathematische Grundlagen In diesem Kapitel werden die mathematischen Grundlagen dargelegt, die für die Darstellung von dreidimensionalen Objekten notwendig sind. 2. 3D-Koordinatensystem Weit

Mehr

03. Vektoren im R 2, R 3 und R n

03. Vektoren im R 2, R 3 und R n 03 Vektoren im R 2, R 3 und R n Unter Verwendung eines Koordinatensystems kann jedem Punkt der Ebene umkehrbar eindeutig ein Zahlenpaar (x, y) zugeordnet werden P (x, y) Man nennt x und y die kartesischen

Mehr

Mathematischer Vorkurs

Mathematischer Vorkurs Mathematischer Vorkurs Dr Agnes Lamacz Mathematischer Vorkurs TU Dortmund Seite 1 / 17 Vektoren Kapitel 15 Vektoren Mathematischer Vorkurs TU Dortmund Seite 13 / 17 Vektoren 151 Denition: Vektoren im Zahlenraum

Mehr

03. Vektoren im R 2, R 3 und R n

03. Vektoren im R 2, R 3 und R n 03 Vektoren im R 2, R 3 und R n Unter Verwendung eines Koordinatensystems kann jedem Punkt der Ebene umkehrbar eindeutig ein Zahlenpaar (x, y) zugeordnet werden P (x, y) Man nennt x und y die kartesischen

Mehr

35 Matrixschreibweise für lineare Abbildungen

35 Matrixschreibweise für lineare Abbildungen 35 Matrixschreibweise für lineare Abbildungen 35 Motivation Wir haben gesehen, dass lineare Abbildungen sich durch ihre Wirkung auf die Basisvektoren ausdrücken lassen Mithilfe von Matrizen können wir

Mehr

6. Normale Abbildungen

6. Normale Abbildungen SKALARPRODUKE 1 6 Normale Abbildungen 61 Erinnerung Sei V ein n-dimensionaler prä-hilbertraum, also ein n-dimensionaler Vektorraum über K (R oder C) versehen auch mit einer Skalarprodukt, ra K Die euklidische

Mehr

5. Clusteranalyse. Lernziele: Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften

5. Clusteranalyse. Lernziele: Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften 5. Clusteranalyse Lernziele: Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften benennen und anwenden können, einen Test auf das Vorhandensein einer Clusterstruktur kennen, verschiedene

Mehr

Brückenkurs Mathematik. Mittwoch Freitag

Brückenkurs Mathematik. Mittwoch Freitag Brückenkurs Mathematik Mittwoch 5.10. - Freitag 14.10.2016 Vorlesung 4 Dreiecke, Vektoren, Matrizen, lineare Gleichungssysteme Kai Rothe Technische Universität Hamburg-Harburg Montag 10.10.2016 0 Brückenkurs

Mehr

5. Clusteranalyse Vorbemerkungen. 5. Clusteranalyse. Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften

5. Clusteranalyse Vorbemerkungen. 5. Clusteranalyse. Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften 5. Clusteranalyse Vorbemerkungen 5. Clusteranalyse Lernziele: Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften benennen und anwenden können, einen Test auf das Vorhandensein einer

Mehr

Länge, Skalarprodukt, Vektorprodukt

Länge, Skalarprodukt, Vektorprodukt Länge, Skalarprodukt, Vektorprodukt Jörn Loviscach Versionsstand: 20. April 2009, 19:39 1 Überblick Ein Vektorraum muss nur eine Minimalausstattung an Rechenoperationen besitzen: die Addition zweier Vektoren

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 2: Vektoren Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 19. Oktober 2011) Vektoren in R n Definition 2.1

Mehr

D-INFK Lineare Algebra HS 2016 Özlem Imamoglu Olga Sorkine-Hornung. Musterlösung 8. die gegebene Basis und b = die gesuchte Orthonormalbasis.

D-INFK Lineare Algebra HS 2016 Özlem Imamoglu Olga Sorkine-Hornung. Musterlösung 8. die gegebene Basis und b = die gesuchte Orthonormalbasis. D-INFK Lineare Algebra HS 016 Özlem Imamoglu Olga Sorkine-Hornung Musterlösung 8 1. Seien a { 1 0 1 1 1 0 0 0 1 } die gegebene Basis und b { b1, b, b } die gesuchte Orthonormalbasis. b 1 a 1 a 1 1 1 0

Mehr

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen Orthonormalisierung Wie schon im Falle V = R n erwähnt, erhalten wir durch ein Skalarprodukt eine zugehörige Norm (Länge) eines Vektors und in weiterer Folge eine Metrik (Abstand zwischen zwei Vektoren).

Mehr

Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT

Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Winter 6 Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT. Hinweise zur Bewertung: Jede Aussage ist entweder wahr oder falsch; machen Sie ein Kreuzchen in das entsprechende

Mehr

2.2 Kollineare und koplanare Vektoren

2.2 Kollineare und koplanare Vektoren . Kollineare und koplanare Vektoren Wie wir schon gelernt haben, können wir einen Vektor durch Multiplikation mit einem Skalar verlängern oder verkürzen. In Abbildung 9 haben u und v die gleiche Richtung,

Mehr

Orthonormalbasis. Orthogonalentwicklung

Orthonormalbasis. Orthogonalentwicklung Orthonormalbasis Eine Orthogonal- oder Orthonormalbasis des R n (oder eines Teilraums) ist eine Basis {v,..., v n } mit v i = und v i, v j = für i j, d. h. alle Basisvektoren haben Norm und stehen senkrecht

Mehr

M U = {x U f 1 =... = f n k (x) = 0}, (1)

M U = {x U f 1 =... = f n k (x) = 0}, (1) Aufgabe 11. a) Es sei M = {(x, y, z) R 3 f 1 = xy = 0; f = yz = 0}. Der Tangentialraum T x M muss in jedem Punkt x M ein R-Vektorraum sein und die Dimension 1 besitzen, damit diese Menge M eine Untermannigfaltigkeit

Mehr

Lineare Algebra. Inhalt. Hauptbestandteil der Vorlesung Mathematik 2 Literatur: Teschl/Teschl, Band 1, Kap. 9-14

Lineare Algebra. Inhalt. Hauptbestandteil der Vorlesung Mathematik 2 Literatur: Teschl/Teschl, Band 1, Kap. 9-14 Lineare Algebra Hauptbestandteil der Vorlesung Mathematik Literatur: Teschl/Teschl, Band, Kap. 9-4 Inhalt Rechnen mit Vektoren und Matrizen Lineare Gleichungssysteme, GauÿAlgorithmus Vektorräume, Lineare

Mehr

Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen

Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen a) Es ist < x, y > α + + β β ( + α) und y α + + β α + + ( + α) (α + α + ) 6 α + α, also α, ± 5 + ± 9 4 ± 3 Es gibt also Lösungen: α, β

Mehr

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können

Mehr

6.6. Abstandsbestimmungen

6.6. Abstandsbestimmungen 6.6. Abstandsbestimmungen 6. Geraden und Ebenen im Raum In diesem Kapitel werden folgende Fälle vorgestellt:. Abstand zweier Punkte. Abstand zweier paralleler Geraden 3. Abstand einer Ebene zu einer zur

Mehr

Mathematik für Naturwissenschaftler II

Mathematik für Naturwissenschaftler II Mathematik für Naturwissenschaftler II Dr Peter J Bauer Institut für Mathematik Universität Frankfurt am Main Sommersemester 27 Lineare Algebra Der mehrdimensionale Raum Vektoren Im Teil I dieser Vorlesung

Mehr

Information Retrieval

Information Retrieval Information Retrieval Ferdinand Hofherr 17. Mai 2005 Zusammenfassung Information Retrieval spielt in vielen Bereichen unseres Lebens eine wichtige Rolle. Wir kommen damit zum Beispiel in Berührung, wenn

Mehr

Information Retrieval und Multimedia Datenbanken 1

Information Retrieval und Multimedia Datenbanken 1 Dr. Wolf-Tilo Balke, Universität Hannover Information Retrieval und Multimedia Datenbanken 1 Vorlesung 28.04.06 Multimedia-Datenbanken Persistente Speicherung von Mediendaten, z.b. Text-Dokumente Vektorgraphik,

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom Übungsaufgaben 11. Übung: Woche vom 9. 1.-13. 1. 2017 (Numerik): Heft Ü 1: 12.28.a,b; 12.29.b,c (jeweils mit Fehlerabschätzung); 6.26; 6.27.a (auch mit Lagrange-Interpolationspolynom); 6.25; 6.28 (auch

Mehr

42 Orthogonalität Motivation Definition: Orthogonalität Beispiel

42 Orthogonalität Motivation Definition: Orthogonalität Beispiel 4 Orthogonalität 4. Motivation Im euklidischen Raum ist das euklidische Produkt zweier Vektoren u, v IR n gleich, wenn die Vektoren orthogonal zueinander sind. Für beliebige Vektoren lässt sich sogar der

Mehr

Vektoren. Kapitel 13 Vektoren. Mathematischer Vorkurs TU Dortmund Seite 114 / 1

Vektoren. Kapitel 13 Vektoren. Mathematischer Vorkurs TU Dortmund Seite 114 / 1 Vektoren Kapitel 13 Vektoren Mathematischer Vorkurs TU Dortmund Seite 114 / 1 Vektoren 131 Denition: Vektoren im Zahlenraum Ein Vektor (im Zahlenraum) mit n Komponenten ist ein n-tupel reeller Zahlen,

Mehr

Abstand Punkt/Ebene. x 50 = 0

Abstand Punkt/Ebene. x 50 = 0 Abstand Punkt/Ebene 1. Gegeben ist die Ebene E: ( ) x = Um den Abstand des Punktes P(2 ) zu E zu berechnen, gehen wir von der Hesseschen Normalenform der Ebenengleichung aus und bringen die Ebene zum Schnitt

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

Grundsätzliches Rechnen mit Matrizen Anwendungen. Matrizenrechnung. Fakultät Grundlagen. Juli 2015

Grundsätzliches Rechnen mit Matrizen Anwendungen. Matrizenrechnung. Fakultät Grundlagen. Juli 2015 Matrizenrechnung Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Matrizenrechnung Übersicht Grundsätzliches 1 Grundsätzliches Matrixbegriff Rechenregeln Spezielle Matrizen 2 Matrizenrechnung Determinanten

Mehr

Mathematische Grundlagen

Mathematische Grundlagen Kapitel 12 Mathematische Grundlagen In diesem Kapitel werden die mathematischen Grundlagen dargelegt, die für die Darstellung von dreidimensionalen Objekten notwendig sind. 12.1 3D-Koordinatensystem Weit

Mehr

Übungsaufgaben. Aufgabe 1 Internetsuchmaschinen. Einführung in das Information Retrieval, 8. Mai 2008 Veranstaltung für die Berufsakademie Karlsruhe

Übungsaufgaben. Aufgabe 1 Internetsuchmaschinen. Einführung in das Information Retrieval, 8. Mai 2008 Veranstaltung für die Berufsakademie Karlsruhe Otto-Friedrich-Universität Bamberg Lehrstuhl für Medieninformatik Prof. Dr. Andreas Henrich Dipl. Wirtsch.Inf. Daniel Blank Einführung in das Information Retrieval, 8. Mai 2008 Veranstaltung für die Berufsakademie

Mehr

Lineare Algebra I Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß

Lineare Algebra I Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß Lineare Algebra I - 26. Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß Donnerstag 8.12.: 8:30 Uhr - Vorlesung 10:15 Uhr - große Übung / Fragestunde Klausur: Mittwoch, 14.12. 14:15 Uhr, A3 001 Cauchy-Schwarz

Mehr

Bild, Faser, Kern. Stefan Ruzika. 23. Mai Mathematisches Institut Universität Koblenz-Landau Campus Koblenz

Bild, Faser, Kern. Stefan Ruzika. 23. Mai Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 23. Mai 2016 Stefan Ruzika 7: Bild, Faser, Kern 23. Mai 2016 1 / 11 Gliederung 1 Schulstoff 2 Körper 3 Vektorräume 4 Basis

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P. Grohs T. Welti F. Weber Herbstsemester 5 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie Aufgabe. Skalarprodukt und Orthogonalität.a) Bezüglich des euklidischen

Mehr

Wiederholung von Linearer Algebra und Differentialrechnung im R n

Wiederholung von Linearer Algebra und Differentialrechnung im R n Wiederholung von Linearer Algebra und Differentialrechnung im R n 1 Lineare Algebra 11 Matrizen Notation: Vektor x R n : x = x 1 x n = (x i ) n i=1, mit den Komponenten x i, i {1,, n} zugehörige Indexmenge:

Mehr

Lineare Algebra I. Christian Ebert & Fritz Hamm. Gruppen & Körper. Vektorraum, Basis & Dimension. Lineare Algebra I. 18.

Lineare Algebra I. Christian Ebert & Fritz Hamm. Gruppen & Körper. Vektorraum, Basis & Dimension. Lineare Algebra I. 18. 18. November 2011 Wozu das alles? Bedeutung von Termen Vektoren in R n Ähnlichkeiten zwischen Termbedeutungen Skalarprodukt/Norm/Metrik in R n Komposition von Termbedeutungen Operationen auf/abbildungen

Mehr

HÖHERE MATHEMATIK I FÜR MW UND CIW Übungsblatt 5

HÖHERE MATHEMATIK I FÜR MW UND CIW Übungsblatt 5 PROF DR-ING RAINER CALLIES DR THOMAS STOLTE DIPL-TECH MATH KATHRIN RUF DIPL-TECH MATH KARIN TICHMANN WS / HÖHERE MATHEMATIK I FÜR MW UND CIW Übungsblatt Zentralübung Z Bezüglich eines kartesischen Koordinatensystems

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

bzw. eine obere Dreiecksmatrix die Gestalt (U: upper)

bzw. eine obere Dreiecksmatrix die Gestalt (U: upper) bzw. eine obere Dreiecksmatrix die Gestalt (U: upper) U = u 11 u 12 u 1n 1 u nn 0 u 22 u 2n 1 u 2n 0......... 0 0 u n 1n 1 u n 1n 0 0 0 u nn Eine nicht notwendig quadratische Matrix A = (a ij ) heißt obere

Mehr

Skalarprodukte (Teschl/Teschl Kap. 13)

Skalarprodukte (Teschl/Teschl Kap. 13) Skalarprodukte (Teschl/Teschl Kap. ) Sei V Vektorraum über R. Ein Skalarprodukt auf V ist eine Abbildung V V R, (x, y) x, y mit den Eigenschaften () x, y = y, x (symmetrisch), () ax, y = a x, y und x +

Mehr

9 Vektorräume mit Skalarprodukt

9 Vektorräume mit Skalarprodukt 9 Skalarprodukt Pink: Lineare Algebra 2014/15 Seite 79 9 Vektorräume mit Skalarprodukt 9.1 Normierte Körper Sei K ein Körper. Definition: Eine Norm auf K ist eine Abbildung : K R 0, x x mit den folgenden

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

Hilfsblätter Lineare Algebra

Hilfsblätter Lineare Algebra Hilfsblätter Lineare Algebra Sebastian Suchanek unter Mithilfe von Klaus Flittner Matthias Staab c 2002 by Sebastian Suchanek Printed with L A TEX Inhaltsverzeichnis 1 Vektoren 1 11 Norm 1 12 Addition,

Mehr

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 6

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 6): Lineare Algebra und analytische Geometrie 6 6. (Herbst, Thema, Aufgabe 4) Der Vektorraum R 4 sei mit dem Standard Skalarprodukt versehen. Der Unterraum

Mehr

Implementierung: Dokumentclustering

Implementierung: Dokumentclustering Implementierung: Dokumentclustering Max Jakob Florian Winkelmeier Ruprecht-Karls-Universität Heidelberg Seminar für Computerlinguistik HS Information Retrieval Dozentin: Dr. Karin Haenelt Wintersemester

Mehr

Wiederholung Winkel. Berechnung des Winkels zwischen zwei Vektoren

Wiederholung Winkel. Berechnung des Winkels zwischen zwei Vektoren Wiederholung Winkel Das entscheidende Mittel zur Bestimmung von Winkeln ist das Skalarprodukt. Das Skalarprodukt lässt sich nämlich sehr komfortabel koordinatenweise berechnen, zugleich hängt es aber mit

Mehr

Euklidische und unitäre Vektorräume

Euklidische und unitäre Vektorräume Euklidische und unitäre Vektorräume In allgemeinen Vektorräumen gibt es keine Möglichkeit der Längenmessung von Vektoren und der Winkelmessung zwischen zwei Vektoren. Dafür ist eine zusätzliche Struktur

Mehr

r i w i (siehe (3.7)). r i v, w i = 0.

r i w i (siehe (3.7)). r i v, w i = 0. Orthogonales Komplement und Orthogonalprojektion Wir betrachten weiterhin einen euklidischen Vektorraum V,,. (6.13) Def.: Ist M V, so heißt das orthogonale Komplement von M. (6.14) Fakt. (i) M ist Untervektorraum

Mehr