Grundlagen der Informatik II

Größe: px
Ab Seite anzeigen:

Download "Grundlagen der Informatik II"

Transkript

1 Grundlagen der Informatik II Dr.-Ing. Sven Hellbach S. Hellbach Grundlagen der Informatik II Abbildungen entnommen aus: Dirk W. Hoffmann: Theoretische Informatik; Hanser Verlag 2011, ISBN:

2 Formale Sprachen Grammatiken S. Hellbach Grundlagen der Informatik II 3

3 Formale Sprache Warum eigentlich formale Sprachen? Dieser Bereich wird zur Verhütung von Straftaten durch die Polizei videoüberwacht. Was brauchen wir dazu? Ein Alphabet Σ ist eine endliche Menge von Symbolen. Jedes Element ist ein Zeichen des Alphabets. 2! 2 L Jedes Element wird als Wort über Σ bezeichnet. Jede Teilmenge ist eine formale Sprache über Σ. Definition Σ 0 := {ε} Σ 1 := Σ Σ n+1 := {xy x Σ,y Σ n } Σ + := Σ i Σ := i=1 Σ i i=0 Beispiel: Σ := {a, b} Σ 0 = {ε} Σ 1 = {a,b} Σ 2 = {aa,ab,ba,bb} S. Hellbach Grundlagen der Informatik II 4... Σ + = {a,b,aa,ab,ba,bb,...} Σ = {ε,a,b,aa,ab,ba,bb,...}

4 Was kann man damit machen? Entscheidungsprobleme Fragestellungen in Verbindung mit formalen Sprachen: Wortproblem: Gehört ein Wort w zur Sprache L (w L?) Leerheitsproblem: Beschreibt die Sprache L (mindestens) ein Wort (L?) Endlichkeitsproblem: Beschreibt die Sprache L (nur) endlich viele Worte ( L <?) Äquivalenzproblem: Beschreiben zwei Sprachen L1 und L2 dieselben Worte (L 1 = L 2?) Spracherzeugung: Gibt es für L eine systematische Vorschrift? S. Hellbach Grundlagen der Informatik II 5

5 Grammatik Eine Grammatik G ist ein Viertupel (V,,P,S). Sie besteht aus der endlichen Variablenmenge V (Nonterminale), dem endlichen Terminanalphabet mit V \ = ;, der endlichen Menge P von Produktionen (Regeln) und der Startvariablen S mit S 2 V. Jede Produktion aus P hat die Form l! r mit l 2 (V [ ) + und r 2 (V [ ). Beispiel Dyck-Sprache (syntaktisch korrekte Klammerausdrücke) Signatur Produktionen P: G =({S}, { (, ), [, ] }, P,S) S! S! SS S! [S] S! (S) S! SS [S] (S) S. Hellbach Grundlagen der Informatik II 6

6 Natürlichsprachliches Beispiel <Satz> <Subjekt> <Prädikat> <Objekt> <Subjekt> <Artikel><Adjektiv><Substantiv> <Artikel> Der Die Das <Adjektiv> kleine süße flinke <Substantiv> Eisbär Elch Kröte Maus Nilpferd <Prädikat> mag fängt isst <Objekt> Kekse Schokolade Käsepizza S. Hellbach Grundlagen der Informatik II 7

7 Chomsky-Hierarchie Typen von Grammatiken Typ 0: allg. Chomsky-Grammatik oder Phrasenstrukturgrammatiken muss Grammatikdefinition genügen keine weiteren Einschränkungen Typ 1: Kontextsensitive Grammatiken l! r mit r l Anwendung einer Produktion kann nicht zur Verkürzung der Zeichenkette führen Typ 2: Kontextfreie Grammatiken l! r mit l 2 V Linke Seite besteht nur aus einem Zeichen, daher kein Kontext Typ 3: Reguläre Grammatiken l! r mit l 2 V ^ r 2 [ V Rechte Seite besteht aus einem Terminal gefolgt von einem Non- Terminal oder ist das leere Wort S. Hellbach Grundlagen der Informatik II 8

8 Sprachen Sprachen: L(G)! {y 2 S ) y} Sprache L ist eine Typ-n- Sprache, wenn sie von einer Typ-n-Grammatik erzeugt wird. Die Menge aller Typ-n- Sprachen heißt L n L 0 L 1 L 2 L 3 Typ-0- Sprachen Typ-1- Sprachen Typ-2- Sprachen Typ-3- Sprachen S. Hellbach Grundlagen der Informatik II 9

9 Sprachen: Eigenschaften Abschlusseigenschaften bezüglich: Vereinigung Ist mit L 1, L 2 auch die Sprache L 1 L 2? Durchschnitt Ist mit L 1, L 2 auch die Sprache L 1 L 2? Komplement Ist mit L auch die Sprache? L n L n Konkatenation Ist mit L 1, L2 auch die Sprache L 1 L 2? Kleene sche Hülle Ist mit L auch die Sprache L? L n L n L n \ L 2 L n L n L n L n L n S. Hellbach Grundlagen der Informatik II 10

10 Reguläre Sprachen Typ 3: Erzeugt aus Reguläre Grammatiken l! r mit l 2 V ^ r 2 [ V Rechte Seite besteht aus einem Terminal gefolgt von einem Non-Terminal oder ist das leere Wort Beispiel: mit P enthält: L C3 = {(ab) n n 1} G =({S, B, C}, {a, b},p,s) S! ab B! bc C! ab S. Hellbach Grundlagen der Informatik II 11

11 Regulärer Sprachen: Eigenschaften S. Hellbach Grundlagen der Informatik II 12

12 Regulärer Sprachen: Pumping Lemma Für jede reguläre Sprache L existiert ein j 2 N, so dass sich alle Wörter m 2 L mit m j in der folgenden Form darstellen lassen: m = uvw mit v 1und uv apple j Dann ist mit m auch das Wort uv i w für alle i 2 N in L enthalten. S Pumping Lemma wird vor allem genutzt, um zu zeigen, das bestimmte Sprachen nicht regulär sind. L C2 = {a n b n n 1} Bspw. ist keine reguläre Sprache u v v A A A A v w S. Hellbach Grundlagen der Informatik II Die Ableitung 13 des Mittelstücks SoSe lässt sich 2016

13 Regulärer Sprachen: Reguläre Ausdrücke Reguläre Ausdrücke zur Beschreibung regulärer Sprachen Alternative zum bisherigen Syntax der Produktionsregeln Induktive Definition: Starte mit den trivialen Sprachen:, {ε}, {a} für a Σ Wende folgende Operationen auf bereits erzeugte reguläre Ausdrücke an: Konkatenation: Vereinigung: Kleene-Abschluss: L 1,L 2! L 1 L 2 = {w 1 w 2 w 1 2 L 1,w 2 2 L 2 } L 1,L 2! L 1 [ L 2 = {w w 2 L 1 _ w 2 L 2 } L! L = {w 1...w s s 0,w 1,...,w s 2 L} In der Praxis: zusätzliche syntaktische Konstrukte, um bestimmte Zusammenhänge kompakter hinschreiben zu können S. Hellbach Grundlagen der Informatik II 14

14 Regulärer Sprachen: Reguläre Ausdrücke: grep / sed S. Hellbach Grundlagen der Informatik II 15

15 Kontextfreie Sprachen Typ 2: Erzeugt aus kontextfreien Grammatiken l! r mit l 2 V Linke Seite besteht nur aus einem Zeichen, daher kein Kontext Beispiel: mit P enthält : L C2 = {a n b n n 1} G =({S}, {a, b},p,s) S! asb ab S. Hellbach Grundlagen der Informatik II 16

16 Kontextfreie Sprachen: Normalformen Chomsky-Normalform Eine Grammatik G=(V, Σ, P, S) liegt in Chomsky-Normalform vor, wenn alle Produktionen P die Form S ε, A σ oder A BC mit A V, B,C V \ {S} und σ Σ. Erzeugen der Chomsky-Normalform: 1. Eliminierung der ε-regeln: B ε entfernen, dafür auf rechter Seite aller Produktionen Regel anwenden 2. Eliminierung von Kettenregeln: A B (A,B V ) durch Einsetzen der Folgeregel 3. Separierung von Terminalzeichen: Jedes σ Σ, das in Kombination mit anderen Symbolen auftaucht, durch neues V σ V ersetzt und Hinzufügen von V σ σ 4. Eliminierung von mehrelementigen Nonterminalketten: A B 1 B 2...B n ersetzen durch A A n 1 B n, A n 1 A n 2 B n 1,..., A 2 B 1 B 2 S. Hellbach Grundlagen der Informatik II 17

17 Kontextfreie Sprachen: Normalformen (CNF) Beispiel Grammatik G :=({S,A,B},{a,b},P,S) { } { Produktionsmenge P S AB ABA A aa a B Bb ε *1 *2 *1 *2 + S. Hellbach Grundlagen der Informatik II 18

18 Kontextfreie Sprachen: Normalformen Backus-Naur-Form Kontextfreie Sprachen stark genug, um Syntax von Programmiersprachen zu beschreiben Ca Verwendung der BNF Alternativer Syntax der Produktionsregeln Auswahl Optionales Element Wiederholung S. Hellbach Grundlagen der Informatik II 19

19 Kontextfreie Sprachen: Normalformen (BNF) S. Hellbach Grundlagen der Informatik II 20

20 Kontextfreie Sprachen: Abschlusseigenschaften Fragestellung: Führen Operationen aus der Sprachklasse heraus? Lösungsansatz: Finden einer Grammatik, die die Operation beschreibt, aber nur Regeln aus der Sprachklasse zulässt. Seien: kontextfrei o.b.d.a gelte Erfüllt für Vereinigung G i = {V i,,p i,s i },i2 {1, 2} V 1 \ V 2 = ; G 1 2 := {V 1 V 2,Σ,P 1 P 2 {S S 1 S 2 },S} Konkatenation G 1 2 := {V 1 V 2,Σ,P 1 P 2 {S S 1 S 2 },S} Kleene sche Hülle G 1 := {V 1,Σ,P 1 {S ε SS 1 },S} S. Hellbach Grundlagen der Informatik II 21

21 Kontextfreie Sprachen: Abschlusseigenschaften Fragestellung: Führen Operationen aus der Sprachklasse heraus? Lösungsansatz: Finden einer Grammatik, die die Operation beschreibt, aber nur Regeln aus der Spracheklasse zulässt. Sei: o.b.d.a gelte Nicht erfüllt Schnitt: G i = {V i,,p i,s i },i2 {1, 2} L(G 1 )={a i,b i,c j i, j 2 N} L(G 2 ) \ L(G 2 ) L(G 2 )={a j,b i,c i i, j 2 N} Komplement: wäre Komplement abgeschlossen, müsste L(G 2 ) \ L(G 2 )=L(G 2 ) [ L(G 2 ) gelten. Der Schnitt ist aber nicht abgeschlossen: V 1 \ V 2 = ; = {a i,b i,c i i, j 2 N} S. Hellbach Grundlagen der Informatik II 22

22 Kontextfreie Sprachen: Entscheidungsprobleme Wortproblem lässt sich mittels dynamischer Programmierung lösen: Dynamische Programmierung: Rekursiver Algorithmus mit Speicherung und Wiederverwerten von Zwischenergebnissen CYK-Algorithmus benannt nach John Cocke, Daniel Younger und Tadao Kasami Wir beobachten in der Chomsky-Normalform: Wort aus einem Zeichen (ω = σ): Es muss die Regel A σ existieren. Sonst würde die Regel ein weiteres Nonterminal produzieren (erzeugt wiederum ein weiteres Terminal) trivial Mehreren Terminalzeichen σ 1,...,σ j mit j 2: Muss durch Anwendung einer Regel A BC entstanden sein, wobei B die Anfangssequenz σ 1,...,σ k und C die Endsequenz σ k+1,..., σ j erzeugt Problem für Wörter ω der Länge j auf die Lösung für Wörter der Länge k bzw. j k zurückgeführt S. Hellbach Grundlagen der Informatik II 23

23 Kontextfreie Sprachen: CYK-Algorithmus cyk[i][j] i j 3 1 * S. Hellbach Grundlagen der Informatik II 24

24 Kontextfreie Sprachen: CYK-Algorithmus - Beispiel Grammatik G =({S, A, B, C}, {a, b},p,s) S AB AC C SB A a B b 2 L(G) 2 L(G) S. Hellbach Grundlagen der Informatik II 25

25 Kontextfreie Sprachen: Pumping-Lemma Für jede kontextfreie Sprache L existiert ein j 2 N, so dass sich alle Wörter m 2 L mit m j in der folgenden Form darstellen lassen: m = uvwxy mit vx 1und vwx apple j Dann ist mit m auch das Wort uv i wx i y für alle i 2 N in L enthalten. Pumping Lemma kann auch hier genutzt werden, um zu zeigen, das bestimmte Sprachen nicht kontextfrei sind. L C2 = {a n b n c n n 1} Bspw. ist keine kontextfreie Sprache Es gibt auch Sprachen, die das Pumping-Lemma erfüllen, aber trotzdem nicht kontextfrei sind Häufig zu finden: Ogdens-Lemma als Verallgemeinerung des Pumping-Lemma aber: Too Many Languages Satisfy Ogden s Lemma (Marcus Kracht 2004) S. Hellbach Grundlagen der Informatik II 26 u v v v w S A A A A x x x y

26 Kontextfreie Sprachen: Eigenschaften S. Hellbach Grundlagen der Informatik II 29

27 Kontextsensitive Sprachen Typ 1: Erzeugt aus Kontextsensitive Grammatiken Anwendung einer Produktion kann nicht zur Verkürzung der Zeichenkette führen Beispiel: l! r mit r mit P enthält: l L C1 = {a n b n c n n 1} G =({S, A, B, C}, {a, b, c},p,s) S SABC S abc CA AC ca Ac CB BC cb Bc BA AB ba Ab aa aa bb bb cc cc S. Hellbach Grundlagen der Informatik II 30

28 Kontextsensitive Sprachen: Abschlusseigenschaften Fragestellung: Führen Operationen aus der Sprachklasse heraus? Lösungsansatz: Finden einer Grammatik, die die Operation beschreibt, aber nur Regeln aus der Sprachklasse zulässt. Seien: kontextsensitiv o.b.d.a gelte V 1 \ V 2 = ; Erfüllt für Vereinigung Konkatenation G i = {V i,,p i,s i },i2 {1, 2} Kleene sche Hülle G 1 2 := {V 1 V 2,Σ,P 1 P 2 {S S 1 S 2 },S} G 1 2 := {V 1 V 2,Σ,P 1 P 2 {S S 1 S 2 },S} G 1 := {V 1,Σ,P 1 {S ε SS 1 },S} Für Schnitt und Komplement nicht abgeschlossen: Beweise über linear beschränkte Turing-Maschine (evtl. später) S. Hellbach Grundlagen der Informatik II 31

29 Kontextsensitive Sprachen: Eigenschaften S. Hellbach Grundlagen der Informatik II 32

30 Rekursiv aufzählbaren Sprachen Typ 0: Erzeugt aus Phrasenstrukturgrammatiken muss Grammatikdefinition genügen keine weiteren Einschränkungen Beispiel: L C0 = {a 2n n 1} G =({S, D, L}, {a},p,s) mit P enthält: S! SD S! La ad! Daa Typ-0-Grammatiken! haben dieselbe Berechnungsstärke, wie Turing- Maschinen. Damit lassen sich durch Typ-0-Grammatiken, alle Sprachen erzeugen, die algorithmisch berechenbar sind. Typ-0-Sprachen sind nicht über das Komplement abgeschlossen: Es gibt also Problemstellungen, deren Gegenteil sich algorithmisch nicht lösen lässt. S. Hellbach Grundlagen der Informatik II 33! LD! L L!

31 Rekursiv aufzählbaren Sprachen: Eigenschaften S. Hellbach Grundlagen der Informatik II 34

Kontextfreie Sprachen. Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kontextfreie Sprachen

Kontextfreie Sprachen. Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kontextfreie Sprachen Automaten und Formale Sprachen alias Theoretische Informatik Sommersemester 2012 Dr. Sander Bruggink Übungsleitung: Jan Stückrath Wortproblem: der CYK-Algorithmus Pumping Lemma für kontextfreie Sprachen

Mehr

Theoretische Informatik Mitschrift

Theoretische Informatik Mitschrift Theoretische Informatik Mitschrift 2. Grammatiken und die Chomsky-Hierarchie Beispiel: Syntaxdefinition in BNF :=

Mehr

Einführung in die Computerlinguistik. Chomskyhierarchie. Dozentin: Wiebke Petersen Wiebke Petersen Einführung CL (SoSe 2010) 1

Einführung in die Computerlinguistik. Chomskyhierarchie. Dozentin: Wiebke Petersen Wiebke Petersen Einführung CL (SoSe 2010) 1 Einführung in die Computerlinguistik Chomskyhierarchie Dozentin: Wiebke Petersen 1.7.2010 Wiebke Petersen Einführung CL (SoSe 2010) 1 Wiederholung: Formale Grammatik Denition Eine formale Grammatik ist

Mehr

Kontextfreie Sprachen

Kontextfreie Sprachen Kontextfreie Sprachen Bedeutung: Programmiersprachen (Compilerbau) Syntaxbäume Chomsky-Normalform effiziente Lösung des Wortproblems (CYK-Algorithmus) Grenzen kontextfreier Sprachen (Pumping Lemma) Charakterisierung

Mehr

Übungsblatt 7. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17

Übungsblatt 7. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 7 Vorlesung Theoretische Grundlagen der Informatik im W 16/17 Ausgabe 17. Januar 2017 Abgabe 31. Januar 2017, 11:00 Uhr (im

Mehr

Kontextfreie Sprachen

Kontextfreie Sprachen Kontextfreie Sprachen besitzen große Bedeutung im Compilerbau Chomsky-Normalform effiziente Lösung des Wortproblems (CYK-Algorithmus) Grenzen kontextfreier Sprachen (Pumping Lemma) Charakterisierung durch

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik 4. Kellerautomaten und kontextfreie Sprachen (III) 17.06.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie

Mehr

Alphabet, formale Sprache

Alphabet, formale Sprache n Alphabet Alphabet, formale Sprache l nichtleere endliche Menge von Zeichen ( Buchstaben, Symbole) n Wort über einem Alphabet l endliche Folge von Buchstaben, die auch leer sein kann ( ε leere Wort) l

Mehr

Informatik III - WS07/08

Informatik III - WS07/08 Informatik III - WS07/08 Kapitel 5 1 Informatik III - WS07/08 Prof. Dr. Dorothea Wagner dwagner@ira.uka.de Kapitel 5 : Grammatiken und die Chomsky-Hierarchie Informatik III - WS07/08 Kapitel 5 2 Definition

Mehr

Übungsblatt 7. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17

Übungsblatt 7. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 7 Vorlesung Theoretische Grundlagen der Informatik im W 16/17 Ausgabe 17. Januar 2017 Abgabe 31. Januar 2017, 11:00 Uhr (im

Mehr

Theoretische Informatik 2

Theoretische Informatik 2 Theoretische Informatik 2 1/319 Theoretische Informatik 2 Vorlesung SS 10 nach dem Buch von D. Hoffmann (vorläufig) www.dirkwhoffmann.de/th W. Ertel 9. Dezember 2010 Theoretische Informatik 2 2/319 Inhalt

Mehr

Formale Sprachen. Script, Kapitel 4. Grammatiken

Formale Sprachen. Script, Kapitel 4. Grammatiken Formale Sprachen Grammatiken Script, Kapitel 4 erzeugen Sprachen eingeführt von Chomsky zur Beschreibung natürlicher Sprache bedeutend für die Syntaxdefinition und -analyse von Programmiersprachen Automaten

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informatik Woche 7 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Zusammenfassung Zusammenfassung der letzten LV 1 Wir betrachten die folgende Signatur

Mehr

Definition 4 (Operationen auf Sprachen) Beispiel 5. Seien A, B Σ zwei (formale) Sprachen. Konkatenation: AB = {uv ; u A, v B} A + = n 1 An

Definition 4 (Operationen auf Sprachen) Beispiel 5. Seien A, B Σ zwei (formale) Sprachen. Konkatenation: AB = {uv ; u A, v B} A + = n 1 An Definition 4 (Operationen auf Sprachen) Seien A, B Σ zwei (formale) Sprachen. Konkatenation: AB = {uv ; u A, v B} A 0 = {ɛ}, A n+1 = AA n A = n 0 An A + = n 1 An Beispiel 5 {ab, b}{a, bb} = {aba, abbb,

Mehr

Theoretische Grundlagen der Informatik. Vorlesung am 17. Januar INSTITUT FÜR THEORETISCHE INFORMATIK

Theoretische Grundlagen der Informatik. Vorlesung am 17. Januar INSTITUT FÜR THEORETISCHE INFORMATIK Theoretische Grundlagen der Informatik 0 17.01.2019 Torsten Ueckerdt - Theoretische Grundlagen der Informatik KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu Evaluation Ergebnisse

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 17. Januar 2012 INSTITUT FÜR THEORETISCHE 0 KIT 18.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der

Mehr

Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie

Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie Wintersemester 2005/2006 07.11.2005 5. Vorlesung 1 Überblick: Kontextfreie Sprachen Formale Grammatik Einführung, Beispiele Formale

Mehr

Grammatik Prüfung möglich, ob eine Zeichenfolge zur Sprache gehört oder nicht

Grammatik Prüfung möglich, ob eine Zeichenfolge zur Sprache gehört oder nicht Zusammenhang: Formale Sprache Grammatik Formale Sprache kann durch Grammatik beschrieben werden. Zur Sprache L = L(G) gehören nur diejenigen Kombinationen der Zeichen des Eingabealphabets, die durch die

Mehr

Zusammenfassung. Beispiel. 1 Wir betrachten die folgende Signatur F = {,, +, 0, 1} sodass. 3 Wir betrachten die Identitäten E. 4 Dann gilt E 1 + x = 1

Zusammenfassung. Beispiel. 1 Wir betrachten die folgende Signatur F = {,, +, 0, 1} sodass. 3 Wir betrachten die Identitäten E. 4 Dann gilt E 1 + x = 1 Zusammenfassung Zusammenfassung der letzten LVA Einführung in die Theoretische Informatik Christina Kohl Alexander Maringele eorg Moser Michael Schaper Institut für Informatik @ UIBK Wintersemester 2016

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Institut für Informatik Sommersemester 2007 B. Beckert Grundlagen d. Theoretischen Informatik:

Mehr

Lemma Für jede monotone Grammatik G gibt es eine kontextsensitive

Lemma Für jede monotone Grammatik G gibt es eine kontextsensitive Lemma Für jede monotone Grammatik G gibt es eine kontextsensitive Grammatik G mit L(G) = L(G ). Beweis im Beispiel (2.): G = (V,Σ, P, S) : P = {S asbc, S abc, CB BC, ab ab, bb bb, bc bc, cc cc}. (i) G

Mehr

Ein Fragment von Pascal

Ein Fragment von Pascal Ein Fragment von Pascal Wir beschreiben einen (allerdings sehr kleinen) Ausschnitt von Pascal durch eine kontextfreie Grammatik. Wir benutzen das Alphabet Σ = {a,..., z, ;, :=, begin, end, while, do} und

Mehr

A : z z A : z z : ( z, x, z ) δ

A : z z A : z z : ( z, x, z ) δ Informatik IV, SoS2003 1 Definition 1.1 Ein Quintupel A =(X,Z,z 0,δ,Z f )heißt nichtdeterministischer endlicher Automat (NEA): 1. X, Z sind endliche nichtleere Mengen. 2. z 0 Z 4. δ Z X Z Informatik IV,

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Sommersemester 2015 23.04.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt 1. Terminologie 2. Endliche Automaten und reguläre Sprachen

Mehr

Vorlesung Automaten und Formale Sprachen Sommersemester Beispielsprachen. Sprachen

Vorlesung Automaten und Formale Sprachen Sommersemester Beispielsprachen. Sprachen Vorlesung Automaten und Formale Sprachen Sommersemester 2018 Prof. Barbara König Übungsleitung: Christina Mika-Michalski Wörter Wort Sei Σ ein Alphabet, d.h., eine endliche Menge von Zeichen. Dann bezeichnet

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik Prof. Meer, Dr. Gengler Aufgabenblatt 7 Besprechung in KW 48 / Abgabe in KW 49 Heften Sie unbedingt alle Blätter Ihrer Lösung zusammen und geben Sie oben auf dem ersten Blatt Ihren

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Sommersemester 2017 20.04.2017 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Organisatorisches Literatur Motivation und Inhalt Kurzer

Mehr

Kapitel 2: Formale Sprachen Gliederung. 0. Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie

Kapitel 2: Formale Sprachen Gliederung. 0. Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie Gliederung 0. Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie 2.1. 2.2. Reguläre Sprachen 2.3. Kontextfreie Sprachen 2/1, Folie 1 2015 Prof. Steffen

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Sommersemester 2015 22.04.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt 1. Terminologie 2. Endliche Automaten und reguläre Sprachen

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Sommersemester 2016 20.04.2016 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt 1. Terminologie 2. Endliche Automaten und reguläre Sprachen

Mehr

Berechenbarkeit und Komplexität

Berechenbarkeit und Komplexität Berechenbarkeit und Komplexität Prof. Dr. Dietrich Kuske FG Theoretische Informatik, TU Ilmenau Wintersemester 2010/11 1 Organisatorisches zur Vorlesung Informationen, aktuelle Version der Folien und Übungsblätter

Mehr

Theorie der Informatik. Theorie der Informatik. 6.1 Einführung. 6.2 Alphabete und formale Sprachen. 6.3 Grammatiken. 6.4 Chomsky-Hierarchie

Theorie der Informatik. Theorie der Informatik. 6.1 Einführung. 6.2 Alphabete und formale Sprachen. 6.3 Grammatiken. 6.4 Chomsky-Hierarchie Theorie der Informatik 17. März 2014 6. Formale Sprachen und Grammatiken Theorie der Informatik 6. Formale Sprachen und Grammatiken Malte Helmert Gabriele Röger Universität Basel 17. März 2014 6.1 Einführung

Mehr

Chomsky-Grammatiken 16. Chomsky-Grammatiken

Chomsky-Grammatiken 16. Chomsky-Grammatiken Chomsky-Grammatiken 16 Chomsky-Grammatiken Ursprünglich von Chomsky in den 1950er Jahren eingeführt zur Beschreibung natürlicher Sprachen. Enge Verwandschaft zu Automaten Grundlage wichtiger Softwarekomponenten

Mehr

1. Übungsblatt 6.0 VU Theoretische Informatik und Logik

1. Übungsblatt 6.0 VU Theoretische Informatik und Logik . Übungsblatt 6. VU Theoretische Informatik und Logik 25. September 23 Aufgabe Sind folgende Aussagen korrekt? Begründen Sie jeweils Ihre Antwort. a) Für jede Sprache L gilt: L < L (wobei A die Anzahl

Mehr

Theoretische Grundlagen der Informatik. Vorlesung am 8. Januar INSTITUT FÜR THEORETISCHE INFORMATIK

Theoretische Grundlagen der Informatik. Vorlesung am 8. Januar INSTITUT FÜR THEORETISCHE INFORMATIK Theoretische Grundlagen der Informatik 0 08.01.2019 Torsten Ueckerdt - Theoretische Grundlagen der Informatik KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu Letzte Vorlesung Eine

Mehr

Kapitel IV Formale Sprachen und Grammatiken

Kapitel IV Formale Sprachen und Grammatiken Kapitel IV Formale Sprachen und Grammatiken 1. Begriffe und Notationen Sei Σ ein (endliches) Alphabet. Dann Definition 42 1 ist Σ das Monoid über Σ, d.h. die Menge aller endlichen Wörter über Σ; 2 ist

Mehr

WS06/07 Referentin: Katharina Blinova. Formale Sprachen. Hauptseminar Intelligente Systeme Dozent: Prof. Dr. J. Rolshoven

WS06/07 Referentin: Katharina Blinova. Formale Sprachen. Hauptseminar Intelligente Systeme Dozent: Prof. Dr. J. Rolshoven WS06/07 Referentin: Katharina Blinova Formale Sprachen Hauptseminar Intelligente Systeme Dozent: Prof. Dr. J. Rolshoven 1. Allgemeines 2. Formale Sprachen 3. Formale Grammatiken 4. Chomsky-Hierarchie 5.

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik 1 Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg Wintersemester 2014/15 2 Kontextfreie Grammatiken Definition: Eine Grammatik G

Mehr

Motivation natürliche Sprachen

Motivation natürliche Sprachen Motivation natürliche Sprachen (Satz) (Substantivphrase)(Verbphrase) (Satz) (Substantivphrase)(Verbphrase)(Objektphrase) (Substantivphrase) (Artikel)(Substantiv) (Verbphrase) (Verb)(Adverb) (Substantiv)

Mehr

Übungsblatt 6. Vorlesung Theoretische Grundlagen der Informatik im WS 18/19

Übungsblatt 6. Vorlesung Theoretische Grundlagen der Informatik im WS 18/19 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 6 Vorlesung Theoretische Grundlagen der Informatik im WS 18/19 Ausgabe 8. Januar 2019 Abgabe 22. Januar 2019, 11:00 Uhr (im

Mehr

Einführung in die Computerlinguistik Chomskyhierarchie

Einführung in die Computerlinguistik Chomskyhierarchie Einführung in die Computerlinguistik Chomskyhierarchie Dozentin: Wiebke Petersen 14. Foliensatz Wiebke Petersen Einführung CL 1 Wiederholung: Formale Grammatik Denition Eine formale Grammatik ist ein 4-Tupel

Mehr

Einführung in die Computerlinguistik Chomskyhierarchie

Einführung in die Computerlinguistik Chomskyhierarchie Einführung in die Computerlinguistik Chomskyhierarchie Dozentin: Wiebke Petersen 14. Foliensatz Wiebke Petersen Einführung CL 1 Wiederholung: Formale Grammatik Denition Eine formale Grammatik ist ein 4-Tupel

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Institut für Informatik Sommersemester 2007 B. Beckert Grundlagen d. Theoretischen Informatik:

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 15.01.2015 INSTITUT FÜR THEORETISCHE 0 KIT 15.01.2015 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik 4. Kellerautomaten und kontextfreie prachen (VI) 25.06.2015 Viorica ofronie-tokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie

Mehr

Lösung zur Klausur. Grundlagen der Theoretischen Informatik im WiSe 2003/2004

Lösung zur Klausur. Grundlagen der Theoretischen Informatik im WiSe 2003/2004 Lösung zur Klausur Grundlagen der Theoretischen Informatik im WiSe 2003/2004 1. Geben Sie einen deterministischen endlichen Automaten an, der die Sprache aller Wörter über dem Alphabet {0, 1} akzeptiert,

Mehr

Reguläre Sprachen. R. Stiebe: Theoretische Informatik für ING-IF und Lehrer,

Reguläre Sprachen. R. Stiebe: Theoretische Informatik für ING-IF und Lehrer, Reguläre Sprachen Reguläre Sprachen (Typ-3-Sprachen) haben große Bedeutung in Textverarbeitung und Programmierung (z.b. lexikalische Analyse) besitzen für viele Entscheidungsprobleme effiziente Algorithmen

Mehr

Formale Grundlagen der Informatik 1 Kapitel 7 Eigenschaften kontextfreier Sprachen

Formale Grundlagen der Informatik 1 Kapitel 7 Eigenschaften kontextfreier Sprachen Formale Grundlagen der Informatik 1 Kapitel 7 Eigenschaften kontextfreier Sprachen Frank Heitmann heitmann@informatik.uni-hamburg.de 28. April 2015 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/39

Mehr

Grundbegriffe. Grammatiken

Grundbegriffe. Grammatiken Grammatiken Grammatiken in der Informatik sind ähnlich wie Grammatiken für natürliche Sprachen ein Mittel, um alle syntaktisch korrekten Sätze (hier: Wörter) einer Sprache zu erzeugen. Beispiel: Eine vereinfachte

Mehr

I.5. Kontextfreie Sprachen

I.5. Kontextfreie Sprachen I.5. Kontextfreie prachen Zieht man in Betracht, dass BNF-yteme gerade so beschaffen sind, dass auf der linken eite immer genau ein Nichtterminal steht, so sind das also gerade die Ableitungsregeln einer

Mehr

Informatik III. Christian Schindelhauer Wintersemester 2006/07 6. Vorlesung

Informatik III. Christian Schindelhauer Wintersemester 2006/07 6. Vorlesung Informatik III Christian Schindelhauer Wintersemester 2006/07 6. Vorlesung 10.11.2006 schindel@informatik.uni-freiburg.de 1 Kapitel IV Kontextfreie Sprachen Kontextfreie Grammatik Informatik III 6. Vorlesung

Mehr

2.1 Allgemeines. Was ist eine Sprache? Beispiele:

2.1 Allgemeines. Was ist eine Sprache? Beispiele: Was ist eine Sprache? Beispiele: (a) Deutsch, Japanisch, Latein, Esperanto,...: Natürliche Sprachen (b) Pascal, C, Java, Aussagenlogik,...: Formale Sprachen Wie beschreibt man eine Sprache? (i) Syntax

Mehr

Teil V. Weiterführende Themen, Teil 1: Kontextsensitive Sprachen und die Chomsky-Hierarchie

Teil V. Weiterführende Themen, Teil 1: Kontextsensitive Sprachen und die Chomsky-Hierarchie Teil V Weiterführende Themen, Teil 1: Kontextsensitive Sprachen und die Chomsky-Hierarchie Zwei Sorten von Grammatiken Kontextsensitive Grammatik (CSG) (Σ, V, P, S), Regeln der Form αaβ αγβ α, β (Σ V ),

Mehr

Automaten und Formale Sprachen SoSe 2013 in Trier

Automaten und Formale Sprachen SoSe 2013 in Trier Automaten und Formale Sprachen SoSe 2013 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 2. Juni 2013 1 Automaten und Formale Sprachen Gesamtübersicht Organisatorisches Einführung Endliche

Mehr

Theoretische Informatik 2

Theoretische Informatik 2 Theoretische Informatik 2 1/319 Theoretische Informatik 2 Vorlesung SS 10 nach dem Buch von D. Hoffmann (vorläufig) www.dirkwhoffmann.de/th W. Ertel 9. Dezember 2010 Theoretische Informatik 2 2/319 Inhalt

Mehr

Tutoraufgabe 1 (ɛ-produktionen):

Tutoraufgabe 1 (ɛ-produktionen): Prof aa Dr J Giesl Formale Systeme, Automaten, Prozesse SS 2010 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Hausaufgaben sollen in Gruppen von je 2 Studierenden aus dem gleichen Tutorium

Mehr

Grammatiken. Eine Grammatik G mit Alphabet Σ besteht aus: Variablen V. Startsymbol S V. Kurzschreibweise G = (V, Σ, P, S)

Grammatiken. Eine Grammatik G mit Alphabet Σ besteht aus: Variablen V. Startsymbol S V. Kurzschreibweise G = (V, Σ, P, S) Grammatiken Eine Grammatik G mit Alphabet Σ besteht aus: Variablen V Startsymbol S V Produktionen P ( (V Σ) \ Σ ) (V Σ) Kurzschreibweise G = (V, Σ, P, S) Schreibweise für Produktion (α, β) P: α β 67 /

Mehr

Aufgabentypen: Spickerblatt: kontextfrei (Typ 2): zusätzlich: u ist eine!"# v 1

Aufgabentypen: Spickerblatt: kontextfrei (Typ 2): zusätzlich: u ist eine!# v 1 Info4 Stoff Aufgabentypen: Grammatik CH einordnen NFA DFA Grammatik Chomsky-NF CYK-Algorithmus: Tabelle / Ableitungsbäume Grammatik streng kf. Grammatik Grammatik Pumping Lemma Beweis, dass Gr. nicht reg,

Mehr

Übungsblatt 6. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18

Übungsblatt 6. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 6 Vorlesung Theoretische Grundlagen der Informatik im WS 17/18 Ausgabe 10. Januar 2018 Abgabe 23. Januar 2018, 11:00 Uhr (im

Mehr

Carlos Camino Einführung in die Theoretische Informatik SS 2015

Carlos Camino Einführung in die Theoretische Informatik SS 2015 Themenüberblick Dies ist eine Art Checkliste für die Klausurvorbereitung. Zu jedem Thema im Skript sind hier ein paar Leitfragen aufgelistet. Besonders nützlich sind die Tabellen und Abbildungen auf den

Mehr

Sei Σ ein endliches Alphabet. Eine Sprache L Σ ist genau dann regulär, wenn sie von einem regulären Ausdruck beschrieben werden kann.

Sei Σ ein endliches Alphabet. Eine Sprache L Σ ist genau dann regulär, wenn sie von einem regulären Ausdruck beschrieben werden kann. Der Satz von Kleene Wir haben somit Folgendes bewiesen: Der Satz von Kleene Sei Σ ein endliches Alphabet. Eine Sprache L Σ ist genau dann regulär, wenn sie von einem regulären Ausdruck beschrieben werden

Mehr

Informatik III. Christian Schindelhauer Wintersemester 2006/07 5. Vorlesung

Informatik III. Christian Schindelhauer Wintersemester 2006/07 5. Vorlesung Informatik III Christian Schindelhauer Wintersemester 2006/07 5. Vorlesung 09.11.2006 schindel@informatik.uni-freiburg.de 1 Äquivalenzklassen Definition und Beispiel Definition Für eine Sprache L Σ* bezeichnen

Mehr

Theoretische Informatik I (Grundzüge der Informatik I)

Theoretische Informatik I (Grundzüge der Informatik I) Theoretische Informatik I (Grundzüge der Informatik I) Literatur: Buch zur Vorlesung: Uwe Schöning, Theoretische Informatik - kurzgefasst. Spektrum Akademischer Verlag, Heidelberg/Berlin, 4. Auflage, 2001.

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Institut für Informatik Sommersemester 2007 B. Beckert Grundlagen d. Theoretischen Informatik:

Mehr

Das Halteproblem für Turingmaschinen

Das Halteproblem für Turingmaschinen Das Halteproblem für Turingmaschinen Das Halteproblem für Turingmaschinen ist definiert als die Sprache H := { T w : T ist eine TM, die bei Eingabe w {0, 1} hält }. Behauptung: H {0, 1} ist nicht entscheidbar.

Mehr

Vorlesung Theoretische Informatik (Info III)

Vorlesung Theoretische Informatik (Info III) 1 Vorlesung Theoretische Informatik (Info III) Prof. Dr. Dorothea Wagner Dipl.-Math. Martin Holzer 22. Januar 2008 Einleitung Motivation 2 Thema heute Kontextfreie Grammatiken: Lemma von Ogden Eigenschaften

Mehr

Einführung in die Computerlinguistik

Einführung in die Computerlinguistik Einführung in die Computerlinguistik Pumping-Lemma für kontextfreie Sprachen, Abschlußeigenschaften kontextfreier Sprachen und die Komplexität natürlicher Sprachen Dozentin: Wiebke Petersen WS 2004/2005

Mehr

Zusammenfassung. 1 Wir betrachten die folgende Signatur F = {+,,, 0, 1} sodass. 3 Wir betrachten die Gleichungen E. 4 Dann gilt E 1 + x 1

Zusammenfassung. 1 Wir betrachten die folgende Signatur F = {+,,, 0, 1} sodass. 3 Wir betrachten die Gleichungen E. 4 Dann gilt E 1 + x 1 Zusammenfassung Zusammenfassung der letzten LV Einführung in die Theoretische Informatik Woche 7 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 1 Wir betrachten die folgende Signatur

Mehr

Informatik IV Theoretische Informatik: Formale Sprachen und Automaten, Berechenbarkeit und NP-Vollständigkeit. Zugangsnummer: 9201

Informatik IV Theoretische Informatik: Formale Sprachen und Automaten, Berechenbarkeit und NP-Vollständigkeit.  Zugangsnummer: 9201 Informatik IV Theoretische Informatik: Formale Sprachen und Automaten, Berechenbarkeit und NP-Vollständigkeit Wiederholung Kapitel 3 und 4 http://pingo.upb.de Zugangsnummer: 9201 Dozent: Jun.-Prof. Dr.

Mehr

Formale Sprachen. Grammatiken und die Chomsky-Hierarchie. Rudolf FREUND, Marian KOGLER

Formale Sprachen. Grammatiken und die Chomsky-Hierarchie. Rudolf FREUND, Marian KOGLER Formale Sprachen Grammatiken und die Chomsky-Hierarchie Rudolf FREUND, Marian KOGLER Grammatiken Das fundamentale Modell zur Beschreibung von formalen Sprachen durch Erzeugungsmechanismen sind Grammatiken.

Mehr

Kapitel: Die Chomsky Hierarchie. Die Chomsky Hierarchie 1 / 14

Kapitel: Die Chomsky Hierarchie. Die Chomsky Hierarchie 1 / 14 Kapitel: Die Chomsky Hierarchie Die Chomsky Hierarchie 1 / 14 Allgemeine Grammatiken Definition Eine Grammatik G = (Σ, V, S, P) besteht aus: einem endlichen Alphabet Σ, einer endlichen Menge V von Variablen

Mehr

2. Teilklausur zur Vorlesung Grundlagen der Theoretischen Informatik

2. Teilklausur zur Vorlesung Grundlagen der Theoretischen Informatik 2. Teilklausur zur Vorlesung Grundlagen der Theoretischen Informatik Ulrich Furbach Claudia Schon Christian Schwarz Arbeitsgruppe Künstliche Intelligenz Fachbereich Informatik, Universität Koblenz-Landau

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Sommersemester 2015 29.04.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt 1. Motivation 2. Terminologie 3. Endliche Automaten und reguläre

Mehr

1 Automatentheorie und Formale Sprachen

1 Automatentheorie und Formale Sprachen Sanders: TGI October 29, 2015 1 1 Automatentheorie und Formale Sprachen 1.1 Allgemeines Sanders: TGI October 29, 2015 2 Beispiel: Arithmetische Ausdrücke:EXPR Σ={1,a,+,,,(,)} a ist Platzhalter für Konstanten

Mehr

Kapitel 2: Formale Sprachen Gliederung

Kapitel 2: Formale Sprachen Gliederung Gliederung 0. Motivation und Einordnung 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie 2.1. Chomsky-Grammatiken 2.2. Reguläre Sprachen 2.3. 2/5, Folie 1 2017 Prof.

Mehr

q 0 q gdw. nicht (q A) (q A) q i+1 q gdw. q i q oder ( a Σ) δ(q, a) i δ(q, a) L = {a n b n : n N} für a, b Σ, a b

q 0 q gdw. nicht (q A) (q A) q i+1 q gdw. q i q oder ( a Σ) δ(q, a) i δ(q, a) L = {a n b n : n N} für a, b Σ, a b Kap. 2: Endliche Automaten Myhill Nerode 2.4 Minimalautomat für reguläre Sprache Abschnitt 2.4.3 L Σ regulär der Äuivalenzklassen-Automat zu L ist ein DFA mit minimaler Zustandszahl (= index( L )) unter

Mehr

Theoretische Informatik

Theoretische Informatik 1/327 Vorlesung SS 11 nach dem Buch von D. Hoffmann (Kap. 4 7) www.dirkwhoffmann.de/th W. Ertel 7. Juni 2011 2/327 Formale Sprachen Sprache und Grammatik Chomsky-Hierarchie Reguläre Sprachen Kontextfreie

Mehr

Musterlösung Informatik-III-Nachklausur

Musterlösung Informatik-III-Nachklausur Musterlösung Informatik-III-Nachklausur Aufgabe 1 (2+2+4+4 Punkte) (a) L = (0 1) 0(0 1) 11(0 1) 0(0 1) (b) Der Automat ist durch folgendes Übergangsdiagramm gegeben: 0, 1 0, 1 0, 1 0, 1 0 s q 1 1 0 0 q

Mehr

Formalismen für REG. Formale Grundlagen der Informatik 1 Kapitel 7 Kontextfreie Sprachen. Das Pumping Lemma. Abschlusseigenschaften

Formalismen für REG. Formale Grundlagen der Informatik 1 Kapitel 7 Kontextfreie Sprachen. Das Pumping Lemma. Abschlusseigenschaften Formalismen für RE Formale rundlagen der Informatik 1 Kapitel 7 Kontextfreie Sprachen Frank Heitmann heitmann@informatik.uni-hamburg.de Satz Zu jeder regulären Sprache L gibt es einen DFA A mit L(A) =

Mehr

Informatik 3 Theoretische Informatik WS 2015/16

Informatik 3 Theoretische Informatik WS 2015/16 2. Probeklausur 22. Januar 2016 Informatik 3 Theoretische Informatik WS 2015/16 Prof. Dr. Peter Thiemann Albert-Ludwigs-Universität Freiburg Institut für Informatik Name: Matrikel-Nr.: Schreiben Sie Ihren

Mehr

2. Übungsblatt 6.0 VU Theoretische Informatik und Logik

2. Übungsblatt 6.0 VU Theoretische Informatik und Logik 2. Übungsblatt 6.0 VU Theoretische Informatik und Logik 25. September 2013 Aufgabe 1 Geben Sie jeweils eine kontextfreie Grammatik an, welche die folgenden Sprachen erzeugt, sowie einen Ableitungsbaum

Mehr

Formale Sprachen. Grammatiken. Grammatiken und die Chomsky-Hierarchie. Rudolf FREUND, Marion OSWALD. Grammatiken: Ableitung

Formale Sprachen. Grammatiken. Grammatiken und die Chomsky-Hierarchie. Rudolf FREUND, Marion OSWALD. Grammatiken: Ableitung Formale Sprachen rammatiken und die Chomsky-Hierarchie Rudolf FREUND, Marion OSWALD rammatiken Das fundamentale Modell zur Beschreibung von formalen Sprachen durch Erzeugungsmechanismen sind rammatiken.

Mehr

Informales Beispiel. Formale Grundlagen der Informatik 1 Kapitel 6 Eigenschaften kontextfreier Sprachen. Grammatiken. Anmerkungen

Informales Beispiel. Formale Grundlagen der Informatik 1 Kapitel 6 Eigenschaften kontextfreier Sprachen. Grammatiken. Anmerkungen Informales Beispiel Formale Grundlagen der Informatik 1 Kapitel 6 Eigenschaften kontextfreier Sprachen Frank Heitmann heitmann@informatik.uni-hamburg.de 22. April 2014 I L IL ID L a b c D 0 1 2 3 4 Eine

Mehr

Grammatiken. Grammatiken sind regelbasierte Kalküle zur Konstruktion von Systemen und Sprachen Überprüfung von Systemen und Sprachen

Grammatiken. Grammatiken sind regelbasierte Kalküle zur Konstruktion von Systemen und Sprachen Überprüfung von Systemen und Sprachen Grammatiken Grammatiken sind regelbasierte Kalküle zur Konstruktion von Systemen und Sprachen Überprüfung von Systemen und Sprachen Grammatiken eignen sich besonders zur Modellierung beliebig tief geschachtelter,

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik 4. Kellerautomaten und kontextfreie Sprachen (II) 11.06.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie

Mehr

Formale Grundlagen der Wirtschaftsinformatik

Formale Grundlagen der Wirtschaftsinformatik Formale Grundlagen der Wirtschaftsinformatik Nikolaj Popov Research Institute for Symbolic Computation popov@risc.uni-linz.ac.at Sprachen und Grammatiken Teil II Sprache Definition: Ein Alphabet Σ ist

Mehr

Algorithmen und Formale Sprachen

Algorithmen und Formale Sprachen Algorithmen und Formale Sprachen Algorithmen und formale Sprachen Formale Sprachen und Algorithmen Formale Sprachen und formale Algorithmen (formale (Sprachen und Algorithmen)) ((formale Sprachen) und

Mehr

Abschluss gegen Substitution. Wiederholung. Beispiel. Abschluss gegen Substitution

Abschluss gegen Substitution. Wiederholung. Beispiel. Abschluss gegen Substitution Wiederholung Beschreibungsformen für reguläre Sprachen: DFAs NFAs Reguläre Ausdrücke:, {ε}, {a}, und deren Verknüpfung mit + (Vereinigung), (Konkatenation) und * (kleenescher Abschluss) Abschluss gegen

Mehr

11.1 Kontextsensitive und allgemeine Grammatiken

11.1 Kontextsensitive und allgemeine Grammatiken Theorie der Informatik 7. April 2014 11. Kontextsensitive und Typ-0-Sprachen Theorie der Informatik 11. Kontextsensitive und Typ-0-Sprachen 11.1 Kontextsensitive und allgemeine Grammatiken Malte Helmert

Mehr

Theoretische Informatik I

Theoretische Informatik I Theoretische Informatik I Einheit 2.5 Grammatiken 1. Arbeitsweise 2. Klassifizierung 3. Beziehung zu Automaten Beschreibung des Aufbaus von Sprachen Mathematische Mengennotation Beschreibung durch Eigenschaften

Mehr

Automatentheorie und formale Sprachen

Automatentheorie und formale Sprachen Automatentheorie und formale Sprachen VL 8 Chomsky-Grammatiken Kathrin Hoffmann 23. Mai 2012 Hoffmann (HAW Hamburg) Automatentheorie und formale Sprachen 23.5. 2012 250 Wortproblem Wortproblem ist das

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Übung am 4.2.2011 INSTITUT FÜR THEORETISCHE INFORMATIK 0 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Was bisher geschah: Formale Sprachen

Was bisher geschah: Formale Sprachen Was bisher geschah: Formale Sprachen Alphabet, Wort, Sprache Operationen und Relationen auf Wörtern und Sprachen Darstellung unendlicher Sprachen durch reguläre Ausdrücke (Syntax, Semantik, Äquivalenz)

Mehr

Theoretische Informatik I

Theoretische Informatik I (702765) Skript zur Vorlesung am 30.6.2000 Aus der vorherigen Vorlesung: Theoretische Informatik I Satz W: Sei X ein Alphabet. Zu jeder regulären Sprache R X * gibt es ein n N, so daß für alle Wörter z

Mehr

Klammersprache Definiere

Klammersprache Definiere Klammersprache w=w 1...w n {(,)}* heißt korrekt geklammert, falls die Anzahl ( ist gleich der Anzahl ). in jedem Anfangsstück w 1,...,w i (i n) ist die Anzahl ( nicht kleiner als die Anzahl ). Definiere

Mehr

F2 Zusammenfassung Letzte Tips zur Klausur

F2 Zusammenfassung Letzte Tips zur Klausur F2 Zusammenfassung Letzte Tips zur Klausur Berndt Farwer FB Informatik, Uni HH F2-ommersemester 2001-(10.6.) p.1/15 Funktionen vs. Relationen Funktionen sind eindeutig, Relationen brauchen nicht eindeutig

Mehr

Automatentheorie und formale Sprachen

Automatentheorie und formale Sprachen Automatentheorie und formale Sprachen Zusammenfassung Kathrin Hoffmann 27. Juni 2012 Hoffmann (HAW Hamburg) Automatentheorie und formale Sprachen 27.6. 2012 329 Kontextsensitive Grammatiken und Sprachen

Mehr

Theoretische Informatik. Grammatiken. Grammatiken. Grammatiken. Rainer Schrader. 9. Juli 2009

Theoretische Informatik. Grammatiken. Grammatiken. Grammatiken. Rainer Schrader. 9. Juli 2009 Theoretische Informatik Rainer Schrader Institut für Informatik 9. Juli 2009 1 / 41 2 / 41 Gliederung die Chomsky-Hierarchie Typ 0- Typ 3- Typ 1- Die Programmierung eines Rechners in einer höheren Programmiersprache

Mehr