3 Anwendungen der Differentialrechnung. (x 1, x 2,..., x n 1, x n ) f xn (x 1, x 2,..., x n 1, x n ), 1 i n 1. y + cos z

Größe: px
Ab Seite anzeigen:

Download "3 Anwendungen der Differentialrechnung. (x 1, x 2,..., x n 1, x n ) f xn (x 1, x 2,..., x n 1, x n ), 1 i n 1. y + cos z"

Transkript

1 R Es sei f : R n D R eine einmal stetig differenzierbare Funktion, für die in einer Umgebung eines Punkte a = a 1, a,, a n D gilt: fa 1, a,, a n = 0, f xn a 1, a,, a n 0 Dann gibt es eines Umgebung U des Punktes a 1, a,, a n 1 und ein offenes Intervall K R, das a n enthält, so dass gilt a R := {x 1, x,, x n 1, x n ; x 1, x,, x n 1 U, x n K} D und f xn x 0 für alle x R b Zu jedem Punkt x 1, x,, x n 1 U gibt es genau eine Zahl x n K mit fx 1, x,, x n 1, x n = 0 Durch x n := gx 1, x,, x n 1 ist eine partiell differenzierbare Funktion g : U R erklärt mit g x i x 1, x,, x n 1 = f x i x 1, x,, x n 1, x n f xn x 1, x,, x n 1, x n, 1 i n 1 Beispiel 30: fx, y z = xcos y + y cos z + z cos x = 0 ist implizit eine Funktion z = gx, y in einer Umgebung von 0,0, erklärt, da f z 0, 0, 0, 0, = y sinz + cos x = 1 0, 0, Dann ist außerdem g x 0, 0 = f x0, 0, cos y z sinx = f z 0, 0, y sinz + cos x = 1 0, 0, und g y 0, 0 = f y0, 0, f z 0, 0, y + cos z = xsin y sinz + cos x = cos 0, 0, 33 Extremwertaufgaben mit Nebenbedingungen In zahlreichen Extremwertaufgaben ist die Menge der zulässigen Punkte eingeschränkt durch eine oder auch mehrere Nebenbedingungen der Form gx 1, x,, x n = 0 69

2 R Sei M := { x R n ; g x = 0} Man sagt, a M ist eine Maximalstelle Minimalstelle von f unter der Nebenbedingung g x = 0, wenn es eine Umgebung U r a gibt, so dass f x f a f x f a gilt für alle x U r a M Man schreibt f x Extr! NB :g x = Explizite Methode Man löst, so möglich, g x = 0 nach einer Variablen, zb x n = hx 1, x,, x n 1 auf und eliminiert über die Substitution x n aus f Es entsteht ein Extremalproblem ohne Nebenbedingung: fx 1, x,, x n 1, hx 1, x,, x n 1 = Extr! Beispiel 31: Gesucht sind die wärmsten und die kältesten Punkte auf der Sphäre x + y + z = 1 bei einer Temperaturverteilung Tx, y, z = xy + xz Da in x, y, z und x, y, z dieselbe Temperatur herrscht, genügt es, die Extremwerte auf der Hemnissphäre x = 1 y z zu bestimmen Fy, z := Txy, z, y, z = y + z 1 y z = Extr! Auf dem Kreis x = 0, y + z = 1 gibt es keine Punkte extremaler Temperatur, dort ist T = 0 Für y + z < 1 berechnen wir über F y = F z = 0 die stationären Punkte Für diese muss gelten F y = 1 y z + 1 y + z y 1 y z = F z = 1 y z + 1 y + z z 1 y z = 0 bzw 1 y z y yz = 1 y z yz = 0 y + z + yz = 1 70

3 und 1 y z zy z = 1 y z zy = 0 y + z + yz = 1 Folglich ist ein nichtlineares Gleichungssystem zu lösen: y + z + yz = 1, 31 y + z + yz = 1 3 Wenn beide Gleichungen erfüllt sein sollen, dann muss auch 31-3 erfüllt sein, dh und man erhält die folgenden Fälle y z = 0 y = z 1 y = z, dann ergibt die Gleichung 31: 3y 3 y = y = 1 und damit y = z = ± 1 und es ist y + z = = 1, dh diese Punkte liegen nicht im Bereich y + z < 1 und entfallen deshalb y = z, dann ergibt die Gleichung 31: y + y + y = 1 und damit y = z = ± 1 In diesem Fall ist x = = 1 Damit gibt es 4 mögliche Extremalpunkte auf der Sphäre: a = 1, 1, 1, 1 b =, 1, 1, auf der oberen Hemnissphäre und a = 1, 1, 1, b = 1, 1, 1, auf der unteren Hemnissphäre Die stetige Temperaturverteilung hat auf der Sphäre Punkte minimaler und maximaler Temperaturverteilung, daher sind wegen T a = T a = xy + xz = = und T b = T b = xy + xz = = die Punkte a, a Maximalstellen und b, b Minimalstellen 71

4 34 Parametrisierung der Nebenbedingung Im Fall zweier Variabler bestimmt man eine Parameterdarstellung x = xt, y = yt, t I, der Kurve gx, y = 0 und löst für Ft := fxt, yt das gewöhnliche Extremalproblem ft = Extr! Dabei sind die Randpunkte wiederum extra zu betrachten 3 Lagrange-Multiplikatoren-Methode Wir gehen zunächst davon aus, dass a in a ein lokales Extremum vorliegt, b gradg a 0 ist, c die Funktion f einmal stetig partiell differenzierbar ist Dann gilt: Wegen b kann man die Nebenbedingung in einer Umgebung von a nach einer Veränderlichen, wir nehmen an dies sei x n auflösen, dh es ist x n = hx 1, x,, x n in U r a In U r a hat die Funktion fx 1, x,, x n 1, hx 1, x,, x n 1 folglich ein lokales Extremum nämlich in x = a und die notwendige Bedingung für ein lokales Extremum muss erfüllt sein, dh mit a = a 1, a,, a n 1, a n = a, a n ist f x1 a + f xn ah x1 a gradf a, h a f x a + f xn ah x a = = 0 f xn 1 a + f xn ah xn 1 a Nach dem Satz über die implizite Funktion ist aber und damit ist h xi a = g x i a g xn a f xi a+f xn ah xi a = f xi a f xn a g x i a g xn a = f x i a f x n a g xn a g x i a = 0, 1 i n 1 Fügt man nun als n-te Gleichung die triviale Gleichung f xn a f x n a g xn a g x n a = 0 7

5 hinzu, so erhält man gradf a f x n a g xn a gradg a = 0 gradf a + λ gradg a = 0, λ R In Worten: Der Gradient der Funktion f an der lokalen Extremalstelle ist ein skalares Vielfaches des Gradienten der Nebenbedingung g an der lokalen Extremalstelle Beispiel 3: Es sei fx, y = y x und gx, y = x + y 1 = 0 Gesucht sind lokale Extrema der Funktion fx, y unter der Nebenbedingung gx, y = 0 Wie man sich am Bild und geometrisch leicht überlegt, befinden sich die lokalen Extrema in x 1, y 1 = 1, 1 mit fx 1, y 1 = fx, y = = = und x, y = 1, 1 mit 1 Grün dargestellt ist die Richtung des Gradienten von f : gradf x, y =, rot 1 sind die Richtungen der Gradienten von gx, y für verschiedene x, y Es ist gradgx, y = x Der Gradient steht immer senkrecht auf dem Tangentenvektor Wie man leicht y sieht haben der Gradient von f und g in x 1, y 1 die gleiche Richtung und in x, y entgegengesetzte Richtung 73

6 R Lagrange-Multiplikatoren-Methode 1 Hilfsfunktion bilden: Lx 1,, x n, λ = fx 1,, x n + λ gx 1,, x n mit n + 1 Variablen x 1,, x n, λ Berechne gradl und löse das i Allg nichtlineare Gleichungssystem gradl = L x1 L x L xn L λ f x1 x 1,, x n + λg x1 x 1,, x n f x x 1,, x n + λg x x 1,, x n = = 0 f xn x 1,, x n + λg xn x 1,, x n gx 1,, x n Dabei entsprechen der ersten n Gleichungen der Beziehung gradfx 1,, x n + λ gradgx 1,, x n = 0 und die n + 1-te Gleichung ist gerade die Nebenbedingung 3 Man untersucht, welche der gefundenen Werte a 1,, a n tatsächlich Extremalstellen sind λ spielt keine Rolle mehr In den meisten praktischen Problemen lassen sich die Extrema unter den gefundenen Punkten aus physikalischen Gründen oder durch direkten Vergleich der Funktionswerte erkennen Schliesslich sind noch die Punkte b, in denen f, g nicht differenzierbar sind oder für die gradg b = 0 ist, getrennt zu untersuchen Beispiel 33: fx, y = y x und die Nebenbedingung lautet gx, y = x + y 1 = 0 Dann ist Lx, y, λ = fx, y + λ gx, y = y x + λx + y 1 Es ist zu untersuchen: gradl = L x L y L λ = f x x, y + λ g x x, y f y x, y + λ g y x, y gx, y = 1 + λx 1 + λy x + y 1 = 0 Aus der ersten Gleichung erhält man x = 1 1 λ, aus der Gleichung y = λ = x, was in die 3 Gleichung eingesetzt ergibt: x 1 = 0 x 1/ = ± 1 74

7 Wir erhalten damit die Punkte: x 1, y 1 = x 1, x 1 = 1, 1 und x, y = x, x = 1, 1 Also nur Punkte!! Aus dem Vergleich der Funktionswerte ergibt sich das lokale Maximum und das lokale Minimum Beispiel 34: Es sind die Scheitelpunkte der Ellipse x + xy + y = zu bestimmen, das sind die Punkte mit dem größten oder kleinsten Abstand zum Nullpunkt Abstand zum Nullpunkt wird bestimmt durch fx, y = x + y Das Extremalproblem lautet deshalb: fx, y = x + y = Extr! NB: gx, y = x + xy + y = 0 Bildung der Lagrange-Funktion: Lx, y,λ = x + y + λx + xy + y und das zu lösende Gleichungssystem ist gradl = L x L y L λ = x + λx + y y + λx + y x + xy + y = 0 Die Kunst besteht nun darin, dieses nichtlineare Gleichungssystem zu lösen Hierfür gibt es verschiedene Möglichkeiten: 1 Wir lösen die erste Gleichung nach y auf Dabei können wir benutzen, dass λ = 0 keine Lösung des Gleichungssystems ergibt, denn λ = 0 impliziert, dass x = y = 0 sein muss und damit ist Nebenbedingung nicht erfüllt Für λ 0 ergibt die erste Gleichung: y = 1 + λ x λ Dies in die zweite Gleichung eingesetzt führt auf: 1 + λ λx λ x = 0 λ 41 + λ x = 0 λ Diese Gleichung ist erfüllt, wenn x = 0 oder λ 41 + λ = 0 gilt Aber x = 0 impliziert y = 0 und diese Variante erfüllt die Nebenbedingung nicht Es verbleibt also die Gleichung λ 41 + λ = 3λ 8λ 4 = 0 λ 1/ = 4 3 ± = 4 3 ± 3 7

8 Also λ 1 = 3 und λ = Für λ 1 ergibt sich daraus 3 x 3 y = 0 x = y und für λ ergibt sich x y = 0 x = y Setzt man x = y in die 3 Gleichung ein, so erhält man 3x = 0 x = 3 x 1/ = ± 3 und die Punkte 3, 3 und 3, 3 Setzt man x = y in die 3 Gleichung ein, so erhält man x = 0 x = x 3/4 = ± und die Punkte, und, Wir schreiben die beiden ersten Gleichungen als Gleichungssystem: + λ λ λ + λ x Das ist ein lineares Gleichungssystem mit dem Parameter λ Ist das Gleichungssystem eindeutig lösbar, so hat es nur die triviale Lösung x = y = 0 Diese Lösung erfüllt aber die 3 Gleichung nicht Folglich muss die Determinante des Gleichungssystems gleich Null sein, dh Alles andere ist nun wie bei 1 y = λ1 + λ λ = 0 3λ + 8λ + 4 = 0 Wie man leicht sieht, ist yl x xl y = x y = 0 Hieraus folgen sofort die zwei Fälle x = y und x = y Alles andere ist wie vorher 0 Die Scheitelpunkte sind 3,, 3 3,, 3,,, 76

9 Bemerkung 8: Völlig analog behandelt man den Fall von k Nebenbedingungen, wobei die Anzahl der Nebenbedingungen k kleiner als die Anzahl der Variablen n sein soll Sind f, g 1,, g k einmal stetig partiell differenzierbar und die Gradienten für alle x M mit gradg 1 x,,gradg x M := { x R n : g 1 x = = g k x = 0} linear unabhängig, dann findet man die Lösung des Extremalproblems mit Nebenbedingungen: fx 1, x,, x n Extr! NB :g 1 x 1, x,, x n = g k x 1, x,, x n = 0 unter den stationären Punkten der Lagrange-Funktion: Lx 1, x,, x n, λ 1,,λ k = f x + λ 1 g 1 x + + λ n g n x 36 Extremalstellen in von Hyperflächen begrenzten Bereichen Es sei U ein durch Hyperflächen begrenzter Bereich des R n, dh U = { x R n : g 1 x 0,, g r x 0} 77

10 R Die Kandidaten für Extremalstellen von f : U R sind: a die Ecken von U falls vorhanden, sind das die eindeutigen Lösungen von möglichen Kombinationen g i x = g j x = = g k x = 0 und ansonsten g l x < 0, b die Extremalstellen in den berandenden Kurven-, Flächen- und Hyperflächenstücken von U, mit der Lagrange-Multiplikatoren-Methode, durch Parametriesierung bzw Einsetzen der entsprechenden Nebenbedingung, c die stationären Stellen von f im Innern von U : { x R n : g 1 x < 0,, g r x < 0}, d Punkte in U, in denen f nicht differenzierbar ist Der größte kleinste Funktionswert an den Stellen a, b, c, d liefert das globale Maximum Minimum Beispiel 3: Gesucht sind die Extrema von fx, y = 3x xy+y auf der Kreisscheibe x + y 1 78

11 Untersuchung der extremwertverdächtigen Punkte: a U hat keine Ecken, b der Rand von U ist die Kreislinie x +y = 1 Wir haben das Extremwertproblem mit Nebenbedingung fx, y Extr! NB : x + y = 1 zu betrachten Nach der Lagrange-Multiplikatoren-Methode bilden wir: Lx, y,λ = fx, y + λgx, y = 3x xy + y + λx + y 1 und berechnen: gradlx, y,λ = 0 : L x L y L λ = 6x y + λx x + y + λy x + y 1 = λ = 0 impliziert x = y = 0 und dafür ist die Nebenbedingung nicht erfüllt Die ersten beiden Gleichungen ergeben das Eigenwertproblem: x y = λ x y Wir bestimmen die Eigenwerte aus 3 λ 1 deta λe = 1 1 λ = 3 + λ1 + λ 1 = 0 λ + 4λ + = 0 79

12 und erhalten als Lösungen λ 1/ = ± 4 = ± Die zugehörigen Eigenvektoren ergeben sich für λ 1 = + zu und damit x + 1 y = 0 x = 1y Eingesetzt in die Nebenbedingung erhält man 1 y +y = +y = 1 y 1/ = ±1 und x 1/ = ± sowie für λ = und damit x+1+ y = 0 x = 1+ y Eingesetzt in die Nebenbedingung erhält man 1+ y +y = + +y = 1 y 3/4 = ±1 und x 3/4 = Das ergibt die 4 Punkte: a = 1 4, 1 4, a, b = , 1, b 4 + Als Funktionswerte ergeben sich f a = f a = = = = 6 4 = 3 4 = = = 0,9 80

13 und f b = f b = = = = = = = = + 3,41 Bemerkung 9: 1 Anstelle des Eigenwertproblems hätte man auch ein Gleichungssystem mit dem Parameter λ betrachten können: 3 + λ 1 x 0 = λ y 0 Da die triviale Lösung x = y = 0 die Nebenbedingung nicht erfüllt, interessieren alle λ für die das Gleichungssystem nicht eindeutig lösbar ist, also wo gilt 3 + λ 1 = 3 + λ1 + λ 1 = λ Danach ist die Lösung, gemäß oben bzw der Bemerkung zu bestimmen Man hätte stattdessen auch die erste Gleichung nach y auflösen können: und das in die zweite Gleichung einsetzen: y = 6x + λx y = 3 + λx x λy = x λ3 + λx = λ3 + λx = 0 und erhält die gleiche quadratische Gleichung für λ Also auch λ 1/ = ± Damit ergeben sich Beziehungen: y 1 = 3 + x 1 = 1 + x 1, y 3 = 3 x 3 = 1 x 3 Eingesetzt in die Nebenbedingung folgt daraus: und damit x 1/ = x x 1 = x 1 = 1 ±1 4 + = ± = ±

14 und entsprechend y 1/ = ± = ±1 4 Analog erhält man aus die Lösungen x 3/4 = x x 3 = x 3 = 1 ±1 4 = = und entsprechend y 3/4 = = ±1 4 + Das sind diesselben Punkte wie oben c Stationäre Punkte im Innern von U : 6x y gradfx, y = x + y = 0 Aus der zweiten gleichung x = y und das in die erste Gleichung eingesetzt ergibt x = y = 0 Der Ursprung 0, 0 U Die Determinante der Hesse-Matrix im Ursprung 8

15 ist deth f 0, 0 = 6 = 1 4 = 8 > 0 und mit f xx 0, 0 = 6 > 0 liegt im Ursprung ein lokales Minimum vor d f ist in U überall differenzierbar, deshalb sind keine weiteren Punkte zu betrachten Folglich gibt es in b und b ein globales Maximum mit f b = f b = + und im Ursprung ein globales Minimum mit f0, 0 = 0 Bemerkung 10: Wie man leicht sieht sind die Maxima/Minima für die Extremwertaufgabe fx, y = 3x xy + y Extr! NB : gx, y = x + y 1 = 0, gerade an den Stellen, wo gradf ein skalares Vielfaches von gradg ist 83

10 Extremwerte mit Nebenbedingungen

10 Extremwerte mit Nebenbedingungen 10 Extremwerte mit Nebenbedingungen 49 10 Extremwerte mit Nebenbedingungen Wir betrachten nun Extremwertaufgaben, bei denen nach dem Extremwert einer fx 1,, x n gesucht wird, aber die Menge der zulässigen

Mehr

2 Funktionen in mehreren Variablen: Differentiation

2 Funktionen in mehreren Variablen: Differentiation Satz 2. (Richtungsableitung) Für jede auf der offenen Menge D R n total differenzierbaren Funktion f (insbesondere für f C 1 (D, R) und für jeden Vektor v R n, v 0, gilt: n v f(x) = f(x) v = f xi (x)v

Mehr

3.2 Implizite Funktionen

3.2 Implizite Funktionen 3.2 Implizite Funktionen Funktionen können explizit als y = f(x 1, x 2,..., x n ) oder implizit als F(x 1, x 2,..., x n ;y) = 0 gegeben sein. Offensichtlich kann man die explizite Form immer in die implizite

Mehr

Musterlösung zu Blatt 1

Musterlösung zu Blatt 1 Musterlösung zu Blatt Analysis III für Lehramt Gymnasium Wintersemester 0/4 Überprüfe zunächst die notwendige Bedingung Dfx y z = 0 für die Existenz lokaler Extrema Mit x fx y z = 8x und y fx y z = + z

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz Dr P C Kunstmann Dipl-Math M Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof Dr M Keyl M Kech TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker (Analysis ) MA90 http://www-m5matumde/allgemeines/ma90 06S Sommersem 06 Lösungsblatt (606) Zentralübung Z

Mehr

Musterlösungen Aufgabenblatt 2

Musterlösungen Aufgabenblatt 2 Jonas Kindervater Ferienkurs - Höhere Mathematik III für Physiker Musterlösungen Aufgabenblatt Dienstag 17. Februar 009 Aufgabe 1 (Implizite Funktionen) f(x, y) = x 1 xy 1 y4 = 0 Man bestimme die lokale

Mehr

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015 Analysis D-BAUG Dr. Cornelia Busch FS 05 Serie 4. Finden Sie die lokalen Extrema der Funktionen f : R R auf dem Einheitskreis S = {x, y R : x + y = } und geben Sie an, ob es sich um ein lokales Minimum

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 3 Anwendungen der Differentialrechnung 3.1 Lokale Maxima und Minima Definition 16: Sei f : D R eine Funktion von n Veränderlichen. Ein Punkt x heißt lokale oder relative Maximalstelle bzw. Minimalstelle

Mehr

6 Extremwerte mit Nebenbedingungen: Die Lagrange-Multiplikatoren-Methode

6 Extremwerte mit Nebenbedingungen: Die Lagrange-Multiplikatoren-Methode 6 Extremwerte mit Nebenbedingungen: Die Lagrange-Multiplikatoren-Methode In diesem Kapitel orientieren wir uns stark an den Büchern: 1. Knut Sydsæter, Peter Hammond, Mathematik für Wirtschaftswissenschaftler,

Mehr

Klausur HM II/III F 2003 HM II/III : 1

Klausur HM II/III F 2003 HM II/III : 1 Klausur HM II/III F 3 HM II/III : Aufgabe : (7 Punkte) Untersuchen Sie die Funktion f : R R gegeben durch x 3 y 3 f(x, y) x + y sin, (x, y) (, ) x + y, (x, y) (, ) auf Stetigkeit und Differenzierbarkeit.

Mehr

18.2 Implizit definierte Funktionen

18.2 Implizit definierte Funktionen 18.2 Implizit definierte Funktionen Ziel: Untersuche Lösungsmengen von nichtlinearen Gleichungssystemen g(x) = 0 mit g : D R m, D R n, d.h. betrachte m Gleichungen für n Unbekannte mit m < n, d.h. wir

Mehr

Höhere Mathematik II für BWIW, BNC, BAI, BGIP, GTB, Ma Hausaufgaben zum Übungsblatt 5 - Lösung

Höhere Mathematik II für BWIW, BNC, BAI, BGIP, GTB, Ma Hausaufgaben zum Übungsblatt 5 - Lösung TU Bergakademie Freiberg Sommersemester Dr. Gunter Semmler Dr. Anja Kohl Höhere Mathematik II für BWIW, BNC, BAI, BGIP, GTB, Ma Hausaufgaben zum Übungsblatt 5 - Lösung Differentialrechnung für Funktionen

Mehr

Folgerungen aus dem Auflösungsatz

Folgerungen aus dem Auflösungsatz Folgerungen aus dem Auflösungsatz Wir haben in der Vorlesung den Satz über implizite Funktionen (Auflösungssatz) kennen gelernt. In unserer Formulierung lauten die Resultate: Seien x 0 R m, y 0 R n und

Mehr

A N A L Y S I S I I F Ü R T P H, UE ( ) 1. Test (DO, 5. Mai 2011) / Gruppe weiÿ (mit Lösung )

A N A L Y S I S I I F Ü R T P H, UE ( ) 1. Test (DO, 5. Mai 2011) / Gruppe weiÿ (mit Lösung ) Institut für Analysis und Scientic Computing TU Wien E. Weinmüller SS 2011 A N A L Y S I S I I F Ü R T P H, UE (103.091) 1. Test (DO, 5. Mai 2011) / Gruppe weiÿ (mit Lösung ) Aufgabe 1. Gegeben ist die

Mehr

7.11. Extrema unter Nebenbedingungen

7.11. Extrema unter Nebenbedingungen 7.11. Extrema unter Nebenbedingungen Randextrema Wir haben schon bemerkt, daß die üblichen Tests mit Hilfe von (eventuell höheren) Ableitungen nur Kriterien für (lokale) Extrema im Inneren des Definitionsgebietes

Mehr

Probeklausur. 1 Stetigkeit [7 Punkte] 2 Differenzierbarkeit [10 Punkte] Ferienkurs Analysis 2 für Physiker SS Karolina Stoiber Aileen Wolf

Probeklausur. 1 Stetigkeit [7 Punkte] 2 Differenzierbarkeit [10 Punkte] Ferienkurs Analysis 2 für Physiker SS Karolina Stoiber Aileen Wolf Karolina Stoiber Aileen Wolf Ferienkurs Analysis 2 für Physiker SS 26 A Probeklausur Allgemein Hinweise: Die Arbeitszeit beträgt 9 Minuten. Falls nicht anders angegeben, sind alle en ausführlich und nachvollziehbar

Mehr

Mehrdimensionale Differentialrechnung Übersicht

Mehrdimensionale Differentialrechnung Übersicht Mehrdimensionale Differentialrechnung Übersicht Partielle und Totale Differenzierbarkeit Man kann sich mehrdimensionale Funktionen am Besten für den Fall f : R 2 M R vorstellen Dann lässt sich der Graph

Mehr

Analysis II 14. Übungsblatt

Analysis II 14. Übungsblatt Jun.-Prof. PD Dr. D. Mugnolo Wintersemester 01/13 F. Stoffers 04. Februar 013 Analysis II 14. Übungsblatt 1. Aufgabe (8 Punkte Man beweise: Die Gleichung z 3 + z + xy = 1 besitzt für jedes (x, y R genau

Mehr

Rückblick auf die letzte Vorlesung

Rückblick auf die letzte Vorlesung Rückblick auf die letzte Vorlesung 1. Anwendungen des Satzes über implizite Funktionen 2. Stationäre Punkte implizit definierter Funktionen 3. Reguläre Punkte 4. Singuläre Punkte Ausblick auf die heutige

Mehr

C. Eicher Analysis Study Center ETH Zürich HS Extremwerte

C. Eicher Analysis Study Center ETH Zürich HS Extremwerte C. Eicher Analysis Study Center ETH Zürich HS 05 Extremwerte Gelöste Aufgabenbeispiele:. Bestimme die lokalen und globalen Extrema der Funktion f(x) = x x + x auf dem Intervall [ 4, ]. a. Bestimmung der

Mehr

Lagrange-Multiplikatoren

Lagrange-Multiplikatoren Lagrange-Multiplikatoren Ist x eine lokale Extremstelle der skalaren Funktion f unter den Nebenbedingungen g i (x) = 0, dann existieren Lagrange-Multiplikatoren λ i, so dass grad f (x ) = λ i grad g i

Mehr

Übung 22: Gradient und Richtungsableitung; Extremwertaufgaben für Funktionen mehrerer Veränderlicher

Übung 22: Gradient und Richtungsableitung; Extremwertaufgaben für Funktionen mehrerer Veränderlicher Technische Universität Chemnitz 1. Juli 20 Fakultät für Mathematik Höhere Mathematik I.2 Übung 22: Gradient und Richtungsableitung; Extremwertaufgaben für Funktionen mehrerer Veränderlicher 1. Durch ein

Mehr

Extrema mit Nebenbedingungen

Extrema mit Nebenbedingungen Extrema mit Nebenbedingungen Gesucht ist das Extremum der Funktion f(x,y) = 5 x y unter der Nebenbedingung g(x,y) = x+y =. 5 y x In diesem einfachen Fall kann die Nebenbedingung nach einer Variablen aufgelöst

Mehr

Übung 5, Analytische Optimierung

Übung 5, Analytische Optimierung Übung 5, 5.7.2011 Analytische Optimierung Aufgabe 5.1 Bei der Herstellung von Konserven werden für Boden und Deckel bzw. für den Konservenmantel verschiedene Materialien verwendet, die g 1 = bzw. g 2 =

Mehr

Extrema multivariater Funktionen

Extrema multivariater Funktionen Extrema multivariater Funktionen Ist f (x ) ein Minimum (Maximum) einer stetig differenzierbaren skalaren Funktion f auf einer Umgebung U von x, so gilt grad f (x ) = (0,..., 0) t. Extrema multivariater

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 11 D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben 1. 1 Punkte a Wir berechnen lim x x + x + 1 x + x 3 + x = 1. b Wir benutzen L Hôpital e x e x lim x sinx

Mehr

10. Übungsblatt zur Analysis II

10. Übungsblatt zur Analysis II Fachbereich Mathematik Prof. Dr. Steffen Roch Nada Sissouno WS 2009/2010 17.12.2009 10. Übungsblatt zur Analysis II Gruppenübung Aufgabe G1 Gegeben sei die Funktion g : R 2 R, g(x,y) = sin 2 y + x 3 1.

Mehr

A1: Diplomvorprüfung HM II/III WS 2007/

A1: Diplomvorprüfung HM II/III WS 2007/ A: Diplomvorprüfung HM II/III WS 7/8 6..8 Aufgabe. (+68 Punkte) a) Ist die Reihe k+ k k 5k konvergent oder divergent? Begründen Sie ihre Aussage! b) Führen Sie eine Partialbruchzerlegung für n+ durch und

Mehr

Rückblick auf die letzte Vorlesung. Bemerkung

Rückblick auf die letzte Vorlesung. Bemerkung Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D

Mehr

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang Sommersemester 03 6.06.03 Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik

Mehr

Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 8. Übungsblatt. ). 12x 3 Die Hessematrix von f ist gegeben durch H f (x, y) =

Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 8. Übungsblatt. ). 12x 3 Die Hessematrix von f ist gegeben durch H f (x, y) = Karlsruher Institut für Technologie (KIT Institut für Analysis Priv-Doz Dr P C Kunstmann Dipl-Math D Roth SS 0 7060 Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 8 Übungsblatt

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik WS 12/13 Prof. Dr. G. Bärwolff, Prof. Dr. F. Tröltzsch

Technische Universität Berlin Fakultät II Institut für Mathematik WS 12/13 Prof. Dr. G. Bärwolff, Prof. Dr. F. Tröltzsch Technische Universität Berlin Fakultät II Institut für Mathematik WS /3 Prof. Dr. G. Bärwolff, Prof. Dr. F. Tröltzsch 6.4.3 Rechenteil April Klausur Analysis II für Ingenieure. Aufgabe Punkte a Es gilt:

Mehr

1.6 Implizite Funktionen

1.6 Implizite Funktionen 1 1.6 Implizite Funktionen Wir werden uns jetzt mit nichtlinearen Gleichungen beschäftigen, f(x) = 0, wobei f = (f 1,..., f m ) stetig differenzierbar auf einem Gebiet G R n und m < n ist. Dann hat man

Mehr

3. Approximation von Funktionen und Extremwertprobleme im R n

3. Approximation von Funktionen und Extremwertprobleme im R n 3. Approximation von Funktionen und Extremwertprobleme im R n Wie in D ist es wichtig Funktionen mit mehreren Variablen durch Polynome lokal approximieren zu können. Polynome lassen sich im Gegensatz zu

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Inhaltsverzeichnis 8 Funktionen mehrerer Variabler 8. Einführende Definitionen und Bemerkungen....................... 8. Graphische Darstellungsmöglichkeiten.......................... 8. Grenzwert und

Mehr

Prof. Steinwart Höhere Mathematik I/II Musterlösung A =

Prof. Steinwart Höhere Mathematik I/II Musterlösung A = Prof. Steinwart Höhere Mathematik I/II Musterlösung 9.8.6 Aufgabe Punkte a Berechnen Sie die Eigenwerte der folgenden Matrix: A 3 b Es sei 4 A. 8 5 Bestimmen Sie P, P M, und eine Diagonalmatrix D M, so,

Mehr

Topologie und Differentialrechnung mehrerer Veränderlicher, SS 2009 Modulprüfung/Abschlussklausur. Aufgabe Punkte

Topologie und Differentialrechnung mehrerer Veränderlicher, SS 2009 Modulprüfung/Abschlussklausur. Aufgabe Punkte Universität München 22. Juli 29 Topologie und Differentialrechnung mehrerer Veränderlicher, SS 29 Modulprüfung/Abschlussklausur Name: Aufgabe 2 3 4 Punkte Gesamtpunktzahl: Gesamturteil: Schreiben Sie unbedingt

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion Übungen zur Ingenieur-Mathematik III WS 11/1 Blatt 8 3.11.11 Aufgabe 5: Berechnen Sie den kritischen Punkt der Funktion fx, y 3x 5xy y + 3 und entscheiden Sie, ob ein Maximum, Minimum oder Sattelpunkt

Mehr

9 Differentialrechnung für Funktionen in n Variablen

9 Differentialrechnung für Funktionen in n Variablen $Id: diff.tex,v.7 29/7/2 3:4:3 hk Exp $ $Id: ntaylor.tex,v.2 29/7/2 3:26:42 hk Exp $ 9 Differentialrechnung für Funktionen in n Variablen 9.6 Lagrange Multiplikatoren Die Berechnung von Maxima und Minima

Mehr

Extremwerte von Funktionen mehrerer reeller Variabler

Extremwerte von Funktionen mehrerer reeller Variabler Extremwerte von Funktionen mehrerer reeller Variabler Bei der Bestimmung der Extrema von (differenzierbaren) Funktionen f : R n R ist es sinnvoll, zuerst jene Stellen zu bestimmen, an denen überhaupt ein

Mehr

Übungen zum Ferienkurs Analysis II 2014

Übungen zum Ferienkurs Analysis II 2014 Übungen zum Ferienkurs Analysis II 4 Probeklausur Allgemein Hinweise: Die Arbeitszeit beträgt 9 Minuten. Falls nicht anders angegeben, sind alle en ausführlich und nachvollziehbar zu begründen. Schreiben

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 7 (7.8.7). Gegeben ist die Matrix A 3 3 3 (a) Bestimmen Sie sämtliche Eigenwerte sowie die zugehörigen Eigenvektoren.

Mehr

Mathematische Behandlung der Natur- und Wirtschaftswissenschaften I. f(x) := e x + x.

Mathematische Behandlung der Natur- und Wirtschaftswissenschaften I. f(x) := e x + x. Technische Universität München WS 009/0 Fakultät für Mathematik Prof. Dr. J. Edenhofer Dipl.-Ing. W. Schultz Übung Lösungsvorschlag Mathematische Behandlung der Natur- und Wirtschaftswissenschaften I Aufgabe

Mehr

f(x, y) = x 2 4x + y 2 + 2y

f(x, y) = x 2 4x + y 2 + 2y 7. Februar Lösungshinweise Theorieteil Aufgabe : Bestimmen Sie die Niveaumengen (Höhenlinien) der Funktion f(x, y) = x 4x + y + y und skizzieren Sie das zugehörige Höhenlinienbild im kartesischen Koordinatensystem

Mehr

2 Extrema unter Nebenbedingungen

2 Extrema unter Nebenbedingungen $Id: lagrange.tex,v 1.6 2012/11/06 14:26:21 hk Exp hk $ 2 Extrema unter Nebenbedingungen 2.1 Restringierte Optimierungsaufgaben Nachdem wir jetzt die bereits bekannten Techniken zur Bestimmung der lokalen

Mehr

f(x) f(x 0 ) lokales Maximum x U : gilt, so heißt x 0 isoliertes lokales Minimum lokales Minimum Ferner nennen wir x 0 Extremum.

f(x) f(x 0 ) lokales Maximum x U : gilt, so heißt x 0 isoliertes lokales Minimum lokales Minimum Ferner nennen wir x 0 Extremum. Fabian Kohler Karolina Stoiber Ferienkurs Analsis für Phsiker SS 4 A Extrema In diesem Abschnitt sollen Extremwerte von Funktionen f : D R n R diskutiert werden. Auch hier gibt es viele Ähnlichkeiten mit

Mehr

Wenn man den Kreis mit Radius 1 um (0, 0) beschreiben möchte, dann ist. (x, y) ; x 2 + y 2 = 1 }

Wenn man den Kreis mit Radius 1 um (0, 0) beschreiben möchte, dann ist. (x, y) ; x 2 + y 2 = 1 } A Analsis, Woche Implizite Funktionen A Implizite Funktionen in D A3 Wenn man den Kreis mit Radius um, beschreiben möchte, dann ist { x, ; x + = } eine Möglichkeit Oft ist es bequemer, so eine Figur oder

Mehr

Übungen zur Vorlesung Mathematik im Querschnitt Lösungsvorschlag

Übungen zur Vorlesung Mathematik im Querschnitt Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner WS 06/7 Blatt 4 5..06 Übungen zur Vorlesung Mathematik im Querschnitt Lösungsvorschlag 3. Die gegebene Polynomfunktion f : R R, f(x, y) =

Mehr

Kapitel 12. Lagrange-Funktion. Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 1 / 28. f (x, y) g(x, y) = c. f (x, y) = x y 2

Kapitel 12. Lagrange-Funktion. Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 1 / 28. f (x, y) g(x, y) = c. f (x, y) = x y 2 Kapitel 12 Lagrange-Funktion Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 1 / 28 Optimierung unter Nebenbedingungen Aufgabe: Berechne die Extrema der Funktion unter der Nebenbedingung

Mehr

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen In diesem Kapitel betrachten wir die Invertierbarkeit von glatten Abbildungen bzw. die Auflösbarkeit von impliziten Gleichungen.

Mehr

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0.

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0. Mehrdimensionale Dierenzialrechnung 9 Optimierung 9 Optimierung Definition Seien U R n oen, f : U R, x U x heiÿt lokales Maximum, falls eine Umgebung V U von x existiert mit y V : fx fy x heiÿt lokales

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler. (a) Bestimmen Sie die kartesische Form von Wintersemester 7/8 (..8) z = ( + i)( i) + ( + i). (b) Bestimmen Sie sämtliche komplexen Lösungen

Mehr

3 Optimierung mehrdimensionaler Funktionen f : R n R

3 Optimierung mehrdimensionaler Funktionen f : R n R 3 Optimierung mehrdimensionaler Funktionen f : R n R 31 Optimierung ohne Nebenbedingungen Optimierung heißt eigentlich: Wir suchen ein x R n so, dass f(x ) f(x) für alle x R n (dann heißt x globales Minimum)

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof Dr M Keyl M Kech TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker 3 (Analysis 2) MA923 http://wwwm5matumde/allgemeines/ma923_26s Sommersem 26 Probeklausur (4726) Krümmung

Mehr

Mathematik 2 für Wirtschaftsinformatik

Mathematik 2 für Wirtschaftsinformatik für Wirtschaftsinformatik Sommersemester 2012 Hochschule Augsburg Hinreichende Bedingung für lokale Extrema Voraussetzungen Satz D R n konvex und offen Funktion f : D R zweimal stetig partiell differenzierbar

Mehr

Technische Universität München. Probeklausur Lösung SS 2012

Technische Universität München. Probeklausur Lösung SS 2012 Technische Universität München Andreas Wörfel & Carla Zensen Ferienkurs Analysis für Physiker Probeklausur Lösung SS Aufgabe Differenzierbarkeit / Punkte: [4,, 3, 4] Es sei f(x, y) = sin(x3 + y 3 ) x +

Mehr

Extremwertrechnung in mehreren Veränderlichen

Extremwertrechnung in mehreren Veränderlichen KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann SS 2014 14.05.2014 Höhere Mathematik II für die Fachrichtung Informatik 3. Saalübung (14.05.2014) Extremwertrechnung

Mehr

Höhere Mathematik für Ingenieure 2

Höhere Mathematik für Ingenieure 2 Prüfungklausur (B) zum Modul Höhere Mathematik für Ingenieure 2 25. Juli 29, 3. - 7. Uhr (2.Termin) Aufgabe : - Lösungen zum Theorieteil - Geben Sie eine Funktion f : R 2 R an, für die die Niveaumenge

Mehr

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist:

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist: Musterlösung Aufgabe a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [, ] R, die folgendermaßen definiert ist: f(x) := { für x R \ Q für x Q f ist offensichtlich beschränkt. Wir zeigen,

Mehr

9. Übungsblatt zur Vorlesung Mathematik I für Informatik

9. Übungsblatt zur Vorlesung Mathematik I für Informatik Fachbereich Mathematik Prof. Dr. Thomas Streicher Dr. Sven Herrmann Dipl.-Math. Susanne Pape 9. Übungsblatt zur Vorlesung Mathematik I für Informatik Wintersemester 2009/2010 8./9. Dezember 2009 Gruppenübung

Mehr

Stroppel Musterlösung , 180min. Aufgabe 1 (7 Punkte) Gegeben seien folgende Potenzreihen: ( 2) n n xn,

Stroppel Musterlösung , 180min. Aufgabe 1 (7 Punkte) Gegeben seien folgende Potenzreihen: ( 2) n n xn, Stroppel Musterlösung 0. 09. 03, 80min Aufgabe 7 Punkte) Gegeben seien folgende Potenzreihen: ) n fx) = n xn, gx) = n= + ) n n x+) n. 3 n= a) Bestimmen Sie jeweils den Konvergenzradius und den Entwicklungspunkt.

Mehr

Multivariate Analysis

Multivariate Analysis Kapitel Multivariate Analysis Josef Leydold c 6 Mathematische Methoden I Multivariate Analysis / 38 Lernziele Funktionen in mehreren Variablen Graph und Niveaulinien einer Funktion in zwei Variablen Partielle

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 12

Technische Universität München Zentrum Mathematik. Übungsblatt 12 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 1 Hausaufgaben Aufgabe 1.1 Sei f : R R gegeben durch f(x 1, x ) = x 3

Mehr

Extremalprobleme mit Nebenbedingungen

Extremalprobleme mit Nebenbedingungen Extremalprobleme mit Nebenbedingungen In diesem Abschnitt untersuchen wir Probleme der folgenden Form: g(x 0 ) = inf{g(x) : x Ω, f(x) = 0}, (x 0 Ω, f(x 0 ) = 0). (1) Hierbei sind Ω eine offene Menge des

Mehr

ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS

ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS Aufgabe 1. a) Gegeben sei die Gleichung 2x 2 4xy +y 2 3x+4y = 0. Verifizieren Sie, dass diese Gleichung

Mehr

8 Extremwerte reellwertiger Funktionen

8 Extremwerte reellwertiger Funktionen 8 Extremwerte reellwertiger Funktionen 34 8 Extremwerte reellwertiger Funktionen Wir wollen nun auch Extremwerte reellwertiger Funktionen untersuchen. Definition Es sei U R n eine offene Menge, f : U R

Mehr

Serie 3. z = f(x, y) = 9 (x 2) 2 (y 3) 2 z 2 = 9 (x 2) 2 (y 3) 2, z 0 9 = (x 2) 2 + (y 3) 2 + z 2, z 0.

Serie 3. z = f(x, y) = 9 (x 2) 2 (y 3) 2 z 2 = 9 (x 2) 2 (y 3) 2, z 0 9 = (x 2) 2 + (y 3) 2 + z 2, z 0. Analysis D-BAUG Dr Cornelia Busch FS 2016 Serie 3 1 a) Zeigen Sie, dass der Graph von f(x, y) = 9 (x 2) 2 (y 3) 2 eine Halbkugel beschreibt und bestimmen Sie ihren Radius und ihr Zentrum z = f(x, y) =

Mehr

Prof. Schneider Höhere Mathematik I/II Musterlösung A = x 1 = 6x 1 + x 3 x 2 = 2x 2 x 3 = x 1 + 6x 3

Prof. Schneider Höhere Mathematik I/II Musterlösung A = x 1 = 6x 1 + x 3 x 2 = 2x 2 x 3 = x 1 + 6x 3 Aufgabe ( Punkte) a) Bestimmen Sie die Eigenwerte und Eigenvektoren der Matrix 6 A = 6 b) Bestimmen Sie die allgemeine Lösung des Differentialgleichungssystems x = 6x + x 3 x = x x 3 = x + 6x 3 c) Bestimmen

Mehr

5.10. Mehrdimensionale Extrema und Sattelpunkte

5.10. Mehrdimensionale Extrema und Sattelpunkte 5.1. Mehrdimensionale Extrema und Sattelpunkte Zur Erinnerung: Eine Funktion f von einer Teilmenge A des R n nach R hat im Punkt a ein (strenges) globales Maximum, falls f( x ) f( a ) (bzw. f( x ) < f(

Mehr

Modulabschlussklausur Analysis II

Modulabschlussklausur Analysis II Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Klausur Mathematik für Physiker 3 (Analysis 2) I... II...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Klausur Mathematik für Physiker 3 (Analysis 2) I... II... ................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Differentialrechnung für Funktionen mehrerer

Mehr

Ferienkurs der TU München- - Analysis 2 Funktionen in mehreren Variablen Vorlesung

Ferienkurs der TU München- - Analysis 2 Funktionen in mehreren Variablen Vorlesung Ferienkurs der TU München- - Analysis 2 Funktionen in mehreren Variablen Vorlesung Jonas J. Funke 30.08.2010-03.09.2010 Inhaltsverzeichnis 1 Funktionen in mehreren Variablen 3 2 Partielle Differentiation

Mehr

Mathematik III - Blatt 6

Mathematik III - Blatt 6 Mathematik III - Blatt Christopher Bronner, Frank Essenberger 8. November Aufgabe Wir suchen erstmal im inneren des Vierecks nach Punkten, die für einen Extremwert in Frage kommen, danach auf den Rändern

Mehr

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 91 Optimierung ohne Nebenbedingungen Ein Optimum zu suchen heißt, den größten oder den kleinsten Wert zu suchen Wir suchen also ein x R n, sodass

Mehr

B Lösungen. Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R 2 Berechnen Sie zur Abbildung. f(x, y) := x sin(xy) f : R 2 R,

B Lösungen. Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R 2 Berechnen Sie zur Abbildung. f(x, y) := x sin(xy) f : R 2 R, B en Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R Berechnen Sie zur Abbildung f : R R, f(x, y) : x sin(xy) das totale Differenzial f df, die Jacobi-Matrix J f (x, y) und den Gradienten ( f)(x,

Mehr

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 15

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 15 D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger Lösung - Serie 15 1. Der Wert einer Funktion f : R R fällt am schnellsten in die Richtung (a) (b) (c) der minimalen partiellen Ableitung. entgegengesetzt

Mehr

cos(x)cos(2x)cos(4x) cos(2 n x) = sin(2n+1 x) 2 n+1 sin(x) = sin(2n+2 x) 2 n+2 sin(x).

cos(x)cos(2x)cos(4x) cos(2 n x) = sin(2n+1 x) 2 n+1 sin(x) = sin(2n+2 x) 2 n+2 sin(x). Stroppel/Sändig Musterlösung 8. 3., min Aufgabe 5 Punkte Beweisen Sie für alle x R {zπ z Z} die Formel für n N mit Hilfe der vollständigen Induktion. cosxcosxcosx cos n x = sinn+ x n+ sinx Dabei dürfen

Mehr

Vorbereitung für die Prüfung Mathematik II für Informatiker

Vorbereitung für die Prüfung Mathematik II für Informatiker Technische Universität Ilmenau SS 2010 Institut für Mathematik Inf Prof. Dr. Michael Stiebitz Vorbereitung für die Prüfung Mathematik II für Informatiker 1 Lineare Algebra Aufgabe 1 Schauen Sie sich die

Mehr

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren Aufgabe Gegeben seien die Punkte A(,,, B(,,, C(,,. (a Geben Sie die Hesse-Normalform der Ebene E, welche die drei Punkte A, B und C enthält, an. (b Bestimmen Sie den Abstand des Punktes P (,, 5 zur Ebene

Mehr

Probeklausur Höhere Mathematik II für Elektrotechniker

Probeklausur Höhere Mathematik II für Elektrotechniker I. Bouw.7.8 U. Hackstein Probeklausur Höhere Mathematik II für Elektrotechniker Es gibt 5 Punkte pro Teilaufgabe, also insgesamt 7 Punkte. Aufgabe. Skizzieren Sie folgenden Bereich: D = {(x, y) R x + y

Mehr

Anleitungsaufgaben zu. Analysis III für Studierende der Ingenieurwissenschaften

Anleitungsaufgaben zu. Analysis III für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2011/12 Dr. K. Rothe Anleitungsaufgaben zu Analysis III für Studierende der Ingenieurwissenschaften Aufgabe 1: Für die folgenden Funktionen f : IR 2

Mehr

Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt

Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt 9 19.12.2012 Aufgabe 35: Thema: Differenzierbarkeit a) Was bedeutet für eine Funktion f : R n R, dass f an der Stelle x 0 R n differenzierbar ist?

Mehr

0.1 Hauptsatz über implizite Funktionen

0.1 Hauptsatz über implizite Funktionen 0.1 Hauptsatz über implizite Funktionen 0.1 Hauptsatz über implizite Funktionen Ein lineares homogenes Gleichungssystem von q Gleichungen in r + q Unbekannten kann bekanntlich verwendet werden um q Unbekannte

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 13. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 13. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Andreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.de Department Biologie II Telefon: 89-8-748 Großhadernerstr. Fax:

Mehr

Wirtschaftsmathematik 00054: Mathematik für Wirtschaftswissenschaftler II Kurseinheit 2: Lineare Algebra II

Wirtschaftsmathematik 00054: Mathematik für Wirtschaftswissenschaftler II Kurseinheit 2: Lineare Algebra II Wirtschaftsmathematik 00054: Mathematik für Wirtschaftswissenschaftler II Kurseinheit : Lineare Algebra II Leseprobe Autor: Univ.-Prof. Dr. Wilhelm Rödder Dr. Peter Zörnig 74 4 Extrema bei Funktionen mehrerer

Mehr

Technische Universität Berlin

Technische Universität Berlin Technische Universität Berlin Fakultät II Institut für Mathematik WS /5 G. Bärwol, A. Gündel-vom-Hofe..5 Februar Klausur Analysis II für Ingenieurswissenschaften Lösungsskizze. Aufgabe 6Punkte Bestimmen

Mehr

z 2 + 2z + 10 = 0 = 2 ± 36 2 Aufgabe 2 (Lineares Gleichungssystem) Sei die reelle 3 4 Matrix

z 2 + 2z + 10 = 0 = 2 ± 36 2 Aufgabe 2 (Lineares Gleichungssystem) Sei die reelle 3 4 Matrix Mathematik für Wirtschaftswissenschaftler im WS 03/04 Lösungsvorschläge zur Klausur im WS 03/04 Aufgabe (Komplexe Zahlen (4 Punkte a Berechnen Sie das Produkt der beiden komplexen Zahlen + i und 3 + 4i

Mehr

Höhere Mathematik II für die Fachrichtung Physik. Übungs- und Scheinklausur

Höhere Mathematik II für die Fachrichtung Physik. Übungs- und Scheinklausur Institut für Analysis SS17 PD Dr. Peer Christian Kunstmann 15.7.17 Dipl.-Math. Leonid Chaichenets, Johanna Richter, M.Sc., Tobias Ried, M.Sc., Tobias Schmid, M.Sc. Höhere Mathematik II für die Fachrichtung

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 12. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 12. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Andreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.de Department Biologie II Telefon: 89-8-748 Großhadernerstr. Fax:

Mehr

Kritischer Punkt. Kritischer Punkt 1-1

Kritischer Punkt. Kritischer Punkt 1-1 Kritischer Punkt Für eine skalare Funktion f bezeichnet man x als kritischen Punkt, wenn grad f (x) = (0,..., 0)textt. Ist f zweimal stetig differenzierbar, so wird der Typ des kritischen Punktes, d.h.

Mehr

Klausurenkurs zum Staatsexamen (SS 2016): Differential und Integralrechnung 7

Klausurenkurs zum Staatsexamen (SS 2016): Differential und Integralrechnung 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 2016): Differential und Integralrechnung 7 7.1 (Herbst 2015, Thema 1, Aufgabe 4) Gegeben sei das Dreieck und die Funktion f : R mit Bestimmen Sie f(

Mehr

Lösungsskizzen zur Nachklausur

Lösungsskizzen zur Nachklausur sskizzen zur Nachklausur Mathematik II für die Fachrichtungen Biologie und Chemie Sommersemester 22 Aufgabe Es seien die folgenden Vektoren 2 v = 2, v 2 = und v 3 = 2 im R 3 gegeben. (a) Zeigen Sie, dass

Mehr

2.7 Implizite Funktionen, Umkehrabbildungen

2.7 Implizite Funktionen, Umkehrabbildungen 27 Implizite Funktionen, Umkehrabbildungen Motivation Häufig sind ebene Kurven in impliziter Form f(x, y) = und nicht in expliziter Form y = g(x) gegeben Einfaches Beispiel Für Kreise um ist implizite

Mehr

Diplom Vorprüfung bzw. Bachelor Modulprüfung Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge. det

Diplom Vorprüfung bzw. Bachelor Modulprüfung Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge. det UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Herbst 9.9.9 Diplom Vorprüfung bzw. Bachelor Modulprüfung Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge Aufgabe

Mehr

Nachklausur Analysis 2

Nachklausur Analysis 2 Nachklausur Analysis 2. a) Wie ist der Grenzwert einer Folge in einem metrischen Raum definiert? Antwort: Se (a n ) n N eine Folge in dem metrischen Raum (M, d). Diese Folge besitzt den Grenzwert g M,

Mehr

1 Umkehrfunktionen und implizite Funktionen

1 Umkehrfunktionen und implizite Funktionen Mathematik für Physiker III WS 2012/2013 Freitag 211 $Id: implizittexv 18 2012/11/01 20:18:36 hk Exp $ $Id: lagrangetexv 13 2012/11/01 1:24:3 hk Exp hk $ 1 Umkehrfunktionen und implizite Funktionen 13

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 5 Anwendungen der Differentialrechnung 5.1 Maxima und Minima einer Funktion......................... 80 5.2 Mittelwertsatz.................................... 82 5.3 Kurvendiskussion..................................

Mehr