NR Natürliche Radioaktivität

Größe: px
Ab Seite anzeigen:

Download "NR Natürliche Radioaktivität"

Transkript

1 NR Natürliche Radioaktivität Blockpraktikum Herbst 2007 (Gruppe 2b) 24. Oktober 2007 Inhaltsverzeichnis 1 Grundlagen rten der Radioaktivität ktivität und Halbwertszeit Weitere Kernstrahlungsgrößen Nachweis von γ-strahlung Fragen zum Versuch uswertung Kalibrierung Energiebestimmung ktivitätsbestimmung von KCl Dosisabschätzung

2 1 GRUNDLGEN NR 2 1 Grundlagen 1.1 rten der Radioaktivität Man unterscheidet zwischen verschiedenen rten von Radioaktivität: ˆ Beta-Zerfall: Insbesondere in neutronenreichen Kernen findet der Zerfall eines Neutrons in Proton, Elektron und ntineutrino n p + e + ν statt, d.h. ein Kern mit Masse, Ordnungszahl Z und Neutronenzahl N wird zu einem Kern mit näherungsweise gleicher Masse, Ordnungszahl Z + 1 (wegen des zusätzlichen Protons) und Neutronenzahl N 1, ZX N Z+1Y N 1 + e + ν. Umgekehrt kann auch ein Proton zu Neutron, Positron und Neutrino zerfallen, p n + e + + ν, d.h. der Kern verringert seine Ordnungszahl Z um 1 und vergrößert dafür die Neutronenzahl N um 1, ZX N a Z 1 Y N+1 + e + + ν. Schließlich kann ein Hüllenelektron eingefangen werden und mit einem Proton zu einem Neutron und einem Neutrino werden, p + e n + ν, ZX N + e Z 1Y N+1 + ν. ˆ lpha-zerfall: ls lpha-teilchen bezeichnet man Helium-4-tomkerne, welche aus zwei Protonen und zwei Neutronen bestehen. Da diese Verbindung besonders stark zusammenhält, kann sie sich von einem Kern abspalten. Den entstehenden α-zerfall des Kerns kann man durch ZX N 4 Z 2 Y N 2 + α beschreiben. Die lpha-teilchen können die Potentialbarriere des Coulomb-Felds auf Grund des Tunneleffekts durchtunneln. ˆ Gamma-Strahlung: Wenn sich der Kern nach einem lpha- oder Beta-Zerfall statt im Grundzustand in einem angeregten Zustand befindet, gibt er diese nregungsenergie durch Photonen, sog. γ-quanten, ab. Die entstehende γ-strahlung unterscheidet sich von Röntgenstrahlung dadurch, dass sie im Kern statt in der Hülle entsteht. Zudem besitzt die γ-strahlung meist eine höhere Energie. Durch die quantisierten Kernenergien erhält man charakteristische Kernspektren.

3 1 GRUNDLGEN NR ktivität und Halbwertszeit ls ktivität definiert die nzahl dn der Zerfälle pro Zeit dt := dn dt = λn. Da die ktivität proportional zur nzahl der noch vorhandenen nicht zerfallenen Kerne ist (Zerfallsgleichung), erhält man das Zerfallsgesetz N(t) = N 0 e λt. Nach der Halbwertszeit t 1/2 sind N 0 /2 Kerne zerfallen, d.h. und somit N 0 ( 2 ) 1 ln 2 = N 0 e λt 1/2 = λt 1/2 t 1/2 = ln 2 λ N(t) = N 0 e ln 2 t t 1/2 = N0 2 t t 1/ Weitere Kernstrahlungsgrößen Die Energiedosis D ist die von ionosierender Strahlung übertragene Energie pro Masse, D = de dm, [D] = Gray. Um die von der rt der Strahlung abhängige biologische Wirkung auf einen Menschen zu beschreiben, führt man einen biologischen Bewertungsfaktor q ein und definiert als Äquivalentdosis H = qd, [H] = Sievert. 1.4 Nachweis von γ-strahlung 1.5 Fragen zum Versuch 1. Elektronenvolt: Die Einheit ev ist durch 1eV = 1, J definiert und ist für die hier auftretenden Energie-Größenordnungen geeigneter als Joule.

4 1 GRUNDLGEN NR 4 2. Halbwertsbreite: Nimmt man an, dass die Spektrallinien nicht scharf sind, sondern Gaußverteilt f(x) = Ne (x x)2 2σ 2, so kann man diese durch eine Halbwertsbreite x = 2(x 1/2 x) beschreiben. Dabei ist bei x = x das Maximum der Gaußverteilung f(x) = N und an der Stelle x 1/2 > x ist die Gaußverteilung auf die Hälfte ihres Maximums gefallen: f(x 1/2 ) = 1 2 f(x) Ne (x 1/2 x) 2 2σ 2 = 1 2 N ( x) 2 4 2σ 2 = ln 2 x = 2σ 2 ln Frisch gereinigtes Präparat: Misst man die ktivität in einem frisch gereinigten radioaktiven Präparat, so beobachtet man zunächst einen nstieg der ktivität. Das liegt daran, dass ein zerfallender Mutterkern entlang seiner Zerfallskette in einen Tochterkern zerfällt, der selbst wiederum zerfällt usw. Wenige zerfallene Mutterkerne lösen also in kurzer Zeit mehrere Zerfälle aus, was zu einem kurzzeitigen nstieg der ktivität führt. Da die nzahl der zerfallenden Mutterkerne und damit auch die nzahl der sekundär zerfallenden Tochterkerne mit der Zeit kleiner wird, beobachtet man anschließend den exponentiellen bfall der ktivität nach dem Zerfallsgesetz. 4. bschirmung: ˆ α-strahlung: α-teilchen geben beim Eindringen in Materie ihre Energie in vielen Stößen ihre Energie ab. Luft schirmt α-teilchen bereits so gut ab, dass sie nur eine Reichweite von wenigen Zentimetern haben. ˆ β-strahlung: uch Elektronen wechselwirken mit Materie, haben jedoch eine Reichweite, die oft höher ist als die von α-teilchen. Je höher Dichte und Ordnungszahl des bsorptionsmaterials sind, desto schneller verlieren die Teilchen ihre Energie, z.b. eine luminiumplatte ist gut zur bschirmung geeignet. ˆ γ-strahlung: Die ufenthaltswahrscheinlichkeit eines γ-quants nimmt beim Eindringen in Materie nach dem bsorptionsgesetz exponentiell ab. Je dicker und dichter man das absorbierende Material wählt, desto besser ist also die bschirmung. Eine hohe Zahl an Elektronen pro tom, d.h. eine große Ordnungszahl, verbessert die bsorption ebenfalls. Eine vollständige bschirmung ist aber im Gegensatz zu den anderen beiden Strahlungsarten nicht möglich.

5 2 USWERTUNG NR 5 5. Gesundheitsgefährdung: Nimmt man vereinfacht an, dass pro 60Sv eine Krebserkrankung verursacht wird, so folgt aus der durchschnittlichen Strahlenbelastung von 2, 4mSv pro Jahr bei etwa 80 Mio. Einwohnern in Deutschland, dass , = 3200 Menschen auf Grund der natürlichen Radioaktivität Krebs bekommen. Der nteil an den rund Neuerkrankungen pro Jahr ist also knapp 1% Thorium-Linien: Die 2615keV -Linie entsteht beim Zerfall von 208 T l zu 208 P b. Durch Paarbildung können ein Elektron und ein Positron entstehen. Wird eines von beiden detektiert, misst man 2615keV 511keV = 2104keV, wird keines von beiden detektiert, misst man nur ( )keV = 1593keV (single und double escape peak). 2 uswertung 2.1 Kalibrierung Zur Kalibrierung wurde 22 Natrium verwendet (bb. 1). bbildung 1: Kalibrierung mit 22 Natrium.

6 2 USWERTUNG NR Energiebestimmung Die Tschernobylsandprobe hat einen Peak bei 670keV und einen weiteren bei 1446keV (bb. 2). bbildung 2: Gemessenes Energiespektrum von Sand aus Tschernobyl. 2.3 ktivitätsbestimmung von KCl In der Messzeit von 1200s wurden Zerfälle gemessen. Damit hat die KCl-Probe eine ktivität von 32, 62Bq. Da in der Probe , 6 6, 02 1, = 2, Teilchen sind, beträgt der theoretische Wert. ln(2) = N0, 1 = 498, 85Bq Selbst wenn man bedenkt, dass wir nur in eine Raumrichtung gemessen haben, haben wir damit nur 39% der theoretischen Zerfälle gemessen. Das Energiespektrum ist in bb. 3 dargestellt. 2.4 Dosisabschätzung Durch die Integration über die Untergrundstrahlung kommt man auf eine Energie von ev, was einer Energie von 1, J entspricht. Für einen durchschnittlichen

7 2 USWERTUNG NR 7 bbildung 3: Energiespektrum der Kalium-Probe. Menschen der Masse 75kg bedeutet dies pro Jahr: 75 3, 7π3, , , J = 0, 029J, was einer Strahlenbelastung von 0, 393mSv/a entspricht. Zusätzlich zu dieser Ganzkörperstrahlung kommt für eine Person, die den Tschernobylsand mit sich trägt, eine Gewebedosis von 5, ev 60/ = 0, 0426mSv/a. 1, 286kg

8 2 USWERTUNG NR 8 bbildung 4: Untergrundprobe.

NR - Natürliche Radioaktivität Praktikum Wintersemester 2005/06

NR - Natürliche Radioaktivität Praktikum Wintersemester 2005/06 NR - Natürliche Radioaktivität Praktikum Wintersemester 25/6 Alexander Rembold, Philipp Buchegger, Johannes Märkle Assistent Dr. Torsten Hehl Tübingen, den 7. Dezember 25 Theorie und Grundlagen Halbwertszeit

Mehr

NR - Natürliche Radioaktivität Blockpraktikum - Herbst 2005

NR - Natürliche Radioaktivität Blockpraktikum - Herbst 2005 NR - Natürliche Radioaktivität Blockpraktikum - Herbst 25 Tobias Müller, Alexander Seizinger, Patrick Ruoff Assistent: Dr. Thorsten Hehl Tübingen, den 21. Oktober 25 1 Vorwort In diesem Versuch untersuchten

Mehr

Theoretische Grundlagen Physikalisches Praktikum. Versuch 8: Radioaktivität

Theoretische Grundlagen Physikalisches Praktikum. Versuch 8: Radioaktivität Theoretische Grundlagen Physikalisches Praktikum Versuch 8: Radioaktivität Radioaktivität spontane Umwandlung instabiler tomkerne natürliche Radioaktivität: langlebige Urnuklide und deren Zerfallsprodukte

Mehr

A Z+1T + e + ν e. symbolisieren. Die Erhaltung der in III.4.1 b aufgelisteten Quantenzahlen ist trivial erfüllt.

A Z+1T + e + ν e. symbolisieren. Die Erhaltung der in III.4.1 b aufgelisteten Quantenzahlen ist trivial erfüllt. III.4.3 β-zerfall und verwandte Zerfälle Dieser bschnitt befasst sich mit einer zweiten häufig auftretenden rt von Zerfallsprozessen, in denen sich ein Neutron in ein Proton umwandelt oder umgekehrt, während

Mehr

Röntgenstrahlen. Röntgenröhre von Wilhelm Konrad Röntgen. Foto: Deutsches Museum München.

Röntgenstrahlen. Röntgenröhre von Wilhelm Konrad Röntgen. Foto: Deutsches Museum München. Röntgenstrahlen 1 Wilhelm Konrad Röntgen Foto: Deutsches Museum München. Röntgenröhre von 1896 2 1 ev = 1 Elektronenvolt = Energie die ein Elektron nach Durchlaufen der Potentialdifferenz 1V hat (1.6 10-19

Mehr

Markus Drapalik. Universität für Bodenkultur Wien Institut für Sicherheits- und Risikowissenschaften

Markus Drapalik. Universität für Bodenkultur Wien Institut für Sicherheits- und Risikowissenschaften Praxisseminar Strahlenschutz Teil 2: Ionisierende Strahlung Markus Drapalik 14.03.2013 26.03.2013 Praxisseminar Strahlenschutz Teil 2: Ionisierende Strahlung 1 1 Inhalt Aufbau des Atoms Atomarer Zerfall

Mehr

42. Radioaktivität. 35. Lektion Radioaktivität

42. Radioaktivität. 35. Lektion Radioaktivität 42. Radioaktivität 35. Lektion Radioaktivität Lernziel: Unstabile Kerne zerfallen unter Emission von α, β, oder γ Strahlung Begriffe Begriffe Radioaktiver Zerfall ktivität Natürliche Radioaktivität Künstliche

Mehr

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 28. Atomphysik, Röntgenstrahlung (Fortsetzung: Röntgenröhre, Röntgenabsorption) 29. Atomkerne, Radioaktivität (Nuklidkarte, α-, β-, γ-aktivität, Dosimetrie)

Mehr

Radioaktiver Zerfall des Atomkernes: α-zerfall

Radioaktiver Zerfall des Atomkernes: α-zerfall Radioaktiver Zerfall des Atomkernes: α-zerfall Schwere Atomkerne (hohes Z, hohes N) sind instabil gegen spontanen Zerfall. Die mögliche Emission einzelner Protonen oder einzelner Neutronen ist nicht häufig.

Mehr

15 Kernphysik Physik für E-Techniker. 15 Kernphysik

15 Kernphysik Physik für E-Techniker. 15 Kernphysik 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 15.5.3 Kettenreaktion 15. Kernphysik 15.

Mehr

Einführungsseminar S2 zum Physikalischen Praktikum

Einführungsseminar S2 zum Physikalischen Praktikum Einführungsseminar S2 zum Physikalischen Praktikum 1. Organisatorisches 2. Unterweisung 3. Demo-Versuch Radioaktiver Zerfall 4. Am Schluss: Unterschriften! Praktischer Strahlenschutz Wechselwirkung von

Mehr

9. Dosimetrie 2L. 1. Radioaktivität. Stabile Kerne. Kern oder A Kern oder Kern A,

9. Dosimetrie 2L. 1. Radioaktivität. Stabile Kerne. Kern oder A Kern oder Kern A, 9. 2L 1. Radioaktivität Stabile Kerne tome enthalten Elektronenhüllen, welche die meisten makroskopischen Eigenschaften der Materie bestimmen (Magnetismus, Lichtabsorption, Leitfähigkeit, chemische Struktur,

Mehr

SMART. Sammlung mathematischer Aufgaben als Hypertext mit TEX. Kernphysik (Physik)

SMART. Sammlung mathematischer Aufgaben als Hypertext mit TEX. Kernphysik (Physik) SMART Sammlung mathematischer Aufgaben als Hypertext mit TEX Kernphysik (Physik) herausgegeben vom Zentrum zur Förderung des mathematisch-naturwissenschaftlichen Unterrichts der Universität Bayreuth 1.

Mehr

15 Kernphysik Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne

15 Kernphysik Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne Inhalt 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 15.5.3 Kettenreaktion Der Atomkern

Mehr

Strahlung. Arten und Auswirkungen

Strahlung. Arten und Auswirkungen Strahlung Arten und Auswirkungen Themen Alpha-Strahlung (α) Strahlung Zerfall Entdeckung Verwendung Beta-Strahlung (β) Entstehung Wechselwirkung mit Materie Anwendungen Forschungsgeschichte Gamma-Strahlung

Mehr

Physik für Mediziner Radioaktivität

Physik für Mediziner  Radioaktivität Physik für Mediziner http://www.mh-hannover.de/physik.html Radioaktivität Peter-Alexander Kovermann Institut für Neurophysiologie Kovermann.peter@mh-hannover.de Der Aufbau von Atomen 0-5 - 0-4 m 0-0 -4

Mehr

(in)stabile Kerne & Radioaktivität

(in)stabile Kerne & Radioaktivität Übersicht (in)stabile Kerne & Radioaktivität Zerfallsgesetz Natürliche und künstliche Radioaktivität Einteilung der natürlichen Radionuklide Zerfallsreihen Zerfallsarten Untersuchung der Strahlungsarten

Mehr

Fachhochschule Hannover Radioökologie und Strahlenschutz 06.12.07 Fachbereich Maschinenbau WS0708 Zeit: 90 min Prof. Dr. U. J. Schrewe Hilfsmittel: diverse nlagen ------------------------------------------------------------------------------------------------------------------------

Mehr

Energie wird normalerweise in Joule gemessen. Ein Joule (J) einspricht einem Newtonmeter

Energie wird normalerweise in Joule gemessen. Ein Joule (J) einspricht einem Newtonmeter Maße wie Gammastrahlen abgeschwächt werden. Im Gegensatz zu den Gammastrahlen sind die Neutronenstrahlen auch Teilchenstrahlen wie Alpha- und Betastrahlen. Die Reichweiten von Strahlen mit einer Energie

Mehr

Versuch 25: Messung ionisierender Strahlung

Versuch 25: Messung ionisierender Strahlung Versuch 25: Messung ionisierender Strahlung Die Abstandsabhängigkeit und der Wirkungsquerschnitt von α- und γ-strahlung aus einem Americium-24-Präparat sollen untersucht werden. In einem zweiten Teil sollen

Mehr

Dieter Suter Physik B3

Dieter Suter Physik B3 Dieter Suter - 421 - Physik B3 9.2 Radioaktivität 9.2.1 Historisches, Grundlagen Die Radioaktivität wurde im Jahre 1896 entdeckt, als Becquerel feststellte, dass Uransalze Strahlen aussenden, welche den

Mehr

Masse etwa 1 u = e-27 kg = MeV/c^2. Neutron (Entdeckung 1932 James Chadwick)

Masse etwa 1 u = e-27 kg = MeV/c^2. Neutron (Entdeckung 1932 James Chadwick) Masse etwa 1 u = 1.6605e-27 kg = 931.5 MeV/c^2 Neutron (Entdeckung 1932 James Chadwick) Kraft Reichweite (cm) Stärke bei 10 13 cm im Vergleich zu starker Kraft Gravitation unendlich 10 38 elektrische Kraft

Mehr

AKTIVITÄTSKONZENTRATION

AKTIVITÄTSKONZENTRATION Fakultät Mathematik und Naturwissenschaften Institut für Kern- und Teilchenphysik AKTIVITÄTSKONZENTRATION Natürliche Radioaktivität Christian Gumpert Dresden, 10.07.2009 Gliederung 1. Einleitung 1.1 Was

Mehr

Natürliche Radioaktivität

Natürliche Radioaktivität Natürliche Radioaktivität Definition Natürliche Radioaktivität Die Eigenschaft von Atomkernen sich spontan in andere umzuwandeln, wobei Energie in Form von Teilchen oder Strahlung frei wird, nennt man

Mehr

Klausurinformation. Sie dürfen nicht verwenden: Handy, Palm, Laptop u.ae. Weisses Papier, Stifte etc. Proviant, aber keine heiße Suppe u.dgl.

Klausurinformation. Sie dürfen nicht verwenden: Handy, Palm, Laptop u.ae. Weisses Papier, Stifte etc. Proviant, aber keine heiße Suppe u.dgl. Klausurinformation Zeit: Mittwoch, 3.Februar, 12:00, Dauer :90 Minuten Ort: Veterinärmediziner: Großer Phys. Hörsaal ( = Hörsaal der Vorlesung) Geowissenschaftler u.a.: Raum A140, Hauptgebäude 1. Stock,

Mehr

N.BORGHINI Version vom 11. Februar 2015, 14:53 Kernphysik

N.BORGHINI Version vom 11. Februar 2015, 14:53 Kernphysik Kinematik des γ-zerfalls. Mößbauer-Effekt Sei E die nregungsenergie des Mutterkerns, entsprechend einer Gesamtenergie in dessen Ruhesystem m Kern c 2 +E, mit m Kern der Masse des Tochternuklids. Unter

Mehr

Klausur -Informationen

Klausur -Informationen Klausur -Informationen Datum: 4.2.2009 Uhrzeit und Ort : 11 25 im großen Physikhörsaal (Tiermediziner) 12 25 ibidem Empore links (Nachzügler Tiermedizin, bitte bei Aufsichtsperson Ankunft melden) 11 25

Mehr

15 Kernphysik Der Atomkern 15.2 Kernspin Zerfallsgesetz radioaktiver Kerne

15 Kernphysik Der Atomkern 15.2 Kernspin Zerfallsgesetz radioaktiver Kerne 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität ität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 1553K 15.5.3 Kettenreaktion 15. Kernphysik

Mehr

Radioaktivität (RAD)

Radioaktivität (RAD) Radioaktivität (RAD) Manuel Staebel 2236632 / Michael Wack 2234088 1 Versuchsdurchführung und Aufgaben 1.1 Messung 1: Aufnahme der Eichspektren Ziel dieser Messung war es, eine Zuordnung zwischen den Kanalnummern

Mehr

2) Kernstabilität und radioaktive Strahlung (2)

2) Kernstabilität und radioaktive Strahlung (2) 2) Kernstabilität und radioaktive Strahlung (2) Periodensystem der Elemente vs. Nuklidkarte ca. 115 unterschiedliche chemische Elemente Periodensystem der Elemente 7 2) Kernstabilität und radioaktive Strahlung

Mehr

Radiologie Modul I. Teil 1 Grundlagen Röntgen

Radiologie Modul I. Teil 1 Grundlagen Röntgen Radiologie Modul I Teil 1 Grundlagen Röntgen Teil 1 Inhalt Physikalische Grundlagen Röntgen Strahlenbiologie Technische Grundlagen Röntgen ROENTGENTECHNIK STRAHLENPHYSIK GRUNDLAGEN RADIOLOGIE STRAHLENBIOLOGIE

Mehr

Fortgeschrittene Experimentalphysik für Lehramtsstudierende. Teil II: Kern- und Teilchenphysik

Fortgeschrittene Experimentalphysik für Lehramtsstudierende. Teil II: Kern- und Teilchenphysik Fortgeschrittene Experimentalphysik für Lehramtsstudierende Markus Schumacher 30.5.2013 Teil II: Kern- und Teilchenphysik Prof. Markus Schumacher Sommersemester 2013 Kapitel 4: Zerfälle instabiler Kerne

Mehr

4.3 α-zerfall. Zerfälle lassen sich 4 verschiedenen Zerfallsketten zuordnen: T 1/ a a a a

4.3 α-zerfall. Zerfälle lassen sich 4 verschiedenen Zerfallsketten zuordnen: T 1/ a a a a 4.3 α-zerfall A A 4 4 Z XN Z YN + He Zerfälle lassen sich 4 verschiedenen Zerfallsketten zuordnen: A 4n 4n+ 4n+ 4n+3 Reihe Thorium Neptunium Uranium Aktinium Mutterkern 3 Th 37 Np 38 U 3 U T /.4 0 0 a.

Mehr

Physik-Vorlesung. Radioaktivität.

Physik-Vorlesung. Radioaktivität. 3 Physik-Vorlesung. Radioaktivität. SS 16 2. Sem. B.Sc. Oec. und B.Sc. CH 5 Themen Aufbau der Atomkerns Isotope Zerfallsarten Messgrößen Strahlenschutz 6 Was ist Radioaktivität? Radioaktivität = Umwandlungsprozesse

Mehr

Atombausteine Protonen p (1, g; 938 MeV; e + ) Neutronen n (1, g; 939 MeV; 0) Elektronen e - (9, g; 0,511 MeV; e - )

Atombausteine Protonen p (1, g; 938 MeV; e + ) Neutronen n (1, g; 939 MeV; 0) Elektronen e - (9, g; 0,511 MeV; e - ) Grundlagen der Strahlenmesstechnik Atome (Nuklide) Atombausteine Protonen p (1,672 10-24 g; 938 MeV; e + ) Neutronen n (1,675 10-24 g; 939 MeV; 0) Elektronen e - (9,11 10-28 g; 0,511 MeV; e - ) Nuklide

Mehr

Radioaktiver Zerfall Strahlung Nukliderzeugung. Nukliderzeugung

Radioaktiver Zerfall Strahlung Nukliderzeugung. Nukliderzeugung Radioaktiver Zerfall Strahlung Nukliderzeugung Wiederholung: Struktur der Materie Radioaktivität Nuklidkarte, Nuklide Zerfallsarten Strahlung Aktivität Nukliderzeugung Was ist Radioaktivität? Eigenschaft

Mehr

Radioaktivität. den 7 Oktober Dr. Emőke Bódis

Radioaktivität. den 7 Oktober Dr. Emőke Bódis Radioaktivität den 7 Oktober 2016 Dr. Emőke Bódis Prüfungsfrage Die Eigenschaften und Entstehung der radioaktiver Strahlungen: Alpha- Beta- und Gamma- Strahlungen. Aktivität. Zerfallgesetz. Halbwertzeit.

Mehr

Musterlösung Übung 4

Musterlösung Übung 4 Musterlösung Übung 4 Aufgabe 1: Radon im Keller a) 222 86Rn hat 86 Protonen, 86 Elektronen und 136 Neutronen. Der Kern hat demnach eine gerade Anzahl Protonen und eine gerade Anzahl Neutronen und gehört

Mehr

Physik-Praktikum: RAD

Physik-Praktikum: RAD Physik-Praktikum: RAD Einleitung Bei diesem Praktikumsversuch werden verschiedene radioaktive Präparate auf ihre Gammastrahlung untersucht. Bei der Aufnahme des Spektrums mittels einer Szintillationsmesssonde

Mehr

Fachhochschule Hannover Radioökologie und Strahlenschutz

Fachhochschule Hannover Radioökologie und Strahlenschutz Fachhochschule Hannover Radioökologie und Strahlenschutz 22.01.07 Fachbereich Maschinenbau Zeit: 90 min Fach: R&S im WS0607 Hilfsmittel: diverse nlagen ------------------------------------------------------------------------------------------------------------------------

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #28 10/12/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Reichweite radioaktiver Strahlung Alpha-Strahlung: Wenige cm in Luft Abschirmung durch Blatt Papier,

Mehr

Physikalische. Grundlagen. L. Kölling, Fw Minden

Physikalische. Grundlagen. L. Kölling, Fw Minden Physikalische Grundlagen L. Kölling, Fw Minden Radioaktivität kann man weder sehen, hören, fühlen, riechen oder schmecken. Daher muss sie der FA (SB) zumindest verstehen, um im Einsatzfall die erforderlichen

Mehr

Nuklidkarte. Experimentalphysik I/II für Studierende der Biologie und Zahnmedizin Caren Hagner V

Nuklidkarte. Experimentalphysik I/II für Studierende der Biologie und Zahnmedizin Caren Hagner V Z Nuklidkarte 1 N 2 Instabilität der Atomkerne: radioaktive Zerfälle Bekannteste Arten: α-zerfall: β-zerfall: γ-zerfall: Mutterkern Tochterkern + Heliumkern Mutterkern Tochterkern + Elektron + Neutrino

Mehr

Strahlenphysik Grundlagen

Strahlenphysik Grundlagen Dr. Martin Werner, 17.02.2010 Strahlentherapie und spezielle Onkologie Elektromagnetisches Spektrum aus Strahlentherapie und Radioonkologie aus interdisziplinärer Sicht, 5. Auflage, Lehmanns Media Ionisierende

Mehr

Abgabetermin

Abgabetermin Aufgaben Serie 1 1 Abgabetermin 20.10.2016 1. Streuexperiment Illustrieren Sie die Streuexperimente von Rutherford. Welche Aussagen über Grösse und Struktur des Kerns lassen sich daraus ziehen? Welches

Mehr

Radioaktivität und seine Strahlung

Radioaktivität und seine Strahlung Radioaktivität und seine Strahlung Radioaktivität (radioactivité wurde 1898 von Marie Curie eingeführt) ist ein Phänomen der Kerne von tomen. Darum ist die Radioaktivität heute in die Kernphysik eingeordnet.

Mehr

Institut für Transurane Strahlenexposition durch Emission

Institut für Transurane Strahlenexposition durch Emission JRC-ITU, Mediationsverfahren 12. Oktober 2011 1 Mediationsverfahren Eggenstein-Leopoldshafen, 12. Oktober 2011 Institut für Transurane Strahlenexposition durch Emission Joint Research Centre (JRC) Europäische

Mehr

Aufbau der Atome und Atomkerne

Aufbau der Atome und Atomkerne ufbau der tome und tomkerne tome bestehen aus dem tomkern (d 10-15 m) und der Elektronenhülle (d 10-10 m). Der Raum dazwischen ist leer. (Rutherfordscher Streuversuch (1911): Ernest Rutherford beschoss

Mehr

41. Kerne. 34. Lektion. Kernzerfälle

41. Kerne. 34. Lektion. Kernzerfälle 41. Kerne 34. Lektion Kernzerfälle Lernziel: Stabilität von Kernen ist an das Verhältnis von Protonen zu Neutronen geknüpft. Zu viele oder zu wenige Neutronen führen zum spontanen Zerfall. Begriffe Stabilität

Mehr

Radioaktive Zerfälle. Kapitel 4

Radioaktive Zerfälle. Kapitel 4 Kapitel 4 Radioaktive Zerfälle In Kapitel 2 haben Sie Beispiele von Kernfusions- und -spaltungsreaktionen gesehen. Diese beiden Reaktionstypen bedingen jeweils zwei Edukte, die miteinander reagieren. D.h.,

Mehr

Versuch 29 Radioaktivität

Versuch 29 Radioaktivität Physikalisches Praktikum Versuch 29 Radioaktivität Praktikanten: Johannes Dörr Gruppe: 14 mail@johannesdoerr.de physik.johannesdoerr.de Datum: 25.09.2006 Katharina Rabe Assistent: Sebastian Geburt kathinka1984@yahoo.de

Mehr

Radioaktivität, die natürlichste Sache der Welt (Anhang)

Radioaktivität, die natürlichste Sache der Welt (Anhang) Radioaktivität, die natürlichste Sache der Welt (Anhang) 6. Mai 2014 Inhaltsverzeichnis 1 Anhang 2 1.1 Mathematische Grundlagen.......................... 3 1.1.1 Logarithmieren.............................

Mehr

Versuch 29 Ak-vierungsanalyse

Versuch 29 Ak-vierungsanalyse Versuch 29 Ak-vierungsanalyse Betreuer WS 2016-2017: Oleg Kalekin Raum: 314 Tel.: 09131-85- 27118 Email: Oleg.Kalekin@physik.uni- erlangen.de Standort: Raum 133 (Kontrollraum Tandembeschleuniger) Literatur:

Mehr

Aufbau des Atomkerns a) Gib an, aus wie vielen Protonen und Neutronen die

Aufbau des Atomkerns a) Gib an, aus wie vielen Protonen und Neutronen die Aufbau des Atomkerns a) Gib an, aus wie vielen Protonen und Neutronen die Atomkerne von Cl bestehen. b) Erkläre, was man unter Isotopen versteht. Gib ein Beispiel an. 3, Cl c) Im Periodensystem wird die

Mehr

Praxisseminar Strahlenschutz Teil 3.1: Biologische Wirkung ionisierender Strahlung

Praxisseminar Strahlenschutz Teil 3.1: Biologische Wirkung ionisierender Strahlung Praxisseminar Strahlenschutz Teil 3.1: Biologische Wirkung ionisierender Strahlung Nikolaus Arnold 14.03.2013 01.05.2013 Praxisseminar Strahlenschutz Teil 2: Ionisierende Strahlung 1 1 Inhalt Wiederholung

Mehr

Versuch 1.2: Radioaktivität

Versuch 1.2: Radioaktivität 1 Versuch 1.2: Radioaktivität Sicherheitshinweis: Schwangere dürfen diesen Versuch nicht durchführen. Sollten Sie als Schwangere zu diesem Versuch eingeteilt worden sein, so wenden Sie sich zwecks Zuweisung

Mehr

Markus Drapalik. Universität für Bodenkultur Wien Institut für Sicherheits- und Risikowissenschaften

Markus Drapalik. Universität für Bodenkultur Wien Institut für Sicherheits- und Risikowissenschaften Praxisseminar Strahlenschutz Teil 4: Messtechnik Markus Drapalik 07.11.2012 22.11.2012 Praxisseminar Strahlenschutz Teil 4: Messtechnik 1 1 Inhalt Wiederholung ionisierende Strahlung Prinzipien der Messtechnik

Mehr

Strahlungslose Übergänge. Pumpen Laser

Strahlungslose Übergänge. Pumpen Laser Prof Ch Berger, Physik f Maschinenbauer, WS 02/03 15 Vorlesung 44 Strahlungsprozesse 441 Das Zerfallsgesetz Elektronen aus energetisch hoher liegenden Zustanden gehen in die tieferen Zustande uber, falls

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I K20 Name: Halbwertszeit von Rn Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss

Mehr

Fachhochschule Hannover Radioökologie und Strahlenschutz Fachbereich Maschinenbau SS07 Zeit: 90 min

Fachhochschule Hannover Radioökologie und Strahlenschutz Fachbereich Maschinenbau SS07 Zeit: 90 min Fachhochschule Hannover Radioökologie und Strahlenschutz 18.06.07 Fachbereich Maschinenbau SS07 Zeit: 90 min Prof. Dr. U. J. Schrewe Hilfsmittel: diverse nlagen ------------------------------------------------------------------------------------------------------------------------

Mehr

Als Radioaktivität bezeichnet den spontanen Zerfall von Radionukliden unter Emission ionisierender Strahlung.

Als Radioaktivität bezeichnet den spontanen Zerfall von Radionukliden unter Emission ionisierender Strahlung. Als Radioaktivität bezeichnet den spontanen Zerfall von Radionukliden unter Emission ionisierender Strahlung. 1803 John Dalton, Atomtheorie 1869 D.I. Mendelejev, Periodensystem 1888 H. Hertz, experimenteller

Mehr

Halbwertszeit (Thoron)

Halbwertszeit (Thoron) Universität Potsdam Institut für Physik und Astronomie Grundpraktikum 05/2013 K2 Halbwertszeit (Thoron) ACHTUNG: Dieses Experiment ist nicht für Schwangere zugelassen! Bitte rechtzeitig ein anderes Experiment

Mehr

Halbwertszeit (Barium)

Halbwertszeit (Barium) Universität Potsdam Institut für Physik und Astronomie Grundpraktikum K3 Halbwertszeit (Barium) ACHTUNG: Dieses Experiment ist nicht für Schwangere zugelassen! Bitte rechtzeitig ein anderes Experiment

Mehr

Quanten mit höchster Energie. Saturday Morning Physics 23. November Der Mensch unter Beschuss.

Quanten mit höchster Energie. Saturday Morning Physics 23. November Der Mensch unter Beschuss. Quanten mit höchster Energie Der Mensch unter Beschuss Saturday Morning Physics 23. November 2013 www.auger.org Joachim Enders Institut für Kernphysik Technische Universität Darmstadt Quanten mit höchster

Mehr

Radioaktive Zerfallsarten

Radioaktive Zerfallsarten C1 Radioaktive Zerfallsarten Damit ein Nuklid radioaktiv zerfallen kann, muss die entsprechende Reaktion "exotherm" sein. Die Summe der Ruhemassen aller entstehenden Teilchen muss kleiner sein als die

Mehr

Versuch 24 Radioaktivität

Versuch 24 Radioaktivität Grundpraktikum der Fakultät für Physik Georg August Universität Göttingen Versuch 24 Radioaktivität Praktikant: Joscha Knolle Ole Schumann E-Mail: joscha@htilde.de Durchgeführt am: 6.3.213 Abgabe: 7.3.213

Mehr

Radioaktivität und Strahlenschutz. FOS: Kernumwandlungen und Radioaktivität

Radioaktivität und Strahlenschutz. FOS: Kernumwandlungen und Radioaktivität R. Brinkmann http://brinkmann-du.de Seite 25..23 -, Beta- und Gammastrahlen Radioaktivität und Strahlenschutz FOS: Kernumwandlungen und Radioaktivität Bestimmte Nuklide haben die Eigenschaft, sich von

Mehr

Vorlesung 8: Atome, Kerne, Strahlung

Vorlesung 8: Atome, Kerne, Strahlung Vorlesung 8: Atome, Kerne, Strahlung Georg Steinbrück, georg.steinbrueck@desy.de Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed WS 2016/17 Steinbrück: Physik I/II 1 Größenordnungen

Mehr

Vorlesung 8: Atome, Kerne, Strahlung

Vorlesung 8: Atome, Kerne, Strahlung Vorlesung 8: Atome, Kerne, Strahlung Georg Steinbrück, georg.steinbrueck@desy.de Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed WS 2017/18 Steinbrück: Physik I/II 1 Größenordnungen

Mehr

Klausur 3 Kurs 12Ph1e Physik

Klausur 3 Kurs 12Ph1e Physik 0-03-07 Klausur 3 Kurs Phe Physik Name: Rohpunkte : / Bewertung : Punkte ( ) Erläutern Sie jeweils, woraus α-, β- und γ-strahlen bestehen und geben Sie jeweils mindestens eine Methode an, wie man sie identifizieren

Mehr

Physikalische Grundlagen ionisierender Strahlung

Physikalische Grundlagen ionisierender Strahlung Physikalische Grundlagen ionisierender Strahlung Bernd Kopka, Labor für Radioisotope an der Universität Göttingen www.radioisotope.de Einfaches Atommodell L-Schale K-Schale Kern Korrekte Schreibweise

Mehr

4) Wechselwirkungen zwischen Strahlung und Materie (1) Ionisationswirkung unterschiedlicher Teilchen Energie der Teilchen in MeV

4) Wechselwirkungen zwischen Strahlung und Materie (1) Ionisationswirkung unterschiedlicher Teilchen Energie der Teilchen in MeV 4) Wechselwirkungen zwischen Strahlung und Materie (1) Wechselwirkungen zwischen Strahlung und Materie sind Grundvoraussetzung für jede Anwendung oder schädigende Wirkung radioaktiver Strahlung unerwünschte

Mehr

Lösungsvorschlag Übung 4

Lösungsvorschlag Übung 4 Lösungsvorschlag Übung 4 ufgabe : tomradien-modelle im Vergleich a) Der Rutherford sche Streuversuch hat gezeigt, dass sich in den tomen ein sehr kleines Massenzentrum befindet, das die gesamte positive

Mehr

Technologie/Informatik Kernaufbau und Kernzerfälle. Dipl.-Phys. Michael Conzelmann, StR Staatliche FOS und BOS Bad Neustadt a. d.

Technologie/Informatik Kernaufbau und Kernzerfälle. Dipl.-Phys. Michael Conzelmann, StR Staatliche FOS und BOS Bad Neustadt a. d. Technologie/Informatik Kernaufbau und Kernzerfälle Dipl.-Phys. Michael Conzelmann, StR Staatliche FOS und BOS Bad Neustadt a. d. Saale Übersicht Kernaufbau Rutherford-Experiment, Nukleonen Schreibweise,

Mehr

Radioaktivität im Alltag Hartmut Zabel 10. Februar 2001

Radioaktivität im Alltag Hartmut Zabel 10. Februar 2001 Radioaktivität im Alltag Hartmut Zabel 10. Februar 2001 Überblick Was versteht man unter Radioaktivität? Welche Quellen gibt es für Radioaktivität? Wie groß ist die Aktivität dieser Quellen? Welche biologische

Mehr

A. PHYSIKALISCHE GRUNDLAGEN DER IONISIERENDEN STRAHLUNG. B. Kopka. Labor für Radioisotope der Georg-August-Universität Göttingen

A. PHYSIKALISCHE GRUNDLAGEN DER IONISIERENDEN STRAHLUNG. B. Kopka. Labor für Radioisotope der Georg-August-Universität Göttingen A. PHYSIKALISCHE GRUNDLAGEN DER IONISIERENDEN STRAHLUNG B. Kopka Labor für Radioisotope der Georg-August-Universität Göttingen 1. Aufbau der Materie 1.1. Die Atomhülle 1.2. Der Atomkern 2. Strahlenarten

Mehr

Kapitel 10. Radioaktivität. Radioaktivität

Kapitel 10. Radioaktivität. Radioaktivität Atommodell Atommodell - Ein Atom hat Z Elektronen, Z Protonen, N-Neutronen - Anzahl Protonen nennt man Ordnungszahl oder Kernladungszahl Beispiel: Helium: Z= 2 Masse des Atoms ist in seinem Kern konzentriert

Mehr

1. Aufbau des Atomkerns

1. Aufbau des Atomkerns 801-1 1.1 Bausteine des Atomkerns VIII. Der Atomkern und Kernstrahlung 1. Aufbau des Atomkerns 1.1 Bausteine des Atomkerns Der Atomkern ist aus den Nukleonen aufgebaut. Dazu gehören die Protonen (p) und

Mehr

Bildgebende Systeme in der Medizin

Bildgebende Systeme in der Medizin 10/27/2011 Page 1 Hochschule Mannheim Bildgebende Systeme in der Medizin Grundlagen Radioaktivität Faculty of Medicine Mannheim University of Heidelberg Theodor-Kutzer-Ufer 1-3 D-68167 Mannheim, Germany

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen γ-absorption (Ab) Herbstsemester Physik-Institut der Universität Zürich

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen γ-absorption (Ab) Herbstsemester Physik-Institut der Universität Zürich Anleitung zum Physikpraktikum für Oberstufenlehrpersonen γ-absorption (Ab) Herbstsemester 2016 Physik-Institut der Universität Zürich Inhaltsverzeichnis 2 γ-absorption (Ab) 2.1 2.1 Einleitung........................................

Mehr

Strahlenschutz in der Feuerwehr

Strahlenschutz in der Feuerwehr in der Feuerwehr Wiederholung der Ausbildung zum A-Einsatz Einsatzgebiete Wahrnehmung Ladung der Strahlung Energie und biologische Wirkung Grenzwerte Einsatzgrundsätze Kontamination Ausblick Strahlungsarten

Mehr

Strahlenschutz an Teilchenbeschleunigern

Strahlenschutz an Teilchenbeschleunigern Handout zum Seminarvortrag Strahlenschutz an Teilchenbeschleunigern Datum: 5. April 006 Referentin: Kerstin Grieger Strahlenschutz an Teilchenbeschleunigern Inhalt: 1.Dosiseinheiten und Biologische Effekte

Mehr

Lösungsvorschlag Übung 5

Lösungsvorschlag Übung 5 Lösungsvorschlag Übung 5 Aufgabe 1: Massendefet a) Der Massendefet scheint der Massenerhaltung zu widersprechen, da die Masse eines aus Elementarteilchen zusammengesetzten Elements X nicht die Summe der

Mehr

Strahlenschutzunterweisung Praktikum

Strahlenschutzunterweisung Praktikum Strahlenschutzunterweisung Praktikum Inhalt Grundlagen Strahlung Aktivität Dosis Strahlenexpositionen externe Bestrahlungen Inkorporation Deterministische Schäden Stochastische Schäden Schutzmaßnahmen

Mehr

Halbwertszeit Seite 1

Halbwertszeit Seite 1 ufgabenstellung Halbwertszeit Seite. Die Impulszahl-Spannungs-Charakteristik eines Geiger-Müller-Zählrohres ist zu bestimmen..2 Die Halbwertszeit von Protactinium 9Pa m ist zu ermitteln. Literatur: Geschke,

Mehr

5) Messung radioaktiver Strahlung (1)

5) Messung radioaktiver Strahlung (1) 5) Messung radioaktiver Strahlung (1) Registrierung von Wechselwirkungen zwischen Strahlung und Materie Universelles Prinzip: Messung der Ionisierungswirkung Messung der Ionisierung Messung der Dosis.

Mehr

7 Kernphysik und Radioaktivität

7 Kernphysik und Radioaktivität 7 Kernphysik und Radioaktivität Seit etwa dem Jahr 19: 1.) genaue Vermessung der Atommassen der lemente ergab leichte, diskrete Massenunterschiede für ein lement Isotope = am gleichen Platz (im Periodensystem),

Mehr

Strahlung und Strahlenschutz in den Physikalischen Praktika

Strahlung und Strahlenschutz in den Physikalischen Praktika Strahlung und Strahlenschutz in den Physikalischen Praktika Was ist Strahlung? Welche Gefahren entstehen durch Strahlung? Wie kann man sich vor Strahlung schützen? Physikalisches Institut 1 Was ist Strahlung?

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #47 am

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #47 am Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 007 VL #47 am 0.07.007 Vladimir Dyakonov Kernphysik 1 Zusammensetzung von Kernen Atomkerne bestehen

Mehr

1 Natürliche Radioaktivität

1 Natürliche Radioaktivität 1 NATÜRLICHE RADIOAKTIVITÄT 1 1 Natürliche Radioaktivität 1.1 Entdeckung 1896: Henri BEQUEREL: Versuch zur Fluoreszenz = Emission einer durchdringenden Stahlung bei fluoreszierenden Uran-Verbindungen Eigenschaften:

Mehr

Atom- und Kernphysik. Experimentalphysik I/II für Mediziner: Sommersemester 2010, Caren Hagner, 1

Atom- und Kernphysik. Experimentalphysik I/II für Mediziner: Sommersemester 2010, Caren Hagner, 1 Atom- und Kernphysik Experimentalphysik I/II für Mediziner: Sommersemester 2010, Caren Hagner, 1 Was ist die Natur des Lichtes? - Lichtstrahlen (geometrische Optik) - Elektromagnetische Welle (Interferenz,

Mehr

Optische Aktivität α =δ k d 0

Optische Aktivität α =δ k d 0 Optische Aktivität α =δ0 k d Flüssigkristalle Flüssigkristall Displays Flüssigkristalle in verschiedenen Phasen - sie zeigen Eigenschaften, die sich zwischen denen einer perfekten Kristallanordnung und

Mehr

Experimentalphysik 4 - SS11 Physik der Atome und Kerne

Experimentalphysik 4 - SS11 Physik der Atome und Kerne Experimentalphysik 4 - SS Physik der Atome und Kerne Prof. Dr. Tilman Pfau 5. Physikalisches Institut Übungsblatt 06 Besprechung: 8. Juni Aufgabe : Koeffizient a C des Coulomb-Terms 4 Punkte In dieser

Mehr

Grundlagen der Kernstrahlung und der Radioaktivität. Der radioaktive Zerfall.

Grundlagen der Kernstrahlung und der Radioaktivität. Der radioaktive Zerfall. Within a finite period of time past, the earth must have been, and within a finite period of time to come, the earth must again be unfit for the habitation of man. Grundlagen der Kernstrahlung und der

Mehr

Praktikum II NR: Natürliche Radioativität

Praktikum II NR: Natürliche Radioativität Praktikum II NR: Natürliche Radioativität Betreuer: Dr. Torsten Hehl Hanno Rein praktikum2@hanno-rein.de Florian Jessen florian.jessen@student.uni-tuebingen.de 06. April 2004 Made with L A TEX and Gnuplot

Mehr

1. Physikalische Grundlagen

1. Physikalische Grundlagen 1.2. Kernumwandlung und Radioaktivität - Entdeckung Antoine Henri Becquerel Entdeckte Radioaktivität 1896 Ehepaar Marie und Pierre Curie Nobelpreise 1903 und 1911 Liese Meitner, Otto Hahn 1. Kernspaltung

Mehr