Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie

Größe: px
Ab Seite anzeigen:

Download "Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie"

Transkript

1 FB 3: Mathematik/Naturwissenschaften Prof. Dr. R. Frank/ Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie Name: Vorname: Matrikel-Nr.: Studiengang: Besuchte Übungsgruppe (bitte ankreuzen): Herr Habeck (Di., 14-16) Herr Habeck (Do., 10-12) Frau Starck (Di., 12-14) Frau Starck (Do., 10-12) Herr Steinhauer (Di., 16-18) keine Übungsgruppe Aufgabe 5 6 Punkte Erz. Punkte Erreichte Punktzahl: von max. 50 Punkten Die Modulprüfung ist bestanden ja / nein Note: Technische Hinweise: 1. Taschenrechner sind nicht zugelassen! 2. Handys bitte ausschalten. 3. Eigenes Papier ist nicht zugelassen, bitte verwenden Sie zum Ausprobieren das Blatt am Ende der Arbeit oder die Rückseiten. 4. Steht eine Lösung nicht unmittelbar unter der Aufgabe, ist ein Querverweis unbedingt erforderlich. 5. Die Heftklammer darf nicht entfernt werden, auch das Notizblatt darf nicht von der Arbeit getrennt werden. 6. Nicht mit Bleistift schreiben!

2 Aufgabe 1: a) Berechnen Sie ϕ(12 33) und ϕ(ϕ(43)). ϕ(12 33) =... = 120 ϕ(ϕ(43)) =... = 12 b) Sei p eine Primzahl. Zeigen Sie, dass ϕ(4p) stets durch 4 teilbar ist. : Für ggt(4,p)=1 gilt ϕ(4p) = ϕ(4) ϕ(p) = 2(p 1) und da p-1 gerade ist, folgt die Behauptung. Für ggt(4,p) 1, also ggt(4,p)=2, errechnet man ϕ(4p) = ϕ(8) = 4. c) Beweisen Sie: Sind n N und n + 2 nicht durch 3 teilbar, so ist die Differenz der Quadrate dieser beiden Zahlen stets durch 3 teilbar. Man berechnet (n + 2) 2 n 2 = 4(n + 1). Da von den drei aufeinander folgenden Zahlen n, n + 1 und n + 2 genau eine durch 3 teilbar ist, folgt aus der Voraussetzung die Behauptung. Aufgabe 2: a) Bestimmen Sie ein x N mit 0 x 16 und 13x x 12 mod 17 b) Verschlüsseln Sie mit dem RSA-Algorithmus (n = 15, s = 11) die Zahl a = 13. Die Verschlüsselung v a von a = 13 ist v a = 7 c) Bestimmen Sie den Rest von bei Division durch 7. Mit dem Satz von Fermat-Euler erhält man bei der Division von durch 7 ist einen Rest von 5. Aufgabe 3: Für alle x, y Z sei x y := x y 2 + x. a) Beweisen oder widerlegen Sie: (1) (Z, ) ist assoziativ. Die Aussage ist FALSCH Gegenbeispiel: a = b = c = 1 liefert (a b) c = (1 1) 1 = 0, aber a (b c) = 1 (1 1) = 1 2

3 (2) (Z, ) besitzt mindestens ein linksneutrales Element. Die Aussage ist FALSCH. Beweis : Angenommen, e ist linksneutral, d.h. e y = y für alle y R. Dann folgt für y = 1 sofort 1 = y = e 1 = 0. Dies ist ein Widerspruch und daher existiert kein linksneutrales Element. (3) (Z, ) besitzt mindestens ein rechtsneutrales Element. Die Aussage ist WAHR Beweis: Das Element e R = 0 ist rechtsneutral, denn für alle y Z gilt x e R = x 0 = x 0 + x = x. b) Definieren Sie für ein Verknüpfungsgebilde (M, ) die Eigenschaft regulär und geben Sie zudem ein Beispiel für ein Verknüpfungsgebilde, das NICHT regulär ist. Ein Verknüpfungsgebilde (M, ) heißt regulär, falls für alle a, b, c M gilt: a b = a c = b = c b a = c a = b = c Beispiel für Verknüpfungsbgebilde, das nicht reglär ist: (R 10, ). c) Sei g : (Z, ) (Z, ) eine Abbildung mit g(8) = 9. Beweisen Sie, dass g nicht verknüpfungstreu ist. Angenommen, g ist verknüpfungstreu, d.h. für alle a, b Z gilt g(a b) = g(a) g(b). Dann folgt 9 = g(8) = g(2 4) = g(2) g(4) = g(2) g(2 2) = g(2) 3, und damit g(2) = 3 9 / Z. Dies ist aber ein Widerspruch. Aufgabe 4: a) Definieren Sie den Begriff erzeugendes Element in einer Gruppe (G, ). Ein Element g G heißt erzeugendes Element von G, falls G = g. b) Bestimmen Sie g für g = g = {( ), ( ) in (S , ). ( ), ( )}. 3

4 c) Sei (G, ) eine Gruppe der Ordnung G = 12. Bis zu welchem Exponent k N muss man g k höchstens ausrechnen, um entscheiden zu können, ob das Element g G erzeugendes Element ist? Begründen Sie Ihre Antwort. Nach dem Satz von Lagrange gilt für jedes g G stets g 12. Damit kommen für ein jedes Element nur die Ordnung 1, 2, 3, 4, 6 oder 12 in Frage. Gilt für ein Element g G nun g l e für l {1,..., 6}, so muss g die Ordnung 12 besitzten und somit ein erzeugendes Element sein. Man muss also höchstens bis k = 6 die Potenzen g k berechnen, um entscheiden zu können, ob g erzeugend ist oder nicht. d) Sei (G, ) eine kommutative Gruppe mit vier Elementen a, b, c, d. Zudem gilt a c = b, c c = d, d a = a und b b = c. Geben Sie das neutrale Element der Gruppe an und berechnen Sie die Verknüpfungstafel von (G, ). Das neutrale Element der Gruppe ist d Verknüpfungstafel: c b c d a c d b a b d c a b c b a d c d a b c d Aufgabe 5: a) Geben Sie die Matrix M an, die die Spiegelung σ x an der x-achse darstellt. Begründen Sie Ihre Aussage. ( ) 1 0 Die Matrix ist M = 0 1 Begründung: Die Bilder der Einheitsvektoren sind die Spalten der gesuchten Matrix. Dies liefert dien angegebene Matrix. b) Seien A = (2, 2), B = (4, 1) und C = (0, 0) Punkte in der Ebene und g die Gerade durch C und A. Konstruieren Sie die Bildpunkte A = f(a) und B = f(b) für die Kongruenzabbildung f = σ g τ CA. Geben Sie zudem die Koordinaten der Bildpunkte A und B an. Die Bildpunkt sind A = (4, 4) und B = (3, 6). c) Betrachten Sie die Abbildung f : C C, f(z) = (z i) 2 + (5 + 2i)z Bestimmen Sie (rechnerisch) alle Fixpunkte dieser Abbildung. Fixpunkte sind z 1 = 2 + 3i und z 2 = 2 + 3i. Nebenrechnung: Man erhält die Gleichung z 2 + 4z + 13 = 0, die (z.b. durch die p,q-formel) gelöst wird. 4

5 Aufgabe 6: a) Begründen Sie, dass (D n, ) nicht zyklisch ist. Die D n besteht aus n Drehungen und n Spiegelungen. Spiegelungen haben die Ordnung 2, können daher keine Drehungen erzeugen. Drehungen können als orientierungserhaltende Kongruenzabbildungen nur orientierungserhaltende Kongruenzabbildungen erzeugen, Spiegelungen sind aber orientierungsumkehrende Kongruenzabbildungen. b) Sei g eine Gerade und A ein Punkt im R 2. Geben Sie alle Kongruenzabbildungen f K 2 an, die die beiden Bedingungen f(g) = g und f(a) = A erfüllen. (Hinweis: Beachten Sie, dass eine Fallunterscheidung bzgl. der Lage von A notwendig ist.) Im Fall A / g findet man als Kongruenzabbildungen nur Identität Spiegelung σ h mit h g, A h. Im Fall A g findet man als Kongruenzabbildungen nur Identität Spiegelung σ g und σ h mit h g, A h Drehung ρ A,180 c) Gibt es im R 2 eine spiegelsymmetrische Figur X mit endlicher Symmetriegruppe S X, für welche die Anzahl aller echten (d.h. von der Identität verschiedenen) Symmetrien gerade ist? Begründen Sie Ihre Antwort. Nein, es gibt keine solche Abbildung! Da X eine Spiegelsymmetrie σ g besitzt, hat S X eine UG der Ordnung 2. Da die Symmetriegruppe S X endliche Ordnung hat, liefert der Satz von Lagrange, dass S X gerade ist. Damit besitzt aber die Figur X eine ungerade Anzahl echter Symmetrien. 5

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie FB 3: Mathematik/Naturwissenschaften Prof. Dr. R. Frank/ Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie 11.02.2015 Name: Vorname:

Mehr

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie FB 3: Mathematik/Naturwissenschaften Prof. Dr. R. Frank/ Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie 09.04.2015 Name: Vorname:

Mehr

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie FB 3: Mathematik/Naturwissenschaften Prof. Dr. R. Frank/ Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie 06.02.2013 Name: Vorname:

Mehr

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie FB 3: Mathematik/Naturwissenschaften Prof. Dr. R. Frank/ Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie 15.02.2017 Name: Vorname:

Mehr

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie FB 3: Mathematik/Naturwissenschaften Prof. Dr. R. Frank/ Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie 12.04.2017 Name: Vorname:

Mehr

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie FB 3: Mathematik/Naturwissenschaften Prof. Dr. R. Frank/ Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie 11.04.2013 LÖSUNG Name:

Mehr

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie FB 3: Mathematik/Naturwissenschaften Prof. Dr. R. Frank/ Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie 07.02.2018 Name: Vorname:

Mehr

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie LÖSUNGSHINWEISE

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie LÖSUNGSHINWEISE FB 3: Mathematik/Naturwissenschaften Prof. Dr. P. Ullrich/ Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie 06.04.2016 Name: Vorname:

Mehr

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie LÖSUNGSHINWEISE

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie LÖSUNGSHINWEISE FB 3: Mathematik/Naturwissenschaften Prof. Dr. P. Ullrich/ Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie 10.02.2016 Name: Vorname:

Mehr

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Algebra und Zahlentheorie

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Algebra und Zahlentheorie FB 3: Mathematik/Naturwissenschaften Mathematisches Institut Prof. Dr. R. Frank / Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Algebra und Zahlentheorie 12.04.2012

Mehr

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Algebra und Zahlentheorie

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Algebra und Zahlentheorie FB 3: Mathematik/Naturwissenschaften Mathematisches Institut Prof. Dr. R. Frank / Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Algebra und Zahlentheorie 08.0.01

Mehr

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Algebra und Zahlentheorie

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Algebra und Zahlentheorie FB 3: Mathematik/Naturwissenschaften Mathematisches Institut Prof. Dr. R. Frank / Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Algebra und Zahlentheorie 20.04.2011

Mehr

KLAUSUR ZUR ALGEBRA UND ZAHLENTHEORIE. 15. Februar 2017 MUSTERLÖSUNG. Aufgabe Summe. Allgemeine Hinweise

KLAUSUR ZUR ALGEBRA UND ZAHLENTHEORIE. 15. Februar 2017 MUSTERLÖSUNG. Aufgabe Summe. Allgemeine Hinweise Prof. Dr. Daniel Plaumann Konstantinos Lentzos Wintersemester 2016/2017 KLAUSUR ZUR ALGEBRA UND ZAHLENTHEORIE 15. Februar 2017 MUSTERLÖSUNG Nachname: Vorname: Studiengang: Aufgabe 1 2 3 4 5 6 7 8 9 Summe

Mehr

Semestralklausur Einführung in die Algebra für M, MCS, LaG

Semestralklausur Einführung in die Algebra für M, MCS, LaG Fachbereich Mathematik Prof. Dr. Jürgen Bokowski Dipl.-Math. Hasan Gündoğan Dr. Lars Schewe Wintersemester 2007/2008 4. Februar 2008 Semestralklausur Name in Druckschrift:......................... Vorname

Mehr

MUSTERLÖSUNG KLAUSUR ZUR ALGEBRA I. Prof. Dr. Daniel Plaumann Konstantinos Lentzos Wintersemester 2016/ Februar Nachname: Vorname:

MUSTERLÖSUNG KLAUSUR ZUR ALGEBRA I. Prof. Dr. Daniel Plaumann Konstantinos Lentzos Wintersemester 2016/ Februar Nachname: Vorname: Prof. Dr. Daniel Plaumann Konstantinos Lentzos Wintersemester 2016/2017 KLAUSUR ZUR ALGEBRA I 15. Februar 2017 MUSTERLÖSUNG Nachname: Vorname: Studiengang: Aufgabe 1 2 3 4 5 6 7 8 9 Summe Punktzahl /60

Mehr

Lösungsvorschläge für die Geometrie-Klausur vom 28.7.

Lösungsvorschläge für die Geometrie-Klausur vom 28.7. Lösungsvorschläge für die Geometrie-Klausur vom 28.7. Aufgabe 1: (a) Die beiden Punkte liegen offensichtlich auf der hyperbolischen Geraden g = {z H R(z) = 1}. Die beiden idealen Punkte sind a = 1, b =.

Mehr

Ich benötige einen Schein. Ich habe bereits genug Scheine.

Ich benötige einen Schein. Ich habe bereits genug Scheine. 1 Klausur 20.01.2003 Algebra I WS 2002/03 Dr. Elsholtz Name, Vorname Matr.nummer Fachrichtung Fachsemester Ich benötige einen Schein. Ich habe bereits genug Scheine. Die folgende Klausur hat mehr Aufgaben

Mehr

2. Gruppen und Körper

2. Gruppen und Körper 2. Gruppen und Körper (2.1) Def. Eine Gruppe ist eine Menge, genannt G, und eine Abbildung ( innere Verknüpfung ) von G G nach G, hier bezeichnet als so daß folgende Eigenschaften erfüllt sind: : G G G,

Mehr

1.3 Gruppen. Algebra I 9. April 2008 c Rudolf Scharlau,

1.3 Gruppen. Algebra I 9. April 2008 c Rudolf Scharlau, Algebra I 9. April 2008 c Rudolf Scharlau, 2002 2008 18 1.3 Gruppen Der Begriff der Gruppe ordnet sich in gewisser Weise dem allgemeineren Konzept der Verknüpfung (auf einer Menge) unter. So ist zum Beispiel

Mehr

D-MATH Tommaso Goldhirsch. Serie 2. Man bezeichnet dies als Assoziativität der Verknüpfung von Abbildungen.

D-MATH Tommaso Goldhirsch. Serie 2. Man bezeichnet dies als Assoziativität der Verknüpfung von Abbildungen. Serie 2 Aufgabe 1 Es seien ψ 1, ψ 2 und ψ Abbildungen von einer Menge E auf sich selbst. Zeigen Sie, dass die Assoziativität gilt: (ψ 1 ψ 2 ) ψ = ψ 1 (ψ 2 ψ ). Wir zeigen, dass die Abbildungen (ψ 1 ψ 2

Mehr

In diesem Kapitel bestimmen wir die multiplikative Struktur der Einheitengruppe (Z/Z) von Z/Z für eine beliebige positive Zahl Z >0.

In diesem Kapitel bestimmen wir die multiplikative Struktur der Einheitengruppe (Z/Z) von Z/Z für eine beliebige positive Zahl Z >0. Kapitel 5: Die Einheitengruppe von Z/Z und Primitivwurzeln modulo In diesem Kapitel bestimmen wir die multiplikative Struktur der Einheitengruppe (Z/Z) von Z/Z für eine beliebige positive Zahl Z >0. 16

Mehr

f(x) = x f 1 (x) = x. Aufgabe 2. Welche der folgenden Funktionen sind injektiv, surjektiv, bijektiv?

f(x) = x f 1 (x) = x. Aufgabe 2. Welche der folgenden Funktionen sind injektiv, surjektiv, bijektiv? Umkehrfunktionen Aufgabe 1. Sei A = {1, 2, 3, 4}. Definieren Sie eine bijektive Funktion f A A und geben Sie ihre Umkehrfunktion f 1 an. Lösung von Aufgabe 1. Zum Beispiel f, f 1 A A mit f(x) = x f 1 (x)

Mehr

Übungen zum Vorkurs Mathematik für Studienanfänger 2009 ***

Übungen zum Vorkurs Mathematik für Studienanfänger 2009 *** Universität Bonn Mathematisches Institut Dr. Michael Welter Übungen zum Vorkurs Mathematik für Studienanfänger 2009 Einige Zeichen und Konventionen: IN := {1, 2, 3, 4,...} Die Menge der natürlichen Zahlen

Mehr

Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr

Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr TUM Ferienkurs Lineare Algebra WiSe 8/9 Dipl.-Math. Konrad Waldherr Musterlösung Relationen Aufgabe Auf R sei die Relation σ gegeben durch (a, b)σ(c, d) : a + b c + d. Ist σ reflexiv, symmetrisch, transitiv,

Mehr

Lineare Algebra 6. Übungsblatt

Lineare Algebra 6. Übungsblatt Lineare Algebra 6. Übungsblatt Fachbereich Mathematik M. Schneider 16.05.01 Konstantin Pertschik, Daniel Körnlein Gruppenübung Aufgabe G19 Berechnen Sie das inverse Element bzgl. Multiplikation in der

Mehr

D-MATH Tommaso Goldhirsch. Serie 3

D-MATH Tommaso Goldhirsch. Serie 3 Serie 3 Aufgabe 1 Sei G eine Gruppe und X eine Teilmenge von G. Die von X erzeugte Untergruppe von G ist die kleinste Untergruppe von G die X enthält. (Dass es eindeutig eine "kleinste" gibt wird in der

Mehr

Einführung in Algebra und Zahlentheorie Lösungsvorschlag zur Klausur am 16. Februar 2016

Einführung in Algebra und Zahlentheorie Lösungsvorschlag zur Klausur am 16. Februar 2016 Fakultät für Mathematik Institut für Algebra und Geometrie PD Dr. Stefan Kühnlein Dipl.-Math. oec. Anja Randecker Einführung in Algebra und Zahlentheorie Lösungsvorschlag zur Klausur am 16. Februar 016

Mehr

Klausur zu Lineare Algebra I für Informatiker, SS 07

Klausur zu Lineare Algebra I für Informatiker, SS 07 7.7.7 (. Termin Klausur zu Lineare Algebra I für Informatiker, SS 7 B.Sc-Modulprüfung / Diplom-Vorprüfung / Scheinklausur in Lineare Algebra I Dr. Timo Hanke, Lehrstuhl D für Mathematik, RWTH Aachen Name:

Mehr

Zwischenklausur zur Linearen Algebra I HS 2010, Universität Mannheim, Prof. Dr. C. Hertling, Ralf Kurbel

Zwischenklausur zur Linearen Algebra I HS 2010, Universität Mannheim, Prof. Dr. C. Hertling, Ralf Kurbel Zwischenklausur zur Linearen Algebra I HS 2010, 23.10.2010 Universität Mannheim, Prof. Dr. C. Hertling, Ralf Kurbel Name: Emil Mustermann Sitzplatznummer: 2 Die Bearbeitungszeit für diese Klausur beträgt

Mehr

Lineare Algebra Probeklausur (WS 2014/15)

Lineare Algebra Probeklausur (WS 2014/15) Lineare Algebra Probeklausur (WS 2014/15) Name Vorname Matrikelnr. Anweisungen: Hilfsmittel: Für die Bearbeitung sind nur Stift und Papier erlaubt. Benutzen Sie einen permanenten Stift (Kugelschreiber

Mehr

Vordiplomsklausur zur Linearen Algebra I

Vordiplomsklausur zur Linearen Algebra I 25.3.2002 Vordiplomsklausur zur Linearen Algebra I Prof. Dr. G. Hiß Tragen Sie bitte auf diesem Deckblatt leserlich und in Blockbuchstaben Ihren Namen und Ihre Matrikelnummer ein und unterschreiben Sie.

Mehr

Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Grundlagen)

Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Grundlagen) WS 2014/15 Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Grundlagen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_14

Mehr

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. ***

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. *** Universität Bonn Mathematisches Institut Dr. Michael Welter Übungen zum Vorkurs Mathematik für Studienanfänger 2010 Einige Zeichen und Konventionen: IN := {1, 2, 3, 4,...} Die Menge der natürlichen Zahlen

Mehr

Wiederholungsblatt zur Gruppentheorie

Wiederholungsblatt zur Gruppentheorie Wiederholungsblatt zur Gruppentheorie von Christian Elsholtz, TU Clausthal, WS 1999/2000 Um Ihnen zu helfen, die Gruppentheorie zu wiederholen, stelle ich hier einige wichtige Beispiele und einige Lösungen

Mehr

3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich.

3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich. 3.5 Ringe und Körper Gehen wir noch mal zu den ganzen Zahlen zurück. Wir wissen: (Z, + ist eine Gruppe, es gibt aber als Verknüpfung noch die Multiplikation, es gibt ein neutrales Element bezüglich, es

Mehr

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler Kapitel 3: Die Sätze von Euler, Fermat und Wilson In diesem Kapitel wollen wir nun die eulersche -Funktion verwenden, um einen berühmten Satz von Euler zu formulieren, aus dem wir dann mehrere interessante

Mehr

Klausur zur Vorlesung Lineare Algebra II

Klausur zur Vorlesung Lineare Algebra II Universität zu Köln Sommersemester 06 Mathematisches Institut 9. Juli 06 Prof. Dr. P. Littelmann Dr. Teodor Backhaus Klausur zur Vorlesung Lineare Algebra II Bearbeitungszeit 80 Minuten Bitte geben Sie

Mehr

4 Homomorphismen von Halbgruppen und Gruppen

4 Homomorphismen von Halbgruppen und Gruppen 4 Homomorphismen von Halbgruppen und Gruppen Bei der Betrachtung der Gruppe S 3 hatten wir auf die Ähnlichkeit im Verhalten der Permutationen von 1,2,3} mit dem der Symmetrien (Deckbewegungen) eines gleichseitigen

Mehr

Klausur zu Lineare Algebra I für Informatiker, SS 07

Klausur zu Lineare Algebra I für Informatiker, SS 07 17.07.007 (1. Termin Klausur zu Lineare Algebra I für Informatiker, SS 07 B.Sc-Modulprüfung / Diplom-Vorprüfung / Scheinklausur in Lineare Algebra I Dr. Timo Hanke, Lehrstuhl D für Mathematik, RWTH Aachen

Mehr

Aufgaben zur linearen Algebra und analytischen Geometrie I

Aufgaben zur linearen Algebra und analytischen Geometrie I Aufgaben zur linearen Algebra und analytischen Geometrie I Es werden folgende Themen behandelt:. Formale und logische Grundlagen 2. Algebraische Grundlagen 3. Vektorräume und LGS 4. Homomorphismen und

Mehr

Überprüfung der mathematischen Schulkenntnisse von Studentinnen und Studenten der Universität Koblenz-Landau, Campus Koblenz

Überprüfung der mathematischen Schulkenntnisse von Studentinnen und Studenten der Universität Koblenz-Landau, Campus Koblenz Fachbereich 3: Mathematik/ Naturwissenschaften Mathematisches Institut Eva-Maria Gerster; Prof. Dr. H.-S. Siller; Prof. Dr. T. Götz Überprüfung der mathematischen Schulkenntnisse von Studentinnen und Studenten

Mehr

1. Gruppen. 1. Gruppen 7

1. Gruppen. 1. Gruppen 7 1. Gruppen 7 1. Gruppen Wie schon in der Einleitung erläutert wollen wir uns in dieser Vorlesung mit Mengen beschäftigen, auf denen algebraische Verknüpfungen mit gewissen Eigenschaften definiert sind.

Mehr

Algorithmische Kryptographie

Algorithmische Kryptographie Algorithmische Kryptographie Walter Unger Lehrstuhl für Informatik I 16. Februar 2007 Public-Key-Systeme: Rabin 1 Das System nach Rabin 2 Grundlagen Körper Endliche Körper F(q) Definitionen Quadratwurzel

Mehr

Mathematisches Kaleidoskop II Materialien Teil 3. Dr. Hermann Dürkop

Mathematisches Kaleidoskop II Materialien Teil 3. Dr. Hermann Dürkop Mathematisches Kaleidoskop II Materialien Teil 3 Dr. Hermann Dürkop E-Mail: info@ermanus.de .3.3 Noch zwei Isomorphie-Beispiele Beispiel : Wir betrachten die Symmetrien eines nichtquadratischen Rechtecks.

Mehr

Injektiv, Surjektiv, Bijektiv

Injektiv, Surjektiv, Bijektiv Injektiv, Surjektiv, Bijektiv Aufgabe 1. Geben Sie einen ausführlichen Beweis für folgende Aussage: Wenn f A B surjektiv ist und R A A A eine reflexive Relation auf A ist, dann ist R B = {( f(x), f(y)

Mehr

Tutorium: Diskrete Mathematik

Tutorium: Diskrete Mathematik Tutorium: Diskrete Mathematik Vorbereitung der Abschlussklausur am 16.02.2017 (Teil 2, Lösungen 15. Februar 2017 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2017 Steven Köhler 15. Februar

Mehr

Einführung in Algebra und Zahlentheorie Lösungsvorschläge zur Klausur vom Aufgabe 1 (6 Punkte)

Einführung in Algebra und Zahlentheorie Lösungsvorschläge zur Klausur vom Aufgabe 1 (6 Punkte) Aufgabe 1 (6 Punkte) Einführung in Algebra und Zahlentheorie svorschläge zur Klausur vom 23.09.2016 a) Bestimmen Sie das multiplikativ inverse Element zu 22 in Z/61Z. b) Finden Sie ein x Z mit folgenden

Mehr

Universität Bielefeld. Elementare Geometrie. Sommersemester Gruppen, Bewegungen. Stefan Witzel

Universität Bielefeld. Elementare Geometrie. Sommersemester Gruppen, Bewegungen. Stefan Witzel Universität Bielefeld Elementare Geometrie Sommersemester 2018 Gruppen, Bewegungen Stefan Witzel Gruppen Eine Menge G von Bijektionen X X ist eine Gruppe, wenn 1. die Identität id: X X in G liegt, 2. für

Mehr

Algebra I. (c) Der Homomorphismus ϕ ist genau dann injektiv, wenn der Kern nur aus dem neutralen Element besteht. 2 ) = ϕ(g 1g 1.

Algebra I. (c) Der Homomorphismus ϕ ist genau dann injektiv, wenn der Kern nur aus dem neutralen Element besteht. 2 ) = ϕ(g 1g 1. WS 05/06 Priv.-Doz. Dr. S. Wewers Andreas Martin Algebra I 1. Übungsblatt Aufgabe 1: (1+1+1=3 P Seien G und H Gruppen und ϕ : G H ein Gruppenhomomorphismus. Zeigen Sie: (a Das Bild ϕ(g von ϕ ist eine Untergruppe

Mehr

Scheinklausur zur Linearen Algebra I, WS 05/06, 1. Teil

Scheinklausur zur Linearen Algebra I, WS 05/06, 1. Teil 6.2.2005 Scheinklausur zur Linearen Algebra I, WS 05/06,. Teil Prof. Dr. G. Hiß Tragen Sie bitte auf diesem Deckblatt leserlich und in Blockbuchstaben Ihren Namen und Ihre Matrikelnummer ein und unterschreiben

Mehr

Algebra I Klausur 1. Ich gestatte die Veröffentlichung meines Klausurergebnisses unter Angabe meiner Matrikelnummer

Algebra I Klausur 1. Ich gestatte die Veröffentlichung meines Klausurergebnisses unter Angabe meiner Matrikelnummer Technische Universität Berlin Wintersemester 2014/2015 Prof. Dr. Martin Henk 19. Februar 2014 Algebra I Klausur 1 Name: Vorname: Matrikelnummer: Aufgabe: 1 2 3 4 5 6 Σ Note Maximale Punktzahl: 10 5 6 6

Mehr

Scheinklausur zur Linearen Algebra I, WS 03/04, 1. Teil

Scheinklausur zur Linearen Algebra I, WS 03/04, 1. Teil 12.12.2003 Scheinklausur zur Linearen Algebra I, WS 03/04, 1. Teil Prof. Dr. H. Pahlings Tragen Sie bitte auf diesem Deckblatt leserlich und in Blockbuchstaben Ihren Namen und Ihre Matrikelnummer ein und

Mehr

Kapitel 6: Das quadratische Reziprozitätsgesetz

Kapitel 6: Das quadratische Reziprozitätsgesetz Kapitel 6: Das quadratische Reziprozitätsgesetz Ziel dieses Kapitels: die Untersuchung der Lösbarkeit der Kongruenzgleichung X also die Frage, ob die ganze Zahl Z eine Quadratwurzel modulo P besitzt. Im

Mehr

Lineare Algebra 1. Vorbereitungsaufgaben zur Ersten Teilklausur. Studiengang: B.Sc. Mathematik, B.Ed. Mathematik, B.Sc. Physik

Lineare Algebra 1. Vorbereitungsaufgaben zur Ersten Teilklausur. Studiengang: B.Sc. Mathematik, B.Ed. Mathematik, B.Sc. Physik Prof. Dr. R. Tumulka, Dr. S. Eichmann Mathematisches Institut, Universität Tübingen Sommersemester 2017 2.6.2017 Lineare Algebra 1 Vorbereitungsaufgaben zur Ersten Teilklausur Studiengang: B.Sc. Mathematik,

Mehr

Universität Bielefeld. Elementare Geometrie. Sommersemester Gruppen, Bewegungen. Stefan Witzel

Universität Bielefeld. Elementare Geometrie. Sommersemester Gruppen, Bewegungen. Stefan Witzel Universität Bielefeld Elementare Geometrie Sommersemester 2018 Gruppen, Bewegungen Stefan Witzel Gruppen Eine Menge G von Bijektionen X X ist eine Gruppe, wenn 1. die Identität id: X X in G liegt, 2. für

Mehr

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.)

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.) 3. Untergruppen 19 3. Untergruppen Nachdem wir nun einige grundlegende Gruppen kennengelernt haben, wollen wir in diesem Kapitel eine einfache Möglichkeit untersuchen, mit der man aus bereits bekannten

Mehr

Einführung in Algebra und Zahlentheorie

Einführung in Algebra und Zahlentheorie Institut für Algebra und Geometrie 05. September 2013 Klausur zur Vorlesung Einführung in Algebra und Zahlentheorie Name, Vorname: Matrikelnummer: Fachrichtung: Semester: Zur Bearbeitung: Verwenden Sie

Mehr

Probestudium Übungsblatt 1 -

Probestudium Übungsblatt 1 - Probestudium 018 - Übungsblatt 1 - Prof Dr Werner Bley Dominik Bullach Martin Hofer Pascal Stucky Aufgabe 1 (mittel) Sei m Z Wir definieren für zwei ganze Zahlen a und b a b mod m : m ( a b) Seien a, b,

Mehr

Tutorium: Diskrete Mathematik

Tutorium: Diskrete Mathematik Tutorium: Diskrete Mathematik Vorbereitung der Bonusklausur am 24.01.2019 (Teil 2, Lösungen) 17. Januar 2019 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2019 Steven Köhler 17. Januar

Mehr

Hausaufgabenüberprüfung 1 zu Mathematische Strukturen Hagen Knaf, SS 2016

Hausaufgabenüberprüfung 1 zu Mathematische Strukturen Hagen Knaf, SS 2016 Hausaufgabenüberprüfung 1 zu Mathematische Strukturen Hagen Knaf, SS 2016 Lösungen Aufgabe 1: Betrachten Sie die Menge H aller Abbildungen f : R 2 R 2 der Form f(x) = Ax + b, A R 2 2, b R 2. (1) Zeigen

Mehr

(a) Welche der folgenden Gruppen hat 24 Elemente? D 6 GL 2 (F 2 ) X Die Tetraedergruppe. (b) Welche der folgenden Aussagen ist wahr?

(a) Welche der folgenden Gruppen hat 24 Elemente? D 6 GL 2 (F 2 ) X Die Tetraedergruppe. (b) Welche der folgenden Aussagen ist wahr? Aufgabe 1. (10 Punkte) Bei den folgenden Teilaufgaben ist jeweils genau eine Antwort richtig; diese ist anzukreuzen. Beweise oder Begründungen sind nicht erforderlich. Für jede richtige Antwort erhalten

Mehr

Universität Bielefeld. Elementare Geometrie. Sommersemester Gruppen, Bewegungen. Stefan Witzel

Universität Bielefeld. Elementare Geometrie. Sommersemester Gruppen, Bewegungen. Stefan Witzel Universität Bielefeld Elementare Geometrie Sommersemester 2018 Gruppen, Bewegungen Stefan Witzel Drehungen und Verschiebungen vertauschen nicht Proposition. Wenn τ id eine Verschiebung ist und ρ eine Drehung,

Mehr

Modulteilprüfung Lineare Algebra L2M-GL/L5M-GL

Modulteilprüfung Lineare Algebra L2M-GL/L5M-GL Modulteilprüfung Lineare Algebra L2M-GL/L5M-GL Sommersemester 2015 Universität Frankfurt FB 12, Institut für Mathematik 13.07.2015 Dr. Andreas Maurischat Dauer: 90 Minuten Hilfsmittel: Stifte und ein zweiseitig

Mehr

Mathematik für Informatiker I,

Mathematik für Informatiker I, Teil II Algebra 70 Kapitel 8 Gruppen 8.1 Bedeutung in der Informatik Gruppen sind abstrakte Modelle für Mengen, auf denen eine Verknüpfung (etwa Addition oder Multiplikation) definiert ist. Allgemeine

Mehr

Diskrete Strukturen. Name Vorname Studiengang Matrikelnummer. Hörsaal Reihe Sitzplatz Unterschrift ... Allgemeine Hinweise

Diskrete Strukturen. Name Vorname Studiengang Matrikelnummer. Hörsaal Reihe Sitzplatz Unterschrift ... Allgemeine Hinweise Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 15 Computergraphik & Visualisierung Prof. Dr. Rüdiger Westermann Dr. Werner Meixner Wintersemester 2007/08 Wiederholungsklausur

Mehr

χ a : N + {0, 1, 1} {( a χ a (n) = χ a (n ). ψ(mn) < ψ(m)ψ(n).

χ a : N + {0, 1, 1} {( a χ a (n) = χ a (n ). ψ(mn) < ψ(m)ψ(n). September 007, Zahlentheorie 1 a) Formulieren Sie das quadratische Reziprozitätsgesetz einschließlich der Definitionen der Legendre- und Jacobi-Symbole. b) Für a Z \ {0} definieren wir durch χ a (n) =

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGEBRA Ferienkurs Hanna Schäfer Philipp Gadow INHALT 1 Grundbegriffe 1 1.1 Aussagen und Quantoren 1 1.2 Mengen 2 1.3 Gruppen 3 1.4 Körper 4 1.5 Vektorräume 5 1.6 Basis und Dimension 7 Aufgaben

Mehr

Aufgabe 1. Stefan K. 3.Übungsblatt Algebra I

Aufgabe 1. Stefan K. 3.Übungsblatt Algebra I Stefan K. 3.Übungsblatt Algebra I Aufgabe 1 a) zu zeigen: Z(G) ist ein Normalteiler in G Nach Definition des Zentrums ist Z(G) = {h G hg = gh g G}, = {h G hgh 1 = g g G}. (1) Nachweis, daß Z(G) G eine

Mehr

Tag der Mathematik 2013

Tag der Mathematik 2013 Tag der Mathematik 2013 Gruppenwettbewerb Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind nicht zugelassen. Teamnummer Die folgende

Mehr

Prof. Dr. Rudolf Scharlau, Stefan Höppner

Prof. Dr. Rudolf Scharlau, Stefan Höppner Aufgabe 13. Bestimme alle Untergruppen der S 4. Welche davon sind isomorph? Hinweis: Unterscheide zwischen zyklischen und nicht zyklischen Untergruppen. Lösung. Die Gruppe S 4 besitzt die folgenden Elemente:

Mehr

Polynome und endliche Körper

Polynome und endliche Körper Universität Koblenz-Landau Polynome und endliche Körper Ausarbeitung zum Proseminar Modul 4c Kryptographie im Fachbereich 3 Regula Krapf Arbeitsgruppe: Prof. Dr. Peter Ullrich Universität Koblenz-Landau

Mehr

Elemente der Mathematik - Winter 2016/2017

Elemente der Mathematik - Winter 2016/2017 4 Elemente der Mathematik - Winter 2016/2017 Prof. Dr. Peter Koepke, Regula Krapf Lösungen Übungsblatt 7 Aufgabe 29 (8 Punkte). Für eine Menge M ist die Potenzmenge von M definiert als P(M) := {X X M},

Mehr

Serie 2: Relationen, Abbildungen, Mächtigkeit, Gruppen

Serie 2: Relationen, Abbildungen, Mächtigkeit, Gruppen D-MATH Lineare Algebra I HS 2016 Dr. Meike Akveld Serie 2: Relationen, Abbildungen, Mächtigkeit, Gruppen 1. Auf Z definieren wir eine Relation durch x, y Z : (x y : x y ist gerade) a) Zeigen Sie, dass

Mehr

Technische Universität München. Lösung Montag WS 2013/14. (Einheitskreis, ohne Rechnung ersichtlich) (Einheitskreis, ohne Rechnung ersichtlich)

Technische Universität München. Lösung Montag WS 2013/14. (Einheitskreis, ohne Rechnung ersichtlich) (Einheitskreis, ohne Rechnung ersichtlich) Technische Universität München Andreas Wörfel Ferienkurs Analysis 1 für Physiker Lösung Montag WS 01/1 Aufgabe 1 Zum warm werden: Komplexe Zahlen - Lehrling Bestimmen Sie das komplex Konjugierte, den Betrag

Mehr

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik UNIVERSITÄT ULM Institut für Zahlentheorie und Wahrscheinlichkeitstheorie Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Prof. Dr. Helmut Maier, Hans- Peter Reck Gesamtpunktzahl: 100

Mehr

Grundlagen der Mathematik (LPSI/LS-M1) WiSe 2010/11 - Curilla/Koch/Ziegenhagen

Grundlagen der Mathematik (LPSI/LS-M1) WiSe 2010/11 - Curilla/Koch/Ziegenhagen Fachbereich Mathematik Algebra und Zahlentheorie Christian Curilla Grundlagen der Mathematik (LPSI/LS-M1) Lösungen Blatt 10 WiSe 010/11 - Curilla/Koch/Ziegenhagen Präsenzaufgaben (P3) Wir wollen die Ungleichung

Mehr

1. Übungsblatt zur Analysis I. Gruppenübungen

1. Übungsblatt zur Analysis I. Gruppenübungen Prof. Dr. Helge Glöckner Wintersemester 2013/2014 17.10.2013 1. Übungsblatt zur Analysis I Gruppenübungen Aufgabe G1 (Aussagenlogik, Wahrheitstabellen) Es seien p und q Aussagen. (a) Geben Sie die Wahrheitstabelle

Mehr

Übungen zu Zahlentheorie, SS 2008

Übungen zu Zahlentheorie, SS 2008 Übungen zu Zahlentheorie, SS 2008 Christoph Baxa 1) Finde alle positiven Teiler von a) 1799 b) 997. 2) Zeige (a b) (a n b n )für alle a, b Z und alle n N. 3) Zeige: Wenn m n dann (a m b m ) (a n b n )

Mehr

Mengenlehre. Aufgaben mit Lösungen

Mengenlehre. Aufgaben mit Lösungen Mengenlehre Aufgaben mit Lösungen Inhaltsverzeichnis 1 Hilfsmittel 1 1. Zahlenmengen........................................ 1 2. Symbole........................................... 1 3. Intervalle: Schreibweise...................................

Mehr

Übungen zur Diskreten Mathematik I Blatt 1

Übungen zur Diskreten Mathematik I Blatt 1 1 Blatt 1 Aufgabe 1 Überprüfen Sie, ob die folgenden Aussagen Tautologien sind (i) (A B) (( A) ( B)), (ii) (A B) (( A) ( B)), (iii) ((A B) C) ((A C) (B C)), (iv) ((A B) C) ((A C) (B C)), (v) (A = B) ((

Mehr

Probeklausur zur Vorlesung. Diskrete Mathematik. Aufgabe Σ Erreichbare Punkte (+ 8) Erreichte Punkte Note

Probeklausur zur Vorlesung. Diskrete Mathematik. Aufgabe Σ Erreichbare Punkte (+ 8) Erreichte Punkte Note Hochschule RheinMain Wintersemester 2012/13 FB Design Informatik Medien Prof. Dr. Steffen Reith Probeklausur zur Vorlesung Diskrete Mathematik Name: Vorname: Unterschrift: Die folgende Tabelle ist nicht

Mehr

1.8 Endlich erzeugte kommutative Gruppen

1.8 Endlich erzeugte kommutative Gruppen 1.8 Endlich erzeugte kommutative Gruppen 23 1.8 Endlich erzeugte kommutative Gruppen Im folgenden sei (G, +) stets eine endlich erzeugte kommutative Gruppe. G ist direkte Summe der Untergruppen H 1,...,H

Mehr

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. ***

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. *** Universität Bonn Mathematisches Institut Dr. Michael Welter Übungen zum Vorkurs Mathematik für Studienanfänger 2013 Einige Zeichen und Konventionen: IN := {1, 2, 3, 4,...} Die Menge der natürlichen Zahlen

Mehr

Leitfaden. a ist Vielfaches von d und schreiben verkürzt: d a. Ist d kein Teiler von a, so schreiben wir auch: d a. d teilt a oder

Leitfaden. a ist Vielfaches von d und schreiben verkürzt: d a. Ist d kein Teiler von a, so schreiben wir auch: d a. d teilt a oder Algebra und Zahlentheorie Vorlesung Algebra und Zahlentheorie Leitfaden 1 Zahlentheorie in Z Bezeichnungen: Z := {..., 3, 2, 1, 0, 1, 2, 3,...} (ganze Zahlen) und N := {1, 2, 3,...} (natürliche Zahlen

Mehr

Klausur zur Linearen Algebra I HS 2012, Universität Mannheim, Dr. Ralf Kurbel, Dr. Harald Baum

Klausur zur Linearen Algebra I HS 2012, Universität Mannheim, Dr. Ralf Kurbel, Dr. Harald Baum Klausur zur Linearen Algebra I HS 01, 1.1.01 Universität Mannheim, Dr. Ralf Kurbel, Dr. Harald Baum Name: Sitzplatznummer: Die Bearbeitungszeit für diese Klausur beträgt 90 Minuten. Die Klausur umfaßt

Mehr

3. Abgabeblatt - Lösungen. Aufgabe 9 Aufgabe 10 Aufgabe 11 Aufgabe 12 Summe: a b := a + b 1, a b := a + b a b.

3. Abgabeblatt - Lösungen. Aufgabe 9 Aufgabe 10 Aufgabe 11 Aufgabe 12 Summe: a b := a + b 1, a b := a + b a b. Lineare Algebra 1 Prof. Dr. R. Dahlhaus Dr. S. Richter, N. Phandoidaen Wintersemester 2018/2019 3. Abgabeblatt - Lösungen Aufgabe 9 Aufgabe 10 Aufgabe 11 Aufgabe 12 Summe: Übungsgruppe: Namen: Tutor(in):

Mehr

2 Mengenlehre. Definition: Unter einer Menge M versteht man die Zusammenfassung von unterscheidbaren Objekten (den Elementen) zu einem Ganzen.

2 Mengenlehre. Definition: Unter einer Menge M versteht man die Zusammenfassung von unterscheidbaren Objekten (den Elementen) zu einem Ganzen. Mengenlehre 2 Mengenlehre Definition: Unter einer Menge M versteht man die Zusammenfassung von unterscheidbaren Objekten (den Elementen) zu einem Ganzen. Üblicherweise werden Mengen mit Großbuchstaben

Mehr

Übung: Teilmengen. Beweis: Für alle Elemente einer Menge, die Teilmenge einer Menge ist, gilt, dass auch Element von ist. (Definition der Teilmenge)

Übung: Teilmengen. Beweis: Für alle Elemente einer Menge, die Teilmenge einer Menge ist, gilt, dass auch Element von ist. (Definition der Teilmenge) 15 Übung: Teilmengen seien Mengen. Zu zeigen ist: wenn Beweis: dann auch Für alle Elemente einer Menge, die Teilmenge einer Menge ist, gilt, dass auch Element von ist. (Definition der Teilmenge) für alle

Mehr

Musterlösung Lineare Algebra und Geometrie Herbstsemester 2015, Aufgabenblatt 6

Musterlösung Lineare Algebra und Geometrie Herbstsemester 2015, Aufgabenblatt 6 Musterlösung Lineare Algebra und Geometrie Herbstsemester 015, Aufgabenblatt 6 Aufgabenblatt 6 40 Punkte Aufgabe 1 (Bandornamente) Ordne die sechs Bandornamente rechts den sieben Klassen zu. Zu jeder Klasse

Mehr

Lineare Algebra II Lösungen zu ausgewählten Aufgaben

Lineare Algebra II Lösungen zu ausgewählten Aufgaben Lineare Algebra II Lösungen zu ausgewählten Aufgaben Blatt 2, Aufgabe 3 a) Wir zeigen, daß das Ideal (2, X) kein Hauptideal in Z[X] ist. (Dieses Ideal besteht aus allen Elementen in Z[X], die von der Form

Mehr

γ(a, γ(b, c)) = γ(γ(a, b), c)). γ(e, x) = γ(x, e) = x.

γ(a, γ(b, c)) = γ(γ(a, b), c)). γ(e, x) = γ(x, e) = x. Algebraische Strukturen, insbesondere Gruppen 1 Verknüpfungen M sei eine Menge. Dann heißt jede Abbildung γ : M M M eine Verknüpfung (jedem Paar von Elementen aus M wird auf eindeutige Weise ein Element

Mehr

Probeklausur zur Linearen Algebra II

Probeklausur zur Linearen Algebra II Probeklausur zur Linearen Algebra II Prof. Dr. C. Löh/D. Fauser/J. Witzig 24. Juli 207 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen Sie, ob Sie alle

Mehr

Lösung 2: Relationen, Abbildungen, Mächtigkeit, Gruppen

Lösung 2: Relationen, Abbildungen, Mächtigkeit, Gruppen D-MATH Lineare Algebra I HS 2016 Dr. Meike Akveld Lösung 2: Relationen, Abbildungen, Mächtigkeit, Gruppen 1. Gegeben n, m Z schreiben wir m n k Z : n = km Wir sagen m teilt n. Eine Zahl n Z ist gerade,

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale Lineare Algebra 1 Prof. Dr. F. Roesler

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale Lineare Algebra 1 Prof. Dr. F. Roesler ................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 Unterschrift der Kandidatin/des Kandidaten 3 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Grundbegriffe der Mathematik - Blatt 1, bis zum

Grundbegriffe der Mathematik - Blatt 1, bis zum Grundbegriffe der Mathematik - Blatt 1 bis zum 9.3.01 1. I.) Formalisieren Sie die folgenden Aussagen a) bis c) wie im folgenden Beispiel: Sei K ein Teilmenge der reellen Zahlen. Aussage: K ist genau dann

Mehr

Einführung in die Algebra Blatt 1

Einführung in die Algebra Blatt 1 Abgabefrist: Fr 03. 11. 2017 12:00 Uhr Blatt 1 Aufgabe 1 (2 Punkte). Lösen Sie die Gleichung x 3 3x 2 + x 1 = 0. Aufgabe 2 (2 + 2 + 2 + 2 Punkte). Sei G eine Gruppe und H G. Zeigen Sie, dass die folgenden

Mehr

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. ***

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. *** M. Welter Übungen zum Vorkurs Mathematik für Studienanfänger 2004 Einige Zeichen und Konventionen: IN := {1, 2, 3, 4,...} Die Menge der natürlichen Zahlen IN 0 := IN {0}{0, 1, 2, 3, 4,...} Z := {..., 2,

Mehr