3. Die Divergenz und die Quellen des elektrischen Feldes

Größe: px
Ab Seite anzeigen:

Download "3. Die Divergenz und die Quellen des elektrischen Feldes"

Transkript

1 3. Die Divergenz und die Quellen des elektrischen Feldes Das Gauß sche Gesetz V E d f = ɛ Q in = ɛ V ρ el dv stellte eine beachtliche Verbindung her zwischen dem elektrischen Feld E und seinen Quellen, den elektrischen Ladungen. In den bisherigen Anwendungen haben Sie das Gauß sche Gesetz als Alternative zum Coulomb-Gesetz verwendet, um aus einer vorgegebenen Ladungsverteilung das elektrische Feld zu berechnen. Betrachten wir dazu ein weiteres Beispiel: Ein unendlich langer, gerader Draht mit Radius R sei homogen geladen. Seine Ladung pro Längeneinheit L betrage Q L = λ. Wir können nun das elektrsche Feld dieses Drahtes auf zwei verschiedene Weisen berechnen: Mit Hilfe des Coulomb-Gesetzes und des Superpositionsprinzips berechnen wir E( r) = 4πɛ Drahtvolumen ρ( r ) r r 2 dv, wobei die Ladungsdichte ρ( r) = Q πr 2 L r R r > R.

2 Hierbei bezeichnet r den senkrechten Abstand zur Zylinderachse. Die Berechnung dieses Coulomb-Integrals ist relativ aufwendig und soll hier nicht vorgeführt werden. Die Berechnung des elektrischen Feldes mit Hilfe des Gauß schen Gesetzes und mit Symmetrieargumenten ist wesentlich einfacher. Beachte aber, dass das Gauß sche Gesetz eine direkte Folge des Coulomb-Gesetzes ist. Folgende Symmetrieüberlegung führt uns auf die Form des elektrischen Feldes: Da die Ladungsverteilung in jeder Ebene senkrecht zum Draht kreissymmetrisch ist, muss dies auch für das elektrische Feld gelten. In Zylinderkoordinaten erhalten wir daher E(r, ϕ, z) = E(r, z). Da die Ladungsverteilung in jeder Ebene senkrecht zum Draht gleich aussieht (Translationsinvarianz entlang der Zylinderachse) folgt E(r, z) = E(r). Aber welche Richtung hat das Feld? Zunächst E(r) = E r (r)ê r + E ϕ (r)ê ϕ + E z (r)ê z. Hier wird es mit den Symmetrieargumenten etwas schwieriger: Angenommen das Feld hätte eine z-komponente. Tauscht man jedoch z gegen z aus, so sieht der Draht genauso aus wie vorher, das Feld dreht jedoch seine Richtung um E z (r) E z (r). Da sich an der Ladungsverteilung jedoch nichts geändert hat, muss gelten E z (r) = E z (r) E z (r) =. Analoges gilt für eine Koordinatentransformation bei der ϕ ϕ ausgetauscht wird (genau genommen muss man z z

3 gleichzeitig mit ϕ ϕ ausführen, damit das neue Koordinatensystem wieder rechtshändig ist.) E ϕ (r) =. Daher bleibt nur noch die radiale Feldkomponente, d.h. E( r) = E r (r)ê r. Die radiale Feldkomponente können wir nun mit Hilfe des Gauß schen Gesetzes berechnen: Wir unterscheiden zwei Fälle: r R und r > R. In beiden Fällen betrachten wir als Gauß sches Volumen einen konzentrischen Zylinder mit Radius r. Die beiden Fälle unterscheiden sich durch die im Zylinder eingeschlossene Ladung. Für r < R ist Q in L = L endl. Zylinder ρdv = Q πr 2 L 2 L dz 2π dϕ r dr r, wobei wir das Volumenelement in Zylinderkoordinaten benutzt haben. dv = dr r dϕ dz Q in L 2 = Q πr 2 L 2 L 2π r 2 2 = λ r 2 R 2. Der Fluss des elektrischen Feldes ergibt sich zu E d f + Zylindermantel oberer + unterer Deckel E d f. Deckelflächen E d f = untere Deckelfläche E z (r)df E }{{} d f + E }{{} d f obere Deckelfläche ( ê z )df ê z df E z (r)df = Die Deckelflächen tragen also nicht zum elektrischen Fluss bei. Dieser wird allein durch den Fluss durch die Mantelfläche

4 bestimmt: Mantelfläche E d f }{{} = df e r = Mantelfläche L dz 2π E r (r)df r dϕe r (r) = E r (r) 2π r L Mit Hilfe des Gauß schen Gesetzes ergibt sich damit oder Q in = λ r 2 E r (r) = λ 2πε R 2 L = ε E r (r) 2πrL r R 2 für r R. Im Aussenraum des Drahtes gilt hingegen Q in = λl λl = ε E r (r)2πrl, woraus wir das Feld im Aussenraum zu E r (r) = λ 2πε r für r > R. erhalten. E(x) E r (r) [λ /(2 π ε R 2 )] r/r Abbildung: Radialkomponente des elektrischen Feldes eines homogen geladenen Drahtes.

5 Bisher haben wir aus einer vorgegebenen Ladungsverteilung das elektrische Feld berechnet. Können wir das Verfahren auch umdrehen? (Jetzt wird die Sache spannend!) Können wir bei bekanntem elektrischen Feld auf die Ladungsverteilung schließen? Das Gauß sche Gesetz sagt: Betrachte ein vorgegebenes Volumen V und miss den Fluss des elektrischen Feldes durch die Oberfläche des Volumens, dann weisst Du, wie groß die eingeschlossene Ladung ist! Betrachten wir dazu wieder das Feld einer Punktladung und ein Volumenelement, welches die Ladung nicht einschließt: Skizze! Der Fluss durch das Volumenelement beträgt V E d f = = V E r (r)ê r d f inneres Kugelflächenelement + äusseres Kugelflächenelement E r (r)( df (r)) = q 4πε r 2 ( r 2 sin ϑ ϑ ϕ) ) =. E r (r + dr)df (r + dr) + q 4πε (r + r) 2 ( (r + r) 2 sin ϑ ϑ ϕ) ) Erwartungsgemäß finden wir also keine Ladung in dem betrachteten Volumen. Was geschieht nun, wenn wir dies Verfahren verallgemeinern, indem wir das betrachtete Volumen infinitesimal klein wählen?

6 Betrachten wir zunächst die eingeschlossene Ladung; genauer: betrachten wir folgenden Grenzwert: Q in ( r) V V = ρ( r). Die Ortsangabe im Argument von Q in ( r) soll hier verdeutlichen, dass sich die eingeschlossene Ladung im Volumen V befindet, das den Ort r enthält. Das zweite Gleichheitszeichen beinhaltet die Definition der elektrischen Ladungsdichte. Führen wir diese Prozedur mit der anderen Seite des Gauß schen Gesetzes durch, so erhalten wir E d f. V Oberfläche von V Den Grenzwert können wir leicht berechnen, wenn wir als Volumenelement ein infinitesimales kartesisches Volumen betrachten, d.h. V = x y z. Skizze! Wir betrachten nun gegenüberliegende Würfelseiten und berechnen den Fluss durch diese. Fangen wir mit den Flächen senkrecht zur x-achse an: E d f = E x (x, y, z) dy dz = E x (x, y, z) y z. vordere Fläche (Zur Erinnerung: Das Minuszeichen tritt auf, da die Flächennormale des Flächenelements in die negative x-richtung zeigt.) Analog ergibt sich für die hintere Fläche: E d f = E x (x+ x, y, z) dy dz = hintere Fläche Der Gesamtfluss durch beide Flächen beträgt dann und im Grenzfall V Φ x = [E x (x + x, y, z) E x (x, y, z)] y z V Φ x = V E x (x+ x, y, z) y z. y z x y z [E x(x + x, y, z) E x (x, y, z)] = E x x.

7 Analoges ergibt sich für die anderen Flächen. Der Gesamtfluss durch die infinitesimale Würfeloberfläche beträgt also E d V V f = E x + E y y + E z z. ( V ) In der Mathematik bezeichnet man den Grenzwert v d V V f = div v( r) = v( r) ( V ) als die Divergenz des Vektorfeldes v. In karthesischen Koordinaten haben wir gesehen, dass ε v = v x x + v y y + v z z Wir fassen nun die obigen Ergebnisse im Gauß schen Gesetz für das infinitesimal kleine Volumen zusammen und erhalten Q in ( r) V V = ρ( r) = E d ε V V f = div E = E. ( V ). Wir haben damit das erste Maxwell sche Gesetz in differentieller Form erhalten, div E = ε ρ. Es erlaubt uns, bei bekanntem elektrischen Feld die Ladungsverteilung zu berechnen, die dieses Feld erzeugt hat. In Anlehnung an dieses Gesetz bezeichnet man die Divergenz auch als die Quellenstärke eines Vektorfeldes. Die Divergenz ist ein Skalarfeld, das an jedem Punkt angibt, ob das Feld dort eine Quelle/Senke besitzt und wie ergiebig diese ist. Beispiele für die Divergenz von Vektorfeldern:

8 v a = r = xê x + yê y + zê z Skizzen!! div v a = x x + y y + z z = 3. v b = ê z div v b = x + y + z = v c = zê z div v c = z z = v d = f ( r )ê r = r f (r) r Produktregel für die Divergenz: div (g r) = ( g) r + g div v div v d = ( ( f r ) r + f r div v = ( f r f )ê r 2 r r + 3 f r = f + 2 f r

2.3 Gekrümmte Oberflächen

2.3 Gekrümmte Oberflächen 2.3 Gekrümmte Oberflächen Jede Fläche im R 3 besitzt eine zweidimensionale Parameterdarstellung, so dass die Punkte der Fläche durch r(u, u 2 ) = x(u, u 2 )ê x + y(u, u 2 )ê y + z(u, u 2 )ê z beschrieben

Mehr

Felder und Wellen WS 2016/2017

Felder und Wellen WS 2016/2017 Felder und Wellen WS 216/217 Musterlösung zum 2. Tutorium 1. Aufgabe (**) Berechnen Sie das el. Feld einer in z-richtung unendlich lang ausgedehnten unendlich dünnen Linienladung der Ladungsdichte η pro

Mehr

Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Übung 2

Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Übung 2 Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Übung 2 KIT University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Mehr

Experimentalphysik II

Experimentalphysik II Experimentalphysik II PK2-6SP Webpage http://photonik.physik.hu-berlin.de/lehre/ss08exp2/ 1 Übungstermine 1. Dr. J. Puls: Die, 15-17, Raum 1'12, NEW 14 2. Dr. H.J. Wünsche: Die, 15-17, Raum 1 11 NEW 14

Mehr

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle Anmerkung zur Notation Im folgenden werden folgende Ausdrücke äquivalent benutzt: r = x y = x 1 x 2 z x 3 1 Der Vektoroperator Definition: := e x x + e y y + e z z = x y z. Nabla ist ein Vektor, der als

Mehr

Maxwell-Gleichungen (1873) Boltzmann: Es war ein Gott der diese Zeichen schrieb?

Maxwell-Gleichungen (1873) Boltzmann: Es war ein Gott der diese Zeichen schrieb? Literatur Feynman: Vorlesungen über Physik, Band II, Oldenbourg H. Vogel: Gerthsen Physik, Springer H.J. Paus: Physik in Experimenten und Beispielen, Hanser P.A. Tipler/R.A. Llewellyn: Moderne Physik,

Mehr

Übungsblatt 2. Arbeit beim elektrischen Auaden. Eine Kugel aus Metall habe den Radius R = 5cm und sei zu beginn elektrisch neutral geladen.

Übungsblatt 2. Arbeit beim elektrischen Auaden. Eine Kugel aus Metall habe den Radius R = 5cm und sei zu beginn elektrisch neutral geladen. Aufgabe 5 Arbeit beim elektrischen Auaden Eine Kugel aus Metall habe den Radius R = 5cm und sei zu beginn elektrisch neutral geladen. a) Welche Arbeit W ist erforderlich, um die Kugel auf die Ladung Q

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 27. 04. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 27. 04. 2009

Mehr

In der Experimentalphysik-Vorlesung haben Sie die Maxwell schen Gleichungen der Magnetostatik in ihrer integralen Form kennengelernt:

In der Experimentalphysik-Vorlesung haben Sie die Maxwell schen Gleichungen der Magnetostatik in ihrer integralen Form kennengelernt: 13 Magnetostatik Solange keine Verwechslungen auftreten, werden wir in diesem und in den folgenden Kapiteln vom magnetischen Feld B an Stelle der magnetischen Induktion bzw. der magnetischen Flußdichte

Mehr

Repetitorium C: Nabla, 2-, 3-dim. Integrale, Satz v. Gauß

Repetitorium C: Nabla, 2-, 3-dim. Integrale, Satz v. Gauß Fakultät für Physik R: Rechenmethoden für Physiker, WiSe 6/7 Dozent: Jan von Delft Übungen: Hong-Hao Tu, Fabian Kugler http://www.physik.uni-muenchen.de/lehre/vorlesungen/wise_6_7/r_ rechenmethoden_6_7/

Mehr

1 Mathematische Hilfsmittel

1 Mathematische Hilfsmittel Mathematische Hilfsmittel. Vektoranalysis Wiederholung Vektor: Länge und Richtung Vektoraddition: A + B = B + A (A + B) + C = A + (B + C) kartesische Koordinaten: B A + B = i (a i + b i )e i A+B Multiplikation

Mehr

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Technische Universität München Department of Physics Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Montag Daniel Jost Datum 2/8/212 Aufgabe 1: (a) Betrachten Sie eine Ladung, die im Ursprung

Mehr

Aufgabe K1: Potential einer Hohlkugel ( = 11 Punkte)

Aufgabe K1: Potential einer Hohlkugel ( = 11 Punkte) Aufgabe K: Potential einer Hohlkugel ( + 7 + = Punkte) (a) Leiten Sie die integrale Form der Maxwell Gleichungen der Elektrostatik aus den entsprechenden differentiellen Gleichungen her. Differentielle

Mehr

Moderne Theoretische Physik WS 2013/2014

Moderne Theoretische Physik WS 2013/2014 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik WS 23/24 Prof. Dr. A. Shnirman Blatt 2:Lösungen Dr. B. Narozhny Besprechung 8..23. Gauß scher

Mehr

Übung 1 - Musterlösung

Übung 1 - Musterlösung Experimentalphysik für Lehramtskandidaten und Meteorologen 8. April 00 Übungsgruppenleiter: Heiko Dumlich Übung - Musterlösung Aufgabe Wir beginnen die Aufgabe mit der Auflistung der benötigten Formeln

Mehr

Ableitungen von skalaren Feldern Der Gradient

Ableitungen von skalaren Feldern Der Gradient Ableitungen von skalaren Feldern Der Gradient In der letzten Vorlesung haben wir das zu einem konservativen Kraftfeld zugehörige Potential V ( r) = F ( s) d s + V ( r0 ) kennengelernt und als potentielle

Mehr

Lösung für Blatt 7,,Elektrodynamik

Lösung für Blatt 7,,Elektrodynamik Institut für Theoretische Physik, Universität Zürich Lösung für Blatt 7,,Elektrodynamik Prof. Dr. T. Gehrmann Blatt 7 FS 213 Aufgabe 1 Induktion im Magnetfeld Nach dem Faraday schen Induktionsgesetz induziert

Mehr

1.3. DAS COULOMBSCHE GESETZ, ELEKTROSTATISCHES FELD 9

1.3. DAS COULOMBSCHE GESETZ, ELEKTROSTATISCHES FELD 9 8 KAPITEL. ELEKTROSTATIK.3 Das Coulombsche Gesetz, elektrostatisches Feld Zur Einführung verschiedener Grundbegriffe betrachten wir zunächst einmal die Kraft, die zwischen zwei Ladungen q an der Position

Mehr

Lösungsvorschlag zu Blatt3 Theoretische Physik III: Elektrodynamik WS 2015/16

Lösungsvorschlag zu Blatt3 Theoretische Physik III: Elektrodynamik WS 2015/16 Lösungsvorschlag zu Blatt3 Theoretische Physik III: Elektrodynamik WS 215/16 Abgabetermin: keine Abgabe, sondern Wertung als Präsenzübung Prof. Dr. Claudius Gros, Institut für Theoretische Physik, Goethe-Universität

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 12: Integralsätze von Gauss und Stokes Prof. Dr. Erich Walter Farkas Mathematik I+II, 12. Integralsätze 1 / 25 1 Gauss-scher Integralsatz

Mehr

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang Sommersemester 3 8.6.3 Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik

Mehr

Ferienkurs Elektrodynamik WS 11/12 Übungsblatt 1

Ferienkurs Elektrodynamik WS 11/12 Übungsblatt 1 Ferienkurs Elektrodynamik WS / Übungsblatt Tutoren: Isabell Groß, Markus Krottenmüller, Martin Ibrügger 9.3. Aufgabe - Geladene Hohlkugel In einer Hohlkugel befindet sich zwischen den Radien r und r eine

Mehr

2. Aufgabe (*) 2. r R 0 : (3R 2 0 r 2 ) φ(r) = Insgesamt ergibt sich: r > R 0 : Gegeben ist folgendes Vektorfeld in Zylinderkoordinaten: H R = 0

2. Aufgabe (*) 2. r R 0 : (3R 2 0 r 2 ) φ(r) = Insgesamt ergibt sich: r > R 0 : Gegeben ist folgendes Vektorfeld in Zylinderkoordinaten: H R = 0 Felder und Wellen WS 217/218 Musterlösung zum 3. Tutorium 1. Aufgabe (**) 1. E-Feld der homogen geladenen Kugel; außerhalb (r > R ) (3. Tutorium) E = Q 4πε r 2 e r mit Q = 4πR3 3 2. E-Feld innerhalb der

Mehr

Othmar Marti Experimentelle Physik Universität Ulm

Othmar Marti Experimentelle Physik Universität Ulm PHYS3100 Grundkurs IIIb für Physiker Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Vorlesung nach Tipler, Gerthsen, Hecht, Alonso-Finn Skript: http://wwwex.physik.uni-ulm.de/lehre/gk3b-2002-2003

Mehr

Fluss durch einen Zylindermantel

Fluss durch einen Zylindermantel Fluss durch einen Zylindermantel Der Fluss eines Vektorfeldes F = F ϱ e ϱ + F ϕ e ϕ + F z e z nach außen durch den Mantel eines Zylinders mit Randkurve ϱ = ϱ(ϕ) ist 2π z max z min F ϱ ϱ F ϕ ϕ ϱ dz dϕ.

Mehr

6 Methoden zur Lösung des elektrostatischen Randwertproblems

6 Methoden zur Lösung des elektrostatischen Randwertproblems 6 Methoden zur Lösung des elektrostatischen Randwertproblems Die generelle Strategie zur Lösung des elektrostatischen Randwertproblems umfaßt zwei Schritte: 1. Finde eine spezielle Lösung der Poisson-Gleichung

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung Physik-Department Ferienkurs zur Experimentalphysik 2 - Musterlösung Daniel Jost 26/8/13 Technische Universität München Abbildung 1: Punktladungen 1 Aufgaben zur Elektrostatik Aufgabe 1 Gegeben seien drei

Mehr

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Klassischen Theoretischen Physik III Theorie C Elektrodynamik WS 2-3 Prof. Dr. Alexander Mirlin Blatt Dr.

Mehr

Theoretische Physik: Elektrodynamik

Theoretische Physik: Elektrodynamik Ferienkurs Theoretische Physik: Elektrodynamik Übungsblatt Technische Universität München Fakultät für Physik Verifikation des Stokesschen Satzes Verifizieren Sie den Stokeschen Satz für das Vektorfeld:

Mehr

Übungsblatt 3 - Lösungen

Übungsblatt 3 - Lösungen Übungsblatt 3 - Lösungen zur Vorlesung EP2 (Prof. Grüner) im 2010 3. Juni 2011 Aufgabe 1: Plattenkondensator Ein Kondensator besteht aus parallelen Platten mit einer quadratischen Grundäche von 20cm Kantenlänge.

Mehr

VIII.1.4 Magnetisches Feld induziert durch einfache Ladungsströme

VIII.1.4 Magnetisches Feld induziert durch einfache Ladungsströme V. Grundbegriffe und -ergebnisse der Magnetostatik 5 V..4 Magnetisches Feld induziert durch einfache Ladungsströme m Fall eines Ladungsstroms durch einen dünnen Draht vereinfacht sich das ntegral im Biot

Mehr

Wir haben gesehen, dass sich aus einer gegebenen Ladungsverteilung ρ( r ) das elektrostatische. ρ( r )

Wir haben gesehen, dass sich aus einer gegebenen Ladungsverteilung ρ( r ) das elektrostatische. ρ( r ) .7. RANDWERTPROBLEME 39.7 Randwertprobleme Wir haben gesehen, dass sich aus einer gegebenen Ladungsverteilung ρ( r ) das elektrostatische Potential φ( r) mit φ( r) ρ( r ) 4πε r r d3 r berechnen läßt. Hierbei

Mehr

Theoretische Physik: Elektrodynamik

Theoretische Physik: Elektrodynamik Ferienkurs Merlin Mitschek, Verena Walbrecht 6.3.25 Ferienkurs Theoretische Physik: Elektrodynamik Vorlesung Technische Universität München Fakultät für Physik Ferienkurs Merlin Mitschek, Verena Walbrecht

Mehr

"Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab"

Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab V4.2 - V4.3: Integralsätze der Vektoranalysis [Notation in diesem Kapitel: Vorausschau/Überblick: alle Indizes unten!] "Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab" Hauptsatz

Mehr

Aufgabe Summe max. P Punkte

Aufgabe Summe max. P Punkte Klausur Theoretische Elektrotechnik TET Probeklausur xx.xx.206 Name Matr.-Nr. Vorname Note Aufgabe 2 3 4 5 6 7 Summe max. P. 5 0 5 5 5 5 5 00 Punkte Allgemeine Hinweise: Erlaubte Hilfsmittel: Taschenrechner,

Mehr

2.4 Eigenschaften des Gradienten

2.4 Eigenschaften des Gradienten 2.4 Eigenschaften des Gradienten Niveauflächen: Die Niveauflächen (D = 2 Höhenlinien) einer Funktion f sind die durch die Gleichung f(x, y, z) = c = const bestimmten Flächen(scharen); für jeden Wert von

Mehr

1.12. MAKROSKOPISCHE ELEKTROSTATIK 87. In den vorangegangenen Abschnitten hatten wir die beiden Grundgleichungen der Elektrostatik.

1.12. MAKROSKOPISCHE ELEKTROSTATIK 87. In den vorangegangenen Abschnitten hatten wir die beiden Grundgleichungen der Elektrostatik. .. MAKROSKOPISCHE ELEKTROSTATIK 87. Makroskopische Elektrostatik.. Polarisation, dielektrische erschiebung In den vorangegangenen Abschnitten hatten wir die beiden Grundgleichungen der Elektrostatik rot

Mehr

12. Übungsblatt zur Mathematik II für MB

12. Übungsblatt zur Mathematik II für MB Fachbereich Mathematik Prof. Dr. U. Reif R. Hartmann, T. Koch SS 1 5.7.21 12. Übungsblatt zur Mathematik II für MB Aufgabe 39 Divergenz Berechnen Sie die Divergenz folgender Vektorfelder: xyz + 2xy F 1

Mehr

"Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab"

Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab V4.2 - V4.3: Integralsätze der Vektoranalysis [Notation in diesem Kapitel: Vorausschau/Überblick: alle Indizes unten!] "Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab" Hauptsatz

Mehr

Klassische Theoretische Physik III WS 2014/ Elektrische Verschiebung: (10 Punkte)

Klassische Theoretische Physik III WS 2014/ Elektrische Verschiebung: (10 Punkte) Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik III WS 2014/2015 Prof. Dr. A. Shnirman Blatt 12 Dr. B. Narozhny Abgabe 23.01.2015, Besprechung

Mehr

Elektro- und Magnetostatik

Elektro- und Magnetostatik Übung 1 Abgabe: 1.3. bzw. 5.3.219 Elektromagnetische Felder und Wellen Frühjahrssemester 219 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Elektro- und Magnetostatik In dieser Übung befassen wir

Mehr

Übungen zu Experimentalphysik 2 für MSE

Übungen zu Experimentalphysik 2 für MSE Physik-Department LS für Funktionelle Materialien SS 28 Übungen zu Experimentalphysik 2 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. Volker Körstgens, Sebastian Grott, Julian Heger, Dr. Neelima Paul,

Mehr

(Gaußscher Integralsatz)

(Gaußscher Integralsatz) Der Gaußsche Integralsatz Beim Oberflächenintegral O F n da beschreibt der Integrand den senkrechten Durchsatz des Vektorfeldes durch das Flächenelement da. Insgesamt liefert das Integral über eine geschlossene

Mehr

Satz von Gauß. Satz von Gauß 1-1

Satz von Gauß. Satz von Gauß 1-1 atz von Gauß Für ein stetig differenzierbares Vektorfeld F auf einem regulären räumlichen Bereich V, der durch eine Fläche mit nach außen orientiertem vektoriellen Flächenelement d berandet wird, gilt

Mehr

10.1 Ampère sches Gesetz und einfache Stromverteilungen

10.1 Ampère sches Gesetz und einfache Stromverteilungen 1 Magnetostatik Solange keine Verwechslungen auftreten, werden wir in diesem und in den folgenden Kapiteln vom magnetischen Feld B an Stelle der magnetischen Induktion bzw. der magnetischen Flußdichte

Mehr

ein geeignetes Koordinatensystem zu verwenden.

ein geeignetes Koordinatensystem zu verwenden. 1.13 Koordinatensysteme (Anwendungen) Man ist immer bemüht, für die mathematische Beschreibung einer wissenschaftlichen Aufgabe ( Chemie, Biologie,Physik ) ein geeignetes Koordinatensystem zu verwenden.

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. Simone Warzel Max Lein TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik 4 für Physik (Analysis 3) Wintersemester 29/2 Lösungsblatt 2 (27..29) Zentralübung 4. Parametrisierung einer

Mehr

Sei Φ(x, y, z) ein skalares Feld, also eine Funktion, deren Wert in jedem Raumpunkt definiert ist.

Sei Φ(x, y, z) ein skalares Feld, also eine Funktion, deren Wert in jedem Raumpunkt definiert ist. Beim Differenzieren von Vektoren im Zusammenhang mit den Kreisbewegungen haben wir bereits gesehen, dass ein Vektor als dreiwertige Funktion a(x, y, z) aufgefasst werden kann, die an jedem Punkt im dreidimensionalen

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdepartment E3 WS 0/ Übungen zu Physik für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung 0.0.,

Mehr

Kapitel 11: Oberflächen- und Flussintegrale

Kapitel 11: Oberflächen- und Flussintegrale Kapitel 11: Oberflächen- und Flussintegrale Ziel: Berechnung von Integralen, deren Integrationsbereich eine 2-dim. Fläche in einem 3-dim. Raum ist (z.b. Fläche von Kugel) Motivation / Anwendungen: - z.b.

Mehr

Theoretischen Physik II SS 2007 Klausur I - Aufgaben und Lösungen

Theoretischen Physik II SS 2007 Klausur I - Aufgaben und Lösungen Theoretischen Physik II SS 7 Klausur I - Aufgaben und Lösungen Aufgabe Elektrostatik Im Mittelpunkt einer leitenden und geerdeten Hohlkugel RadiusR) befindet sich eine kleine Kugel mit homogener Ladungsverteilung

Mehr

Übungen zur Theoretischen Physik 1. Übungsblatt

Übungen zur Theoretischen Physik 1. Übungsblatt 1. Übungsblatt 1. In kartesischen Koordinaten gilt: grad Φ( r) = ( Φ x, Φ y, Φ ), div A x A = z x + A y y + A z z rot A = ( A z y A y z, A x z A z x, A y x A x ) y Berechnen Sie: (a) grad Φ( r) für Φ(

Mehr

Integralrechnung für GLET

Integralrechnung für GLET Freitagsrunden Tech Talk November 2, 2012 1 Grundlagen Rechenregeln für Integrale 2 Mehrdimensionale Integrale Flächenintegrale Volumenintegrale Lösbar? 3 Kugel- und Zylinderkoordinaten Kugelkoordinaten

Mehr

4 Grenzflächen, Leiter und das elektrostatische Randwertproblem

4 Grenzflächen, Leiter und das elektrostatische Randwertproblem 4 Grenzflächen, Leiter und das elektrostatische Randwertproblem Bei der Berechnung elektrostatischer Felder und Potentiale mussten wir bisher voraussetzen, dass wir die Ladungsverteilungen im gesamten

Mehr

Inhaltsverzeichnis Elektrostatik

Inhaltsverzeichnis Elektrostatik Inhaltsverzeichnis 1 Elektrostatik 1 1.1 Grundbegriffe...................................... 1 1.1.1 Elektrische Ladung, Coulomb-Gesetz..................... 1 1.1.2 Das elektrische Feld..............................

Mehr

Einführung in die theoretische Physik II Sommersemester 2015

Einführung in die theoretische Physik II Sommersemester 2015 Einführung in die theoretische Physik II Sommersemester 25 martin.eckstein@mpsd.cfel.de Ausgewählte Aufgaben zur Klausurvorbereitung Lösungshinweise Aufgabe : Elektrostatik Betrachten Sie eine geladene

Mehr

n 2 2 n n 2 1 cos 2 {θ} = n 1 cos{θ} 1 r 1 + r

n 2 2 n n 2 1 cos 2 {θ} = n 1 cos{θ} 1 r 1 + r Elektromagnetische Felder und Wellen: zur Klausur Frühjahr 22 Aufgabe 3 Punkte) Das elektrische Feld liegt parallel zur Grenzfläche, also ist die Welle TE- polarisiert Der Reflektionsfaktor ist laut Skript

Mehr

Q 1. d 2 e x. welche den Zusammenhang zwischen Stromdichte und Ladungsdichte beschreibt. Da die Stromdichte hier nur eine x-komponente besitzt, gilt

Q 1. d 2 e x. welche den Zusammenhang zwischen Stromdichte und Ladungsdichte beschreibt. Da die Stromdichte hier nur eine x-komponente besitzt, gilt Elektromagnetische Felder Wellen: Lösung zur Klausur Herbst 999 Aufgabe Das Potential einer Punktladungen Q am Ort r lautet V { r} = Q 4πɛɛ 0 r r Hier soll das Potential einer gegebenen Raumladung ρ v

Mehr

Ferienkurs Analysis 3 für Physiker. Übung: Integralsätze

Ferienkurs Analysis 3 für Physiker. Übung: Integralsätze Ferienkurs Analysis 3 für Physiker Übung: Integralsätze Autor: enjamin Rüth Stand: 7. März 4 Aufgabe (Torus) Zu festem R > werden mittels ϱ T : [, R] [, π] [, π] R 3, ϕ ϑ Toruskoordinaten eingeführt. estimmen

Mehr

Übungsblatt 02. Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik

Übungsblatt 02. Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik Übungsblatt 0 Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik 4.04.008 Aufgaben. Berechnen Sie, ausgehend vom Coulomb-Gesetz, das elektrische Feld um einen

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I... ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

2 Gauss Gesetz. 2.1 Elektrischer Fluss

2 Gauss Gesetz. 2.1 Elektrischer Fluss 2 Gauss Gesetz Das Gauss'sche Gesetz formuliert einen Zusammenhang zwischen der elektrischen Ladung und dem elektrischen Feld. Es ist allgemeiner und eleganter als das Coulomb Gesetz. Die Anwendung des

Mehr

Aufgabe 1 ( 12 Punkte)

Aufgabe 1 ( 12 Punkte) Elektromagnetische Felder und Wellen: zur Klausur 2017-1 1 Aufgabe 1 ( 12 Punkte) In einem ideal leitfähigen Metallrohr mit rechteckigem Querschnitt lautet der Ansatz für das magnetische Vektorpotenzial

Mehr

4. Gruppenübung zur Vorlesung. Höhere Mathematik 3. Wintersemester 2015/ , E 2 := (x, y, z) R 3 4z M := Z E 1 E 2.

4. Gruppenübung zur Vorlesung. Höhere Mathematik 3. Wintersemester 2015/ , E 2 := (x, y, z) R 3 4z M := Z E 1 E 2. Dr. F. Gaspoz, Dr. T. Jentsch, Dr. A. Langer, J. Neusser, J. Schmid. Gruppenübung zur Vorlesung Höhere Mathematik 3 Wintersemester 1/16 Apl. Prof. Dr. N. Knarr Lösungshinweise zu den Hausaufgaben: Aufgabe

Mehr

2 Grundgrößen und -gesetze der Elektrodynamik

2 Grundgrößen und -gesetze der Elektrodynamik Grundgrößen und -gesetze der Elektrodynamik. Grundgrößen der Elektrodynamik.. Ladung und die dreidimensionale δ-distribution Ladung Q, q Ladungen treten in zwei Variationen auf: positiv und negativ Einheit:

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwörter von der letzten orlesung können Sie sich noch erinnern? Elektrische Feldlinien Das elektrische Feld einer Punktladung Das Feld eines elektrischen Dipols E = Elektrische Felder von

Mehr

Mathematische Einführung

Mathematische Einführung Lehrstuhl für Technische Elektrophysik Technische Universität München Übungen zu "Elektrizitätslehre" (Prof. Wachutka) Mathematische Einführung Die vorliegende Einführung in die Mathematik zur Vorlesung

Mehr

3.4 Gradient, Divergenz, Rotation in anderen Koordinaten

3.4 Gradient, Divergenz, Rotation in anderen Koordinaten 3.3.5 Rechenregeln Für Skalarfelder f, g und Vektorfelder v, w gelten die Beziehungen fg) = f g + g f v w) = v ) w + w ) v + v w) + w v) f v) = f v + v f v w) = w v) v w) 3.5a) 3.5b) 3.5c) 3.5d) f) = div

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt N dl. y 3

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt N dl. y 3 Übungen zur Ingenieur-Mathematik III WS / Blatt 9.. Aufgabe 5: Berechnen Sie das Integral K ( x y N dl über den Rand des Kreises K {(x, y x + y } einmal direkt mit Hilfe einer geeigneten Parametrisierung

Mehr

Satz von Stokes. Für ein stetig differenzierbares Vektorfeld F auf einer regulären Fläche S mit orientiertem Rand C gilt. Satz von Stokes 1-1

Satz von Stokes. Für ein stetig differenzierbares Vektorfeld F auf einer regulären Fläche S mit orientiertem Rand C gilt. Satz von Stokes 1-1 Satz von Stokes Für ein stetig differenzierbares Vektorfeld F auf einer regulären Fläche S mit orientiertem Rand C gilt rot F ds = F d r. S C Satz von Stokes 1-1 Satz von Stokes Für ein stetig differenzierbares

Mehr

Grundzüge der Vektoranalysis

Grundzüge der Vektoranalysis KAPITEL 7 Grundzüge der Vektoranalysis 7. Satz von Green................................... 2 7.2 Satz von Stokes................................... 22 7.2. Zirkulation und Wirbelstärke..........................

Mehr

Die Maxwell Gleichungen

Die Maxwell Gleichungen Die Maxwell Gleichungen Die Maxwellschen Gleichungen beschreiben Beziehungen zwischen dem elektrischen Feld E = E( x;t), der magnetischen Flussdichte B = B( x;t), der elektrischen Stromstärke J = J( x;t),

Mehr

Repetitorium B: 1-, 2-dim. Integrale, Satz v. Stokes

Repetitorium B: 1-, 2-dim. Integrale, Satz v. Stokes Fakultät für Physik R: Rechenmethoden für Physiker, Wie 6/7 Dozent: Jan von Delft Übungen: Hong-Hao Tu, Fabian Kugler http://www.physik.uni-muenchen.de/lehre/vorlesungen/wise_6_7/r_ rechenmethoden_6_7/

Mehr

D-MAVT/D-MATL FS 2018 Dr. Andreas Steiger Analysis IILösung - Serie1

D-MAVT/D-MATL FS 2018 Dr. Andreas Steiger Analysis IILösung - Serie1 D-MAVT/D-MATL FS 8 Dr. Andreas Steiger Analysis IILösung - Serie. Das Volumenelement der Koordinaten, welche in der untenstehenden Abbildung definiert sind, ist gegeben durch z Q Ρ Α Β y (a) ϱ cos β dϱ

Mehr

Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Übung 3

Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Übung 3 Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Übung 3 KIT University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Mehr

Elektrischer Feldvektor, Skalarfeld/Vektorfeld, Elektrische Feldlinien

Elektrischer Feldvektor, Skalarfeld/Vektorfeld, Elektrische Feldlinien Telekommunikation/lektrotechnik, Physik /2, T. Borer Übung 7-2005/06 Übung 7 lektrisches Feld lektrischer Feldvektor, Skalarfeld/Vektorfeld, lektrische Feldlinien Lernziele - den Zusammenhang zwischen

Mehr

Übungen zur Physik II PHY 121, FS 2017

Übungen zur Physik II PHY 121, FS 2017 Übungen zur Physik II PHY 2, FS 207 Serie 5 bgabe: Dienstag, 04. pril 2 00 Ladungstrennung = separation of charge Influenz = influence / electrostatic induction Elektrischer Fluss = electric flux Feldlinien

Mehr

KAPITEL VIII. Elektrostatik. VIII.1 Elektrisches Potential. VIII.1.1 Skalarpotential. VIII.1.2 Poisson-Gleichung

KAPITEL VIII. Elektrostatik. VIII.1 Elektrisches Potential. VIII.1.1 Skalarpotential. VIII.1.2 Poisson-Gleichung KAPITEL III Elektrostatik Hier fehlt die obligatorische Einleitung... Im stationären Fall vereinfachen sich die Maxwell Gauß und die Maxwell Faraday-Gleichungen für die elektrische Feldstärke E( r) die

Mehr

Polarisierung und Magnetisierung

Polarisierung und Magnetisierung Übung 2 Abgabe: 10.03. bzw. 14.03.2017 Elektromagnetische Felder & Wellen Frühjahrssemester 2017 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Polarisierung und Magnetisierung 1 Mathematische

Mehr

Experimentalphysik 2. Lösung Probeklausur

Experimentalphysik 2. Lösung Probeklausur Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik SS 018 Probeklausur Hagen Übele Maximilian Ries Aufgabe 1 (Coulomb Kraft) Zwei gleich große Kugeln der Masse m = 0,01 kg

Mehr

Übung Elektrische und magnetische Felder SoSe 2015

Übung Elektrische und magnetische Felder SoSe 2015 Aufgabe 1 Berechnen Sie die aumladungsdichte ρ für: 1.1 eine Linienladungsdichteτ( r) auf einem Kreisring mit dem adius 0 a) Geben Sie die Parameterdarstellung eines Kreises mit zugehörigem Wertebereich

Mehr

Normalbereiche in R 2 sehen wie folgt aus: Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form

Normalbereiche in R 2 sehen wie folgt aus: Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form 155 Normalbereiche in R 2 sehen wie folgt aus: Analog ist ein Bereich in R 3 ein Normalbereich, wenn er von der Form = { (x,y,z) a x b,u(x) y o(x),ũ(x,y) z õ(x,y) } ist, wobei die Rollen der Koordinaten

Mehr

TU München, Musterlösung. Ferienkurs Experimentalphysik II: Elektrostatik und elektrischer Strom. Rolf Ripszam. x + a. L = q.

TU München, Musterlösung. Ferienkurs Experimentalphysik II: Elektrostatik und elektrischer Strom. Rolf Ripszam. x + a. L = q. TU München, 9.08.2009 Musterlösung Geladener Stab Ferienkurs Experimentalphysik II: Elektrostatik und elektrischer Strom Rolf Ripszam (a) Der Stab ist homogen geladen, also gilt einfach λ = L. (b) Das

Mehr

Theoretische Elektrodynamik

Theoretische Elektrodynamik Theoretische Elektrodynamik Literatur: 1. Joos: Lehrbuch der Theoretische Physik 2. Jackson: Klassische Elektrodynamik 3. Nolting: Grundkurs Theoretische Physik zusätzlich: Sommerfeld: Landau/Lifschitz:

Mehr

Ferienkurs der Experimentalphysik II Musterlösung Übung 3

Ferienkurs der Experimentalphysik II Musterlösung Übung 3 Ferienkurs der Experimentalphysik II Musterlösung Übung 3 Michael Mittermair 29. August 213 1 Aufgabe 1 Wie groß ist die Leistung, die von einem geladenen Teilchen mit der Ladung q abgestrahlt wird, das

Mehr

Zusammenfassung: Flächenintegrale

Zusammenfassung: Flächenintegrale Zusammenfassung: Flächenintegrale Gerichtetes Flächenelement: "Fluss" durch Flächenelement: "Fläche über G": "Fluss" durch die Fläche : Für orthogonale Koordinaten: Betrag des Flächenelements: Richtung:

Mehr

9 Multipol-Entwicklung

9 Multipol-Entwicklung 9 Multipol-Entwicklung Im vorigen Kapitel haben wir gesehen, dass die Lösungen der Laplace-Gleichung bei axialer Symmetrie in einer Entwicklung nach Legendre-Polynomen dargestellt werden können, [ φ(r,

Mehr

C4.6: Oberflächenintegrale

C4.6: Oberflächenintegrale C4.6: Oberflächenintegrale Ziel: Berechnung von Integralen, deren Integrationsbereich eine 2-dim. Fläche in einem 3-dim. Raum ist (z.b. Fläche von Kugel) Motivation / Anwendungen: - z.b. Elektrostatik:

Mehr

Teil 8. Vektoranalysis

Teil 8. Vektoranalysis Teil 8 Vektoranalysis 5 6 8. kalar- und Vektorfelder kalarfeld alternative chreibweisen: U = U(x, y, z) = U( r) R 3 P U(P ) R Visualisierung durch Niveaumengen oder Einschränkungen auf achsenparallele

Mehr

Satz v. Gauß: Volumenintegral der Divergenz = Flussintegral über Fläche. suggestive Notation. "Ausfluss pro Volumenelement"

Satz v. Gauß: Volumenintegral der Divergenz = Flussintegral über Fläche. suggestive Notation. Ausfluss pro Volumenelement Zusammenfassung: Satz v. Gauß Satz v. Gauß: Volumenintegral der Divergenz = Flussintegral über Fläche Volumen Rand des Volumens = Oberfläche Symbolisch: suggestive Notation Geometrische Definition der

Mehr

Theoretische Physik II Elektrodynamik Blatt 5

Theoretische Physik II Elektrodynamik Blatt 5 PDDr.S.Mertens M. Hummel Theoretische Physik II Elektrodynamik Blatt 5 SS 9 9.4.9 1. Energie von Ladungsverteilungen. a b Welche Arbeit ist nötig, um eine Ladungsmenge Q aus dem Unendlichen gleichmäßig

Mehr

Musterlösungen zu Serie 10

Musterlösungen zu Serie 10 D-ERDW, D-HEST, D-USYS athematik II FS 3 Dr. Ana Cannas da Silva usterlösungen zu Serie. a) Die Ellipse E wird z.b. durch y 4 γ(t) 3 sin t, t 2 π, t (4, 3 sin t) parametrisiert. E Daher ist F d s E 48

Mehr

Othmar Marti Experimentelle Physik Universität Ulm

Othmar Marti Experimentelle Physik Universität Ulm PHYS3100 Grundkurs IIIb für Physiker Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Vorlesung nach Tipler, Gerthsen, Känzig, Alonso-Finn Skript: http://wwwex.physik.uni-ulm.de/lehre/gk3b-2002-2003

Mehr

Elektrostatik ( ) r r. Der elektrische Fluss Ψ : Wie stark strömt das elektrische Feld durch eine gegebene Fläche?

Elektrostatik ( ) r r. Der elektrische Fluss Ψ : Wie stark strömt das elektrische Feld durch eine gegebene Fläche? Der elektrische Fluss Ψ : Wie stark strömt das elektrische Feld durch eine gegebene Fläche? A r r ( ) Φ ΨA = E r A r da Experimentalphysik für Biologen und Chemiker, O. Benson & A. Peters, HumboldtUniversität

Mehr

Theoretische Physik: Elektrodynamik

Theoretische Physik: Elektrodynamik Ferienkurs Merlin Mitschek, Verena Walbrecht.3.25 Ferienkurs Theoretische Physik: Elektrodynamik Probeklausur - Lösung Technische Universität München Fakultät für Physik Ferienkurs Merlin Mitschek, Verena

Mehr