(für Grund- und Leistungskurse Mathematik) 26W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP

Größe: px
Ab Seite anzeigen:

Download "(für Grund- und Leistungskurse Mathematik) 26W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP"

Transkript

1 .RPELQDWRULN (für Grund- und Leistungsurse Mathemati) 6W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP Nach dem Studium dieses Sripts sollten folgende Begriffe beannt sein: n-menge, Kreuzprodut, n-tupel Zählprinzip Permutation -Tupel aus n-menge -Permutation aus n-menge -Teilmenge aus n-menge MISSISSIPPI-Problem Außerdem sollten folgende Methoden beannt sein: Anwendung des Zählprinzips Berechnung von Permutationen Berechnung der Anzahl von -Tupeln aus n-menge Berechnung der Anzahl von -Permutationen aus n-menge Berechnung der Anzahl von -Teilmengen aus n-menge Berechnung der Anzahl von n-tupeln mit gleichen Elementen Kenntnis der verschiedenen Urnenmodelle Erennen von Indizien, die für ein bestimmtes Urnenmodell sprechen 9RUEHPHUNXQJHQ Die.RPELQDWRULN ist die Lehre vom V\VWHPDWLVFKHQ $E]lKOHQ HQGOLFKHU 0HQJHQ. Es geht dabei darum möglichst geschict herauszufinden, wie viele Möglicheiten es in bestimmten Situationen gibt, also zum Beispiel, wie viele Paschs es beim Werfen zweier Würfel gibt. In einfachen Fällen - wenn die Anzahl der Möglicheiten nicht zu groß ist - wird man durch einfaches systematisches Aufzählen aller Möglicheiten zum richtigen Ergebnis ommen. Häufig ist die Anzahl der Möglicheiten jedoch so groß, dass ein Aufzählen aller Möglicheiten nicht möglich ist. Hier helfen die 0HWKRGHQGHU.RPELQDWRULN weiter. Zu Beginn eine typische $XIJDEHDXVGHU.RPELQDWRULN: Beim beannten Würfelspiel <DW]L bzw..qliio werden 5 Würfel auf einmal geworfen. Wie viele Möglicheiten gibt es für ein Doppelpärchen? Dieses Sript soll helfen, dass die Aufgabe durch Anwenden der Methoden der Kombinatori gelöst werden ann. Einen Lösungsvorschlag gibt es am Ende des Sripts. Zunächst müssen folgende Begriffe beannt sein: Unter einer Q0HQJH A versteht man eine Menge mit n Elementen. Zum Beispiel ist A = {; ; 3} eine 3-Menge. $ $[$ heißt.uhx]surgxnwyrq$, d. h. man ombiniert jedes Element von A mit jedem Element von A und erhält damit die Menge aller Paare (a i ; a j ), wobei a i, a j A mit i, j n. Also A = {( a i ; a j ) mit a i, a j A und i, j n}. Entprechend bedeutet A n = A A. Ein Element von A n heißt Q7XSHOD D D. n mal Im Folgenden werden die verschiedenen JUXQGOHJHQGHQ0HWKRGHQGHU.RPELQDWRULN vorgestellt..rpelqdwruln - Vers. v Seite

2 hehuvlfkw EHUGLHJUXQGOHJHQGHQ0HWKRGHQGHU.RPELQDWRULN 'DV=lKOSULQ]LS Gibt es für ein Tupel für die. Stelle n Möglicheiten, für die. Stelle n Möglicheiten,..., für die. Stelle n Möglicheiten, so gibt es insgesamt n n... n Möglicheiten. =lkosulq]ls: Es gibt insgesamt n n... n verschiedene Tupel. Beispiel: Wie viele 3-stellige Zahlen zwischen 00 und 400 gibt es, deren Zehnerstelle prim ist? Lösung: Für die Hunderterstelle gibt es die Ziffern,, 3, also n = 3. Für die Zehnerstelle gibt es die Ziffern, 3, 5, 7, also n = 4. Für die Einerstelle gibt es die Ziffern 0 bis 9, also n 3 = 0. Somit gibt es insgesamt n n n 3 = = 0 Zahlen der gewünschten Art. 3HUPXWDWLRQ Eine 3HUPXWDWLRQ ist ein n-tupel (a,..., a n ) A n mit ODXWHUYHUVFKLHGHQHQD. Es gibt genau Q verschiedene Permutationen. Definition Das Produt Q Q Q heißt Q)DNXOWlW. Man legt fest: 0! =. Beispiel: Es sei A = {,, 3}. Dann lassen sich die Zahlen, und 3 auf folgende Art anordnen: 3, 3, 3, 3, 3, 3. Damit gibt es die Permutationen (3), (3), (3), (3), (3), (3). Die Anzahl von 3-Permutationen ist 3! = 3 = 6. Vergleiche dazu das Zählprinzip! 8UQHQPRGHOO: Aus einer Urne mit n Kugeln werden DOOH Q.XJHOQ RKQH =XU FNOHJHQ XQWHU %HDFKWXQJ GHU N7XSHODXVQ0HQJH Ein N7XSHODXVHLQHUQ0HQJH ist von der Form (a, a,..., a ) A mit N ç; A = Menge aller -Tupel. Es gibt genau Q verschiedene -Tupel aus einer n-menge. Beispiel: Es sei A = {,, 3}, = Dann ist A = {(, ), (, ), (, 3), (, ), (, ), (, 3), (3, ), (3, ), (3, 3)}. Es gibt also 3 = 9 verschiedene -Tupel aus einer 3-Menge. 8UQHQPRGHOO: Aus einer Urne mit n Kugeln werden N.XJHOQ PLW =XU FNOHJHQ XQWHU %HDFKWXQJ GHU N3HUPXWDWLRQDXVQ0HQJH Eine N3HUPXWDWLRQ DXV HLQHU Q0HQJH ist von der Form (a, a,..., a ) A mit N d Q und ODXWHU YHUVFKLHGHQHQD. Es gibt genau verschiedene -Permutationen aus einer n-menge. (n )! Beispiel: Es sei A = {,, 3}, = Dann ist A = {(, ), (, 3), (, ), (, 3), (3, ), (3, )}. Es gibt also 3! = 6 verschiedene -Permutationen aus einer 3-Menge.! 8UQHQPRGHOO: Aus einer Urne mit n Kugeln werden N.XJHOQ RKQH =XU FNOHJHQ XQWHU %HDFKWXQJ GHU.RPELQDWRULN - Vers. v Seite

3 N7HLOPHQJHDXVQ0HQJH Eine N7HLOPHQJHDXVHLQHUQ0HQJH ist von der Form {a, a,..., a } mit NdQ und ODXWHUYHUVFKLHGHQHQD Es gibt genau n verschiedene -Teilmengen aus einer n-menge. n Definition Der Ausdruc = heißt %LQRPLDONRHIIL]LHQW (n )!! n wird gelesen als ÄQ EHUN³ bzw. ÄNDXVQ³. Beispiel: Es sei A = {,, 3}, = Dann sind die Ergebnisse von der Form {;}, {;3}, {;3}. 3 3! Es gibt also = = 3 verschiedene -Teilmengen aus einer 3 Menge.!! 8UQHQPRGHOO: Aus einer Urne mit n Kugeln werden N.XJHOQ RKQH =XU FNOHJHQ RKQH %HDFKWXQJ GHU N.RPELQDWLRQDXVQ0HQJH Hinweis: Dieser Punt ist in Bayern nicht abiturrelevant, wird aber der Vollständigeit halber erwähnt! Eine N.RPELQDWLRQDXVHLQHUQ0HQJH ist von der Form (a, a,..., a ), wobei ç. n + Es gibt genau verschiedene -Kombinationen aus einer n-menge. Beispiel: Es sei A = {,, 3}, = Dann gibt es die Kombinationen (;), (;), (;3), (;), (;3), (3;3) ! Es gibt also genau = = 6 = verschiedene -Kombinationen aus einer 3-Menge.!! 8UQHQPRGHOO: Aus einer Urne mit n Kugeln werden N.XJHOQ PLW =XU FNOHJHQ RKQH %HDFKWXQJ GHU Q7XSHOPLWJOHLFKHQ(OHPHQWHQ Es sei (a, a,..., a n ) ein n-tupel PLWPHKUHUHQJOHLFKHQ(OHPHQWH. Die Anzahlen der jeweils gleichen Elemente seien n, n,..., n wobei n + n n = n gelten muss. Für die Anzahl der verschiedenen Tupel gilt: Es gibt genau n! n! verschiedene Tupel. Beispiel: Diese Problem ist auch als MISSISSIPPI - Problem beannt, da zum Beispiel gefragt werden ann, auf wie viele verschiedene Arten sich die Buchstaben des Wortes MISSISSIPPI anordnen lassen. Lösung: Sie lassen sich auf! = verschiedene Arten anordnen.!4!!4! Dieses Ergebnis erhält man auch durch die Rechnung = UQHQPRGHOO: Aus einer Urne mit n Kugeln, wobei so und so viele Kugeln gleich sind, werden Q.XJHOQRKQH =XU FNOHJHQXQWHU%HDFKWXQJ gezogen..rpelqdwruln - Vers. v Seite 3

4 hehuvlfkw EHUGLHJUXQGOHJHQGHQ8UQHQPRGHOOH Zu jeder der in Kapitel beschriebenen Methoden gibt es ein entsprechendes 8UQHQPRGHOO. Die Urnenmodelle unterscheiden sich dabei in der $UWGHV$XVZDKOYHUIDKUHQV, also dem =LHKPRGXV. Um das passende Urnenmodell zu finden, müssen folgende Fragen gelärt werden:. Was entspricht den Kugeln und wie viele Kugeln müssen es sein? n =?. Wie viele Kugeln werden gezogen? =? 3. Werden die Kugeln mit oder ohne Zurüclegen gezogen? 4. Muss die Reihenfolge der gezogenen Kugeln berücsichtigt werden? Hat man diese Fragen gelärt, so ennt man die zugehörige Methode aus der Kombinatori und damit die Anzahl der möglichen Ergebnisse.,QGL]LHQ, die zur Klärung dieser Fragen und damit auf einen bestimmten Ziehmodus schließen lassen, sind - mehr oder weniger gut sichtbar - in jeder Aufgabe verstect. 8UQHQPRGHOOHZHQQDOOHQ.XJHOQJH]RJHQZHUGHQ In einer Urne befinden sich Q.XJHOQ. )DOO: DOOHQ.XJHOQVLQGYHUVFKLHGHQ und alle n Kugeln werden RKQH=XU FNOHJHQ XQWHU%HDFKWXQJGHU 5HLKHQIROJH gezogen Es handelt sich um das Urnenmodell für 3HUPXWDWLRQHQ )DOO: von den Q.XJHOQ VLQG VR XQG VR YLHOH JOHLFK und alle n Kugeln werden RKQH =XU FNOHJHQ XQWHU %HDFKWXQJ gezogen Es handelt sich um das Urnenmodell für Q7XSHO PLW JOHLFKHQ (OHPHQWHQ und damit dem MISSISSIPPI - Problem 8UQHQPRGHOOHZHQQN.XJHOQJH]RJHQZHUGHQ In einer Urne befinden sich Q.XJHOQ;es werden N.XJHOQJH]RJHQ. Die Anzahl der möglichen Ergebnisse hängt nun von dem verwendeten Auswahlverfahren (= Ziehmodus) ab. Folgende Übersicht zeigt die Möglicheiten auf: XQWHU%HDFKWXQJ Auswahlverfahren PLW=XU FNOHJHQ RKQH=XU FNOHJHQ Tupel n Permutationen (n )! RKQH %HDFKWXQJ Kombinationen n + Mengen n Beispiel: Aus einer Urne mit 3 Kugeln werden Kugeln gezogen, d. h. aus einer 3 - Menge A = {; ; 3} werden Elemente gezogen. Die möglichen Ergebnisse sind: XQWHU%HDFKWXQJ Auswahlverfahren ; ; ;3 PLW=XU FNOHJHQ RKQH=XU FNOHJHQ RKQH %HDFKWXQJ ; ; ;3 ( ) ( ) ( ) ( ) ( ) ( ) ( ; ) ( ;) ( ;3) ( 3; ) ( 3;) ( 3;3) ( ;) ( ;3) ( 3;3) ( ;) ( ;3) { ;} { ;3 } ( ; ) ( ;3) { ;3} ( 3; ) ( 3;) Beachte die unterschiedlichen Schreibweisen bei den Ergebnisse.RPELQDWRULN - Vers. v Seite 4

5 %HLVSLHOH. Beispiel: Auf wie viele Arten önnen sich 3 Personen auf 3 Stühle verteilen? Lösung: Klärung der Fragen. - 4.? zu.: die Kugeln entsprechen den 3 Personen Q zu.: die 3 Stühle entsprechen 3 Ziehungen N zu 3.: da sich eine Person nur auf einen Stuhl setzen ann, ann eine Kugel nicht zweimal gezogen werden =LHKHQRKQH=XU FNOHJHQ zu 4.: es ist entscheidend auf welchem Stuhl eine Person sitzt XQWHU%HU FNVLFKWLJXQJ 8UQHQPRGHOOGHU3HUPXWDWLRQHQ Damit ennt man die Anzahl der Möglicheiten, nämlich = 3! = 6.. Beispiel: Wie viele verschiedene Ergebnisse gibt es bei einem 4-fachen Würfelwurf? Lösung: Klärung der Fragen. - 4.? zu.: die Kugeln entsprechen den 6 Augenzahlen Q zu.: es sind 4 Würfe N zu 3.: die Augenzahlen önnen sich wiederholen =LHKHQPLW=XU FNOHJHQ zu 4.: es ist entscheidend in welcher Reihenfolge die Augenzahlen ommen XQWHU %HU FNVLFKWLJXQJ 8UQHQPRGHOOGHUN7XSHODXVQ0HQJH Damit ennt man die Anzahl der Möglicheiten, nämlich n = 6 4 = Beispiel: Wie viele verschiedene Ergebnisse gibt es bei einem 3-fachen Würfelwurf, wenn alle Augenzahlen verschieden sind? Lösung: Klärung der Fragen. - 4.? zu.: die Kugeln entsprechen den 6 Augenzahlen Q zu.: es sind 3 Würfe N zu 3.: die Augenzahlen dürfen sich nicht wiederholen =LHKHQRKQH=XU FNOHJHQ zu 4.: es ist entscheidend in welcher Reihenfolge die Augenzahlen ommen XQWHU %HU FNVLFKWLJXQJ 8UQHQPRGHOOGHUN3HUPXWDWLRQHQDXVQ0HQJH Damit ennt man die Anzahl der Möglicheiten, nämlich 6! = = 0. (n )! (6 3)! 4. Beispiel: Wie viele 4-stellige Zahlen haben genau mal die Ziffer? Lösung: Klärung der Fragen. - 4.? zu.: die Kugeln entsprechen den 4 Stellen Q zu.: die Ziffer soll an Stellen sein N zu 3.: jede Stelle ommt genau mal vor =LHKHQRKQH=XU FNOHJHQ zu 4.: Ergebnisse wie xx, xx, xx usw. sind gleichwertig RKQH%HU FNVLFKWLJXQJ 8UQHQPRGHOOGHUN7HLOPHQJHQDXVQ0HQJH Damit ennt man die Anzahl der Möglicheiten, nämlich 4! = = 6. (n )!! (4 )!! Bemerung: Natürlich ann man jede dieser Aufgabe auch in anderer Art und Weise lösen..rpelqdwruln - Vers. v Seite 5

6 6FKOXVVEHPHUNXQJ Die in Abschnitt beschriebenen Methoden stellen die grundlegenden Methoden der Kombinatori dar. In gewissen Situationen müssen diese 0HWKRGHQJHHLJQHWPLWHLQDQGHUNRPELQLHUW werden. Als Beispiel dazu dient die eingangs gestellte Aufgabe. (LQ/ VXQJVYRUVFKODJI UGLHHLQJDQJVJHVWHOOWH$XIJDEH Ein Doppelpärchen ist von der Form ( a a b b c ), wobei a, b, und c zueinander verschieden sind. In dem Tupel ann die Reihenfolge der a, b und c beliebig vertauscht sein. 5! Es liegt zum Einen das MISSISSIPPI-Problem vor, d. h. es gibt = 30 verschiedene Möglicheiten a, b!!! und c anzuordnen. Zum Anderen sind a und b verschiedene Zahlen von bis 6, die ihre Rolle vertauschen önnen. Somit gibt es für 6 4 a und b = 5 Möglicheiten. Für c bleiben damit = 4 Möglicheiten. 5! 6 4 Insgesamt gibt es damit nach dem Zählprinzip = = 800!!! verschiedene Doppelpärchen..RPELQDWRULN - Vers. v Seite 6

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!. 040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl

Mehr

Zeichen bei Zahlen entschlüsseln

Zeichen bei Zahlen entschlüsseln Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

Bestimmen der Wahrscheinlichkeiten mithilfe von Zählstrategien

Bestimmen der Wahrscheinlichkeiten mithilfe von Zählstrategien R. Brinmann http://brinmann-du.de Seite 4.0.2007 Bestimmen der Wahrscheinlicheiten mithilfe von Zählstrategien Die bisherigen Aufgaben zur Wahrscheinlicheitsrechnung onnten im Wesentlichen mit übersichtlichen

Mehr

Professionelle Seminare im Bereich MS-Office

Professionelle Seminare im Bereich MS-Office Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion

Mehr

15.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit

15.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit 5.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit Einführendes Beispiel ( Erhöhung der Sicherheit bei Flugreisen ) Die statistische Wahrscheinlichkeit, dass während eines Fluges ein Sprengsatz an Bord

Mehr

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Vollständigkeit halber aufgeführt. Gehen wir einmal davon aus, dass die von uns angenommenen 70% im Beispiel exakt berechnet sind. Was würde

Mehr

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 30.11.2013 Schriftliche Übung Mathematik Stochastik II (Nachschreiber) Jan. 2007

R. Brinkmann http://brinkmann-du.de Seite 1 30.11.2013 Schriftliche Übung Mathematik Stochastik II (Nachschreiber) Jan. 2007 R. Brinkmann http://brinkmann-du.de Seite 1 30.11.2013 Schriftliche Übung Mathematik Stochastik II (Nachschreiber) Jan. 2007 SG15/25D NAME: Lösungen 1. In einer Packung sind Glühbirnen, davon sind zwei

Mehr

AGROPLUS Buchhaltung. Daten-Server und Sicherheitskopie. Version vom 21.10.2013b

AGROPLUS Buchhaltung. Daten-Server und Sicherheitskopie. Version vom 21.10.2013b AGROPLUS Buchhaltung Daten-Server und Sicherheitskopie Version vom 21.10.2013b 3a) Der Daten-Server Modus und der Tresor Der Daten-Server ist eine Betriebsart welche dem Nutzer eine grosse Flexibilität

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

Übungsaufgaben - Kombinatorik. Übungsaufgaben - Kombinatorik. Aufgabe 1 Schwierigkeit: X. Aufgabe 3 Schwierigkeit: X

Übungsaufgaben - Kombinatorik. Übungsaufgaben - Kombinatorik. Aufgabe 1 Schwierigkeit: X. Aufgabe 3 Schwierigkeit: X Aufgabe 1 Schwierigkeit: X Aufgabe 3 Schwierigkeit: X Einer Gruppe von 15 Schülern werden 3 Theaterkarten angeboten. Auf wie viele Arten können die Karten verteilt werden, wenn sich die Karten auf nummerierte

Mehr

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses.

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses. XI. Binomialverteilung ================================================================== 11.1 Definitionen -----------------------------------------------------------------------------------------------------------------

Mehr

Die Größe von Flächen vergleichen

Die Größe von Flächen vergleichen Vertiefen 1 Die Größe von Flächen vergleichen zu Aufgabe 1 Schulbuch, Seite 182 1 Wer hat am meisten Platz? Ordne die Figuren nach ihrem Flächeninhalt. Begründe deine Reihenfolge. 1 2 3 4 zu Aufgabe 2

Mehr

Wie Sie beliebig viele PINs, die nur aus Ziffern bestehen dürfen, mit einem beliebigen Kennwort verschlüsseln: Schritt 1

Wie Sie beliebig viele PINs, die nur aus Ziffern bestehen dürfen, mit einem beliebigen Kennwort verschlüsseln: Schritt 1 Wie Sie beliebig viele PINs, die nur aus Ziffern bestehen dürfen, mit einem beliebigen Kennwort verschlüsseln: Schritt 1 Zunächst einmal: Keine Angst, die Beschreibung des Verfahrens sieht komplizierter

Mehr

Daten sammeln, darstellen, auswerten

Daten sammeln, darstellen, auswerten Vertiefen 1 Daten sammeln, darstellen, auswerten zu Aufgabe 1 Schulbuch, Seite 22 1 Haustiere zählen In der Tabelle rechts stehen die Haustiere der Kinder aus der Klasse 5b. a) Wie oft wurden die Haustiere

Mehr

Maristengymnasium Fürstenzell zuletzt geändert am 10.03.2001 Aufgaben zur Kombinatorik (mit Lösungen)

Maristengymnasium Fürstenzell zuletzt geändert am 10.03.2001 Aufgaben zur Kombinatorik (mit Lösungen) Maristengymnasium Fürstenzell zuletzt geändert am 0.0.00 Aufgaben zur Kombinatorik (mit Lösungen) 0.. Wieviele Möglichkeiten gibt es für Kinder, sich auf einen Schlitten zu setzen, wenn ihn nur davon steuern

Mehr

Variationen Permutationen Kombinationen

Variationen Permutationen Kombinationen Variationen Permutationen Kombinationen Mit diesen Rechenregeln lässt sich die Wahrscheinlichkeit bestimmter Ereigniskombinationen von gleichwahrscheinlichen Elementarereignissen ermitteln, und erleichtert

Mehr

Jede Zahl muss dabei einzeln umgerechnet werden. Beginnen wir also ganz am Anfang mit der Zahl,192.

Jede Zahl muss dabei einzeln umgerechnet werden. Beginnen wir also ganz am Anfang mit der Zahl,192. Binäres und dezimales Zahlensystem Ziel In diesem ersten Schritt geht es darum, die grundlegende Umrechnung aus dem Dezimalsystem in das Binärsystem zu verstehen. Zusätzlich wird auch die andere Richtung,

Mehr

Anleitung über den Umgang mit Schildern

Anleitung über den Umgang mit Schildern Anleitung über den Umgang mit Schildern -Vorwort -Wo bekommt man Schilder? -Wo und wie speichert man die Schilder? -Wie füge ich die Schilder in meinen Track ein? -Welche Bauteile kann man noch für Schilder

Mehr

Übungsaufgaben Wahrscheinlichkeit

Übungsaufgaben Wahrscheinlichkeit Übungsaufgaben Wahrscheinlichkeit Aufgabe 1 (mdb500405): In einer Urne befinden sich gelbe (g), rote (r), blaue (b) und weiße (w) Kugel (s. Bild). Ohne Hinsehen sollen aus der Urne in einem Zug Kugeln

Mehr

Zahlenwinkel: Forscherkarte 1. alleine. Zahlenwinkel: Forschertipp 1

Zahlenwinkel: Forscherkarte 1. alleine. Zahlenwinkel: Forschertipp 1 Zahlenwinkel: Forscherkarte 1 alleine Tipp 1 Lege die Ziffern von 1 bis 9 so in den Zahlenwinkel, dass jeder Arm des Zahlenwinkels zusammengezählt das gleiche Ergebnis ergibt! Finde möglichst viele verschiedene

Mehr

Statuten in leichter Sprache

Statuten in leichter Sprache Statuten in leichter Sprache Zweck vom Verein Artikel 1: Zivil-Gesetz-Buch Es gibt einen Verein der selbstbestimmung.ch heisst. Der Verein ist so aufgebaut, wie es im Zivil-Gesetz-Buch steht. Im Zivil-Gesetz-Buch

Mehr

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort:

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort: Tangentengleichung Wie Sie wissen, gibt die erste Ableitung einer Funktion deren Steigung an. Betrachtet man eine fest vorgegebene Stelle, gibt f ( ) also die Steigung der Kurve und somit auch die Steigung

Mehr

Einführung in. Logische Schaltungen

Einführung in. Logische Schaltungen Einführung in Logische Schaltungen 1/7 Inhaltsverzeichnis 1. Einführung 1. Was sind logische Schaltungen 2. Grundlegende Elemente 3. Weitere Elemente 4. Beispiel einer logischen Schaltung 2. Notation von

Mehr

Englische Division. ... und allgemeine Hinweise

Englische Division. ... und allgemeine Hinweise Das folgende Verfahren ist rechnerisch identisch mit dem Normalverfahren; es unterscheidet sich nur in der Schreibweise des Rechenschemas Alle Tipps und Anmerkungen, die über die Besonderheiten dieser

Mehr

Prozentrechnung. Wir können nun eine Formel für die Berechnung des Prozentwertes aufstellen:

Prozentrechnung. Wir können nun eine Formel für die Berechnung des Prozentwertes aufstellen: Prozentrechnung Wir beginnen mit einem Beisiel: Nehmen wir mal an, ein Handy kostet 200 und es gibt 5% Rabatt (Preisnachlass), wie groß ist dann der Rabatt in Euro und wie viel kostet dann das Handy? Wenn

Mehr

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:

Mehr

LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen.

LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen. Zusätze zum Gelben Rechenbuch LU-Zerlegung Peter Furlan Verlag Martina Furlan Inhaltsverzeichnis Definitionen 2 (Allgemeine) LU-Zerlegung 2 3 Vereinfachte LU-Zerlegung 3 4 Lösung eines linearen Gleichungssystems

Mehr

Stellvertretenden Genehmiger verwalten. Tipps & Tricks

Stellvertretenden Genehmiger verwalten. Tipps & Tricks Tipps & Tricks INHALT SEITE 1. Grundlegende Informationen 3 2.1 Aktivieren eines Stellvertretenden Genehmigers 4 2.2 Deaktivieren eines Stellvertretenden Genehmigers 11 2 1. Grundlegende Informationen

Mehr

Leichte-Sprache-Bilder

Leichte-Sprache-Bilder Leichte-Sprache-Bilder Reinhild Kassing Information - So geht es 1. Bilder gucken 2. anmelden für Probe-Bilder 3. Bilder bestellen 4. Rechnung bezahlen 5. Bilder runterladen 6. neue Bilder vorschlagen

Mehr

Kurzanleitung MAN E-Learning (WBT)

Kurzanleitung MAN E-Learning (WBT) Kurzanleitung MAN E-Learning (WBT) Um Ihr gebuchtes E-Learning zu bearbeiten, starten Sie bitte das MAN Online- Buchungssystem (ICPM / Seminaris) unter dem Link www.man-academy.eu Klicken Sie dann auf

Mehr

Repetitionsaufgaben Wurzelgleichungen

Repetitionsaufgaben Wurzelgleichungen Repetitionsaufgaben Wurzelgleichungen Inhaltsverzeichnis A) Vorbemerkungen B) Lernziele C) Theorie mit Aufgaben D) Aufgaben mit Musterlösungen 4 A) Vorbemerkungen Bitte beachten Sie: Bei Wurzelgleichungen

Mehr

WS 2008/09. Diskrete Strukturen

WS 2008/09. Diskrete Strukturen WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Zwei Gleichungen mit zwei Unbekannten Es kommt häufig vor, dass man nicht mit einer Variablen alleine auskommt, um ein Problem zu lösen. Das folgende Beispiel soll dies verdeutlichen

Mehr

4. AUSSAGENLOGIK: SYNTAX. Der Unterschied zwischen Objektsprache und Metasprache lässt sich folgendermaßen charakterisieren:

4. AUSSAGENLOGIK: SYNTAX. Der Unterschied zwischen Objektsprache und Metasprache lässt sich folgendermaßen charakterisieren: 4. AUSSAGENLOGIK: SYNTAX 4.1 Objektsprache und Metasprache 4.2 Gebrauch und Erwähnung 4.3 Metavariablen: Verallgemeinerndes Sprechen über Ausdrücke von AL 4.4 Die Sprache der Aussagenlogik 4.5 Terminologie

Mehr

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben

Mehr

Spiel und Spaß im Freien. Arbeitsblat. Arbeitsblatt 1. Zeichnung: Gisela Specht. Diese Vorlage darf für den Unterricht fotokopiert werden.

Spiel und Spaß im Freien. Arbeitsblat. Arbeitsblatt 1. Zeichnung: Gisela Specht. Diese Vorlage darf für den Unterricht fotokopiert werden. Spiel und Spaß im Freien Arbeitsblatt 1 Arbeitsblat 1 Zeichnung: Gisela Specht Arbeitsblatt 1 Was kann man mit diesen Dingen machen? Was passt zusammen? Verbinde die richtigen Bildkarten miteinander. 2

Mehr

WinVetpro im Betriebsmodus Laptop

WinVetpro im Betriebsmodus Laptop WinVetpro im Betriebsmodus Laptop Um Unterwegs Daten auf einem mobilen Gerät mit WinVetpro zu erfassen, ohne den Betrieb in der Praxis während dieser Zeit zu unterbrechen und ohne eine ständige Online

Mehr

Die Post hat eine Umfrage gemacht

Die Post hat eine Umfrage gemacht Die Post hat eine Umfrage gemacht Bei der Umfrage ging es um das Thema: Inklusion Die Post hat Menschen mit Behinderung und Menschen ohne Behinderung gefragt: Wie zufrieden sie in dieser Gesellschaft sind.

Mehr

Alle Schlüssel-Karten (blaue Rückseite) werden den Schlüssel-Farben nach sortiert und in vier getrennte Stapel mit der Bildseite nach oben gelegt.

Alle Schlüssel-Karten (blaue Rückseite) werden den Schlüssel-Farben nach sortiert und in vier getrennte Stapel mit der Bildseite nach oben gelegt. Gentlemen", bitte zur Kasse! Ravensburger Spiele Nr. 01 264 0 Autoren: Wolfgang Kramer und Jürgen P. K. Grunau Grafik: Erhard Dietl Ein Gaunerspiel für 3-6 Gentlemen" ab 10 Jahren Inhalt: 35 Tresor-Karten

Mehr

Kugel-Fächer-Modell. 1fach. 3fach. Für die Einzelkugel gibt es 3 Möglichkeiten. 6fach. 3! Möglichkeiten

Kugel-Fächer-Modell. 1fach. 3fach. Für die Einzelkugel gibt es 3 Möglichkeiten. 6fach. 3! Möglichkeiten Kugel-Fächer-Modell n Kugeln (Rosinen) sollen auf m Fächer (Brötchen) verteilt werden, zunächst 3 Kugeln auf 3 Fächer. 1fach 3fach Für die Einzelkugel gibt es 3 Möglichkeiten } 6fach 3! Möglichkeiten Es

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

Wie Sie mit Mastern arbeiten

Wie Sie mit Mastern arbeiten Wie Sie mit Mastern arbeiten Was ist ein Master? Einer der großen Vorteile von EDV besteht darin, dass Ihnen der Rechner Arbeit abnimmt. Diesen Vorteil sollten sie nutzen, wo immer es geht. In PowerPoint

Mehr

Erstellen einer Collage. Zuerst ein leeres Dokument erzeugen, auf dem alle anderen Bilder zusammengefügt werden sollen (über [Datei] > [Neu])

Erstellen einer Collage. Zuerst ein leeres Dokument erzeugen, auf dem alle anderen Bilder zusammengefügt werden sollen (über [Datei] > [Neu]) 3.7 Erstellen einer Collage Zuerst ein leeres Dokument erzeugen, auf dem alle anderen Bilder zusammengefügt werden sollen (über [Datei] > [Neu]) Dann Größe des Dokuments festlegen beispielsweise A4 (weitere

Mehr

Simulation LIF5000. Abbildung 1

Simulation LIF5000. Abbildung 1 Simulation LIF5000 Abbildung 1 Zur Simulation von analogen Schaltungen verwende ich Ltspice/SwitcherCAD III. Dieses Programm ist sehr leistungsfähig und wenn man weis wie, dann kann man damit fast alles

Mehr

MORE Profile. Pass- und Lizenzverwaltungssystem. Stand: 19.02.2014 MORE Projects GmbH

MORE Profile. Pass- und Lizenzverwaltungssystem. Stand: 19.02.2014 MORE Projects GmbH MORE Profile Pass- und Lizenzverwaltungssystem erstellt von: Thorsten Schumann erreichbar unter: thorsten.schumann@more-projects.de Stand: MORE Projects GmbH Einführung Die in More Profile integrierte

Mehr

Outlook. sysplus.ch outlook - mail-grundlagen Seite 1/8. Mail-Grundlagen. Posteingang

Outlook. sysplus.ch outlook - mail-grundlagen Seite 1/8. Mail-Grundlagen. Posteingang sysplus.ch outlook - mail-grundlagen Seite 1/8 Outlook Mail-Grundlagen Posteingang Es gibt verschiedene Möglichkeiten, um zum Posteingang zu gelangen. Man kann links im Outlook-Fenster auf die Schaltfläche

Mehr

Was ist Sozial-Raum-Orientierung?

Was ist Sozial-Raum-Orientierung? Was ist Sozial-Raum-Orientierung? Dr. Wolfgang Hinte Universität Duisburg-Essen Institut für Stadt-Entwicklung und Sozial-Raum-Orientierte Arbeit Das ist eine Zusammen-Fassung des Vortrages: Sozialräume

Mehr

Das große ElterngeldPlus 1x1. Alles über das ElterngeldPlus. Wer kann ElterngeldPlus beantragen? ElterngeldPlus verstehen ein paar einleitende Fakten

Das große ElterngeldPlus 1x1. Alles über das ElterngeldPlus. Wer kann ElterngeldPlus beantragen? ElterngeldPlus verstehen ein paar einleitende Fakten Das große x -4 Alles über das Wer kann beantragen? Generell kann jeder beantragen! Eltern (Mütter UND Väter), die schon während ihrer Elternzeit wieder in Teilzeit arbeiten möchten. Eltern, die während

Mehr

Manager. von Peter Pfeifer, Waltraud Pfeifer, Burkhard Münchhagen. Spielanleitung

Manager. von Peter Pfeifer, Waltraud Pfeifer, Burkhard Münchhagen. Spielanleitung Manager von Peter Pfeifer, Waltraud Pfeifer, Burkhard Münchhagen Spielanleitung Manager Ein rasantes Wirtschaftsspiel für 3 bis 6 Spieler. Das Glück Ihrer Firma liegt in Ihren Händen! Bestehen Sie gegen

Mehr

MATHEMATIK 3 STUNDEN. DATUM: 8. Juni 2009

MATHEMATIK 3 STUNDEN. DATUM: 8. Juni 2009 EUROPÄISCHES ABITUR 2009 MATHEMATIK 3 STUNDEN DATUM: 8. Juni 2009 DAUER DES EXAMENS : 3 Stunden (180 Minuten) ZUGELASSENE HILFSMITTEL : Europäische Formelsammlung Nicht graphischer und nicht programmierbarer

Mehr

Erfahrungen mit Hartz IV- Empfängern

Erfahrungen mit Hartz IV- Empfängern Erfahrungen mit Hartz IV- Empfängern Ausgewählte Ergebnisse einer Befragung von Unternehmen aus den Branchen Gastronomie, Pflege und Handwerk Pressegespräch der Bundesagentur für Arbeit am 12. November

Mehr

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion

Mehr

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1 B 1.0 B 1.1 L: Wir wissen von, dass sie den Scheitel hat und durch den Punkt läuft. Was nichts bringt, ist beide Punkte in die allgemeine Parabelgleichung einzusetzen und das Gleichungssystem zu lösen,

Mehr

Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer

Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer Allgemein: Das RSA-Verschlüsselungsverfahren ist ein häufig benutztes Verschlüsselungsverfahren, weil es sehr sicher ist. Es gehört zu der Klasse der

Mehr

Die Bundes-Zentrale für politische Bildung stellt sich vor

Die Bundes-Zentrale für politische Bildung stellt sich vor Die Bundes-Zentrale für politische Bildung stellt sich vor Die Bundes-Zentrale für politische Bildung stellt sich vor Deutschland ist ein demokratisches Land. Das heißt: Die Menschen in Deutschland können

Mehr

Downloadfehler in DEHSt-VPSMail. Workaround zum Umgang mit einem Downloadfehler

Downloadfehler in DEHSt-VPSMail. Workaround zum Umgang mit einem Downloadfehler Downloadfehler in DEHSt-VPSMail Workaround zum Umgang mit einem Downloadfehler Downloadfehler bremen online services GmbH & Co. KG Seite 2 Inhaltsverzeichnis Vorwort...3 1 Fehlermeldung...4 2 Fehlerbeseitigung...5

Mehr

Definition und Begriffe

Definition und Begriffe Merkblatt: Das Dreieck Definition und Begriffe Das Dreieck ist ein Vieleck. In der Ebene ist es die einfachste Figur, die von geraden Linien begrenzt wird. Ecken: Jedes Dreieck hat drei Ecken, die meist

Mehr

Durch Wissen Millionär WerDen... Wer hat zuerst die Million erreicht? spielanleitung Zahl der spieler: alter: redaktion / autor: inhalt:

Durch Wissen Millionär WerDen... Wer hat zuerst die Million erreicht? spielanleitung Zahl der spieler: alter: redaktion / autor: inhalt: Spielanleitung Durch Wissen Millionär werden... Diesen Traum kann man sich in diesem beliebten Quiz-Spiel erfüllen. Ob allein oder in der geselligen Runde dieses Quiz enthält 330 Fragen und 1.320 Multiple-Choice-Antworten.

Mehr

Mah Jongg - Ein Spiel für 4 Spieler

Mah Jongg - Ein Spiel für 4 Spieler Mah Jongg - Ein Spiel für 4 Spieler Nein! Es ist nicht eine der vielen Patience-Varianten, die auf Computern zu finden sind, gemeint. Wir spielen in fester Runde seit nunmehr über 10 Jahren das Spiel,

Mehr

Binäre Bäume. 1. Allgemeines. 2. Funktionsweise. 2.1 Eintragen

Binäre Bäume. 1. Allgemeines. 2. Funktionsweise. 2.1 Eintragen Binäre Bäume 1. Allgemeines Binäre Bäume werden grundsätzlich verwendet, um Zahlen der Größe nach, oder Wörter dem Alphabet nach zu sortieren. Dem einfacheren Verständnis zu Liebe werde ich mich hier besonders

Mehr

Festigkeit von FDM-3D-Druckteilen

Festigkeit von FDM-3D-Druckteilen Festigkeit von FDM-3D-Druckteilen Häufig werden bei 3D-Druck-Filamenten die Kunststoff-Festigkeit und physikalischen Eigenschaften diskutiert ohne die Einflüsse der Geometrie und der Verschweißung der

Mehr

FastBill Automatic. Dokumentation Versand. FastBill GmbH. Holteyer Straße 30 45289 Essen Telefon 0201 47091505 Telefax 0201 54502360

FastBill Automatic. Dokumentation Versand. FastBill GmbH. Holteyer Straße 30 45289 Essen Telefon 0201 47091505 Telefax 0201 54502360 FastBill GmbH Holteyer Straße 30 45289 Essen Telefon 0201 47091505 Telefax 0201 54502360 FastBill Automatic Dokumentation Versand 1 Inhaltsverzeichnis: 1. Grundlegendes 2. Produkteinstellungen 2.1. Grundeinstellungen

Mehr

AOK Pflege: Praxisratgeber Sturzprävention Übungen zur Stärkung des Gleichgewichts

AOK Pflege: Praxisratgeber Sturzprävention Übungen zur Stärkung des Gleichgewichts Gut für das Gleichgewicht Ein trainierter Gleichgewichtssinn gibt dem Pflegebedürftigen Sicherheit und Selbstvertrauen. Je abwechslungsreicher die Bewegungen, desto besser wird das Zusammenspiel von Muskeln

Mehr

Bedienungsanleitung: Onlineverifizierung von qualifiziert signierten PDF-Dateien

Bedienungsanleitung: Onlineverifizierung von qualifiziert signierten PDF-Dateien Sie haben von der VR DISKONTBANK GmbH ein signiertes PDF-Dokument (i.d.r. eine Zentralregulierungsliste mit dem Status einer offiziellen Rechnung) erhalten und möchten nun die Signatur verifizieren, um

Mehr

Kapitel 4 Die Datenbank Kuchenbestellung Seite 1

Kapitel 4 Die Datenbank Kuchenbestellung Seite 1 Kapitel 4 Die Datenbank Kuchenbestellung Seite 1 4 Die Datenbank Kuchenbestellung In diesem Kapitel werde ich die Theorie aus Kapitel 2 Die Datenbank Buchausleihe an Hand einer weiteren Datenbank Kuchenbestellung

Mehr

DOWNLOAD. Wortfeld Recht. Fachausdrücke des Alltags verstehen und anwenden. Jens Eggert. Downloadauszug aus dem Originaltitel:

DOWNLOAD. Wortfeld Recht. Fachausdrücke des Alltags verstehen und anwenden. Jens Eggert. Downloadauszug aus dem Originaltitel: DOWNLOAD Jens Eggert Wortfeld Recht Fachausdrücke des Alltags verstehen und anwenden auszug aus dem Originaltitel: m Gericht Die 8a besichtigt ein Gerichtsgebäude. Sie werden von Frau Schmidt in Empfang

Mehr

Leitfaden für die Mitgliederregistrierung auf der neuen Webseite des SFC-Erkelenz

Leitfaden für die Mitgliederregistrierung auf der neuen Webseite des SFC-Erkelenz Leitfaden für die Mitgliederregistrierung auf der neuen Webseite des SFC-Erkelenz Warum Der Versand unserer Newsletter erfolgt über ein im Hintergrund unserer Webseite arbeitendes Funktionsmodul. Daher

Mehr

BERECHNUNG DER FRIST ZUR STELLUNGNAHME DES BETRIEBSRATES BEI KÜNDIGUNG

BERECHNUNG DER FRIST ZUR STELLUNGNAHME DES BETRIEBSRATES BEI KÜNDIGUNG Frist berechnen BERECHNUNG DER FRIST ZUR STELLUNGNAHME DES BETRIEBSRATES BEI KÜNDIGUNG Sie erwägen die Kündigung eines Mitarbeiters und Ihr Unternehmen hat einen Betriebsrat? Dann müssen Sie die Kündigung

Mehr

= i (V) = d 2. v = d! p! n da v 1 = v 2 gilt auch d 1 ÿ p ÿ n 1 = d 2 ÿ p ÿ n 2 (III) p kürzen (Division durch p) d 1 ÿ n 1 = d 2 ÿ n 2 (IV) oder

= i (V) = d 2. v = d! p! n da v 1 = v 2 gilt auch d 1 ÿ p ÿ n 1 = d 2 ÿ p ÿ n 2 (III) p kürzen (Division durch p) d 1 ÿ n 1 = d 2 ÿ n 2 (IV) oder v = d! p! n da v 1 = v 2 (I) (II) gilt auch d 1 ÿ p ÿ n 1 = d 2 ÿ p ÿ n 2 (III) p kürzen (Division durch p) d 1 ÿ n 1 = d 2 ÿ n 2 (IV) oder i = Übersetzungsverhältnis n 1 n 2 = d 2 d 1 = i (V) Beispiel

Mehr

Anwendungsbeispiele Buchhaltung

Anwendungsbeispiele Buchhaltung Kostenstellen in Webling Webling ist ein Produkt der Firma: Inhaltsverzeichnis 1 Kostenstellen 1.1 Was sind Kostenstellen? 1.2 Kostenstellen in der 2 Kostenstellen in Webling 2.1 Kostenstellen erstellen

Mehr

Anleitungen Einzelsituation

Anleitungen Einzelsituation 5 Anleitungen Einzelsituation 5.1 Lesen Seite 30 5.1.1 Einzelbuchstaben benennen Seite 30 5.1.2 Übungsblätter Einzelbuchstaben benennen Seite 32 5.1.3 Buchstaben zusammenziehen Seite 33 5.1.4 Übungsblätter

Mehr

)XQNWLRQVWDVWH8PEXFKHQ

)XQNWLRQVWDVWH8PEXFKHQ Kassensystem (X&D6RIW Š )XQNWLRQVWDVWH8PEXFKHQ Diese Funktion erlaubt es Ihnen, bestimmte gebuchte Artikel auf einen anderen Platz umzubuchen. Sie können variabel Artikel und Mengen auf einen anderen Tisch

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Mag. Christian Gürtler Programmierung Grundlagen der Informatik 2011 Inhaltsverzeichnis I. Allgemeines 3 1. Zahlensysteme 4 1.1. ganze Zahlen...................................... 4 1.1.1. Umrechnungen.................................

Mehr

Informationen zum Ambulant Betreuten Wohnen in leichter Sprache

Informationen zum Ambulant Betreuten Wohnen in leichter Sprache Informationen zum Ambulant Betreuten Wohnen in leichter Sprache Arbeiterwohlfahrt Kreisverband Siegen - Wittgenstein/ Olpe 1 Diese Information hat geschrieben: Arbeiterwohlfahrt Stephanie Schür Koblenzer

Mehr

Fachdidaktik der Informatik 18.12.08 Jörg Depner, Kathrin Gaißer

Fachdidaktik der Informatik 18.12.08 Jörg Depner, Kathrin Gaißer Fachdidaktik der Informatik 18.12.08 Jörg Depner, Kathrin Gaißer Klassendiagramme Ein Klassendiagramm dient in der objektorientierten Softwareentwicklung zur Darstellung von Klassen und den Beziehungen,

Mehr

Nicht über uns ohne uns

Nicht über uns ohne uns Nicht über uns ohne uns Das bedeutet: Es soll nichts über Menschen mit Behinderung entschieden werden, wenn sie nicht mit dabei sind. Dieser Text ist in leicht verständlicher Sprache geschrieben. Die Parteien

Mehr

HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN

HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN Zinsen haben im täglichen Geschäftsleben große Bedeutung und somit auch die eigentliche Zinsrechnung, z.b: - Wenn Sie Ihre Rechnungen zu spät

Mehr

EINMALEINS BEZIEHUNGSREICH

EINMALEINS BEZIEHUNGSREICH EINMALEINS BEZIEHUNGSREICH Thema: Übung des kleinen Einmaleins; operative Beziehungen erkunden Stufe: ab 2. Schuljahr Dauer: 2 bis 3 Lektionen Materialien: Kleine Einmaleinstafeln (ohne Farben), Punktefelder

Mehr

Kernfach Mathematik Thema: Analysis

Kernfach Mathematik Thema: Analysis Kernfach Mathemati Bahnlinie Bei A-Stadt endet eine Bahnlinie. In nebenstehender Zeichnung ist ein Koordinatenreuz so gelegt worden, dass A mit dem Ursprung zusammenfällt. Die Bahnlinie verläuft entlang

Mehr

Lösungen zur Party-Aufgabe

Lösungen zur Party-Aufgabe Lösungen zur Party-Aufgabe Die Clique von Tamara möchte einen Mädelsabend machen. Männer sind dabei unerwünscht. Die 5 Mädels planen zuerst bei Tamara im Garten vorzuglühen und danach in die angesagt Disko

Mehr

Aufgaben zur Flächenberechnung mit der Integralrechung

Aufgaben zur Flächenberechnung mit der Integralrechung ufgaben zur Flächenberechnung mit der Integralrechung ) Geben ist die Funktion f(x) = -x + x. a) Wie groß ist die Fläche, die die Kurve von f mit der x-chse einschließt? b) Welche Fläche schließt der Graph

Mehr

Das sogenannte Beamen ist auch in EEP möglich ohne das Zusatzprogramm Beamer. Zwar etwas umständlicher aber es funktioniert

Das sogenannte Beamen ist auch in EEP möglich ohne das Zusatzprogramm Beamer. Zwar etwas umständlicher aber es funktioniert Beamen in EEP Das sogenannte Beamen ist auch in EEP möglich ohne das Zusatzprogramm Beamer. Zwar etwas umständlicher aber es funktioniert Zuerst musst du dir 2 Programme besorgen und zwar: Albert, das

Mehr

In diesem Tutorial lernen Sie, wie Sie einen Termin erfassen und verschiedene Einstellungen zu einem Termin vornehmen können.

In diesem Tutorial lernen Sie, wie Sie einen Termin erfassen und verschiedene Einstellungen zu einem Termin vornehmen können. Tutorial: Wie erfasse ich einen Termin? In diesem Tutorial lernen Sie, wie Sie einen Termin erfassen und verschiedene Einstellungen zu einem Termin vornehmen können. Neben den allgemeinen Angaben zu einem

Mehr

Berechnung der Erhöhung der Durchschnittsprämien

Berechnung der Erhöhung der Durchschnittsprämien Wolfram Fischer Berechnung der Erhöhung der Durchschnittsprämien Oktober 2004 1 Zusammenfassung Zur Berechnung der Durchschnittsprämien wird das gesamte gemeldete Prämienvolumen Zusammenfassung durch die

Mehr

Internet Explorer Version 6

Internet Explorer Version 6 Internet Explorer Version 6 Java Runtime Ist Java Runtime nicht installiert, öffnet sich ein PopUp-Fenster, welches auf das benötigte Plugin aufmerksam macht. Nach Klicken auf die OK-Taste im PopUp-Fenster

Mehr

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen können zwei Ebenen (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Wie heiÿt

Mehr

Aufgabe 2.1. Ergebnis, Ergebnismenge, Ereignis

Aufgabe 2.1. Ergebnis, Ergebnismenge, Ereignis Aufgabe 2. Ergebnis, Ergebnismenge, Ereignis Ergebnis und Ergebnismenge Vorgänge mit zufälligem Ergebnis, oft Zufallsexperiment genannt Bei der Beschreibung der Ergebnisse wird stets ein bestimmtes Merkmal

Mehr

Mathematik. UND/ODER Verknüpfung. Ungleichungen. Betrag. Intervall. Umgebung

Mathematik. UND/ODER Verknüpfung. Ungleichungen. Betrag. Intervall. Umgebung Mathematik UND/ODER Verknüpfung Ungleichungen Betrag Intervall Umgebung Stefan Gärtner 004 Gr Mathematik UND/ODER Seite UND Verknüpfung Kommentar Aussage Symbolform Die Aussagen Hans kann schwimmen p und

Mehr

Zahlen und das Hüten von Geheimnissen (G. Wiese, 23. April 2009)

Zahlen und das Hüten von Geheimnissen (G. Wiese, 23. April 2009) Zahlen und das Hüten von Geheimnissen (G. Wiese, 23. April 2009) Probleme unseres Alltags E-Mails lesen: Niemand außer mir soll meine Mails lesen! Geld abheben mit der EC-Karte: Niemand außer mir soll

Mehr

Das Leitbild vom Verein WIR

Das Leitbild vom Verein WIR Das Leitbild vom Verein WIR Dieses Zeichen ist ein Gütesiegel. Texte mit diesem Gütesiegel sind leicht verständlich. Leicht Lesen gibt es in drei Stufen. B1: leicht verständlich A2: noch leichter verständlich

Mehr

Die Gesellschaftsformen

Die Gesellschaftsformen Jede Firma - auch eure Schülerfirma - muss sich an bestimmte Spielregeln halten. Dazu gehört auch, dass eine bestimmte Rechtsform für das Unternehmen gewählt wird. Für eure Schülerfirma könnt ihr zwischen

Mehr

Der Zwei-Quadrate-Satz von Fermat

Der Zwei-Quadrate-Satz von Fermat Der Zwei-Quadrate-Satz von Fermat Proseminar: Das BUCH der Beweise Fridtjof Schulte Steinberg Institut für Informatik Humboldt-Universität zu Berlin 29.November 2012 1 / 20 Allgemeines Pierre de Fermat

Mehr

AZK 1- Freistil. Der Dialog "Arbeitszeitkonten" Grundsätzliches zum Dialog "Arbeitszeitkonten"

AZK 1- Freistil. Der Dialog Arbeitszeitkonten Grundsätzliches zum Dialog Arbeitszeitkonten AZK 1- Freistil Nur bei Bedarf werden dafür gekennzeichnete Lohnbestandteile (Stundenzahl und Stundensatz) zwischen dem aktuellen Bruttolohnjournal und dem AZK ausgetauscht. Das Ansparen und das Auszahlen

Mehr

Steinmikado I. Steinmikado II. Steinzielwerfen. Steinwerfen in Dosen

Steinmikado I. Steinmikado II. Steinzielwerfen. Steinwerfen in Dosen Steinmikado I Steinmikado II : ab 4 : ab 4 : 20 Steine : 20 Steine Spielregel : M 10-01 In der Mitte des Raumes schichten wir einen Steinberg auf. Die Aufgabe besteht darin, vom Fuße des Berges jeweils

Mehr

Hilfe zur ekim. Inhalt:

Hilfe zur ekim. Inhalt: Hilfe zur ekim 1 Hilfe zur ekim Inhalt: 1 Benutzerkonten und rechte... 2 1.1 Hauptkonto (Unternehmer bzw. Lehrer)... 2 1.2 Benutzer (Mitarbeiter bzw. Schüler)... 3 2 Präsentationsmodus... 4 3 Warenkorb...

Mehr

Eine Logikschaltung zur Addition zweier Zahlen

Eine Logikschaltung zur Addition zweier Zahlen Eine Logikschaltung zur Addition zweier Zahlen Grundlegender Ansatz für die Umsetzung arithmetischer Operationen als elektronische Schaltung ist die Darstellung von Zahlen im Binärsystem. Eine Logikschaltung

Mehr