Sattelpunkt-Interpretation
|
|
|
- Damian Arnold
- vor 9 Jahren
- Abrufe
Transkript
1 Sattelpunkt-Interpretation Vinzenz Lang 14. Mai 2010 Die Sattelpunkt-Interpretation befasst sich mit der Interpretation der Lagrange- Dualität. Sie wird im weiteren Verlauf des Seminars nicht noch einmal aufgegriffen werden. 1 Die Ma-Min-Darstellung schwacher und starker Dualität Es ist möglich, das primale und duale Optimierungsproblem in einer gut vergleichbaren Form darzustellen. Der Eachheit halber nehmen wir an, dass es keine Gleichungsnebenbedingungen gibt. Jene können durch Erweiterungen der Optimierungsaufgaben leicht behandelt werden. Es gilt zunächst: ( ) m L(, λ) = f 0 () + λ i f i () i=1 { f0 () f i () 0, i = 1,..., m = sonst. Denn angenommen sei kein zulässiger Punkt, also f i () > 0 für irgendein i. Dann gilt durch Wahl von λ j = 0 für j i und λ i, dass L(, λ) =. Andererseits, wenn f i () 0 für alle i = 1,..., m, ist es optimal, λ = 0 zu wählen, woraus folgt, dass L(, λ) = f 0 (). Das bedeutet, dass wir den Optimalwert des primalen Optimierungsproblems in folgender Form darstellen können: p = L(, λ) Gemäß der Definition der dualen Funktion gilt außerdem: d = L(, λ) Folglich kann schwache Dualität durch die Ungleichung L(, λ) L(, λ) (1.1) 1
2 Vinzenz Lang Sattelpunkt-Interpretation 2 und starke Dualität durch die Gleichung L(, λ) = L(, λ) dargestellt werden. Starke Dualität bedeutet demnach, dass die Reihenfolge des Minimierens über und des Maimierens über λ 0 vertauscht werden kann, ohne das Ergebnis zu ändern. Prinzipiell ist die Ungleichung (1.1) von den Eigenschaften von L unabhängig, denn es gilt f(w, z) f(w, z). (1.2) für jede Funtion f : R n R m R (und alle Teilmengen W R n und Z R m ). Diese allgemeine Ungleichung wird als Ma-Min-Ungleichung bezeichnet. Bei Gleichheit gilt f(w, z) = f(w, z). (1.3) Man sagt, dass in diesem Fall f (und W,Z) die starke Ma-Min-Bedingung oder each die Sattelpunkteigenschaft erfüllt. Selbstverständlich gilt die starke Ma-Min-Bedingung nur in Spezialfällen, etwa wenn f : R n R m R die Lagrange-Funktion eines Optimierungsproblems ist, für welches starke Dualität voliegt, in welchem Falle W = R n und Z = R m + ist. 2 Sattelpunkt-Interpretation Man bezeichnet ein Paar w W, z Z als Sattelpunkt von f (und W, Z), wenn f( w, z) f( w, z) f(w, z) für alle w W und z Z. Anders gesagt minimiert w die Funktion f(w, z) über w W und z maimiert f( w, z) über alle z Z: f( w, z) = f(w, z), w W f( w, z) = f( w, z). z Z Für jeden Sattelpunkt gilt demnach die starke Ma-Min-Bedingung (1.3), wobei der gemeinsame Wert f( w, z) ist. Wenn wir nun auf das Thema der Lagrange- Dualität zurückkommen, sieht man, dass wenn und λ primal und dual optimale Punkte eines Problems, für welches starke Dualität gilt, sind, so bilden sie einen Sattelpunkt der Lagrange-Funktion. Auch die Umkehrung gilt: Wenn (, λ) ein Sattelpunkt der Lagrange-Funktion ist, so ist primal und λ dual optimal und die Dualitätslücke ist gerade Beispiel (inaktiver Fall)
3 Vinzenz Lang Sattelpunkt-Interpretation 3 2.Beispiel (aktiver Fall) 3 Interpretation als Spiel Man kann die Ma-Min-Ungleichung (??), die starke Ma-Min-Bedingung (1.3) und die Eigenschaft Sattelpunkt zu sein als Ausdrücke eines bedingten Auszahlungs- Spiels interpretieren (da die Auswahlmöglichkeiten Vektoren sind und voneinander nicht getrennt werden können). Wenn der erste Spieler ein w W wählt und der zweite ein z Z, so zahlt Spieler 1 an Spieler 2 den Betrag f(w, z). Deshalb möchte Spieler 1 die Funktion f minimieren, wohingegen Spieler 2 sie zu maimieren versucht. Angenommen Spieler 1 muss als erster entscheiden. Danach darf Spieler 2 mit Kenntnis der Entscheidung von 1 wählen. Spieler 2
4 Vinzenz Lang Sattelpunkt-Interpretation 4 möchte also die Auszahlung f(w, z) maimieren, und sein z Z so wählen, dass f(w, z) den maimalen Wert annimmt. Die daraus resultierende Auszahlung wird also z Z f(w, z) sein, die von der Wahl des w W von Spieler 1 abhängt (es wird stets angenommen, dass das Supremum angenommen wird, wenn die obere Schranke z Z f(w, z) nicht erreicht werden kann. Da Spieler 1 von der Maimierungs-Strategie des 2. Spielers ausgeht, wird er sein w W so wählen, dass die (nach Wahl von w ja immer schlechteste) Auszahlung an Spieler 2 so klein wie möglich sein wird. Demnach entscheidet sich Spieler 1 für was zur Auszahlung arg min f(w, z), f(w, z) w W z Z von Spieler 1 an Spieler 2 führt. Sei nun die Reihenfolge des Spiels umgekehrt: Spieler 2 muss als erstes ein z Z wählen, ehe Spieler 1 mit Kenntnis des z sein w W wählt.wenn die Spieler der für sie optimalen Strategie folgen, folgt aus selbigen Gründen, dass Spieler 2 sein z Z wählen sollte um w W f(w, z) zu maimieren (da Spieler 1 ja immer so entscheiden wird, dass bei Wahl von z die für ihn niedrigsten Kosten entstehen). Aus diesem Grund beträgt die resultierende Auszahlung in diesem Fall f(w, z) (wieder von Spieler 1 an Spieler 2, da f so definiert war). Die Ma-Min-Ungleichung (??) drückt die (einleuchtende) Tatsache aus, dass es für einen Spieler besser ist, sich erst nach dem Kontrahenten zu entscheiden, also die Wahl des Gegners vor der eigenen Wahl zu kennen. Man kann auch sagen, dass die Auszahlung an Spieler 2 (im Allgemeinen) größer sein wird, wenn sich Spieler 1 als erstes entscheiden muss. Wenn die Sattelpunkt-Eigenschaft (1.3) gilt, gibt es keinen Vorteil mehr, als zweiter an der Reihe zu sein. Ist ( w, z) ein Sattelpunkt von f (und W, Z), wird er Lösung des Spiels genannt. w wird hierbei als optimale Auswahlmöglichkeit von Spieler 1 bezeichnet, z als beste Wahl oder Strategie des zweiten Spielers. Für ( w, z) gibt es keinen Vorteil, als zweiter zu spielen. Nun soll der Spezialfall behandelt werden, in dem die Auszahlungsfunktion gerade die Lagrange-Funktion ist, W = R n und Z = R m +. In diesem Fall wählt der Erste die primale Variable, wohingegen der zweite Spieler die duale Variable λ 0 festlegt. Wie wir vorhin schon gesehen haben, ist die beste Entscheidung für den zuerst spielenden Spieler 2 jedes λ, welches dual optimal ist, und zu einer Auszahlung von d an ihn führt. Demgegenüber steht, wenn Spieler 1 wieder beginnen darf ein primal optimales mit der zugehörigen Auszahlung p. Die optimale Dualitäts-Lücke dieses Problems ist gleichzusetzen mit dem Vorteil, den Spieler 2 als Nachfolger hat da er weiß, was sein Gegenspieler vor ihm getan hat. Im Falle starker Dualität gibt es keinen Vorteil mehr, die Wahl des Gegners zu kennen. 4 Interpretation als Preise und Gebühren Es ist interessant die Lagrange-Dualität hinsichtlich ökonomischen Aspekten zu interpretieren. Nehmen wir zu diesem Zweck an, dass die Variable das Vor-
5 Vinzenz Lang Sattelpunkt-Interpretation 5 gehen eines Unternehmens bezeichnet. Und die Funktion f 0 () gibt die zum Vorgehen zugehörigen Kosten an. Also ist f 0 () der Gewinn (z.b. in Euro) welcher im Zusammenhang mit dem entsprechenden Vorgehen einhergeht. Jede Nebenbedingung f i () 0 beschreibt eine Beschränkung, zum Beispiel von Ressourcen wie Lagerraum oder Regelungen, wie z.b. Gesetze, welche eingehalten werden müssen. Dasjenige Vorgehen, welches den entstehenden Gewinn maimiert und gleichzeitig alle Beschränkungen einhält, kann durch Lösen des Problems minimiere f 0 (), u.d.n. f i () 0, i = 1,..., m ermittelt werden. Der Optimalgewinn ist wie man leicht sieht p. In einem weiteren Szenario sollen jetzt Baschränkungen verletzt werden dürfen, indem man einen zusätzlichen Preis bezahlt. Dieser hängt linear von der Größe der Überschreitung von f i ab. Folglich beläuft sich die Zahlung der Firma für die i-te Beschränkung auf λ i f i (). Es können auch Zahlungen an die Firma gemacht werden, wenn die entsprechende Obergrenze einer Ressource noch nicht erreicht ist. Der Koeffizient λ i ist also als Preis für die Überschreitung von f i 0 zu sehen, dessen Einheit Euro pro überschrittener Einheit sind. Zum gleichen Preis kann das Unternehmen unbenutzte Anteile der i-ten Ressource verkaufen. Wir nehmen nun λ i 0 an, das Unternehmen muss also für Überschreitungen bezahlen (und erhält Geld für unausgelastete Ressourcen). Als Beispiel betrachten wir nun die erste Beschränkung des Ausgangsproblems, nämlich eine Beschränkung an Lagerraum (in m 2 ). In diesem Zusammenhang eröffnen wir die Möglichkeit, dass die Firma zusätzlichen Raum zu Kosten von λ 1 Euro pro m 2 kaufen und unbenutzten Platz zum selben Preis vermieten kann. Die gesamten Kosten, welche für eine Firma, die die Operation ausführt, entstehen, belaufen sich somit auf L(, λ) = f 0 () + m i=1 λ if i (). Es ist klar, dass das Unternehmen die Gesamtkosten zu minimieren versucht, was zu einem Betrag von g(λ) führt. Die duale Funktion hingegen gibt die für die Firma optimalen Kosten an, welche eine Funktion des Preisbeschränkungs-Vektors λ ist. Der optimale duale Wert, d, entspricht den optimalen Kosten der Firma, wenn die ungünstigsten Preise (also die λ i des Vektors λ) vorliegen. Wenn wir unsere Betrachtungsweise beibehalten, können wir schwache Dualität wie folgt beschreiben: Die optimalen Kosten im 2.Szenario (indem Beschränkungsverletzungen erlaubt sind) sind kleiner oder gleich den Kosten des Originalproblems, in dem die Beschränkungen nicht gebrochen werden dürfen. Das ist offensichtlich, da wenn optimal im 1. Szenario ist, werden die entstehenden Kosten im 2.Szenario kleiner oder gleich als f 0 ( ) sein, da man ja Einnahmen durch die nicht ausgelasteten Ressourcen erzielt werden können. Die optimale Dualitätslücke ist jetzt der kleinste mögliche Vorteil der Firma, die sie aus dem Recht für Grenzüberschreitungen zu zahlen oder Einnahmen zu erhalten, ziehen kann. Wenn wieder angenommen wird, dass starke Dualität gilt und das duale Optimum erreicht ist, so können wir ein dual optimales λ als Menge von Preisen interpretieren, für die es keinen Vorteil gibt, in der Lage sein zu dürfen, Ressourcengrenzen zu überschreiten. Deshalb wird ein dual optimales λ manchmal auch als Schattenpreis bezeichnet.
Sattelpunkte und Optimalitätsbedingungen bei restringierten Optimierungsproblemen
Sattelpunkte und Optimalitätsbedingungen bei restringierten Optimierungsproblemen Sandro Grunert WS 08/09 Seminar Optimierung Technische Universität Chemnitz 1 Inhaltsverzeichnis 0 Grundlegende Situation
Sattelpunkte und Optimalitätsbedingungen bei restringierten Optimierungsproblemen
Sattelpunkte und Optimalitätsbedingungen bei restringierten Optimierungsproblemen Sandro Grunert WS 08/09 Seminar Optimierung Technische Universität Chemnitz Inhaltsverzeichnis 2 Inhaltsverzeichnis 0 Grundlegende
Das Lagrange-duale Problem
Das Lagrange-duale Problem Tobias Kulke 29. April 2010 1 Einführung Für jedes Paar (λ, ν) mit λ 0 liefert die Langrange-duale Funktion ( ) p g(λ, ν) = inf L(x, λ, ν) = inf f 0 (x) + λ i f i (x) + ν i h
Geometrische Interpretation
Geometrische Interpretation Stefanie Riedel 10. Mai 2010 1 Starke und schwache Dualität über Wertemengen Wir betrachten eine einfache geometrische Interpretation dualer Funktionen aus der Menge G: G =
Die Lagrange-duale Funktion
Die Lagrange-duale Funktion Gregor Leimcke 21. April 2010 1 Die Lagrangefunktion Wir betrachten das allgemeine Optimierungsproblem wobei minimiere f 0 über D sodass f i 0, i = 1,..., m 1.1 D = h i = 0,
10. Die Berücksichtigung nicht vorzeichenbeschränkter Variablen
10. Die Berücksichtigung nicht vorzeichenbeschränkter Variablen Bisher haben wir immer vorausgesetzt, dass alle Variablen eines LOP der Bedingung x i 0 liegen. Im Folgenden wollen wir auch sogenannte freie
3.2.5 Dualität der linearen Optimierung I
3..5 Dualität der linearen Optimierung I Jedem linearen Programm in Standardform kann ein sogenanntes duales Programm zugeordnet werden. Es entsteht dadurch, daß man von einem Minimierungsproblem zu einem
Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung
Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung Dr. Nico Düvelmeyer Freitag, 24. Juni 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Dualität Motivation Duales LP Dualitätssätze
Dualitätssätze der linearen Optimierung
Kapitel 9 Dualitätssätze der linearen Optimierung Sei z = c T x min! Ax = b 9.1 x 0 mit c, x R n, b R m, A R m n ein lineares Programm. Definition 9.1 Duales lineares Programm. Das lineare Programm z =
Kapitel 3. Matrix Spiele. 3.1 Matrix-Spiele
Kapitel 3 Matrix Spiele Seminar Spieltheorie, SS 006 3. Matrix-Spiele Vorgegeben sei ein Nullsummenspiel Γ = (S, T, φ, φ mit endlichen Strategiemengen S und T, etwa S = (s,..., s m und T = (t,..., t n.
Optimalitätsbedingungen
Optimalitätsbedingungen Nadja Irmscher 28. Mai 2010 1 Nachweis von Suboptimalität und Abbruchkriterien Über das gegebene Programm minimiere f 0 (x) über x D sodass f i (x) 0, i = 1,..., m h i (x) = 0,
Die Lagrange - duale Optimierungsaufgabe und ihre geometrische Interpretation
und ihre geometrische Interpretation Vortrag von Elisabeth Zschorlich 09.12.2008 Inhaltsverzeichnis 1 Die Lagrange - duale Optimierungsaufgabe 2 1.1 Einführung...................................... 2 1.2
VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt)
VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) 96 H. Meyerhenke: Kombinatorische Optimierung Dualität bei linearen Programmen Def.: Es sei (L): c T x max
Maximiere Gesamtgewinn aus verschiedenen Produkten unter Restriktionen an Produktmenge (Lagermenge, Transportmenge)
Beispiel: Produktionsplanung Maximiere Gesamtgewinn aus verschiedenen Produkten unter Restriktionen an Produktmenge (Lagermenge, Transportmenge) Produktionskapazität Ressourcenmenge bei als fest angenommenem
Kapitel 5. Peter Becker (H-BRS) Operations Research I Sommersemester / 298
Kapitel 5 Dualität Peter Becker (H-BRS) Operations Research I Sommersemester 2014 241 / 298 Inhalt 5 Dualität Dualitätssätze Zweiphasen-Simplexalgorithmus Peter Becker (H-BRS) Operations Research I Sommersemester
Optimierung für Wirtschaftsinformatiker: Lineare Programme
Optimierung für Wirtschaftsinformatiker: Lineare Programme Dr. Nico Düvelmeyer Dienstag, 31. Mai 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Lineare Programme Allgemeine Form 2 Spezielle Darstellungen
Lineare Optimierungsaufgaben - eine Einführung
Lineare Optimierungsaufgaben - eine Einführung Aufgabenstellung, Beispiele, graphisches Lösen und Trafo auf Normalform Vortragsskript von Lorenz Fischer Operations Research bedeutet die Suche nach einer
1 Der Simplex Algorithmus I
1 Nicoletta Andri 1 Der Simplex Algorithmus I 1.1 Einführungsbeispiel In einer Papiermühle wird aus Altpapier und anderen Vorstoffen feines und grobes Papier hergestellt. Der Erlös pro Tonne feines Papier
Klausurrepetitorium ABWL
Klausurrepetitorium ABWL Planungs- und Südwestfälische Industrie- und Handelskammer 9. August 5 Dr. Friedhelm Kulmann, Sandra Rudolph 9.8.5 Gliederung. Nichtlineare Optimierungsprobleme.. Quadratisches
Kap. 4.3: Das Dualitätstheorem der linearen Optimierung
Kap. 4.3: Das Dualitätstheorem der linearen Optimierung Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 18. VO A&D WS 08/09 18.12.2008 1 Literatur
Optimierung und Lagrange. x = 9 maximiert f
Optimierung und Lagrange 1.1 Eine Variable, keine Nebenbedingung ma f ( Erinnerung: (a) min f ( ma ( f ( ) (b) maimiert f f ( ) = 0 (c) f ( ) = 0 und f knkav (z.b. f ( ) 0 für alle ) maimiert f Beispiel:
Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen
Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen 1. Bestimmen Sie für die folgenden Funktionen zunächst die kritischen Stellen und entscheiden
Teil I. Lineare Optimierung
Teil I Lineare Optimierung 5 Kapitel 1 Grundlagen Definition 1.1 Lineares Optimierungsproblem, lineares Programm. Eine Aufgabenstellung wird lineares Optimierungsproblem oder lineares Programm genannt,
Aufgabe 1: Betrachtet werde das Matrixspiel mit der Auszahlungsmatrix a. 1. Für welche Werte von a gibt es ein Nash sches Gleichgewicht?
Lösungen zu den Übungsaufgaben im Kapitel 7 des Lehrbuches Operations Research Deterministische Modelle und Methoden von Stephan Dempe und Heiner Schreier Aufgabe : Betrachtet werde das Matrixspiel mit
Extrema mit Nebenbedingungen
Extrema mit Nebenbedingungen Gesucht ist das Extremum der Funktion f(x,y) = 5 x y unter der Nebenbedingung g(x,y) = x+y =. 5 y x In diesem einfachen Fall kann die Nebenbedingung nach einer Variablen aufgelöst
KAPITEL 3. Konvexe Funktionen
KAPITEL 3 Konvexe Funktionen Sei F R n ein Definitionsbereich und f : F R eine Funktion. Unter dem Epigraphen von f versteht man die Menge epif = {(x, z) R n+1 x F, z R, z f(x)}. Man nennt f konvex, wenn
Dualität bei konvexer Optimierung
Dualität bei konvexer Optimierung Seminar zur Numerik I im SS 2016 Laslo Hunhold 10. Mai 2016 Ausarbeitung zum Seminarvortrag vom 2. Mai 2016 Mathematisches Institut Mathematisch-Naturwissenschaftliche
1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme. Duales Problem. a i u i + i=1. j=1
1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme Duales Problem Lemma 1.4. Das zum Transportproblem duale Problem lautet: max unter den Nebenbedingungen m a i u i + i=1
FK WMS: Wirtschaftsmathematik 2, Einheit 7/8
FK WMS: Wirtschaftsmathematik 2, Einheit 7/8 Markus Sinnl 1 [email protected] http://homepage.univie.ac.at/markus.sinnl basierend auf Folien von Dr. Ivana Ljubic, Mag. Christian Spreitzer und Mag.
3.2 Lineare Optimierung (Entscheidungen unter Sicherheit)
3. Lineare Optimierung (Entscheidungen unter Sicherheit) Betrachtet wird hier der Fall Θ = (bzw. die Situation u(a, ϑ) bzw. l(a,ϑ) konstant in ϑ Θ für alle a A). Da hier keine Unsicherheit über die Umweltzustände
Abbildung 1: Graphische Lösung der ersten Übungsaufgabe
Lösungen zu den Übungsaufgaben im Kapitel 1 des Lehrbuches Operations Research Deterministische Modelle und Methoden von Stephan Dempe und Heiner Schreier 1. Lösen Sie die folgende lineare Optimierungsaufgabe
(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge
ÜBUNGSBLATT 0 LÖSUNGEN MAT/MAT3 ANALYSIS II FRÜHJAHRSSEMESTER 0 PROF DR CAMILLO DE LELLIS Aufgabe Finden Sie für folgende Funktionen jene Punkte im Bildraum, in welchen sie sich lokal umkehren lassen,
Die duale Simplexmethode zur Lösung rein ganzzahliger linearer Programme
Kapitel 11 Die duale Simplexmethode zur Lösung rein ganzzahliger linearer Programme Wir betrachten folgendes Optimierungsproblem z = c T x min! Ax = b (11.1) (11.2) x j ganz für j = 1,..., n 1 n, (11.3)
Mathematik für Wirtschaftswissenschaftler
Fred Böker Mathematik für Wirtschaftswissenschaftler Das Übungsbuch 2., aktualisierte Auflage Higher Education München Harlow Amsterdam Madrid Boston San Francisco Don Mills Meico City Sydney a part of
Lineare Optimierung Dantzig 1947
Lineare Optimierung Dantzig 947 Lineare Optimierungs-Aufgaben lassen sich mit Maple direkt lösen: with(simplex): g:= 4*x + x2
1 Mengen. 1.1 Elementare Definitionen. Einige mathematische Konzepte
Einige mathematische Konzepte 1 Mengen 1.1 Elementare Definitionen Mengendefinition Die elementarsten mathematischen Objekte sind Mengen. Für unsere Zwecke ausreichend ist die ursprüngliche Mengendefinition
3.1. Existenzsatz und Struktur der Lösungsmenge
3. EXISTENZ UND DUALITÄT 3.1. Existenzsatz und Struktur der Lösungsmenge Nach dem Satz von Weierstraß besitzt eine lineare Funktion auf einem Polytop stets ein Minimum und ein Maximum. Im allgemeinen Fall
Zahlen und metrische Räume
Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} bzw. N 0 = {0, 1, 2,
Inhaltsverzeichnis. Innere-Punkte-Verfahren 3. Inhaltsverzeichnis 1
Inhaltsverzeichnis 1 Inhaltsverzeichnis Innere-Punkte-Verfahren 3 1 Theoretische Grundlagen 3 1.1 Die KKT-Bedingungen........................... 3 1.2 Der zentrale Pfad.............................. 4
10.2 Dualitätstheorie Operations Research. In der Standardform eines Maximierungsproblem: b e ) mit ( w) + a ej ) x j + x g = ( b g + g G
48 0 Operations Research In der Standardform eines Maximierungsproblem: Max ( w) mit ( w) + u. d. N. z + x l + n ( a gj + j= g G e E n d j x j = z 0 j= n a l j x j = b l für alle l L j= x g n + a gj x
Kapitel 12. Lagrange-Funktion. Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 1 / 28. f (x, y) g(x, y) = c. f (x, y) = x y 2
Kapitel 12 Lagrange-Funktion Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 1 / 28 Optimierung unter Nebenbedingungen Aufgabe: Berechne die Extrema der Funktion unter der Nebenbedingung
Übersicht: 6.1 Einleitung 6.2 Klassische Theorie nichtkooperativer Spiele 6.3 Egoistisches Routing 6.4 Mechanismen-Entwurf 6.
6. Algorithmische Spieltheorie Übersicht: 6.1 Einleitung 6.2 Klassische Theorie nichtkooperativer Spiele 6.3 Egoistisches Routing 6.4 Mechanismen-Entwurf 6.5 Auktionen 561 6.1 Einleitung Übliche Modelle:
1 Einführung in Lineare Programme und Dualität
Gliederung Inhaltsverzeichnis 1 Einführung in Lineare Programme und Dualität 1 1.1 Lineare Programme......................... 1 1.2 Dualität............................... 2 2 Grundlegende Sätze und Definitionen
(3D-)Extrema unter Nebenbedingungen. Problemstellung (lokale Optimierung)
(3D-)Extrema unter Nebenbedingungen Wir beschränken uns wieder (meistens) auf Funktionen von zwei Variablen x, y. Bei drei oder mehr Variablen x 1,..., x n sind die gleichen Techniken analog anwendbar,
3. Schnittebenenverfahren
3. Schnittebenenverfahren Themen 3. Schnittebenenverfahren Ganzzahlige lineare Programmierung Schnittebenenverfahren Konstruktion von Schnittebenen Auswahl von Schnittrestriktionen Operations Research
Ausführliche Lösungen zu ausgewählten Aufgaben von ÜB 5 und 6. Streudiagramm
y Aufgabe 3 Ausführliche Lösungen zu ausgewählten Aufgaben von ÜB 5 und 6 a) Zur Erstellung des Streudiagramms zeichnet man jeweils einen Punkt für jedes Datenpaar (x i, y i ) aus der zweidimensionalen
Optimierung. Vorlesung 08
Optimierung Vorlesung 08 Heute Dualität Ganzzahligkeit Optimierung der Vorlesung durch Evaluierung 2 Das duale LP Das primale LP Maximiere c T x unter Ax b, x R d 0. wird zu dem dualen LP Minimiere b T
Optimal-trennende Hyperebenen und die Support Vector Machine. Volker Tresp
Optimal-trennende Hyperebenen und die Support Vector Machine Volker Tresp 1 (Vapnik s) Optimal-trennende Hyperebenen (Optimal Separating Hyperplanes) Wir betrachten wieder einen linearen Klassifikator
Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschlag zum Präsenzübungsblatt
KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 2013/14 24.10.2013 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschlag zum Präsenzübungsblatt
Modelle und Methoden der Linearen Optimierung (Die Thesen zur Vorlesung 4)
Modelle und Methoden der Linearen Optimierung (Die Thesen zur Vorlesung 4) das Thema der Vorlesung Die Anwendung der Methoden der Mehrkriterienoptimierung bei der Lösung der ökonomischen Entscheidungsprobleme
5 Lagrangeformalismus
63 5 Lagrangeformalismus 5.1 Lagrange und Sattelfunktionen Eine typische Aufgabe ist, daß eine Funktion zweier Veränderlicher L(x, y) gegeben ist und diese Funktion bezüglich einer Variabler (hier x) maximiert
Simplex-Verfahren. Kapitel 4. Simplex-Verfahren. Peter Becker (H-BRS) Operations Research I Sommersemester / 298
Kapitel 4 Simplex-Verfahren Peter Becker (H-BRS) Operations Research I Sommersemester 24 86 / 298 Inhalt Inhalt 4 Simplex-Verfahren Dualer Simplexalgorithmus Vermeidung von Zyklen Peter Becker (H-BRS)
Perlen der Informatik I Wintersemester 2012 Aufgabenblatt 7
Technische Universität München WS 2012 Institut für Informatik Prof. Dr. H.-J. Bungartz Prof. Dr. T. Huckle Prof. Dr. M. Bader Kristof Unterweger Perlen der Informatik I Wintersemester 2012 Aufgabenblatt
Vorlesung. Informationsökonomik und die Theorie der Firma
Vorlesung Informationsökonomik und die Theorie der Firma Ulrich Schwalbe Universität Hohenheim 2. Vorlesung 24.10.2007 Ulrich Schwalbe (Universität Hohenheim) Informationsökonomik 2. Vorlesung 24.10.2007
16. FUNKTIONEN VON MEHREREN VARIABLEN
16. FUNKTIONEN VON MEHREREN VARIABLEN 1 Reelle Funktionen auf dem R 2 Wir betrachten Funktionen f(x 1, x 2 ) von zwei reellen Variablen x 1, x 2, z.b. f(x 1, x 2 ) = x 2 1 + x2 2, g(x 1, x 2 ) = x 2 1
Minimumproblem. Definition 4.7. Ein LP der Form. unter den Nebenbedingungen. d ij x j b i (i =1,...,m)
Minimumproblem Definition 4.7 Ein LP der Form nx Minimiere Z = c j x j j=1 unter den Nebenbedingungen nx d ij x j b i (i =1,...,m) j=1 und den Vorzeichenbedingungen x j 0(j =1,...,n) heißt Minimumproblem.
Lösung allgemeiner linearer Programme
Lösung allgemeiner linearer Programme Bisher: Für Anwendung des Simplexalgorithmus muss eine primal oder eine dual zulässige Basislösung vorliegen. Für allgemeine lineare Programme können wir dies direkt
14. Das Minimumprinzip
H.J. Oberle Variationsrechnung u. Optimale Steuerung SoSe 2008 14. Das Minimumprinzip In diesem Abschnitt behandeln wir die Idee der dynamischen Programmierung, die auf Bellmann 31 (1957) zurückgeht und
Grundlagen und Nash Gleichgewichte in reinen Strategien
Grundlagen und Nash Gleichgewichte in reinen Strategien Yves Breitmoser, EUV Frankfurt (Oder) Zahlen und Vektoren IR ist die Menge der reellen Zahlen IR + = r IR r 0 IR n ist die Menge aller Vektoren von
Optimierung unter Nebenbedingungen
Optimierung unter Nebenbedingungen Kapitel 7: Optimierung unter Nebenbedingungen Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 1. Juli 2009 1 / 18 7.1 Bemerkung
Nicht-kooperative Spiele
Kapitel 1 Nicht-kooperative Spiele 1.1 Zwei-Personen-Spiele Definition 1: Ein Zwei-Personen-Spiel Γ besteht aus einem Paar nichtleerer Mengen S T zwei reellwertigen Funktionen φ 1 φ 2 auf dem kartesischen
Die duale Simplexmethode
Kapitel 0 Die duale Simplexmethode Bei der dualen Simplexmethode ist eine Startlösung oftmals leichter angebbar als bei der Simplexmethode für das ursprüngliche lineare Programm, da man keine Nichtnegativitätsanforderungen
Schranken für zulässige Lösungen
Schranken für zulässige Lösungen Satz 5.9 Gegeben seien primales und duales LP gemäß der asymmetrischen Form der Dualität. Wenn x eine zulässige Lösung des primalen Programms und u eine zulässige Lösung
Technische Universität München. Grundlagen der konvexen Optimierung
Technische Universität München Fakultät für Mathematik Lehrstuhl für Mathematische Optimierung Grundlagen der konveen Optimierung Michael Ulbrich April 2012 Gliederung der Vorlesung 1. Einführung Konvee
Mathematische Grundlagen für Wirtschaftswissenschaftler Übungsaufgaben aus Kapitel 3 - Lineare Optimierung
Mathematische Grundlagen für Wirtschaftswissenschaftler Übungsaufgaben aus Kapitel 3 - Lineare Optimierung Sascha Kurz Jörg Rambau 24. November 2009 2 Aufgabe 3.1. Ein in m Depots gelagertes homogenes
Mathematik 2 für Wirtschaftsinformatik
für Wirtschaftsinformatik Sommersemester 2012 Hochschule Augsburg Hinreichende Bedingung für lokale Extrema Voraussetzungen Satz D R n konvex und offen Funktion f : D R zweimal stetig partiell differenzierbar
Fachbereich Wirtschaftswissenschaften Professur f. Quantitativen Methoden Prof. Dr. Dietrich Ohse
Fachbereich Wirtschaftswissenschaften Professur f. Quantitativen Methoden Prof. Dr. Dietrich Ohse Diplomprüfung / Sommersemester 24 Quantitative Methoden der BWL Musterlösung der Prüfungsklausur vom. Juli
Einführung in die Wirtschaftsinformatik VO WS 2008 / 2009
Einführung in die Wirtschaftsinformatik VO WS 2008 / 2009 Daten Modelle Steuerung Wilfried Grossmann Teil 3: Steuerung Mathematische Modelle werden häufig dazu verwendet um ein optimales Verhalten zu bestimmen
Ein Buch. Für Anwendungen des Stoffs in den Wirtschaftswissenschaften: Knut Sydsæter, Peter Hemmond: Mathematik für Wirtschaftswissenschaftler
Ein Buch Für Anwendungen des Stoffs in den Wirtschaftswissenschaften: Knut Sydsæter, Peter Hemmond: Mathematik für Wirtschaftswissenschaftler (Aber bei der Mathematik ein bisschen aufpassen!) 4 Extremstellen
4.4 Quadratische Optimierungsprobleme
4.4 Quadratische Optimierungsprobleme 1. Quadratische Programme (QP) 1 2 xt P x + q T x + r s.t. Gx h (4.34) wobei P S n +, G R (m n) und A R (p n) Zielfunktion (ZF) ist (konvex) quadratisch Nebenbedingungen
Klausur zur Vorlesung Einführung in das Operations Research im Wintersemester 2005/2006
Universität Hannover Wirtschaftswissenschaftliche Fakultät Lehrstuhl für Produktionswirtschaft Prof. Dr. Stefan Helber Klausur zur Vorlesung Einführung in das Operations Research im Wintersemester 005/006
Kapitel 2. Mathematik für Mikroökonomie
Kapitel Mathematik für Mikroökonomie 1 Mathematik der Optimierung Ökonomische Theorien basieren auf der Annahme, dass die Agenten versuchen, den optimalen Wert einer Funktion zu wählen. Konsumenten maximieren
6 Lineare Optimierung
6 Lineare Optimierung Um die Aufgabenstellung deutlich zu machen, beginnen wir mit einem (natürlich sehr vereinfachten) Beispiel: Produtionsplan einer (zugegebenermaßen sehr leinen) Schuhfabri. Hergestellt
Mit 119 Bildern, 368 Beispielen und 225 Aufgaben mit Lösungen
Mathematik für Wirtschaftswissenschaftler Ein Lehr- und Übungsbuch für Bachelors 2., aktualisierte Auflage Mit 119 Bildern, 368 Beispielen und 225 Aufgaben mit Lösungen Fachbuchverlag Leipzig im Carl Hanser
Vorlesung: Nicht-kooperative Spieltheorie. Teil 2: Spiele in Normalform
Vorlesung: Nicht-kooperative Spieltheorie Teil 2: Spiele in Normalform Dr. Thomas Krieger Wintertrimester 2009 Dr. Thomas Krieger Vorlesung: Nicht-kooperative Spieltheorie 1 Inhaltliche Motivation Es gibt
Satz 7. A sei eine Teilmenge des nichttrivialen Vektorraums (V,+, ). Dann sind die folgende Aussagen äquivalent.
Definition der Basis Def. Es sei (V,+, ) ein nichttrivialer Vektorraum. Die Menge A V heißt eine Basis-Menge, falls sie (a) linear unabhängig ist und (b) span(a) = V. Satz 7. A sei eine Teilmenge des nichttrivialen
Wiederholung. Wir gehen von LP s in Standardform aus, wobei A R m n vollen Zeilenrang hat: minc T x A x = b
Wiederholung Wir gehen von LP s in Standardform aus, wobei A R m n vollen Zeilenrang hat: minc T x A x = b x 0. x R n heißt Basislösung, wenn Ax = b und rang(a J ) = J, wobei J = {j x (j) 0}; Basislösung
Kapitel 2. Zahlenbereiche
Kapitel 2. Zahlenbereiche 2.3. Reelle Zahlen Erweiterung des Zahlenbereichs der natürlichen Zahlen Ganze Zahlen Z := {..., 3, 2, 1, 0, 1, 2, 3,... } = N {0} N. Rationale Zahlen Q := { m n m Z, n N }. Beachte:
zul. Kurve g 1 C zul dθ (0) y = dϕ dθ (0) =
2. Grundlagen der nicht-linearen konvexen Optimierung 2.1. Die Karush-Kuhn-Tucker Bedingungen. Unser Basisproblem (NLO) sei geben durch min f(x) NLO g i (x) 0, i I = {1,..., m} x R n f, g i stetig differenzierbar.
VORLESUNG 11 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt)
VORLESUNG Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) 3 Wiederholung! Lineare Programme häufig geeignete Modellierung von Optimierungsproblemen! Verschiedene Darstellungen sind
Studientag zur Algorithmischen Mathematik
Studientag zur Algorithmischen Mathematik Lineare Optimierung Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 1. Juli 2012 Outline Lineares Programm (LP) in Standardform
Schnittebenenverfahren von Gomory. Stefan Allescher 30. Juni 2005
Schnittebenenverfahren von Gomory Stefan Allescher 30. Juni 2005 Inhaltsverzeichnis 1. Grundprinzip 2. Das Verfahren von Gomory 2.1. Vorgehen 2.2. Beweis der Endlichkeit 2.3. Algorithmische Durchführung
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Lineare Algebra
Aufgabe 3.1: LP-Problem mit allen Bedingungstypen
Johann Wolfgang Goethe-Universität Frankfurt am Main Lehrst.f.BWL, insb. Quant. Methoden Prof. Dr. Dietrich Ohse Interpretation, zulässige Lösung, Dualität 18. Mai 2004 Aufgabe 3.1: LP-Problem mit allen
D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Lösung 4
D-MATH, D-PHYS, D-CHAB Analysis I HS 017 Prof. Manfred Einsiedler Lösung 4 Hinweise 1. Zeigen Sie, dass inf X die kleinste obere Schranke von X ist.. Dass z 1, z Lösungen sind, kann man durch Einsetzen
Über- und unterbestimmte
Über- und unterbestimmte Systeme (verallgemeinerte Lösungen) Über- und unterbestimmte Systeme Ax = b ist genau dann für alle b R m eindeutig lösbar, wenn m = n und rk A = n. Falls m n oder rk A < min{m,
Optimierung. Optimierung. Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus Fabian Kuhn
Optimierung Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus 1 Resource Allocation Beispiel aus Vorlesung 6 Primales LP: Duales LP: max 3 4 2 2 4 2 8 3 6 0, 0, 0 min 4 8 6 2 3 3 4 2 2 0, 0,
