Kapitel 2 Mathematische Grundlagen

Größe: px
Ab Seite anzeigen:

Download "Kapitel 2 Mathematische Grundlagen"

Transkript

1 Kapitel 2 Mathematische Grundlagen Ziel: Einführung/Auffrischung einiger mathematischer Grundlagen 2.1 Mengen, Relationen, Ordnungen Definition: Eine Menge ist eine Zusammenfassung von wohlbestimmten und wohlunterschiedenen Objekten zu einem Ganzen (G. Cantor, 1883). Ein Objekt a einer Menge A heißt Element von A, a A Beispiele: {1, 2, 3, 4,... } (eine Menge mit unendlich vielen Elementen) { {a}, {a, b} } (eine Menge, deren Elemente Mengen sind) { } = Ø (leere Menge) {Ø} (eine Menge, deren einziges Element die leere Menge ist) AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 1

2 Spezielle Mengen: : natürliche Zahlen ohne Null 0 : natürliche Zahlen mit Null : ganze Zahlen n : {0, 1,, n-1}, endlicher Abschnitt der natürlichen Zahlen : rationale Zahlen : reelle Zahlen Die Anzahl der Elemente einer Menge M heißt Kardinalität oder Größe der Menge und wird mit M bezeichnet. Beispiel: AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 2

3 Objekte mit einer gemeinsamen Eigenschaft E(x) lassen sich zu einer Menge zusammenfassen. Schreibweise: { x E(x) } d.h. die Menge aller x, für die E(x) gilt Beispiel: { n k : k 2 = n } = {1, 4, 9, 16, 25,...} (Quadratzahlen) Operationen auf Mengen Definition: Seien A und B Mengen. Die Vereinigung von A und B ist die Menge A B = { x x A oder x B }. AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 3

4 Der Durchschnitt von A und B ist die Menge A B = { x x A und x B }. Die Differenz von A und B ist die Menge A \ B = { x x A und x B }. Beispiele: {1, 3, 5} {1, 2, 3} = {1, 2, 3, 5} {1, 3, 5} {1, 2, 3} = {1, 3} {1, 3, 5} \ {1, 2, 3} = {5} Definition: Zwei Mengen A und B heißen disjunkt, wenn A B = Ø gilt, d.h. wenn ihr Durchschnitt die leere Menge ist. AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 4

5 Rechenregeln Für alle Mengen A, B, C gilt: (A B) C = A (B C) (Assoziativität) (A B) C = A (B C) A B = B A und A B = B A (Kommutativität) A A = A und A A = A (Idempotenz) A (B C) = (A B) (A C) (Distributivität) A (B C) = (A B) (A C) Definition: Die Potenzmenge einer Menge A ist die Menge aller Teilmengen von A: P(A) = { M M A} = 2 A. AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 5

6 Die Potenzmenge einer endlichen Menge mit n Elementen hat 2 n Elemente. Die Potenzmenge der leeren Menge hat 2 0 = 1 Elemente. Beispiel: AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 6

7 Definition: Seien M, N Mengen. Dann heißt das kartesische (Mengen-) Produkt von M und N. Die Verallgemeinerung von M 1 x M 2 x M n ergibt sich analog. Beispiel: AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 7

8 Definition: Eine zweistellige Relation R zwischen M und N ist eine Teilmenge von M x N, d.h. R M x N, Notation: arb, (a,b) R, R ist eine Menge geordneter Paare Beispiel: AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 8

9 Eigenschaften auf Relationen Gegeben sei eine zweistellige Relation R M x M. Dann heißt R Technische Universität München Reflexiv: a M: (a,a) R Symmetrisch: a,b M: (a,b) R impliziert (b,a) R Antisymmetrisch: a,b M: (a,b) R (b,a) R impliziert a=b Transitiv: a,b,c M: (a,b) R (b,c) R impliziert (a,c) R Beispiele: < auf : ist nicht reflexiv, aber transitiv Begründung: AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 9

10 Weitere Beispiele: auf : ist reflexiv, transitiv und antisymmetrisch Begründung: Technische Universität München auf : ist nicht reflexiv, nicht transitiv und symmetrisch Begründung AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 10

11 Definition: Eine Relation R heißt partielle Ordnung bzw. Halbordnung, falls R reflexiv, antisymmetrisch und transitiv ist. Beispiel: Teilmengenrelation Es sind nur Elemente vergleichbar, die durch einen Pfad entlang der Pfeile (Richtung beachten) verbunden sind: {p,q,r,s} > {p} aber {p} und {q,r,s} sind nicht vergleichbar AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 11

12 Definition: Eine partielle Ordnung R heißt totale Ordnung, falls alle Elemente miteinander vergleichbar sind. Definition: Eine Relation R heißt Äquivalenzrelation, wenn sie reflexiv, symmetrisch und transitiv ist. Eine Äquivalenzrelation auf einer Menge A zerlegt A in paarweise disjunkte Mengen, die Äquivalenzklassen. Beispiele: AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 12

13 2.2 Abbildungen, Funktionen Definition: Seien A und B Mengen. Eine Abbildung/Funktion ist eine Relation R A x B mit: a A: {b B (a,b) R} = 1. Schreibweise: f: A B a a f(a) Urbild: f -1 (b):= {a A f(a) = b} Beispiel: AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 13

14 Eigenschaften auf Funktionen/Abbildungen f heißt injektiv, wenn b B: f -1 (b) 1 f heißt surjektiv, wenn b B: f -1 (b) 1 f heißt bijektiv, wenn f injektiv und f surjektiv ist. Beispiele AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 14

15 Definition: Eine Funktion f(n) heißt monoton steigend, wenn x y impliziert f(x) f(y). Eine Funktion f(n) heißt monoton fallend, wenn x y impliziert f(x) f(y). AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 15

16 Auf- und Abrunden von Zahlen: Floor- und Ceil-Funktion Sei x eine reelle Zahl. x (floor) ist die größte ganze Zahl, die kleiner gleich x ist, und x (ceil) ist die kleinste ganze Zahl, die größer als x ist: x-1 < x x x < x 1 Bem.: für beliebige ganze Zahlen n gilt: n/2 + n/2 = n Beispiel: AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 16

17 Definition: Modulo-Arithmetik Sei a, n \ {0}. a mod n ist der Rest der Division a / n, d. h. a mod n = a - a / n n Wir sagen, dass zwei ganze Zahlen a, b äquivalent modulo n sind, a b (mod n), wenn gilt, (a mod n) = (b mod n) d.h. a und b liefern beim Teilen durch n den gleichen Rest. Beispiel: AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 17

18 Die Relation modulo partitioniert die Menge in genau n viele Äquivalenzklassen, wobei n := {0,1,...,n-1} ein Repräsentantensystem ist. Beispiel: Rechenregeln für Modul-Rechnung Für alle a,b,c,d,n mit n 2 gilt: aus a b (mod n) und c d (mod n) folgt a + c b + d (mod n) und a *c b* d (mod n) Beispiel: AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 18

19 Definition: Polynome Gegeben sei eine positive ganze Zahl d. Ein Polynom in n vom Grad d ist eine Funktion p(n) der Form p(n) = a 0 n 0 + a 1 n 1 + a 2 n 2 + a 3 n a d n d Die a i heißen Koeffizienten, a d 0. Beispiel: Dezimalzahl ist Zahldarstellung als Polynom AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 19

20 Exponentialfunktion Für alle reelle Zahlen a>0, m und n gelten die Rechenregeln: a 0 = 1 a 1 = a a -1 = 1/a (a m ) n = a mn (a m ) n = (a n ) m a m a n = a m+n Bem.: Jede Exponentialfunktion mit Basis a > 1 wächst schneller als jedes Polynom. (Wichtig für Komplexitätsbetrachtungen von Algorithmen) AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 20

21 Funktionale Iteration Mit der Notation f (i) (n) wird die i-malige Anwendung der Funktion f auf einen Funktionswert n bezeichnet. Sei f(n) eine Funktion und i eine nichtnegative ganze Zahl. Dann gilt: f (i) (n) = n falls i = 0 f(f (i-1) (n)) falls i > 0 Beispiel: AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 21

22 Definition: Folge Sei A eine Menge. Unter einer Folge versteht man eine Abbildung a : 0 A, i a a i Eine endliche Folge ist eine Abbildung a : {0,..., n-1} A, mit n 0. n ist die Länge der Folge. Schreibweisen für endliche Folgen: a = a 0,..., a n-1 oder als n-tupel (a 0,..., a n-1 ), d.h. als Elemente des kartesischen Produktes A n. Beispiel AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 22

23 Definition: Permutation Eine Permutation ist eine bijektive Abbildung p : {0,..., n-1} {0,..., n-1}, n 0. Beispiel: AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 23

24 Definition: Zahlendarstellung zur Basis b Eine positive ganze Zahl X zur Basis b, b > 1 wird dargestellt als eine endliche Folge x n-1,...,x 0 wobei x i Ziffern sind und für die Zahl X folgendes gilt: X = x n-1 b n x 0 b 0 Beispiel: Zahlensystem mit der Basis b=10 (Dezimalsystem) (23) 10 = 2* *10 0 Beispiel: Zahlensystem mit der Basis b = 2 (Binärsystem) (11) 10 = (1011) 2 = AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 24

25 Berechnung der Darstellung zur Basis b Beispiel: X = 11, b = 2 Beispiel: X = 11, b = 3 11 : 2 = 5 Rest 1 5 : 2 = 2 Rest 1 2 : 2 = 1 Rest 0 1 : 2 = 0 Rest 1 11 : 3 = 3 Rest 2 3 : 3 = 1 Rest 0 1 : 3 = 0 Rest 1 Resultat: 1011 Resultat: 102 AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 25

26 2.3 Alphabete, Wörter Definitionen: A sei eine endliche, nichtleere Menge. A := Anzahl der Elemente von A, A heißt Zeichenvorrat oder Alphabet, Das Paar (A, <) heißt geordnetes Alphabet, wenn < eine totale Ordnung auf A ist. Beispiele Menge der Dezimalziffern ID = {0,..., 9} Lat. Großbuchstaben {A, B,..., Z} mit der natürlichen Ordnung A < B <... < Z Geordnete binäre Zeichenvorräte IB = {0, 1} mit 0 < 1, oder {true, false} mit false < true AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 26

27 Definitionen: A sei Alphabet mit Ordnung <. Technische Universität München Wort über A: endliche Folge w = a 1 a 2... a k (a i A, k IN 0 ) Bem.: wir schreiben w = a 1 a 2... a k Länge des Wortes w: w = k leeres Wort: ε, ε = 0 statt w = a 1, a 2,..., a k A k := {w w ist ein Wort über A, w = k}, für k IN 0 oder rekursiv: A 0 := {ε}, A k := {ua u A k-1, a A} w = uv, dann heißen u, v Teilworte von w. A * := {w w Wort über A} = A k A + := {w w nichtleeres Wort über A} = k = 0 AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 27 k = 1 A k

28 Lexikographische Ordnung auf A * ist die von < induzierte totale Ordnung auf A * (analog zur Reihenfolge im Lexikon), d.h. für w, v A * : w < v: entweder: v=wv, mit v A *, Beispiel: oder: w = uaw, v = ubv, mit a, b A, u,w,v A * und a < b, a b. Lexikographische Ordnung auf der Menge der Dezimalzahlen: z.b. 13 < 132 < 1324 < 2 < 29 < 8 (entspricht nicht der numerischen Ordnung!) AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 28

29 2.4 Summenformeln und Eigenschaften Gegeben sei eine Zahlenfolge a 1,.., a n. Die endliche Summe a 1 + a a n schreiben wir auch in der Form n Die Summe k = n ist eine arithmetische Reihe. k= 1 Sie hat die Werte k = ½ * n(n + 1) Es gelten die Summenformeln: n k= 1 n i= 1 ai AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 29

30 2.5 Logarithmus Definition des Logarithmus zur Basis b x= log b a a= b x Beispiel: log 2 16 = x 2 x = 16, d.h. x=4 Logarithmus-Gesetze 1. Produkt: log b (x*y) = log b x + log b y 2. Quotient: log b (x/y) = log b x - log b y 3. Potenzen: sei r eine reelle Zahl log b (x r ) = rlog b x für r=-1: log b (1/x) = -log b x AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 30

31 2.6 Wahrscheinlichkeiten Ein Ereignisraum S ist Menge, deren Elemente als Elementarereignisse bezeichnet werden. Ein Elementarereignis Technische Universität München kann als Ausgang eines Experiments interpretiert werden. Beispiel: Werfen zweier unterscheidbarer Münzen, wobei jeder Münzwurf in Kopf(Ko) oder Zahl(Za) endet. S = {KoKo,KoZa,ZaKo,KoKo} Ein Ereignis ist eine Teilmenge des Ereignisraums S. Ein Elementarereignis s S bezeichnet das Ereignis {s}. Ereignis S wird sicheres Ereignis genannt, Ereignis Ø als unmögliches Ereignis. AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 31

32 Wahrscheinlichkeitsverteilung Pr{} über einem Ereignisraum S ist eine Funktion von einer Menge von Ereignissen aus S in das Intervall [0,1] der reellen Zahlen, Pr : 2 S [0,1], wobei folgende Axiome erfüllt sind: Pr{A} 0, für jedes Ereignis A Pr{S} = 1 Pr{A B} = Pr{A} + Pr{B} für zwei sich gegenseitig ausschließende Ereignisse A und B Für unmögliches Ereignis Ø gilt: Pr{Ø} = 0. Aus A B folgt Pr{A} Pr{B} Komplement eines Ereignisses A wird als Ā bezeichnet. Es gilt Pr{Ā} = 1-Pr{A} AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 32

33 Eine (diskrete) Zufallsvariable X ist eine Funktion von einem endlichen oder abzählbar unendlichen Ereignisraum S in die Menge der reellen Zahlen. Sie ordnet jedem möglichen Ausgang eines Experiments eine reelle Zahl zu. Für eine Zufallsvariable X und eine reelle Zahl x definieren wir das Ereignis X=x als { s S : X(s) = x }, so dass gilt: Pr{X = x} = Funktion f(x) = Pr{X=x} ist die Wahrscheinlichkeitsdichtefunktion der Zufallsvariable X. Aus den Wahrscheinlichkeitsaxiomen folgt Pr{X = x} 0, Pr{ X = x} = 1 x AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 33 s S: X ( s ) = x Pr{ s}

34 Erwartungswert: Gegeben sei eine diskrete Zufallsvariable X. Der Erwartungswert (oder Mittelwert) von X ist: E[X] = x Pr{ X = x} x AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 34

35 Beispiel: Das Experiment sei das Werfen eines Butterbrots. Der Ereignisraum S ist gegeben durch: S = {Butterseite oben, Butterseite unten}. Wir nehmen an, dass wir: 2 Euro erhalten, wenn die Butterseite nach oben zeigt und 1 Euro verlieren, wenn die Brutterseite nach unten zeigt. Die Wahrscheinlichkeiten für die Elementarereignisse aus S seien: Pr{Butterseite oben} = 1/4 und Pr{Butterseite unten} = 3/4. Frage: Wie ist der Erwartungswert der Zufallsvariable X, die einen Gewinn darstellt? AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 35

Kapitel 2 Mathematische Grundlagen

Kapitel 2 Mathematische Grundlagen Kapitel 2 Mathematische Grundlagen Ziel: Einführung/Auffrischung einiger mathematischer Grundlagen 2.1 Mengen, Relationen, Ordnungen Definition: Eine Menge ist eine Zusammenfassung von wohlbestimmten und

Mehr

Technische Universität München

Technische Universität München Stand der Vorlesung Kapitel 2: Auffrischung einiger mathematischer Grundlagen Mengen, Potenzmenge, Kreuzprodukt (Paare, Tripel, n-tupel) Relation: Teilmenge MxN Eigenschaften: reflexiv, symmetrisch, transitiv,

Mehr

3 Werkzeuge der Mathematik

3 Werkzeuge der Mathematik 3.1 Mengen (18.11.2011) Definition 3.1 Die Menge heißt leere Menge. :=»x M x x Definition 3.2 Es seien N und M Mengen. Wir definieren: und analog M N : (x M x N). N M : (x N x M). Wir sagen M ist Teilmenge

Mehr

Kapitel 1. Grundlagen Mengen

Kapitel 1. Grundlagen Mengen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

2 Mengen, Abbildungen und Relationen

2 Mengen, Abbildungen und Relationen Vorlesung WS 08 09 Analysis 1 Dr. Siegfried Echterhoff 2 Mengen, Abbildungen und Relationen Definition 2.1 (Mengen von Cantor, 1845 1918) Eine Menge M ist eine Zusammenfassung von wohlbestimmten und wohl

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen)

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws13/14

Mehr

Mengen. (Nicht-) Elemente einer Menge { 3, 4 } { 1, { 2 }, { 3, 4 }, { 5 } } 3 { 1, { 2 }, { 3, 4 }, { 5 } }

Mengen. (Nicht-) Elemente einer Menge { 3, 4 } { 1, { 2 }, { 3, 4 }, { 5 } } 3 { 1, { 2 }, { 3, 4 }, { 5 } } Mengen Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor) Notation 1. Aufzählung aller Elemente: { 1,

Mehr

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit Mengen! Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor)! Notation 1. Aufzählung aller Elemente: {

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Mathematische Grundbegriffe Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr,

Mehr

2 Mengen, Relationen, Funktionen

2 Mengen, Relationen, Funktionen Grundlagen der Mathematik für Informatiker Grundlagen der Mathematik für Informatiker Mengen, Relationen, Funktionen. Mengen Definition. [Georg Cantor 895] Eine Menge ist eine Zusammenfassung bestimmter,

Mehr

2 Mengen, Relationen, Funktionen

2 Mengen, Relationen, Funktionen Grundlagen der Mathematik für Informatiker 1 2 Mengen, Relationen, Funktionen 2.1 Mengen Definition 2.1 [Georg Cantor 1895] Eine Menge ist eine Zusammenfassung bestimmter, wohlunterschiedener Dinge unserer

Mehr

4. Mathematische und notationelle Grundlagen. Beispiel Mengen. Bezeichnungen:

4. Mathematische und notationelle Grundlagen. Beispiel Mengen. Bezeichnungen: 4. Mathematische und notationelle Grundlagen 4.1 Mengen Beispiel 3 A 1 = {2, 4, 6, 8}; A 2 = {0, 2, 4, 6,...} = {n N 0 ; n gerade} Bezeichnungen: x A A x x A B A B A { } x Element A x nicht Element A B

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

Grundbegriffe der Wahrscheinlichkeitsrechnung

Grundbegriffe der Wahrscheinlichkeitsrechnung Algorithmen und Datenstrukturen 349 A Grundbegriffe der Wahrscheinlichkeitsrechnung Für Entwurf und Analyse randomisierter Algorithmen sind Hilfsmittel aus der Wahrscheinlichkeitsrechnung erforderlich.

Mehr

Einführung in die Wahrscheinlichkeitsrechnung

Einführung in die Wahrscheinlichkeitsrechnung Marco Cattaneo Institut für Statistik Ludwig-Maximilians-Universität München Sommersemester 2011 1. Wahrscheinlichkeitsrechnung 2. Diskrete Zufallsvariable 3. Stetige Zufallsvariable 4. Grenzwertsätze

Mehr

4. Funktionen und Relationen

4. Funktionen und Relationen 4. Funktionen und Relationen Nikolaus von Oresmes Richard Dedekind (1831-1916) René Descartes 1596-1650 Pierre de Fermat 1607/8-1665 Seite 1 Inhalt der Vorlesung Teil 4: Funktionen und Relationen 4.1 Funktionen:

Mehr

Grundlagen. Kapitel Mengen

Grundlagen. Kapitel Mengen Kapitel 1 Grundlagen 1.1 Mengen Grundobjekte mathematischer Theorien sind Mengen. Zwar stellt man sich darunter Gesamtheiten von gewissen Dingen (den Elementen der Menge) vor, doch führt die uneingeschränkte

Mehr

Gliederung. Mengen und operationen. Relationen. Funktionen. Kardinalität von Mengen. Formale Grundlagen der Informatik Knorr/Fuchs SS 2000

Gliederung. Mengen und operationen. Relationen. Funktionen. Kardinalität von Mengen. Formale Grundlagen der Informatik Knorr/Fuchs SS 2000 Gliederung Mengen und operationen Relationen Funktionen Kardinalität von Mengen Mengen, Relationen, Funktionen 1 Mengen Definition (Naive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer

Mehr

Abschnitt 3: Mathematische Grundlagen

Abschnitt 3: Mathematische Grundlagen Abschnitt 3: Mathematische Grundlagen 3. Mathematische Grundlagen 3.1 Mengen und Abbildungen 3.2 Induktion und Rekursion 3.3 Ausdrücke 3 Mathematische Grundlagen Einf. Progr. (WS 08/09) 102 Überblick 3.

Mehr

Eine Relation R in einer Menge M ist eine Teilmenge von M x M. Statt (a,b) R schreibt man auch arb.

Eine Relation R in einer Menge M ist eine Teilmenge von M x M. Statt (a,b) R schreibt man auch arb. 4. Relationen 4.1 Grundlegende Definitionen Relation R in einer Menge M: Beziehung zwischen je 2 Elementen von M. Beispiel

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 17: Relationen Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2013/2014 1/61 Anmerkung Änderung im Wintersemester 2013/2014:

Mehr

Abschnitt 3: Mathematische Grundlagen

Abschnitt 3: Mathematische Grundlagen Abschnitt 3: Mathematische Grundlagen 3. Mathematische Grundlagen 3.1 3.2 Induktion und Rekursion 3.3 Boolsche Algebra Peer Kröger (LMU München) Einführung in die Programmierung WS 14/15 48 / 155 Überblick

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kapitel 2: Mengenlehre. Referenzen zum Nacharbeiten:

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kapitel 2: Mengenlehre. Referenzen zum Nacharbeiten: DM2 Slide 1 Diskrete Mathematik Sebastian Iwanowski FH Wedel Kapitel 2: Mengenlehre Referenzen zum Nacharbeiten: Lang 3 Meinel 2, 4, 5, 10.2-10.4 (zur Vertiefung: Meinel 10.5-10.8 und Beutelspacher 10)

Mehr

Diskrete Mathematik I Wintersemester 2007 A. May

Diskrete Mathematik I Wintersemester 2007 A. May Diskrete Mathematik I Wintersemester 2007 A. May Literatur Vorlesung richtet sich nach A. Steger: Diskrete Strukturen Band 1: Kombinatorik-Graphentheorie- Algebra Springer Verlag T. Schickinger, A. Steger:

Mehr

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. 21. März 2011.

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. 21. März 2011. Technische Universität München Ferienkurs Lineare Algebra 1 Mengenlehre, Aussagen, Relationen und Funktionen 21. März 2011 Tanja Geib Inhaltsverzeichnis 1 Aussagen 1 2 Mengenlehre 3 2.1 Grundlegende Definitionen

Mehr

2 Mengen und Abbildungen

2 Mengen und Abbildungen 2.1 Mengen Unter einer Menge verstehen wir eine Zusammenfassung von Objekten zu einem Ganzen. Die Objekte heiÿen Elemente. Ist M eine Menge und x ein Element von M so schreiben wir x M. Wir sagen auch:

Mehr

Grundbegriffe der Wahrscheinlichkeitsrechnung

Grundbegriffe der Wahrscheinlichkeitsrechnung Algorithmen und Datenstrukturen 112 A Grundbegriffe der Wahrscheinlichkeitsrechnung Für Entwurf und Analyse randomisierter Algorithmen sind Hilfsmittel aus der Wahrscheinlichkeitsrechnung erforderlich.

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kapitel 2: Mengenlehre

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kapitel 2: Mengenlehre Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kapitel 2: Mengenlehre Lang 3 Meinel 2, 4, 5, 10.2-10.4 (zur Vertiefung: Meinel 10.5-10.8 und Beutelspacher 10) Dean 2, 5-7

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Mengen)

Diskrete Strukturen Kapitel 2: Grundlagen (Mengen) WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Mengen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik 1 Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg Wintersemester 2014/15 2 Notation für Wörter w a is die Anzahl der Vorkommen von

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Grundlagen der Mathematik Übungsaufgaben zu Kapitel 1 Einführung 1.1.1 Für reelle Zahlen a und b gilt (a+b) (a-b) = a 2 -b 2. Was ist die Voraussetzung? Wie lautet die Behauptung? Beweisen Sie die Behauptung.

Mehr

Mengen (siehe Teschl/Teschl 1.2)

Mengen (siehe Teschl/Teschl 1.2) Mengen (siehe Teschl/Teschl 1.2) Denition nach Georg Cantor (1895): Eine Menge ist eine Zusammenfassung von bestimmten und wohlunterschiedenen Objekten unserer Anschauung oder unseres Denkens zu einem

Mehr

Abschnitt 3: Mathematische Grundlagen

Abschnitt 3: Mathematische Grundlagen Abschnitt 3: Mathematische Grundlagen 3. Mathematische Grundlagen 3.1 3.2 Boolsche Algebra 3.3 Induktion und Rekursion Peer Kröger (LMU München) Einführung in die Programmierung WS 16/17 46 / 708 Überblick

Mehr

Kapitel 2. Mathematische Grundlagen. Skript zur Vorlesung Einführung in die Programmierung

Kapitel 2. Mathematische Grundlagen. Skript zur Vorlesung Einführung in die Programmierung LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS DATABASE Kapitel 2 Mathematische Grundlagen Skript zur Vorlesung Einführung in die Programmierung im Wintersemester 2012/13 Ludwig-Maximilians-Universität

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Kapitel 21: Relationen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2015 Mengen und Relationen

Vorbereitungskurs Mathematik zum Sommersemester 2015 Mengen und Relationen Vorbereitungskurs Mathematik zum Sommersemester 2015 Mengen und Relationen Susanna Pohl Vorkurs Mathematik TU Dortmund 10.03.2015 Mengen und Relationen Mengen Motivation Beschreibung von Mengen Mengenoperationen

Mehr

Mathematik für Ökonomen 1

Mathematik für Ökonomen 1 Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Herbstemester 2008 Mengen, Funktionen und Logik Inhalt: 1. Mengen 2. Funktionen 3. Logik Teil 1 Mengen

Mehr

WS 20013/14. Diskrete Strukturen

WS 20013/14. Diskrete Strukturen WS 20013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 1: Grundlagen, Sprachen, Automaten schulz@eprover.org Software Systems Engineering Definition Eine Definition ist eine genaue Beschreibung eines Objektes

Mehr

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Version: 22. September 2015 Evelina Erlacher 1 Mengen Es sei Ω eine Menge (die Universalmenge ) und A, B seien Teilmengen von Ω. Dann schreiben

Mehr

4. Funktionen und Relationen

4. Funktionen und Relationen Bestimmung der Umkehrfunktionen c) bei reellen Funktionen geometrisch durch Spiegelung des Funktionsgraphen an der Winkelhalbierenden y = x. y = x 3 y = x y = x y = (x+1)/2 y = x 1/3 y = 2x 1 Seite 27

Mehr

Einführung in die Programmierung

Einführung in die Programmierung Einführung in die Programmierung Teil 2: Mathematische Grundlagen Prof. Dr. Peer Kröger, Florian Richter, Michael Fromm Wintersemester 2018/2019 Übersicht 1. Mengen 2. Relationen und Abbildungen 3. Boolsche

Mehr

Lemma 23 Die (paarweise verschiedenen) Ereignisse A 1,..., A n sind genau dann unabhängig,

Lemma 23 Die (paarweise verschiedenen) Ereignisse A 1,..., A n sind genau dann unabhängig, Lemma 23 Die (paarweise verschiedenen) Ereignisse A 1,..., A n sind genau dann unabhängig, wenn für alle (s 1,..., s n ) {0, 1} n gilt, dass wobei A 0 i = Āi und A 1 i = A i. Pr[A s 1 1... Asn n ] = Pr[A

Mehr

Einführung in die Semantik, 2./3. Sitzung Mengen / Relatione

Einführung in die Semantik, 2./3. Sitzung Mengen / Relatione Eigenschaften von Einführung in die Semantik, 2./3. Sitzung Mengen / / Göttingen 2. November 2006 Eigenschaften von Mengenlehre Eigenschaften von Eigenschaften von Das Konzept Menge Eine Menge ist eine

Mehr

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund Lineare Algebra 1 Detlev W. Hoffmann WS 2013/14, TU Dortmund 1 Mengen und Zahlen 1.1 Mengen und Abbildungen Eine Menge ist eine Zusammenfassung wohlunterscheidbarer Objekte unserer Anschauung/unseres Denkens/unserer

Mehr

Kapitel 1. Mengen und Abbildungen. 1.1 Mengen

Kapitel 1. Mengen und Abbildungen. 1.1 Mengen Kapitel 1 Mengen und Abbildungen 1.1 Mengen Die Objekte der modernen Mathematik sind die Mengen. Obwohl die Logik einen axiomatischen Zugang zur Mengenlehre bietet, wollen wir uns in dieser Vorlesung auf

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 9. November 2017 1/34 Beispiel 3.6 Wir können die rationalen Zahlen wie folgt konstruieren:

Mehr

1. Mengentheoretische Grundbegriffe. naiver Mengenbegriff : Eine Menge ist eine Zusammenfassung M von bestimmten, wohlunterschiedenen

1. Mengentheoretische Grundbegriffe. naiver Mengenbegriff : Eine Menge ist eine Zusammenfassung M von bestimmten, wohlunterschiedenen 1. Mengentheoretische Grundbegriffe Cantors (1845 1918) naiver Mengenbegriff : Slide 1 Eine Menge ist eine Zusammenfassung M von bestimmten, wohlunterschiedenen Objekten unserer Anschauung oder unseres

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Mengen, Funktionen und Logik

Mengen, Funktionen und Logik Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Mengen, Funktionen und Logik Literatur Referenz: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Logische Grundlagen der Mathematik, WS 2014/15

Logische Grundlagen der Mathematik, WS 2014/15 Logische Grundlagen der Mathematik, WS 0/ Thomas Timmermann 8. Januar 0 Kardinalzahlen und die Mächtigkeit von Mengen Gleichmächtigkeit von Menge Zur Erinnerung: Wir wollen unendlich große Mengen hinsichtlich

Mehr

(1.18) Def.: Eine Abbildung f : M N heißt

(1.18) Def.: Eine Abbildung f : M N heißt Zurück zur Mengenlehre: Abbildungen zwischen Mengen (1.17) Def.: Es seien M, N Mengen. Eine Abbildung f : M N von M nach N ist eine Vorschrift, die jedem x M genau ein Element f(x) N zuordnet. a) M = N

Mehr

mathematische Grundlagen der Modelltheorie: Mengen, Relationen, Funktionen

mathematische Grundlagen der Modelltheorie: Mengen, Relationen, Funktionen Einführung in die Logik - 6 mathematische Grundlagen der Modelltheorie: Mengen, Relationen, Funktionen Modelltheoretische / Denotationelle Semantik der Prdikatenlogik Ein Modell ist ein künstlich geschaffenes

Mehr

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Formale Methoden 2 Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Teil 1: Wiederholung 1 Mengen 2 Abbildungen 3 Exkurs Beweistechniken 4 Relationen Definition Operationen Eigenschaften Äquivalenzrelationen

Mehr

Übersichtsblatt Hertrampf/Bahrdt. 1 Mathematische Aussagen. Theoretische Informatik I WS2018/19

Übersichtsblatt Hertrampf/Bahrdt. 1 Mathematische Aussagen. Theoretische Informatik I WS2018/19 Theoretische Informatik I WS2018/19 Übersichtsblatt Hertrampf/Bahrdt Institut für Formale Methoden der Informatik Theoretische Informatik Universität Stuttgart 1 Mathematische Aussagen Um mathematische

Mehr

Mathematische Strukturen

Mathematische Strukturen Mathematische Strukturen Lineare Algebra I Kapitel 3 16. April 2013 Kartesisches Produkt Das kartesische Produkt (benannt nach René Descartes) von n Mengen M 1,..., M n ist M 1 M n := {(x 1,..., x n )

Mehr

Tutorium: Diskrete Mathematik

Tutorium: Diskrete Mathematik Tutorium: Diskrete Mathematik Vorbereitung der Bonusklausur am 24.11.2016 (Teil 2) 23. November 2016 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler 23. November 2016

Mehr

0 Mengen und Abbildungen, Gruppen und Körper

0 Mengen und Abbildungen, Gruppen und Körper 0 Mengen und Abbildungen, Gruppen und Körper In diesem Paragrafen behandeln wir einige für die Lineare Algebra und für die Analysis wichtige Grundbegriffe. Wir beginnen mit dem Begriff der Menge. Auf Cantor

Mehr

Mathematische Grundlagen der Computerlinguistik Ordnungsrelationen

Mathematische Grundlagen der Computerlinguistik Ordnungsrelationen Mathematische Grundlagen der Computerlinguistik Ordnungsrelationen Dozentin: Wiebke Petersen 4. Foliensatz Wiebke Petersen math. Grundlagen 86 starke / schwache Ordnungen Eine Ordnung R einer Menge A ist

Mehr

Mathematische Grundlagen der Computerlinguistik Relationen und Funktionen

Mathematische Grundlagen der Computerlinguistik Relationen und Funktionen Mathematische Grundlagen der Computerlinguistik Relationen und Funktionen Dozentin: Wiebke Petersen 2. Foliensatz Wiebke Petersen math. Grundlagen 20 n-tupel und Cartesisches Produkt Mengen sind ungeordnet,

Mehr

4 Mengentheorie. 4.1 Mengen

4 Mengentheorie. 4.1 Mengen 4 Mengentheorie 4.1 Mengen Die Mengentheorie ist entwickelt worden, um eine elementare Basis für den Aufbau der gesamten Mathematik zu haben. Ihr Begründer ist Georg Cantor (1845-1918). Die Standard-Semantik

Mehr

WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER. Diskrete Strukturen. wissen leben WWU Münster

WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER. Diskrete Strukturen. wissen leben WWU Münster MÜNSTER Diskrete Strukturen Dietmar Lammers Vorlesung SoSe 2010 > Relationen MÜNSTER Diskrete Strukturen 41/101 Seien A und B und für n N seien A 1 A 2...A n Mengen > Relationen MÜNSTER Diskrete Strukturen

Mehr

Einführung in die Mengenlehre

Einführung in die Mengenlehre Einführung in die Mengenlehre D (Menge von Georg Cantor 845-98) Eine Menge ist eine Zusammenfassung bestimmter wohlunterschiedener Objekte unseres Denkens oder unserer Anschauung zu einem Ganzen wobei

Mehr

Mengenlehre. Begriff der Mengenzugehörigkeit x M, x Ê M >x : x { a 1. e e x = a n. } 2 x = a 1. >x : x { y P(y) } 2 P(x) Begriff der leeren Menge

Mengenlehre. Begriff der Mengenzugehörigkeit x M, x Ê M >x : x { a 1. e e x = a n. } 2 x = a 1. >x : x { y P(y) } 2 P(x) Begriff der leeren Menge Mengenlehre Grundbegriff ist die Menge Definition (Naive Mengenlehre). Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor) Notation 1. Aufzählung

Mehr

Mengenlehre. Ist M eine Menge und x ein Element von M, so schreiben wir x M. Ist x kein Element von M, so schreiben wir x M.

Mengenlehre. Ist M eine Menge und x ein Element von M, so schreiben wir x M. Ist x kein Element von M, so schreiben wir x M. Mengenlehre Eine Menge ist eine Zusammenfassung bestimmter und unterschiedlicher Objekte. Für jedes Objekt lässt sich eindeutig sagen, ob es zu der Menge gehört. Die Objekte heißen Elemente der Menge.

Mehr

Vorlesung Diskrete Strukturen Relationen

Vorlesung Diskrete Strukturen Relationen Vorlesung Diskrete Strukturen Relationen Bernhard Ganter WS 2009/10 Relationen Es seien A und B Mengen. Eine (binäre) Relation zwischen A und B ist eine Teilmenge von A B. Ein wichtiger Spezialfall ist

Mehr

Anmerkungen zu Mengen und Abbildungen

Anmerkungen zu Mengen und Abbildungen Anmerkungen zu Mengen und Abbildungen Kartesisches Produkt von n Mengen und n-stellige Relationen Sind M 1, M,, M n nichtleere Mengen, so ist ihr kartesisches Produkt erklärt als Menge aller geordneter

Mehr

Grundbegriffe der Informatik Kapitel 3: Mengen, Alphabete, Abbildungen

Grundbegriffe der Informatik Kapitel 3: Mengen, Alphabete, Abbildungen Grundbegriffe der Informatik Kapitel 3: Mengen, Alphabete, Abbildungen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für

Mehr

Mathematik für Informatiker I Mitschrift zur Vorlesung vom

Mathematik für Informatiker I Mitschrift zur Vorlesung vom Mathematik für Informatiker I Mitschrift zur Vorlesung vom 18.11.2004 Zur Wiederholung: Das Kartesische Produkt dient dem Ordnen von Mengen. A B = {(a, b) : a A, b B)} Spezialfall A = Äquivalenzrelation

Mehr

3. Relationen Erläuterungen und Schreibweisen

3. Relationen Erläuterungen und Schreibweisen 3. Relationen Eine Relation ist allgemein eine Beziehung, die zwischen Dingen bestehen kann. Relationen im Sinne der Mathematik sind ausschließlich diejenigen Beziehungen, bei denen stets klar ist, ob

Mehr

Logische Grundlagen der Mathematik, WS 2014/15

Logische Grundlagen der Mathematik, WS 2014/15 Logische Grundlagen der Mathematik, WS 2014/15 Thomas Timmermann 26. November 2014 Was kommt nach den natürlichen Zahlen? Mehr als die natürlichen Zahlen braucht man nicht, um einige der schwierigsten

Mehr

Kapitel 1: Grundbegriffe

Kapitel 1: Grundbegriffe Kapitel 1: Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika (KO) 1 / 20 Gliederung 1 Logik Ein ganz kurzer Ausflug in die Kombinatorik Stefan Ruzika (KO) 2

Mehr

Surjektive, injektive und bijektive Funktionen.

Surjektive, injektive und bijektive Funktionen. Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens

Mehr

Lösungen zur Übungsserie 1

Lösungen zur Übungsserie 1 Analysis 1 Herbstsemester 2018 Prof. Peter Jossen Montag, 24. September Lösungen zur Übungsserie 1 Aufgaben 1, 3, 4, 5, 6, 8 Aufgabe 1. Sei X eine endliche Menge mit n Elementen, und sei Y eine endliche

Mehr

Mathematik 1 für Informatik Inhalt Grundbegrie

Mathematik 1 für Informatik Inhalt Grundbegrie Mathematik 1 für Informatik Inhalt Grundbegrie Mengen, speziell Zahlenmengen Aussagenlogik, Beweistechniken Funktionen, Relationen Kombinatorik Abzählverfahren Binomialkoezienten Komplexität von Algorithmen

Mehr

3. Kombinatorik und Wahrscheinlichkeit

3. Kombinatorik und Wahrscheinlichkeit 3. Kombinatorik und Wahrscheinlichkeit Es geht hier um die Bestimmung der Kardinalität endlicher Mengen. Erinnerung: Seien A, B, A 1,..., A n endliche Mengen. Dann gilt A = B ϕ: A B bijektiv Summenregel:

Mehr

MATHEMATIK FÜR NATURWISSENSCHAFTLER I WINTERSEMESTER 2016/ OKTOBER 2016

MATHEMATIK FÜR NATURWISSENSCHAFTLER I WINTERSEMESTER 2016/ OKTOBER 2016 MATHEMATIK FÜR NATURWISSENSCHAFTLER I WINTERSEMESTER 2016/17 MARK HAMILTON LMU MÜNCHEN 1.1. Grundbegriffe zu Mengen. 1. 17. OKTOBER 2016 Definition 1.1 (Mengen und Elemente). Eine Menge ist die Zusammenfassung

Mehr

i=1 j= 5 2. Verifizieren Sie die Gleichung indem Sie die Ausdrücke ohne Summenzeichen schreiben. j=0

i=1 j= 5 2. Verifizieren Sie die Gleichung indem Sie die Ausdrücke ohne Summenzeichen schreiben. j=0 Übungen zur Einführung in die Analysis (Einführung in das mathematische Arbeiten WS 2017 1. Schreiben Sie die folgenden Ausdrücke ohne Verwendung von Summen- bzw. Produktzeichen: 7 2 3 5 k 2k+1, a k, 2

Mehr

Vorlesung Diskrete Strukturen Abbildungen

Vorlesung Diskrete Strukturen Abbildungen Vorlesung Diskrete Strukturen Abbildungen Bernhard Ganter WS 2009/10 Hashfunktionen Wenn eine Datenbank Millionen von Dokumenten enthält und immer neue dazu kommen, stellt sich folgendes Problem: Bei neuen

Mehr

Kommutativität. De Morgansche Regeln

Kommutativität. De Morgansche Regeln 1. Formale Logik Proposition 1.1. Die logischen Elementarverknüpfungen gehorchen folgenden Äquivalenzen: (1.1) (1.2) p p p p p p Idempotenz (1.3) (1.4) p q q p p q q p Kommutativität (1.5) (1.6) (p q)

Mehr

7 Äquivalenzrelationen

7 Äquivalenzrelationen 71 7 Äquivalenzrelationen 7.1 Äquivalenzrelationen und Klassen Definition Eine Relation R auf einer Menge oder einem allgemeineren Objektbereich heißt eine Äquivalenzrelation, falls sie reflexiv, symmetrisch

Mehr

Übungen zur Vorlesung Einführung in die Mathematik

Übungen zur Vorlesung Einführung in die Mathematik Übungen zur Vorlesung Einführung in die Mathematik von G. Greschonig und L. Summerer, WS 2017/18 Aufgabe 1. Zeige, dass das Quadrat einer ungeraden Zahl, vermindert um 1, stets durch 4 teilbar ist. Folgere

Mehr

Bemerkungen zur Notation

Bemerkungen zur Notation Bemerkungen zur Notation Wir haben gerade die Symbole für alle und es gibt gebraucht. Dies sind so genannte logische Quantoren, und zwar der All- und der Existenzquantor. Die Formel {a A; ( b B)[(a, b)

Mehr

1 Mathematische Grundbegriffe

1 Mathematische Grundbegriffe 1 1 Mathematische Grundbegriffe 1.1 Relationen und Funktionen Seien A 1,..., A n Mengen. Ein n-tupel über A 1,..., A n ist eine Folge (a 1,..., a n ) von Objekten a i A i, für i = 1,..., n. Zwei n-tupel

Mehr

Kapitel II - Wahrscheinlichkeitsraum

Kapitel II - Wahrscheinlichkeitsraum Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel II - Wahrscheinlichkeitsraum Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

Mathematische Grundlagen der Computerlinguistik Ordnungsrelationen

Mathematische Grundlagen der Computerlinguistik Ordnungsrelationen Mathematische Grundlagen der Computerlinguistik Ordnungsrelationen Dozentin: Wiebke Petersen 4. Foliensatz Wiebke Petersen math. Grundlagen 89 starke / schwache Ordnungen Eine Ordnung R einer Menge A ist

Mehr

Analysis für Informatiker

Analysis für Informatiker Analysis für Informatiker Wintersemester 2017/2018 Carsten.Schneider@risc.jku.at 1 Bemerkung: Dies ist kein Skript, welches den gesamten Inhalt der Vorlesung abdeckt. Es soll den Studierenden aber während

Mehr

Diskrete Mathematik I

Diskrete Mathematik I Diskrete Mathematik I Alexander May Fakultät für Mathematik Ruhr-Universität Bochum Wintersemester 08/09 DiMa I - Vorlesung 01-13.10.2008 Mengen, Relationen, Funktionen, Indirekter Beweis 1 / 59 Organisatorisches

Mehr

8. Formelsammlung. Pr[ ] = 0. 0 Pr[A] 1. Pr[Ā] = 1 Pr[A] A B = Pr[A] Pr[B] DWT 8.1 Gesetze zum Rechnen mit Ereignissen 203/467 Ernst W.

8. Formelsammlung. Pr[ ] = 0. 0 Pr[A] 1. Pr[Ā] = 1 Pr[A] A B = Pr[A] Pr[B] DWT 8.1 Gesetze zum Rechnen mit Ereignissen 203/467 Ernst W. 8. Formelsammlung 8.1 Gesetze zum Rechnen mit Ereignissen Im Folgenden seien A und B, sowie A 1,..., A n Ereignisse. Die Notation A B steht für A B und zugleich A B = (disjunkte Vereinigung). A 1... A

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

Grundlagen: 1. Logik. Aussagen und Aussagenformen Wahrheitstabellen; Tautologien und Kontradiktionen Logische Äquivalenz. Prädikate und Quantoren

Grundlagen: 1. Logik. Aussagen und Aussagenformen Wahrheitstabellen; Tautologien und Kontradiktionen Logische Äquivalenz. Prädikate und Quantoren Zusammenfassung Grundlagen Logik, Mengen, Relationen, Folgen & Mengenfamilien, Kardinalitäten Techniken Mathematisches Beweisen, Induktion, Kombinatorische Beweise Strukturen Graphen 1 Grundlagen: 1. Logik

Mehr

Stochastik I. Vorlesungsmitschrift

Stochastik I. Vorlesungsmitschrift Stochastik I Vorlesungsmitschrift Ulrich Horst Institut für Mathematik Humboldt-Universität zu Berlin Inhaltsverzeichnis 1 Grundbegriffe 1 1.1 Wahrscheinlichkeitsräume..................................

Mehr