LK Lorentzkraft. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April Einführung 2

Größe: px
Ab Seite anzeigen:

Download "LK Lorentzkraft. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April Einführung 2"

Transkript

1 LK Lorentzkraft Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen Magnetfeld dünner Leiter und Spulen Lorentzkraft Elektron im homogenen Magnetfeld Leiter im Magnetfeld Versuchsdurchführung Elektron im Magnetfeld Leiterspule im Magnetfeld Messergebnisse, Auswertung, Diskussion Fehlerrechnung Helmholtz-Spulenpaar und Bestimmung von e/m Abhängigkeit der Lorentzkraft vom Leiterstrom Abhängigkeit der Lorentzkraft vom B-Feld Abhängigkeit des B-Feldes von der Spaltbreite a... 7

2 2 THEORETISCHE GRUNDLAGEN LK 2 1 Einführung In diesem Versuch soll die Lorentzkraft und deren Abhängigkeit von verschiedenen Parametern experimentell untersucht werden. 2 Theoretische Grundlagen 2.1 Magnetfeld dünner Leiter und Spulen Da eine bewegte Ladung ein Magnetfeld erzeugt, erzeugen viele bewegte Ladungen ebenfalls ein Magnetfeld. Viele bewegte Ladungen treten z.b. in einem von Strom durchflossenen Leiter auf. Berechnet man das Magnetfeld eines langgestreckten Leiters nach dem Gesetz von Biot-Savart B( r) = µ di 4π r r 3 (1) so erhält man Kreise in der zum Leiter senkrechten Ebene. Biegt man einen Leiter zu einer Schlaufe, so erhält man eine Spule mit einer Windung. Allgemein ist das Magnetfeld einer Spule durch Biot-Savart berechenbar (vgl. IK Protokoll). Für ein Helmholtz-Spulenpaar erhält man B = µ 0 NI Sp l Sp B = µ 0 1,43 N D I Spule, (2) wobei N die Windungszahl und D der Durchmesser der Spule sind. Für eine Zylinderspule mit Spalt a in der Mitte ergibt sich ( l Sp + a (lsp + a) 2 + 4r 2 ) a, (3) a 2 + 4r 2 wobei N die Windungszahl, I Sp der Strom, l Sp die Länge und r der Radius der Spule sind. 2.2 Lorentzkraft Bewegt sich eine Ladung q durch ein homogenes B-Feld, so wirkt die Lorentzkraft F L FL = q v B (4) auf die Ladung. Dieser Effekt wird z.b. von einer Hall-Sonde oder einem Massenspektrometer ausgenutzt.

3 2 THEORETISCHE GRUNDLAGEN LK Elektron im homogenen Magnetfeld Schießt man ein Elektron e in ein homogenes Magnetfeld, so beschreibt es auf Grund der Lorentzkraft eine Schraubenbahn. Trifft das Elektron senkrecht auf die Feldlinien des B-Feldes, dann beschreibt es eine Kreisbahn. Aus dem Radius dieser Kreisbahn kann man das Verhältnis aus Ladung und Masse e/m bestimmen. Hierzu setzt man die Lorentzkraft gleich der Zentripetalkraft und setzt für die Geschwindigkeit v 2 = 2eU/m ein (1/2 mv 2 = eu): evb = mv2 r e m = v rb = 1 rb 2eU m e m = 2U r 2 B 2 (5) Durch Messen von r,b und U lässt sich e/m also bestimmen (siehe Versuche unten). 2.4 Leiter im Magnetfeld Auf einen vom Strom I L durchflossenen Leiter der Länge L L wirkt in einem homogenen B-Feld die Kraft F = L L I L B. (6) Die Kraft ist also direkt proportional zum Strom, der durch den Leiter fließt, und zur Stärke des Magnetfelds, in dem sich der Leiter sich befindet. Gleichung (6) kann aus der Gleichung (4) für die Lorentzkraft hergeleitet werden, wenn v die Geschwindigkeit einer Ladung q ist, die sich in einem Leiter der Länge l bewegt, und t die Zeit ist, die die Ladung q benötigt, um von einem Ende des Leiters zum anderen Ende zu gelangen: F = v q B = vt q t B = L I B. Verwendet man als Leiter eine Spule mit N Windungen, so misst man die N-fache Kraft, da N mal so viele Elektronen pro Zeit im Leiter fließen.

4 4 MESSERGEBNISSE, AUSWERTUNG, DISKUSSION LK 4 3 Versuchsdurchführung 3.1 Elektron im Magnetfeld Zur Bestimmung von e/m werden Elektronen mit einer bestimmten Beschleunigungsspannung U s senkrecht in das homogene B-Feld eines Helmholtz-Spulenpaares geschossen. Dabei werden die Spannung U b und der Strom I Sp variiert und die Radien der Elektronenbahnen gemessen. 3.2 Leiterspule im Magnetfeld Eine Leiterspule mit N Windungen und Länge L L wird in das homogene B-Feld einer Zylinderspule gebracht. Die Zylinderspule hat in ihrer Mitte einen (veränderbar großen) Spalt der Breite a, in den die Leiterspule eingeführt werden kann. Der Strom I Sp durch die Zylinderspule und der Strom I L durch die Leiterspule können jeweils von 0A bis 0, 6A eingestellt werden. Die Leiterspule hängt an einer Waage, so dass durch Auflegen von Gewichten auf die Waage die Kraft bestimmt werden kann mit der die Leiterspule (durch die Lorentzkraft) nach oben oder unten gezogen wird. Es wird die Abhängigkeit der Lorentzkraft vom Leiterstrom I L, von der magnetischen Kraftflussdichte B und vom Spaltabstand a gemessen. 4 Messergebnisse, Auswertung, Diskussion 4.1 Fehlerrechnung Bei den gemessenen Längen l wurde jeweils ein zufälliger Fehler u z (l) geschätzt. Der systematische Fehler wurde jeweils nach DIN mit u s (l) = 200µm l berechnet. Da der zufällige Fehler nur geschätzt wurde und nicht durch eine große Zahl statistisch verteilter unabhängiger Längenmessungen ermittelt wurde, verwenden wir zur Fehlerfortpflanzung jeweils den Größtfehler 1 u(l) = u z (l) + u s (l). Wenn wir nun eine Größe x(l 1,l 2,...,l n ) berechnen wollen, die von Größen l i (i = 1,... n) abhängen, so ergibt sich als Fehler für x u(x) = x l 1 u(l 1) + x l 2 u(l 2) + + x l n u(l n). (7) Häufig misst man mehrere verschiedene Tupel (l 1,...,l n),...,(l (m) 1,...,l (m) und berechnet anschließend für jedes Tupel x(l 1,...,l n ), so dass man 1 Im Fall u z(l) u s(l) wird u(l) = p u 2 z(l) + u 2 s(l) verwendet. n )

5 4 MESSERGEBNISSE, AUSWERTUNG, DISKUSSION LK 5 m Werte x j (j = 1,...,m) für die Größe x erhält. (Zum Beispiel misst man zehn unterschiedliche Paare für Gegenstands- und Bildweite und erhält daraus zehn Werte für die Brennweite.) Dabei hat jeder Wert von x einen Fehler, der sich aus den l i auf x nach Gleichung (7) fortgepflanzt hat. Möchte man nun einen mittleren Wert x und Fehler u(x) für die Größe x angeben, so bildet man den Mittelwert der m verschiedenen Werte x j und gewichtet mit dem Fehler u(x j ) jedes x j - Wertes (Werte mit großem Fehler werden weniger stark gewichtet). Mit dem Normierungsfaktor im Nenner ergibt sich somit für x x = xj u(x j ) 2 1 u(x j ) 2 (8) wobei die Summen jeweils von j = 1 bis j = m laufen. Als Standardabweichung σ x von x erhält man σ 2 x = σ2 x n = 1 n(n 1) (xj x) 2 u(x j ) 2 1 u(x j ) 2. (9) Den Fehler u(x) von x kann man mit der t-verteilung für ein Vertrauensniveau von 95% durch u(x) = t(f) σ x (10) berechnen, wobei f die Anzahl der Freiheitsgrade und t(f) aus stochastischen Tabellen abgelesen werden kann: f t(f) 3,2 2,8 2,6 2,4 2,3 2,2 2,1 2,01 2, Helmholtz-Spulenpaar und Bestimmung von e/m Misst man bei einem Helmholtz-Spulenpaar die Radien r der Kreisbahn der Elektronen in Abhängigkeit vom Spulenstrom I Sp und der Beschleunigungsspannung U b der Elektronen, so kann man nach Gleichung (5) das Verhältnis von e/m berechnen. Da auf Grund der zusätzlichen Beschleunigungsspannung durch den Wehneltzylinder, der den Elektronenstrahl fokussiert, die tatsächliche Beschleunigungsspannung der Elektronen größer als die auf dem Messgerät angezeigte Beschleunigungsspannung ist, wird das Gerät für eine feste Spannung des Wehneltzylinders kalibriert, indem der Radius für verschiedene angezeigte Spannungen gemessen wird und der Nullpunkt der Regressionsgerade der Funktion U(r 2 ) berechnet wird. Wir erhielten so

6 4 MESSERGEBNISSE, AUSWERTUNG, DISKUSSION LK 6 für die Spannung des Wehneltzylinders U W = (33 ± 12)V. Nach der Spannungskorrektur und Fehlerrechnung nach Abschnitt 4.1 erhielten wir für e/m e m = (1,49 ± 0,1) 1011 C kg. Dabei wurde für den Radius ein Fehler von u(r) = 0, 5cm angenommen, während die Werte für die Spannung und den Spulenstrom als exakt angenommen wurden. Das Ergebnis für e/m weicht von dem Literaturwert von ( e ) = 1, C m lit kg deutlich ab. Die Abweichung kann dadurch erklärt werden, dass die Messung des Radius der Kreisbahn nur sehr ungenau möglich war und deshalb die Kalibrierung durch U w zu ungenau war. Die Punkte von U(r 2 ) bei der Kalibrierung wurden durch die Regressionsgerade nur schlecht gefittet. Für eine bessere Kalibrierung wären deutlich mehr Messpunkte für U(r 2 ) nötig. 4.3 Abhängigkeit der Lorentzkraft vom Leiterstrom Die Kraft auf einen Leiter der Länge L L mit N Windungen, durch den der Strom I L fließt, in einem Magnetfeld mit der Kraftflussdichte B, ist nach Gleichung (6) durch F = NL L I L B gegeben. Variiert man bei festem N,L L und B den Leiterstrom I L, so sollte man für die Kraft F(I L ) eine Ursprungsgerade mit Steigung F/I L = NL L B. Aus den Geometriedaten der Leiterspule ergibt sich somit theoretisch: (F/I L ) th = NL L B(I SP ) = (13,3 ± 1,4) mn/a, wobei als Maximalfehler für L L 0,1mm und für I Sp 0,04A angenommen wurden. Die Steigung der Regressionsgeraden von F(I L ) ergibt (siehe Abb. 1) Regression: (F/I L ) Reg = (15,8 ± 0,4) mn/a, wobei der Fehler durch die Standardabweichung der mittleren Steigung bestimmt wurde. Die beiden Werte stimmen auch im Rahmen der Messunsicherheit nicht ganz miteinander überein. Dies könnte dadurch erklärt werden, dass die Leiterspule bei manchen Messpunkten die große Spule berührte und Reibungskräfte die gemessene Lorentzkraft verfälschten.

7 4 MESSERGEBNISSE, AUSWERTUNG, DISKUSSION LK Messwerte f(x)=0,0158x+0,0004 errechnete Steigung: 0,0133 Kraft in mn ,1 0,0 0,1 0,2 0,3 0,4 0,5 0,6 Strom der Spule in A Abbildung 1: Abhängigkeit der Lorentzkraft F vom Strom I L durch den Leiter. 4.4 Abhängigkeit der Lorentzkraft vom B-Feld Wie man in Gleichung (6) sieht, hängt die Kraft auf einen Leiter in einem B-Feld von der Stärke des B-Feldes ab. Die Steigung der Funktion F(B) ist dabei theoretisch: (F/B) th = NL L I L = (1,27 ± 0,05) N/T. Misst man die Lorentzkraft F in Abhängigkeit von B, so ergibt sich für die Steigung Regressionsgerade (siehe Abb. 2) Regression: (F/B) Reg = (1,26 ± 0,003) N/T. Die beiden Werte stimmen sehr gut miteinander überein. 4.5 Abhängigkeit des B-Feldes von der Spaltbreite a Um die Formel (3) für das B-Feld in Abhängigkeit von der Spaltbreite a zwischen den großen Spulen zu überprüfen, wird B für vier

8 4 MESSERGEBNISSE, AUSWERTUNG, DISKUSSION LK Messwerte f(x)=1,264x+0, Berechnete Steigung: 1,272 Fehler: 0,0024 Kraft in mn ,000 0,001 0,002 0,003 0,004 0,005 0,006 0,007 B-Feld in T Abbildung 2: Abhängigkeit der Lorentzkraft F vom B-Feld. verschiedene Werte von a gemessen. Die aus Gleichung (3) berechneten Werte und die gemessenen Werte sind in Abb. 3 gezeigt. Es wurde jeweils gemessen bei welchem Leiterstrom I L die Lorentzkraft F einen bestimmten festen Wert erreicht (F = g 100mg) und dann aus dem Leiterstrom I L der Wert von B nach B = F/(L L I L N) bestimmt. Die theoretisch und experimentell ermittelten Werte stimmen sehr gut miteinander überein.

9 4 MESSERGEBNISSE, AUSWERTUNG, DISKUSSION LK 9 0,0070 theoretisch berechnetes B aus I berechnetes B 0,0065 B in T 0,0060 0,0055 0,0050 0,0045 1,0 1,5 2,0 2,5 3,0 3,5 4,0 Abstand a in cm Abbildung 3: Abhängigkeit des B-Feldes vom Spaltabstand a.

SG Stoßgesetze. Inhaltsverzeichnis. Marcel Schmittfull (Gruppe 2) 25. April Einführung 2

SG Stoßgesetze. Inhaltsverzeichnis. Marcel Schmittfull (Gruppe 2) 25. April Einführung 2 SG Stoßgesetze Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Stöße............................ 2 2.2 Schwerpunktsystem....................

Mehr

IK Induktion. Inhaltsverzeichnis. Sebastian Diebold, Moritz Stoll, Marcel Schmittfull. 25. April Einführung 2

IK Induktion. Inhaltsverzeichnis. Sebastian Diebold, Moritz Stoll, Marcel Schmittfull. 25. April Einführung 2 IK Induktion Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Magnetfelder....................... 2 2.2 Spule............................ 2

Mehr

Im ersten Teil dieses Versuchs wird ein Elektronenstrahl im homogenen Magnetfeld untersucht.

Im ersten Teil dieses Versuchs wird ein Elektronenstrahl im homogenen Magnetfeld untersucht. 1. Problem n diesem Versuch lernen Sie die Kraftwirkung eines -Feldes auf eine bewegte Ladung kennen. ies untersuchen sie an zwei Beispielen: unächst untersuchen sie die Auslenkung eines Elektronenstrahls

Mehr

Spezifische Ladung des Elektrons

Spezifische Ladung des Elektrons Spezifische Ladung des Elektrons 1. Aufgaben 1. Die von einer Spule (a) und von einer Helmholtz-Spulenanordnung (b) erzeugte magnetische Flußdichte ist längs der Rotationssymmetrieachse zu messen und grafisch

Mehr

Die spezifische Elektronenladung e/m e

Die spezifische Elektronenladung e/m e Physikalisches Grundpraktikum Versuch 12 Die spezifische Elektronenladung e/m e Praktikant: Tobias Wegener Alexander Osterkorn E-Mail: tobias.wegener@stud.uni-goettingen.de a.osterkorn@stud.uni-goettingen.de

Mehr

Versuch 12 Die spezifische Elektronenladung e/m e

Versuch 12 Die spezifische Elektronenladung e/m e Physikalisches A-Praktikum Versuch 12 Die spezifische Elektronenladung e/m e Praktikanten: Gruppe: Julius Strake Niklas Bölter B006 Betreuer: Johannes Schmidt Durchgeführt: 14.09.2012 Unterschrift: E-Mail:

Mehr

Spezifische Ladung eines Elektrons

Spezifische Ladung eines Elektrons A12 Spezifische Ladung eines Elektrons Die spezifische Elektronenladung e/m e soll aus der Bahnkurve eines Elektronenstrahls im homogenen magnetischen Feld bestimmt werden. 1. Theoretische Grundlagen 1.1

Mehr

Die spezifische Elektronenladung

Die spezifische Elektronenladung Physikalisches Praktikum für das Hauptfach Physik Versuch 13 Die spezifische Elektronenladung Wintersemester 2005 / 2006 Name: Mitarbeiter: EMail: Gruppe: Daniel Scholz Hauke Rohmeyer physik@mehr-davon.de

Mehr

Experimentelle Bestimmung der magnetischen Flussdichte

Experimentelle Bestimmung der magnetischen Flussdichte Experimentelle Bestimmung der magnetischen Flussdichte Vorversuch: Um die magnetische Flussdichte zu bestimmen führen wir einen Vorversuch durch um die Kräftewirkung im magnetischen Feld zu testen. B F

Mehr

Juni Das Schönste, was wir erleben können, ist das Geheimnisvolle. Albert Einstein. Das besondere Experiment

Juni Das Schönste, was wir erleben können, ist das Geheimnisvolle. Albert Einstein. Das besondere Experiment Projektwoche 10. - 13. Juni 2014 Das Schönste, was wir erleben können, ist das Geheimnisvolle. Albert Einstein Frau Schuster und Herr Fichtner Inhaltsverzeichnis 1. Fadenstrahlrohrversuch 1.1. Ziel des

Mehr

Q 2 - e/m Bestimmungen

Q 2 - e/m Bestimmungen 15.1.09 PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe Versuch: Q - e/m Bestimmungen 1. Grundlagen Erzeugen von Elektronenstrahlen (Fadenstrahlrohr); Messung der spez. Ladung e/m durch Ablenkung eines Elektronenstrahles

Mehr

Physik GK ph1, 2. Kursarbeit Elektromagnetismus Lösung =10V ein Strom von =2mA. Berechne R 0.

Physik GK ph1, 2. Kursarbeit Elektromagnetismus Lösung =10V ein Strom von =2mA. Berechne R 0. Physik GK ph,. Kursarbeit Elektromagnetismus Lösung.04.05 Aufgabe : Stromkreise / Ohmsches Gesetz. Durch einen Widerstand R 0 fließt bei einer Spannung von U 0 =0V ein Strom von I 0 =ma. Berechne R 0.

Mehr

V9: Fadenstrahlrohr. Bestimmung der speziischen Ladung des Elektrons

V9: Fadenstrahlrohr. Bestimmung der speziischen Ladung des Elektrons V9: Fadenstrahlrohr Bestimmung der speziischen Ladung des Elektrons HaSP Halles Schülerlabor für Physik Institut für Physik Martin-Luther-Universität Halle-Wittenberg Inhaltsverzeichnis 1 Inhaltsverzeichnis

Mehr

BL Brennweite von Linsen

BL Brennweite von Linsen BL Brennweite von Linsen Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Geometrische Optik................... 2 2.2 Dünne Linse........................

Mehr

Stromwaage - Protokoll zum Versuch

Stromwaage - Protokoll zum Versuch Naturwissenschaft Jan Hoppe Stromwaage - Protokoll zum Versuch Praktikumsbericht / -arbeit Grundpraktikum, SoSe 8 Jan Hoppe Protokoll zum Versuch: Stromwaage (16.5.8) 1. Ziel Die Kraft auf einen stromdurchflossenen

Mehr

V 401 : Induktion. Gruppe : Versuchstag: Namen, Matrikel Nr.: Vorgelegt: Hochschule Düsseldorf. Fachbereich EI Testat : Physikalisches Praktikum

V 401 : Induktion. Gruppe : Versuchstag: Namen, Matrikel Nr.: Vorgelegt: Hochschule Düsseldorf. Fachbereich EI Testat : Physikalisches Praktikum Fachbereich El Gruppe : Namen, Matrikel Nr.: Versuchstag: Vorgelegt: Hochschule Düsseldorf Testat : V 401 : Induktion Zusammenfassung: 01.04.16 Versuch: Induktion Seite 1 von 6 Gruppe : Korrigiert am:

Mehr

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund Fadenpendel M1) Ziel des Versuches Der Aufbau dieses Versuches ist denkbar einfach: eine Kugel hängt an einem Faden. Der Zusammenhang zwischen der Fadenlänge und der Schwingungsdauer ist nicht schwer zu

Mehr

Hall-Effekt und Magnetfeldmessung

Hall-Effekt und Magnetfeldmessung Hall-Effekt und Magnetfeldmessung erweitert aus Studiengebühren Vorbereitung: Halbleiter, Bändermodell: n-leitung, p-leitung, Kraft auf Ladungsträger in elektrischen und magnetischen Feldern, Hall-Effekt,

Mehr

v B Cusanus-Gymnasium Wittlich Die Lorentzkraft Die Lorentzkraft auf ein einzelnes Elektron im Magnetfeld B ist gegeben durch: L(e)

v B Cusanus-Gymnasium Wittlich Die Lorentzkraft Die Lorentzkraft auf ein einzelnes Elektron im Magnetfeld B ist gegeben durch: L(e) Die Lorentzkraft Die Lorentzkraft auf ein einzelnes Elektron im Magnetfeld B ist gegeben durch: FL(e) = e ( v B) F = e v B sin (v, B) L(e) F L v B Die Fadenstrahlröhre Glasröhre, gefüllt mit Wasserstoffgas

Mehr

Physikalisches Anfängerpraktikum Teil 1 Versuch 1 73: Stromdurchflossene Leiter im Magnetfeld, Halleffekt Protokoll

Physikalisches Anfängerpraktikum Teil 1 Versuch 1 73: Stromdurchflossene Leiter im Magnetfeld, Halleffekt Protokoll Physikalisches Anfängerpraktikum eil 1 Versuch 1 73: Stromdurchflossene Leiter im Magnetfeld, Halleffekt Protokoll Gruppe 13: Marc A. Donges , 1060028 Michael Schüssler, 1228119 2004 09

Mehr

Freie Universität Berlin

Freie Universität Berlin 9.5.2014 Freie Universität Berlin - Fachbereich Physik Spezifische Ladung!!! des Elektrons Protokoll zum Versuch des physikalischen Grundpraktikums I Teilnehmer: Ludwig Schuster, ludwig.schuster@fu- berlin.de

Mehr

Name: Punkte: Note: Ø: 3. Musterklausur

Name: Punkte: Note: Ø: 3. Musterklausur ame: Punkte: ote: Ø: Physik Kursstufe Abzüge für Darstellung: Rundung:. Musterklausur Achte auf die Darstellung und vergiss nicht: Geg., Ges., Ansatz, Formeln, Einheiten, Rundung...! Angaben: e =,602 0-9

Mehr

Versuch 13: Magnetfeld von Spulen

Versuch 13: Magnetfeld von Spulen Versuch 13: Magnetfeld von Spulen Inhaltsverzeichnis 1 Einleitung 3 2 Theorie 3 2.1 Maxwell-Gleichungen.............................. 3 2.2 Biot-Savart-Gesetz............................... 3 3 Durchführung

Mehr

Zulassungstest zur Physik II für Chemiker

Zulassungstest zur Physik II für Chemiker SoSe 2016 Zulassungstest zur Physik II für Chemiker 03.08.16 Name: Matrikelnummer: T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T TOT.../4.../4.../4.../4.../4.../4.../4.../4.../4.../4.../40 R1 R2 R3 R4 R TOT.../6.../6.../6.../6.../24

Mehr

Wärmeleitung und thermoelektrische Effekte Versuchsauswertung

Wärmeleitung und thermoelektrische Effekte Versuchsauswertung Versuch P2-32 Wärmeleitung und thermoelektrische Effekte Versuchsauswertung Marco A., Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 30.05.2011 1 Inhaltsverzeichnis 1 Bestimmung

Mehr

Klausur 2 Kurs 11Ph1e Physik. 2 Q U B m

Klausur 2 Kurs 11Ph1e Physik. 2 Q U B m 2010-11-24 Klausur 2 Kurs 11Ph1e Physik Lösung 1 α-teilchen (=2-fach geladene Heliumkerne) werden mit der Spannung U B beschleunigt und durchfliegen dann einen mit der Ladung geladenen Kondensator (siehe

Mehr

503 Spezifische Ladung e/m des Elektrons

503 Spezifische Ladung e/m des Elektrons 503 Spezifische Ladung e/m des Elektrons 1. Aufgaben 1.1 Bestimmen Sie mit Hilfe einer Fadenstrahlröhre die spezifische Ladung e/m des Elektrons! 1.2 (Zusatzaufgabe) Untersuchen Sie die Homogenität des

Mehr

Versuch P2-71,74: Kreisel. Auswertung. Von Jan Oertlin und Ingo Medebach. 25. Mai Drehimpulserhaltung 2. 2 Freie Achse 2

Versuch P2-71,74: Kreisel. Auswertung. Von Jan Oertlin und Ingo Medebach. 25. Mai Drehimpulserhaltung 2. 2 Freie Achse 2 Versuch P2-71,74: Kreisel Auswertung Von Jan Oertlin und Ingo Medebach 25. Mai 2010 Inhaltsverzeichnis 1 Drehimpulserhaltung 2 2 Freie Achse 2 3 Kräftefreie Kreisel 2 4 Dämpfung des Kreisels 3 5 Kreisel

Mehr

v q,m Aufgabensammlung Experimentalphysik für ET

v q,m Aufgabensammlung Experimentalphysik für ET Experimentalphysik für ET Aufgabensammlung 1. E-Felder Auf einen Plattenkondensator mit quadratischen Platten der Kantenlänge a und dem Plattenabstand d werde die Ladung Q aufgebracht, bevor er vom Netz

Mehr

Physik Klausur

Physik Klausur Physik Klausur 12.1 2 15. Januar 2003 Aufgaben Aufgabe 1 Ein Elektron wird mit der Geschwindigkeit v = 10 7 m s 1 von A aus unter 45 in ein begrenztes Magnetfeld geschossen. Der Geschwindigkeitsvektor

Mehr

Physik-eA-2011 Klausur Nr

Physik-eA-2011 Klausur Nr Physik-eA-2011 Klausur Nr. 2 12.11.2009 1. Aufgabe Mit einem Simulationsprogramm wird ein Massenspektrogramm von 1-fach ionisierten Neon-Atomen erstellt. Abbildung 1 (siehe Materialseite) dokumentiert

Mehr

Physikalisches Grundlagenpraktikum

Physikalisches Grundlagenpraktikum Physikalisches Grundlagenpraktikum Versuch: Versuchsdatum: Gruppennummer: Studierende: Name/Matr. Nr./E-Mail: Name/Matr. Nr./E-Mail: Name/Matr. Nr./E-Mail: Name/Matr. Nr./E-Mail: Studiengang: EIT Energy

Mehr

Stromdurchflossene Leiter im Magnetfeld, Halleffekt

Stromdurchflossene Leiter im Magnetfeld, Halleffekt Protokoll zum Versuch Stromdurchflossene Leiter im Magnetfeld, Halleffekt Kirstin Hübner (1348630) Armin Burgmeier (1347488) Gruppe 15 2. Dezember 2007 1 Messung des magnetischen Feldes mit einer Feldplatte

Mehr

Demonstrations-Elektronenstrahl-Ablenkröhre

Demonstrations-Elektronenstrahl-Ablenkröhre Demonstrations-Elektronenstrahl-Ablenkröhre Die Demonstrations-Elektronenstrahl-Ablenkröhre dient zur Untersuchung von Elektronenstrahlen in elektrischen und magnetischen Feldern. Sie ermöglicht sowohl

Mehr

Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 1

Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 1 Werner-v.-Siemens-Labor für elektrische Antriebssysteme Prof. Dr.-Ing. Dr. h.c. H. Biechl Prof. Dr.-Ing. E.-P. Meyer Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 1 Magnetisches Feld Lernziel:

Mehr

E12 Elektronen in Feldern

E12 Elektronen in Feldern Physikalische Grundlagen Grundbegriffe Oszillograf spezifische Ladung elektrisches und magnetisches Feld Lorentzkraft Coulombkraft DiespezifischeLadung e/m geladenerteilchenmitdermasse m undderladung e

Mehr

Klausur 2 Kurs 11Ph1e Physik

Klausur 2 Kurs 11Ph1e Physik 2-2-06 Klausur 2 Kurs Phe Physik Lösung Ein stromdurchflossener Leiter ist so in einem Magnetfeld mit konstanter Feldstärke B aufgehängt, dass der Strom überall senkrecht zu den magnetischen Feldlinien

Mehr

Bestimmung der spezifischen Ladung e/m

Bestimmung der spezifischen Ladung e/m -B08.1- Versuch B8: Bestimmung der spezifischen Ladung e/m 1. Literatur: Demtröder, Experimentalphysik 2: Elektrizität und Optik Pohl, Einführung in die Physik, Bd. 2 Dobrinski/Krakau/Vogel, Physik für

Mehr

3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P]

3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] 3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] B = µ 0 I 4 π ds (r r ) r r 3 a) Beschreiben Sie die im Gesetz von Biot-Savart vorkommenden Größen (rechts vom Integral). b) Zeigen Sie, dass das Biot-Savartsche

Mehr

Überblick Physik 4-stündig - kurz vor dem Abi

Überblick Physik 4-stündig - kurz vor dem Abi Überblick Physik 4-stündig - kurz vor dem Abi Teil I: E- und B-Felder März 2004 / Februar 2010 Inhalt Elektrisches Feld Magnetisches Feld Teilchen in E- und B-Feldern + - E-Feld (1) Einführung des E-Feldes

Mehr

Versuchsprotokoll. Mathematisch-Naturwissenschaftliche Fakultät I Institut für Physik. Versuch O10: Linsensysteme Arbeitsplatz Nr.

Versuchsprotokoll. Mathematisch-Naturwissenschaftliche Fakultät I Institut für Physik. Versuch O10: Linsensysteme Arbeitsplatz Nr. Mathematisch-Naturwissenschaftliche Fakultät I Institut für Physik Physikalisches Grundpraktikum I Versuchsprotokoll Versuch O10: Linsensysteme Arbeitsplatz Nr. 1 0. Inhaltsverzeichnis 1. Einleitung 2.

Mehr

Elektronen auf dem Leuchtschirm. c) Ermittle den Auftreffwinkel gegenüber der Waagrechten.

Elektronen auf dem Leuchtschirm. c) Ermittle den Auftreffwinkel gegenüber der Waagrechten. Aufgabenbeispiel: In einer Hochvakuumröhre werden die aus der Heizwendel ausgelösten Elektronen mit einer Spannung von 600 V beschleunigt. Nach der Beschleunigungsstrecke treten sie in einen Kondensator

Mehr

1.) Wie groß ist der Energiezuwachs eines Elektrons nach Durchlaufen einer Potentialdifferenz von 100 V?

1.) Wie groß ist der Energiezuwachs eines Elektrons nach Durchlaufen einer Potentialdifferenz von 100 V? A10 Name: Bestimmung von e/m Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von jedem Teilnehmer eigenständig (keine Gruppenlösung!)

Mehr

Praktikumsbericht. Gruppe 6: Daniela Poppinga, Jan Christoph Bernack. Betreuerin: Natalia Podlaszewski 11. November 2008

Praktikumsbericht. Gruppe 6: Daniela Poppinga, Jan Christoph Bernack. Betreuerin: Natalia Podlaszewski 11. November 2008 Praktikumsbericht Gruppe 6: Daniela Poppinga, Jan Christoph Bernack Betreuerin: Natalia Podlaszewski 11. November 2008 1 Inhaltsverzeichnis 1 Theorieteil 3 1.1 Frage 7................................ 3

Mehr

Übungsblatt 8. = d(i 0 I) Nach Integration beider Seiten und beachtung der Anfangswerte t = 0, I = 0 erhält man:

Übungsblatt 8. = d(i 0 I) Nach Integration beider Seiten und beachtung der Anfangswerte t = 0, I = 0 erhält man: Aufgabe 29 Ein Stromkreis bestehe aus einer Spannungsquelle mit Spannung U 0 in Reihe mit einer Induktivität(Spule) L = 0.8H und einem Widerstand R = 10Ω. Zu dem Zeitpunkt t = 0 werde die Spannungsquelle

Mehr

Inhaltsverzeichnis. 1 Einführung Versuchsbeschreibung und Motivation Physikalische Grundlagen... 3

Inhaltsverzeichnis. 1 Einführung Versuchsbeschreibung und Motivation Physikalische Grundlagen... 3 Inhaltsverzeichnis 1 Einführung 3 1.1 Versuchsbeschreibung und Motivation............................... 3 1.2 Physikalische Grundlagen...................................... 3 2 Messwerte und Auswertung

Mehr

4.7 Magnetfelder von Strömen Magnetfeld eines geraden Leiters

4.7 Magnetfelder von Strömen Magnetfeld eines geraden Leiters 4.7 Magnetfelder von Strömen Aus den vorherigen Kapiteln ist bekannt, dass auf stromdurchflossene Leiter im Magnetfeld eine Kraft wirkt. Die betrachteten magnetischen Felder waren bisher homogene Felder

Mehr

Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung.

Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Prinzip In einer langen Spule wird ein Magnetfeld mit variabler Frequenz

Mehr

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund Fadenpendel M) Ziel des Versuches Der Aufbau dieses Versuches ist denkbar einfach: eine Kugel hängt an einem Faden. Der Zusammenhang zwischen der Fadenlänge und der Schwingungsdauer ist nicht schwer zu

Mehr

Mathematisch-Naturwissenschaftliche Fakultät I der Humboldt-Universität zu Berlin Institut für Physik Physikalisches Grundpraktikum.

Mathematisch-Naturwissenschaftliche Fakultät I der Humboldt-Universität zu Berlin Institut für Physik Physikalisches Grundpraktikum. Mathematisch-Naturwissenschaftliche Fakultät I der Humboldt-Universität zu Berlin Institut für Physik Physikalisches Grundpraktikum Versuchsprotokoll zur Bestimmung der Brennweiten von dünnen Linsen (O)

Mehr

Ferienkurs Experimentalphysik 2

Ferienkurs Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Lösung Übungsblatt 2 Tutoren: Elena Kaiser und Matthias Golibrzuch 2 Elektrischer Strom 2.1 Elektrischer Widerstand Ein Bügeleisen von 235 V / 300 W hat eine Heizwicklung

Mehr

1. Klausur in K2 am

1. Klausur in K2 am Name: Punkte: Note: Ø: Physik Kursstufe Abzüge für Darstellung: Rundung:. Klausur in K am. 3. 0 Achte auf die Darstellung und vergiss nicht: Geg., Ges., Ansatz, Formeln, Einheiten, Rundung...! Angaben:

Mehr

Reihen- und Parallelschaltung von Kondensatoren

Reihen- und Parallelschaltung von Kondensatoren Ladung Spannung Kapazität Skizze wir-sind-klasse.jimdo.com Das elektrische Feld Energie des Kondensators Die Energie sitzt nach Faradays Feldvorstellung nicht bei den Ladungen auf den Platten sondern zwischen

Mehr

Das Magnetfeld eines stromdurchflossenen Leiters (Schularbeiten bis Oktober 1995)

Das Magnetfeld eines stromdurchflossenen Leiters (Schularbeiten bis Oktober 1995) Das Magnetfeld eines stromdurchflossenen Leiters (Schularbeiten bis Oktober 1995) 1) Drei Drähte liegen parallel in werden von Strömen in den I 1 = 2 A I 2 = 5 A I 3 = 6 A angegebenen Richtungen durchflossen.

Mehr

Versuch 17: Kennlinie der Vakuum-Diode

Versuch 17: Kennlinie der Vakuum-Diode Versuch 17: Kennlinie der Vakuum-Diode Inhaltsverzeichnis 1 Einleitung 3 2 Theorie 3 2.1 Prinzip der Vakuumdiode.......................... 3 2.2 Anlaufstrom.................................. 3 2.3 Raumladungsgebiet..............................

Mehr

2. Musterklausur in K1

2. Musterklausur in K1 Name: Punkte: Note: Ø: Physik Kursstufe Abzüge für Darstellung: Rundung:. Musterklausur in K Die Klausur stellt nur eine kleine Auswahl der möglichen Themen dar. Inhalt der Klausur kann aber der gesamte

Mehr

Versuch 11 Einführungsversuch

Versuch 11 Einführungsversuch Versuch 11 Einführungsversuch I Vorbemerkung Ziel der Einführungsveranstaltung ist es Sie mit grundlegenden Techniken des Experimentierens und der Auswertung der Messdaten vertraut zu machen. Diese Grundkenntnisse

Mehr

Physik 4 Praktikum Auswertung Hall-Effekt

Physik 4 Praktikum Auswertung Hall-Effekt Physik 4 Praktikum Auswertung Hall-Effekt Von J.W., I.G. 2014 Seite 1. Kurzfassung......... 2 2. Theorie.......... 2 2.1. Elektrischer Strom in Halbleitern..... 2 2.2. Hall-Effekt......... 3 3. Durchführung.........

Mehr

Bestimmung der Linsenbrennweite nach der Bessel schen Methode

Bestimmung der Linsenbrennweite nach der Bessel schen Methode Bestimmung der Linsenbrennweite nach der Bessel schen Methode Tobias Krähling email: Homepage: 18.04.007 Version: 1. Inhaltsverzeichnis 1. Aufgabenstellung............................................................

Mehr

Elektrostaitische Felder

Elektrostaitische Felder Elektrostaitische Felder Grundlagen zu den elektrischen Felder 1 homogenes Feld des Plattenkondensators inhomogenes Feld einer Punktladung Bei einem Plattenkondensator verlaufen die Feldlinien parallel

Mehr

Klausur. zur Vorlesung Experimentalphysik für Studierende der Biologie, Gartenbauwissenschaften, Pflanzenbiotechnologie und Life Science

Klausur. zur Vorlesung Experimentalphysik für Studierende der Biologie, Gartenbauwissenschaften, Pflanzenbiotechnologie und Life Science Klausur zur Vorlesung Experimentalphysik für Studierende der Biologie, Gartenbauwissenschaften, Pflanzenbiotechnologie und Life Science Leibniz Universität Hannover 03.02.2010 Barthold Name, Vorname: Matrikelnummer:

Mehr

1 Messfehler. 1.1 Systematischer Fehler. 1.2 Statistische Fehler

1 Messfehler. 1.1 Systematischer Fehler. 1.2 Statistische Fehler 1 Messfehler Jede Messung ist ungenau, hat einen Fehler. Wenn Sie zum Beispiel die Schwingungsdauer eines Pendels messen, werden Sie - trotz gleicher experimenteller Anordnungen - unterschiedliche Messwerte

Mehr

Elastizität und Torsion

Elastizität und Torsion INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11 Elastizität und Torsion 1 Einleitung Ein Flachstab, der an den

Mehr

Physikalisches Praktikum I Bachelor Chemieingenieurwesen, Wirtschaftsingenieurwesen Chemietechnik MSc. M. Gilbert

Physikalisches Praktikum I Bachelor Chemieingenieurwesen, Wirtschaftsingenieurwesen Chemietechnik MSc. M. Gilbert Physikalisches Praktikum I Bachelor Chemieingenieurwesen, Wirtschaftsingenieurwesen Chemietechnik MSc. M. Gilbert E 07 Elektronen im Magnetfeld (Pr_EX_E07_Elektronenröhre_6, 6.09.014) 1.. Name Matr. Nr.

Mehr

Versuch P1-15 Pendel Auswertung. Gruppe Mo-19 Yannick Augenstein Patrick Kuntze

Versuch P1-15 Pendel Auswertung. Gruppe Mo-19 Yannick Augenstein Patrick Kuntze Versuch P1-15 Pendel Auswertung Gruppe Mo-19 Yannick Augenstein Patrick Kuntze 3.1.11 1 Inhaltsverzeichnis 1 Reversionspendel 3 1.0 Eichmessung................................... 3 1.1 Reduzierte Pendellänge.............................

Mehr

PROTOKOLL ZUM VERSUCH: NEWTONSCHE RINGE

PROTOKOLL ZUM VERSUCH: NEWTONSCHE RINGE PROTOKOLL ZUM VERSUCH: NEWTONSCHE RINGE CHRIS BÜNGER Betreuer: Dr. Enenkel Inhaltsverzeichnis 1. Versuchsbeschreibung 1 1.1. Ziel: 1 1.2. Aufgabe: 1 1.3. Verwendete Geräte: 1 2. Versuchsdurchführung 1

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung Physik-Department Ferienkurs zur Experimentalphysik 2 - Musterlösung Daniel Jost 27/08/13 Technische Universität München Aufgaben zur Magnetostatik Aufgabe 1 Bestimmen Sie das Magnetfeld eines unendlichen

Mehr

1 Physikalische Grundlagen und Aufgabenstellung 2

1 Physikalische Grundlagen und Aufgabenstellung 2 Inhaltsverzeichnis 1 Physikalische Grundlagen und Aufgabenstellung 2 2 Bestimmung der Linsenbrennweiten 2 2.1 Untersuchung von Linse 3/2 mit der Bessel-Methode......... 2 2.2 Untersuchung von Linse 3/3

Mehr

Physikalisches Grundpraktikum für Physiker/innen Teil I. Bestimmung der spezifischen Elementarladung e/m

Physikalisches Grundpraktikum für Physiker/innen Teil I. Bestimmung der spezifischen Elementarladung e/m Fachrichtungen der Physik UNIVERSITÄT DES SAARLANDES Physikalisches Grundpraktikum für Physiker/innen Teil I Bestimmung der spezifischen Elementarladung e/m Grundpraktikum Physik: 0Hhttp://grundpraktikum.physik.uni-saarland.de/

Mehr

Einige Worte zu Messungen und Messfehlern. Sehr schöne Behandlung bei Walcher!

Einige Worte zu Messungen und Messfehlern. Sehr schöne Behandlung bei Walcher! Einige Worte zu Messungen und Messfehlern Sehr schöne Behandlung bei Walcher! Was ist eine Messung? Messung = Vergleich einer physikalischen Größe mit Einheit dieser Größe Bsp.: Längenmessung durch Vgl.

Mehr

Physikalisches Praktikum 3. Semester

Physikalisches Praktikum 3. Semester Torsten Leddig 3.November 004 Mathias Arbeiter Betreuer: Dr.Hoppe Physikalisches Praktikum 3. Semester - Feldmessung - 1 Aufgaben: 1. Elektrisches Feld 1.1 Nehmen Sie den Potenziallinienverlauf einer der

Mehr

Praktikum Physik. Protokoll zum Versuch: Oberflächenspannung. Durchgeführt am Gruppe X

Praktikum Physik. Protokoll zum Versuch: Oberflächenspannung. Durchgeführt am Gruppe X Praktikum Physik Protokoll zum Versuch: Oberflächenspannung Durchgeführt am 02.02.2012 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuer: Wir bestätigen hiermit, dass wir das

Mehr

Bestimmung von e e. mit dem Fadenstrahlrohr m Gruppe 8

Bestimmung von e e. mit dem Fadenstrahlrohr m Gruppe 8 Bestimmung von e e mit dem Fadenstrahlrohr m Gruppe 8 m -- Einführung Dieser Versuch beschäftigt sich mit der Bestimmung der spezifischen Ladung e m eines Elektrons. Dies wird mit folgendem Versuchsaufbau

Mehr

Physikalisches Grundpraktikum für Physiker/innen Teil III. Bestimmung der spezifischen Elementarladung e/m

Physikalisches Grundpraktikum für Physiker/innen Teil III. Bestimmung der spezifischen Elementarladung e/m Fachrichtungen der Physik UNIVERSITÄT DES SAARLANDES Physikalisches Grundpraktikum für Physiker/innen Teil III Bestimmung der spezifischen Elementarladung e/m WWW-Adresse Grundpraktikum Physik: 0http://grundpraktikum.physik.uni-saarland.de/

Mehr

Allgemeine Chemie Computer Praktikum Frühjahrssemester Regressions-Tutorial Lineare und nicht-lineare Regression

Allgemeine Chemie Computer Praktikum Frühjahrssemester Regressions-Tutorial Lineare und nicht-lineare Regression 1 Einführung Allgemeine Chemie Computer Praktikum Frühjahrssemester Regressions-Tutorial Lineare und nicht-lineare Regression Datenauswertung In einem naturwissenschaftlichen Experiment werden Sie meist

Mehr

IE4. Modul Elektrizitätslehre. Spezifische Ladung des Elektrons

IE4. Modul Elektrizitätslehre. Spezifische Ladung des Elektrons IE4 Modul Elektrizitätslehre Spezifische Ladung des Elektrons Ziel dieses Versuchs ist es, aus der Ablenkung eines Elektronenstrahls in einem homogenen Magnetfeld die spezifische Ladung des Elektrons zu

Mehr

Abiturprüfung Physik, Grundkurs. Aufgabe: Die Helmholtzspule, die Messung des Erdmagnetfeldes sowie seine Wirkung auf geladene Teilchen

Abiturprüfung Physik, Grundkurs. Aufgabe: Die Helmholtzspule, die Messung des Erdmagnetfeldes sowie seine Wirkung auf geladene Teilchen Seite 1 von 6 Abiturprüfung 2012 Physik, Grundkurs Aufgabenstellung: Aufgabe: Die Helmholtzspule, die Messung des Erdmagnetfeldes sowie seine Wirkung auf geladene Teilchen Ein homogenes Magnetfeld in einem

Mehr

Physik LK 12, 2. Kursarbeit Magnetismus Lösung A: Nach 10 s beträgt ist der Kondensator praktisch voll aufgeladen. Es fehlen noch 4μV.

Physik LK 12, 2. Kursarbeit Magnetismus Lösung A: Nach 10 s beträgt ist der Kondensator praktisch voll aufgeladen. Es fehlen noch 4μV. Physik LK 2, 2. Kursarbeit Magnetismus Lösung 07.2.202 Konstante Wert Konstante Wert Elementarladung e=,602 0 9 C. Masse Elektron m e =9,093 0 3 kg Molmasse Kupfer M Cu =63,55 g mol Dichte Kupfer ρ Cu

Mehr

IE2. Modul Elektrizitätslehre. Magnetfeld und Permeabilität des Vakuums

IE2. Modul Elektrizitätslehre. Magnetfeld und Permeabilität des Vakuums IE2 Modul Elektrizitätslehre Magnetfeld und Permeabilität des Vakuums In diesem Experiment wird das magnetische Feld einer Spule ausgemessen. Aus den gewonnenen Daten kann die Permeabilität des Vakuums

Mehr

Elektrizitätslehre Elektromagnetische Induktion Induktion durch ein veränderliches Magnetfeld

Elektrizitätslehre Elektromagnetische Induktion Induktion durch ein veränderliches Magnetfeld (2013-06-07) P3.4.3.1 Elektrizitätslehre Elektromagnetische Induktion Induktion durch ein veränderliches Magnetfeld Messung der Induktionsspannung in einer Leiterschleife bei veränderlichem Magnetfeld

Mehr

Labornetzgerät, Digitalmultimeter, Teslameter mit digitaler axialer Feldsonde (Hallsonde), verschiedene

Labornetzgerät, Digitalmultimeter, Teslameter mit digitaler axialer Feldsonde (Hallsonde), verschiedene Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum E 7a Spulenfelder Aufgaben 1. Überprüfen Sie die Kalibrierung des Teslameters mit einer Kalibrierspule.. Nehmen Sie die Flussdichte

Mehr

Experimentalphysik 2

Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommer 2014 Übung 2 - Angabe Technische Universität München 1 Fakultät für Physik 1 Draht Strom fließt durch einen unendlich langen Draht mit Radius a. Dabei ist die elektrische

Mehr

Physikalisches Praktikum

Physikalisches Praktikum Physikalisches Praktikum Viskosität von Flüssigkeiten Laborbericht Korrigierte Version 9.Juni 2002 Andreas Hettler Inhalt Kapitel I Begriffserklärungen 5 Viskosität 5 Stokes sches

Mehr

Physikalisches Grundlagenpraktikum Versuch Hall-Effekt

Physikalisches Grundlagenpraktikum Versuch Hall-Effekt Physikalisches Grundlagenpraktikum Versuch Hall-Effekt Name:... Matrikelnummer:... Gruppe:... Antestat Datum bestanden nicht Unterschrift Prüfer bestanden Termin Nachholtermin 1. Protokollabgabe Datum

Mehr

Elektrotechnik: Zusatzaufgaben

Elektrotechnik: Zusatzaufgaben Elektrotechnik: Zusatzaufgaben 1.1. Aufgabe: Rechnen Sie die abgeleiteten Einheiten der elektrischen Spannung, des elektrischen Widerstandes und der elektrischen Leistung in die Basiseinheiten des SI um.

Mehr

Versuch 10. Die Potentialwaage. Sommersemester Daniel Scholz. Gruppe: 13

Versuch 10. Die Potentialwaage. Sommersemester Daniel Scholz. Gruppe: 13 Physikalisches Praktikum für das Hauptfach Physik Versuch 10 Die Potentialwaage Sommersemester 2005 Name: Daniel Scholz Mitarbeiter: Hauke Rohmeyer EMail: physik@mehr-davon.de Gruppe: 13 Assistent: Sarah

Mehr

Versuch: Wir messen die Kraft auf einen stromdurchflossenen Leiter im Magnetfeld eines Hufeisenmagneten mit Hilfe einer Stromwaage.

Versuch: Wir messen die Kraft auf einen stromdurchflossenen Leiter im Magnetfeld eines Hufeisenmagneten mit Hilfe einer Stromwaage. 12.6 Magnetische lussdichte Die Gravitationsfeldstärke g und die elektrische eldstärke E sind Größen, die die Stärke eines eldes beschreiben. Denkt man sich einen Probekörper bekannter Masse bzw. Ladung

Mehr

Gruppe: bzw. D = D1 + D2 (2)

Gruppe: bzw. D = D1 + D2 (2) Fachbereichsübergreiendes Labor ür Physik der Ostalia Hochschule Protokollührer: Mitarbeiter: Gruppe: Versuchsdatum: Note: O_V.09.7 Bestimmung der Brennweite dünner Linsen Vorbereitungsstichpunkte Brechungsindex,

Mehr

Mathematisch-Naturwissenschaftliche Fakultät I Humboldt-Universität zu Berlin Institut für Physik Physikalisches Grundpraktikum.

Mathematisch-Naturwissenschaftliche Fakultät I Humboldt-Universität zu Berlin Institut für Physik Physikalisches Grundpraktikum. Mathematisch-Naturwissenschaftliche Fakultät I Humboldt-Universität zu Berlin Institut für Physik Physikalisches Grundpraktikum Versuchsprotokoll Linsensysteme (O0) Arbeitsplatz 3 durchgeführt am 7.0.009

Mehr

Versuchsauswertung P2-32: Wärmeleitung und thermoelektrische Eekte

Versuchsauswertung P2-32: Wärmeleitung und thermoelektrische Eekte Versuchsauswertung P2-32: Wärmeleitung und thermoelektrische Eekte Kathrin Ender, Michael Walz Gruppe 10 5. Juli 2008 Inhaltsverzeichnis 0 Zur Auswertung 2 1 Wärmeleitfähigkeit von Kupfer, Stahl und Messing

Mehr

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung Klausur 12/1 Physik LK Elsenbruch Di 18.01.05 (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung 1) Elektronen im elektrischen Querfeld. Die nebenstehende Skizze

Mehr

Einführungsseminar S1 Elemente der Fehlerrechnung. Physikalisches Praktikum der Fakultät für Physik und Astronomie Ruhr-Universität Bochum

Einführungsseminar S1 Elemente der Fehlerrechnung. Physikalisches Praktikum der Fakultät für Physik und Astronomie Ruhr-Universität Bochum Einführungsseminar S1 Elemente der Fehlerrechnung Physikalisches Praktikum der Fakultät für Physik und Astronomie Ruhr-Universität Bochum Literatur Wolfgang Kamke Der Umgang mit experimentellen Daten,

Mehr

Praktikumsprotokoll. Versuch Nr. 311 Hall-Effekt und Elektrizitätsleitung bei Metallen. Frank Hommes und Kilian Klug

Praktikumsprotokoll. Versuch Nr. 311 Hall-Effekt und Elektrizitätsleitung bei Metallen. Frank Hommes und Kilian Klug Praktikumsprotokoll Versuch Nr. 311 Hall-Effekt und Elektrizitätsleitung bei Metallen und Durchgeführt am: 13 Februar 2004 Inhaltsverzeichnis 1 Einleitung 3 2 Theoretische Hintergründe 3 2.1 Hall-Effekt.............................

Mehr

Auswertung P2-10 Auflösungsvermögen

Auswertung P2-10 Auflösungsvermögen Auswertung P2-10 Auflösungsvermögen Michael Prim & Tobias Volkenandt 22 Mai 2006 Aufgabe 11 Bestimmung des Auflösungsvermögens des Auges In diesem Versuch sollten wir experimentell das Auflösungsvermögen

Mehr

Die Momentspule (nach Helmholtz)

Die Momentspule (nach Helmholtz) Die Momentspule (nach Helmholtz) Bedienungsanleitung Die Momentspule nach Helmholtz besitzt, im Gegensatz zu einer üblichen Momentmessspule (Zylinderspule), einen großen und gut zugänglichen Messraum.

Mehr

Induktion. Die in Rot eingezeichnete Größe Lorentzkraft ist die Folge des Stromflusses im Magnetfeld.

Induktion. Die in Rot eingezeichnete Größe Lorentzkraft ist die Folge des Stromflusses im Magnetfeld. Induktion Die elektromagnetische Induktion ist der Umkehrprozess zu dem stromdurchflossenen Leiter, der ein Magnetfeld erzeugt. Bei der Induktion wird in einem Leiter, der sich in einem Magnetfeld bewegt,

Mehr

Serie 10: Lorentzkräfte bei geladenen Teilchen

Serie 10: Lorentzkräfte bei geladenen Teilchen Übungen zum Elektromagnetismus Serie 10: Lorentzkräfte bei geladenen Teilchen 1. Die Geschwindigkeit der Elektronen in unserem Fadenstrahlrohr Im Fadenstrahlrohr aus dem Unterricht werden Elektronen von

Mehr

Praktikum - Hall Effekt Prof. A. Förster, Dipl. Ing. C. Grates

Praktikum - Hall Effekt Prof. A. Förster, Dipl. Ing. C. Grates Praktikum - Hall Effekt Prof. A. Förster, Dipl. Ing. C. Grates chris@university-material.de, Arthur Halama Inhaltsverzeichnis Theorie 2. Elektrische Leitfähigkeit in Halbleitern...........................

Mehr

Grolik Benno, Kopp Joachim. 2. Januar 2003 R 1 R 2 = R 3 R 4. herleiten, aus der man wiederum den unbekannten Widerstand sehr genau berechnen kann.

Grolik Benno, Kopp Joachim. 2. Januar 2003 R 1 R 2 = R 3 R 4. herleiten, aus der man wiederum den unbekannten Widerstand sehr genau berechnen kann. Brückenschaltungen Grolik Benno, Kopp Joachim 2. Januar 2003 Grundlagen des Versuchs. Brückenschaltung für Gleichstromwiderstände Zur genauen Bestimmung ohmscher Widerstände eignet sich die klassische

Mehr

S1 Bestimmung von Trägheitsmomenten

S1 Bestimmung von Trägheitsmomenten Christian Müller Jan Philipp Dietrich S1 Bestimmung von Trägheitsmomenten Versuch 1: a) Versuchserläuterung b) Messwerte c) Berechnung der Messunsicherheit ud u Versuch 2: a) Erläuterungen zum Versuchsaufbau

Mehr