Hast du auch wirklich versucht, die Aufgaben einmal selbständig zu lösen? Wenn nicht, tue es, bevor du dir die Lösungen anschaust!

Größe: px
Ab Seite anzeigen:

Download "Hast du auch wirklich versucht, die Aufgaben einmal selbständig zu lösen? Wenn nicht, tue es, bevor du dir die Lösungen anschaust!"

Transkript

1 Chr.Nelius: Zahlentheorie (SoSe 2016) Aufgabenblatt ZAHLENTHEORIE (für Master G und HRG) Lösungen Hast du auch wirklich versucht, die Aufgaben einmal selbständig zu lösen? Wenn nicht, tue es, bevor du dir die Lösungen anschaust! Hinweis: Bei den Rechnungen sind nicht immer alle erforderlichen Zwischenrechnungen angegeben!

2 Chr.Nelius: Lösungen 14. Aufgabenblatt Zahlentheorie (SoSe 2016) 2 Dieses Aufgabenblatt dient der Vorbereitung auf die Klausur. Es lassen sich hieraus keine Rückschlüsse auf die Aufgabenstellung der eigentlichen Klausur ziehen! Sie sollten versuchen, die Aufgaben selbständig zu bearbeiten! Dieses Aufgabenblatt wird nicht korrigiert, es gibt später eine Musterlösung. Die folgenden Aufgaben sind nur auf Grundlage der Vorlesung und der Übungen zu bearbeiten! Lösungen müssen ausführlich begründet, Rechnungen müssen ausführlich dokumentiert werden! Rechnungen mit dem Taschenrechner sind nur zulässig, wenn die eingegebenen Zahlen bzw. die Ergebnisse höchstens 10 Dezimalstellen haben! Dies ist unabhängig davon, wieviele Stellen Ihr Taschenrechner anzeigt! 47. Aufgabe: a) Bestimme die Anzahl der positiven Teiler der Zahl n = PFZ von n (Methode der sukzessiven Divisionen): n = = τ(n) = (5+1) (2+1) (2+1) (3+1) (1+1) = 432 b) Untersuche, ob n eine Quadratzahl ist. Aber ohne Taschenrechner! Da τ(n) gerade ist, ist n keine Quadratzahl. 48. Aufgabe: a) Seien a und n Æ, und es gebe ein m Æ mit der Eigenschaft r n (a m ) = 1. Beweise: Für alle k Æ 0 gilt r n (a k ) = r n (a l ), wobei l = r m (k) ist. Hinweis: Schaue dir noch einmal den Beweis von (7.9) an! Es gilt k = q m+l. Damit folgt unter Benutzung der Potenzgesetze und der Rechenregeln aus (2.13) r n (a k ) = r n (a q m+l ) = r n ((a m ) q a l ) = r n (r n ((a m ) q ) r n (a l )) = r n ((r n (a m )) q r n (a l )) = r n (1 q r n (a l )) = r n (r n (a l )) = r n (a l ) }{{} =1(Vor) b) Berechne r 27 ( ). Hinweis: Dies hat etwas mit Teil a) zu tun! Versuche zunächst, einen Exponenten m zu finden mit r 27 (17 m ) = 1. Berechne dazu r 27 (17 1 ), r 27 (17 2 ), r 27 (17 3 ) usw. bis man r 27 (17 6 ) = 1 erhält. Es ist r 6 (656) = 2, so dass nach a) folgt r 27 ( ) = r 27 (17 2 ) = 19.

3 Chr.Nelius: Lösungen 14. Aufgabenblatt Zahlentheorie (SoSe 2016) Aufgabe: Seien n = und k = Berechne den Rest r n (313 k ) bei Division von 313 k durch n. Auch hier versuchen wir wieder, einen Exponenten m zu finden mit r n (313 m ) = 1. Dies wäre mit (7.4) möglich, wenn wir wüssten, dass n eine Primzahl ist. Wir versuchen es einmal mit dem Verfahren von Fermat: Ergebnis n = ist Produkt zweier verschiedener Primzahlen (s. Liste). Da 313 teilerfremd zu 223 und 227 ist, ist 313 nach Aufgabe 39a) auch teilerfremd zu n = Die Voraussetzungen von (7.4) sind leider nicht erfüllt, aber wir können (7.11) anwenden: Mit m = (223 1) (227 1) = gilt r n (313 m ) = 1 Wegen r m (k) = 2 folgt mit Hilfe von Aufgabe 48a) r n (313 k ) = r n (313 2 ) = r n (97969) = Aufgabe: Seien a = und b = Berechne ggt(a,b) auf vier (!) verschiedene Weisen. 1) Mit Hilfe des Euklidischen Algorithmus: ggt(a, b) = 36 2) Mit Hilfe der PFZ en: a = und b = (für 269 und 311 ist jeweils ein Primzahltest erforderlich!). Es ergibt sich ggt(a,b) = = 36. 3) Über die Berechnung des kgv s: Nach 2) ist kgv(a,b) = = und damit ggt(a,b) = a b kgv(a,b) = = 36 4) Auf Grundlage der ursprünglichen Definition: Bestimme T + (a)und T + (b)und dasgrößte Element in GT + (a,b) = T + (a) T + (b). T + (a) = {1,2,3,4,6,9,12,18,27,36,54,108,269,538,807,1076,1614,2421,3228, 4842, 7263, 9684, 14526, 29052} T + (b) = {1,2,3,4,5,6,8,9,10,12,15,18,20,24,30,36,40,45,60,72,90,120,180, 311, 360, 622, 933, 1244, 1555, 1866, 2488, 2799, 3110, 3732, 4665, 5598, 6220, 7464, 9330, 11196, 12440, 13995, 18660, 22392, 27990, 37320, 55980, } GT + (a,b) = {1,2,3,4,6,9,12,18,36} = ggt(a,b) = max(gt + (a,b)) = 36 Hinweis: Bei größeren Zahlen eignet sich die 4. Methode nicht so sehr! Zum Glück gibt es aber andere! 51. Aufgabe: Seien a,b, Æ \ {1}. Untersuche, ob ggt(a 10,b 10 ) = ggt(a,b) 10 gilt. Beweise, oder gib ein konkretes Gegenbeispiel. Die Aussage ist richtig! Man erhält die PFZ von a 10, indem man jeden Exponenten in der PFZ von a mit 10 multipliziert. Entsprechendes gilt für b 10. Bildet man jetzt für einen gemeinsamen Primteiler p von a 10 und b 10 den kleineren der beiden Exponenten, so ist dieser das 10 fache des kleineren Exponenten, mit dem p in a bzw. b vorkommt.

4 Chr.Nelius: Lösungen 14. Aufgabenblatt Zahlentheorie (SoSe 2016) 4 Beispiel: a = p 2 q 4, b = p 4 q 3 (p und q verschiedene Primzahlen), ggt(a,b) = p 2 q 3. Dann sind a 10 = (p 2 q 4 ) 10 = p 20 q 40, b 10 = (p 4 q 3 ) 10 = p 40 q 30 die PFZ en von a 10 bzw. b 10. Daraus berechnet sich ggt(a 10,b 10 ) = p 20 q 30 = (p 2 q 3 ) 10 = ggt(a,b) Aufgabe: Beweise: Für alle a und p IP gilt r p (a p ) = r p (a). Hinweis: Unterscheide die Fälle p a und p a! 1. Fall: p a Dann gilt r p (a) = 0, und es folgt p a p und damit auch r p (a p ) = 0. Folglich 2. Fall: p a r p (a p ) = 0 = r p (a). Dann folgt nach dem Kleinen Satz von Fermat r p (a p 1 ) = 1. Dann ist r p (a p ) = r p (a p 1 a) = r p (r p (a p 1 ) r p (a)) = r p (r p (a)) = r p (a). }{{} =1 53. Aufgabe: DienatürlicheZahlabesitzedieDezimaldarstellung a = a r a r 1...a 2 a 1 a 0 d.h. a = a r 10 r +a r 1 10 r a a a 0 (a k R 10 für alle k = 0,1,...,r) Beweise: a) r 8 (a) = r 8 (4a 2 + 2a 1 + a 0 ) Durch Ausklammern von 10 3 = aus den ersten r 2 Summanden erhält man a = b a a a 0 mit der Dezimalzahl b = a r a r 1...a 3, woraus r 8 (a) = r 8 (a a a 0 ) = r 8 (r 8 (a ) +r 8 (a ) + r 8 (a 0 )) = r 8 (4a 2 + 2a 1 + a 0 ) folgt. b) 8 a 8 (4a 2 +2a 1 +a 0 ) 8 a r 8 (a) = 0 a) r 8 (4a 2 +2a 1 +a 0 ) = 0 8 (4a 2 +2a 1 +a 0 ) c) Untersuche mit Hilfe von b), ob 8 ein Teiler der Zahl b = ist. Es ist 4b 2 +2b 1 +b 0 = = 40 durch 8 teilbar, so dass auch b nach Teil b) durch 8 teilbar ist. 54. Aufgabe: a) Bestimme die PFZ von 18!. Welches sind die Primteiler von 18!? Es ist 18! = das Produkt der ersten 18 natürlichen Zahlen. Bilde für jeden Faktor die PFZ und multipliziere aus. Man erhält 18! = Die Primteiler von 18! sind genau die Primzahlen 18.

5 Chr.Nelius: Lösungen 14. Aufgabenblatt Zahlentheorie (SoSe 2016) 5 b) Begründe: Für jedes n Æ gilt T IP (n!) = {p p IP, p n}. Es ist die Gleichheit zweier Mengen nachzuweisen, d.h. es ist zu zeigen: die linke Menge ist Teilmenge der rechten Menge und umgekehrt: Sei p ein Primteiler von n!. Dann teilt p das Produkt der ersten n Zahlen, teilt also einen der Faktoren k von n! (1 k n). Aus p k folgt p k n, also p n. Ist p eine Primzahl n, so ist p einer der Faktoren, aus denen n! gebildet wird, ist also ein Primteiler von n!. 55. Aufgabe: Beweise durch vollständige Induktion: r 6 (4 k ) = 4 für alle k Æ. (IA) k = 1: r 6 (4 1 ) = 4 ist richtig. (IV) Für eine beliebige aber feste natürliche Zahl k 1 gelte r 6 (4 k ) = 4. (IB) r 6 (4 k+1 ) = 4 r 6 (4 k+1 ) = r 6 (4 k 4) = r 6 ( r 6 (4 k ) r 6 (4)) = r 6 (4 4) = r 6 (16) = 4 }{{}}{{} =4 (IV ) =4 Damit ist die (IB) bewiesen. 56. Aufgabe: Bestimme alle positiven Teilner der Zahl n = Hinweis: Es genügt die formelmäßige Angabe der Teiler. Bestimme die kanonische PFZ von n mit der Methode der sukzessiven Divisionen ( n = 287): n = Ein positiver Teiler t von n ist dann ein Teilprodukt der Form: t = 2 k 7 l 211 m, wobei für die Exponenten gilt: 0 k 3, 0 l 2, 0 m 1. Lässt man k,l,m alle Möglichkeiten durchlaufen, so erhält man alle positiven Teiler von n. 57. Aufgabe: Ein Teilnehmer an einem RSA Verfahren, der den geheimen Schlüssel (n,d) mit n = und d = hat, erhält die verschlüsselte Nachricht y 1 = , y 2 = 92696, die mit seinem öffentlichen Schüssel verschlüsselt wurde. Entschlüssele die Nachricht unter Verwendung der Tabelle (9.4). Hinweis: Ohne Begründung dürfen folgende Ergebnisse benutzt werden: r n (y ) = 76389, r n (y 4 1 ) = 89038, r n(y ) = Zur Entschlüsselung müssen die Reste r n (y d 1 ) und r n(y d 2 ) berechnet werden. Dabei können die angegebenen Ergebnisse benutzt werden:

6 Chr.Nelius: Lösungen 14. Aufgabenblatt Zahlentheorie (SoSe 2016) 6 r n (y d 1 ) = r n(y y 4 1 ) = r n(r n (y ) r n (y 4 1 )) = r n( ) = r n ( ) = ( = n ) Lt. Tabelle (9.4): F E R r n (y d 2 ) = r n(y y 2 2 ) = r n(r n (y ) r n (y 2 2 )) = r n (61419 r n ( )) = r n ( ) = r n ( ) = Lt. Tabelle (9.4): I E N Die entschlüsselte Nachricht lautet also: F E R I E N 58. Aufgabe: B hat den öffentlichen Schlüssel (41567,143). A möchte sich mit B an einem geheimen Ort treffen und schickt den Namen des Ortes an B als verschlüsselte Nachricht Ein dritter Teilnehmer C fängt diese Nachricht ab. Kann C herausfinden, wo A und B sich treffen wollen? Hinweis: Ohne Begründung dürfen folgende Ergebnisse benutzt werden: r n ( ) = 12856, r n ( ) = 5403 (dabei ist n = 41567). C muss versuchen, aus dem öffentlichen Schlüssel (n, e) = (41 567, 143) von B den geheimen Schlüssel (n, d) herauszufinden. Das Verfahren von Fermat liefert n = mit zwei Primzahlen 197,211 (s. Liste). Daher ist m = (197 1) (211 1) = Es ist ggt(e,m) = 1 (EA), so dass wir 1 als ganzzahlige Linearkombination von e und m darstellen können. d ist dann der Rest bei Division durch m des Koeffizienten von e in dieser Linearkombination. Hier erhalten wir 1 = e ( 6) m. Folglich d = Um die geheime Nachricht an B zu entschlüsseln, muss C nun berechnen. r n (17801 d ) r n (17801 d ) = r n ( ) = r n ( ) = r n (r n ( ) r n ( )) = r n ( ) = r n ( ) = 2511 Lt. Tabelle (9.4): P B Jetzt kennt also C das Geheimnis: A und B wollen sich in Paderborn treffen! Hinweis zu den Aufgaben 57 und 58: Natürlich muss an allen Stellen die Bestimmung eines Restes dokumentiert werden, auch wenn das in den obigen Lösungen nicht immer vorgenommen wurde!

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9 Chr.Nelius: Zahlentheorie (SS 2007) 9 4. ggt und kgv (4.1) DEF: Eine ganze Zahl g heißt größter gemeinsamer Teiler (ggt) zweier ganzer Zahlen a und b, wenn gilt: GGT 0 ) g 0 GGT 1 ) g a und g b GGT 2 )

Mehr

5. Der größte gemeinsame Teiler

5. Der größte gemeinsame Teiler Chr.Nelius: Zahlentheorie (SoSe 2017) 22 5. Der größte gemeinsame Teiler (5.1) DEF: a und b seien beliebige ganze Zahlen. a) Eine ganze Zahl t heißt gemeinsamer Teiler von a und b, wenn gilt t a und t

Mehr

3. Der größte gemeinsame Teiler

3. Der größte gemeinsame Teiler Chr.Nelius: Zahlentheorie (SoSe 2016) 18 3. Der größte gemeinsame Teiler (3.1) DEF: a und b seien beliebige ganze Zahlen. a) Eine ganze Zahl t heißt gemeinsamer Teiler von a und b, wenn gilt t a und t

Mehr

11. Das RSA Verfahren

11. Das RSA Verfahren Chr.Nelius: Zahlentheorie (SoSe 2017) 53 11. Das RSA Verfahren Bei einer asymmetrischen Verschlüsselung lässt sich der Schlüssel zum Entschlüsseln nicht aus dem Schlüssel zum Verschlüsseln bestimmen und

Mehr

Einleitung. Wir schauen uns einige Probleme an, die wir im Laufe der Vorlesung genauer untersuchen werden.

Einleitung. Wir schauen uns einige Probleme an, die wir im Laufe der Vorlesung genauer untersuchen werden. Chr.Nelius: Zahlentheorie (SoSe 2018) 1 Einleitung Wir schauen uns einige Probleme an, die wir im Laufe der Vorlesung genauer untersuchen werden. (1) Zahlbereiche Unsere Zahlentheorie spielt sich im Bereich

Mehr

Chr.Nelius: Zahlentheorie (WS 2006/07) ggt und kgv

Chr.Nelius: Zahlentheorie (WS 2006/07) ggt und kgv ChrNelius: Zahlentheorie (WS 2006/07) 8 3 ggt und kgv Wir erinnern uns hoffentlich an die folgenden Definitionen des ggt s und des kgv s zweier ganzer Zahlen (31) DEF: Eine ganze Zahl g heißt größter gemeinsamer

Mehr

n ϕ n

n ϕ n 1 3. Teiler und teilerfremde Zahlen Euler (1707-1783, Gymnasium und Universität in Basel, Professor für Physik und Mathematik in Petersburg und Berlin) war nicht nur einer der produktivsten Mathematiker

Mehr

4 Kryptologie. Übersicht

4 Kryptologie. Übersicht 4 Kryptologie Übersicht 4.1 Der erweiterte euklidische Algorithmus................................ 38 4.2 Rechnen mit Restklassen modulo p................................... 39 4.3 Der kleine Satz von

Mehr

1 Zahlentheorie. 1.1 Kongruenzen

1 Zahlentheorie. 1.1 Kongruenzen 3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern

Mehr

Das RSA Kryptosystem

Das RSA Kryptosystem Kryptografie Grundlagen RSA Institut für Mathematik Technische Universität Berlin Kryptografie Grundlagen RSA mit geheimem mit öffentlichem Schlüssel Realisierung Kryptografie mit geheimem Schlüssel Alice

Mehr

Karlsruher Institut für Technologie Institut für Algebra und Geometrie

Karlsruher Institut für Technologie Institut für Algebra und Geometrie Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. Stefan Kühnlein Dipl.-Math. Jochen Schröder Einführung in Algebra und Zahlentheorie Übungsblatt 9 Aufgabe 1 (4 Punkte +) Sei

Mehr

(c) x = a 2 b = ( ) ( ) = Anzahl der Teiler von x: τ(x) = (1 + 1) (3 + 1) (1 + 1) (7 + 1) = 128

(c) x = a 2 b = ( ) ( ) = Anzahl der Teiler von x: τ(x) = (1 + 1) (3 + 1) (1 + 1) (7 + 1) = 128 Aufgabe 1 Wir betrachten die beiden Zahlen a = 57 101 3 und b = 3 57 79 101 (4+2+4=10 Punkte) ( Es gilt: 3, 57, 79, 101 P ) Hier liegt ein Fehler in der Aufgabenstellung vor, denn wegen 57 = 3 19 ist 57

Mehr

Grundlagen der Arithmetik und Zahlentheorie

Grundlagen der Arithmetik und Zahlentheorie Grundlagen der Arithmetik und Zahlentheorie 1.0 Teilbarkeit In diesem Abschnitt werden wir einerseits die ganzen Zahlen an sich studieren und dabei besonders wichtige Zahlen, die Primzahlen, entsprechend

Mehr

8. Musterlösung zu Mathematik für Informatiker II, SS 2004

8. Musterlösung zu Mathematik für Informatiker II, SS 2004 8. Musterlösung zu Mathematik für Informatiker II, SS 2004 MARTIN LOTZ &MICHAEL NÜSKEN Aufgabe 8.1 (Polynomdivision). (8 Punkte) Dividiere a mit Rest durch b für (i) a = x 7 5x 6 +3x 2 +1, b = x 2 +1in

Mehr

Ganzzahlige Division mit Rest

Ganzzahlige Division mit Rest Modulare Arithmetik Slide 1 Ganzzahlige Division mit Rest Für a,b Æ mit a b gibt es stets eine Zerlegung von a der Form a = q b+r mit 0 r b 1. Hierbei gilt q = a b (salopp formuliert: b passt q-mal in

Mehr

Mathematisches Institut II Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg

Mathematisches Institut II Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg 1 Mathematisches Institut II 06.07.004 Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg SS 05 Schnupperkurs: Ausgewählte Methoden zur Aufgabenlösung Vorlesung 5: Elementare Zahlentheorie: Teilbarkeit Primfaktorzerlegung

Mehr

WS 2016/17 Torsten Schreiber

WS 2016/17 Torsten Schreiber 104 Diese Fragen sollten Sie ohne Skript beantworten können: Was bedeutet die Rechtseindeutigkeit einer Relation? Was weiß man von einer surjektiven Funktion? Wann ist eine Funktion total / partiell? Welche

Mehr

3.5 Kryptographie - eine Anwendung der Kongruenzrechnung

3.5 Kryptographie - eine Anwendung der Kongruenzrechnung 1 3.5 Kryptographie - eine Anwendung der Kongruenzrechnung Das Wort Kryptographie leitet sich aus der griechischen Sprache ab, nämlich aus den beiden Worten κρυπτ oς(kryptos)=versteckt, geheim und γραϕɛιν(grafein)=schreiben.

Mehr

Bsp. Euklidischer Algorithmus

Bsp. Euklidischer Algorithmus Bsp. Euklidischer Algorithmus Bsp: Berechne ggt(93, 42) mittels EUKLID. 93 2 42 = 9 42 4 9 = 6 9 1 6 = 3 6 2 3 = 0 D.h. ggt(93, 42) = 3. Durch Rücksubstitution erhalten wir die Bézout-Koeffizienten x,

Mehr

Übungen zum Vorkurs Mathematik für Studienanfänger 2009 ***

Übungen zum Vorkurs Mathematik für Studienanfänger 2009 *** Universität Bonn Mathematisches Institut Dr. Michael Welter Übungen zum Vorkurs Mathematik für Studienanfänger 2009 Einige Zeichen und Konventionen: IN := {1, 2, 3, 4,...} Die Menge der natürlichen Zahlen

Mehr

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. ***

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. *** Universität Bonn Mathematisches Institut Dr. Michael Welter Übungen zum Vorkurs Mathematik für Studienanfänger 2010 Einige Zeichen und Konventionen: IN := {1, 2, 3, 4,...} Die Menge der natürlichen Zahlen

Mehr

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik UNIVERSITÄT ULM Institut für Zahlentheorie und Wahrscheinlichkeitstheorie Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Prof. Dr. Helmut Maier, Hans- Peter Reck Gesamtpunktzahl: 100

Mehr

Wiederholung Diese Fragen sollten Sie ohne Skript beantworten können: Wo liegt der Unterschied zwischen dem 1. und 2. Binom? Wie nutzt man das 1./2. B

Wiederholung Diese Fragen sollten Sie ohne Skript beantworten können: Wo liegt der Unterschied zwischen dem 1. und 2. Binom? Wie nutzt man das 1./2. B 90 Wiederholung Diese Fragen sollten Sie ohne Skript beantworten können: Wo liegt der Unterschied zwischen dem 1. und 2. Binom? Wie nutzt man das 1./2. Binom zum Kopfrechnen? Für was kann man das 3. Binom

Mehr

ÜBUNGEN ZUR VORLESUNG ZAHLENTHEORIE, SS 2018

ÜBUNGEN ZUR VORLESUNG ZAHLENTHEORIE, SS 2018 ÜBUNGEN ZUR VORLESUNG ZAHLENTHEORIE, SS 2018 KARLHEINZ GRÖCHENIG So wie Sport Training erfordert, erfordert Mathematik das selbständige Lösen von Übungsaufgaben. Das wesentliche an den Übungen ist das

Mehr

Euklidischer Algorithmus

Euklidischer Algorithmus Euklidischer Algorithmus Ermitteln des größten gemeinsamen Teilers mit Euklid: function ggt (m, n) Hierbei ist m begin 0undn 0vorausgesetzt. if m = 0 then return n else return ggt (n mod m, m) fi end Man

Mehr

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Dr. Hartmut Lanzinger, Hans- Peter Reck

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Dr. Hartmut Lanzinger, Hans- Peter Reck Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Dr. Hartmut Lanzinger, Hans- Peter Reck Gesamtpunktzahl: 114 Punkte, 100 Punkte= 100 %, keine Abgabe 1. Es seien m = 1155 und n = 1280.

Mehr

3: Primzahlen. 111 S. Lucks Diskr Strukt. (WS 18/19) 3: Primzahlen

3: Primzahlen. 111 S. Lucks Diskr Strukt. (WS 18/19) 3: Primzahlen 3: Primzahlen 111 S. Lucks Diskr Strukt. (WS 18/19) 3: Primzahlen Definition 40 (Teiler, Vielfache, Primzahlen, zusammengesetzte Zahlen) Seien a, b N. a ist ein Teiler von b ( a b ), falls es ein k N gibt

Mehr

Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade

Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade Clemens Heuberger 22. September 2014 Inhaltsverzeichnis 1 Dezimaldarstellung 1 2 Teilbarkeit

Mehr

3. Diskrete Mathematik

3. Diskrete Mathematik Diophantos von Alexandria um 250 Georg Cantor 1845-1918 Pythagoras um 570 v. Chr Pierre de Fermat 1607/8-1665 Seite 1 Inhalt der Vorlesung Teil 3: Diskrete Mathematik 3.1 Zahlentheorie: Abzählbarkeit,

Mehr

4.21 Die zahlentheoretischen Bücher VII, VIII und IX der Elemente

4.21 Die zahlentheoretischen Bücher VII, VIII und IX der Elemente 4.21 Die zahlentheoretischen Bücher VII, VIII und IX der Elemente Buch VII der Elemente behandelt auch heute noch aktuelle Begriffe wie Teiler, Vielfache, ggt, kgv und Primzahl und ihre Eigenschaften.

Mehr

3: Zahlentheorie / Primzahlen

3: Zahlentheorie / Primzahlen Stefan Lucks Diskrete Strukturen (WS 2009/10) 96 3: Zahlentheorie / Primzahlen 3: Zahlentheorie / Primzahlen Stefan Lucks Diskrete Strukturen (WS 2009/10) 97 Definition 37 (Teiler, Vielfache, Primzahlen,

Mehr

Literatur. ISM SS 2018 Teil 3/Restklassen

Literatur. ISM SS 2018 Teil 3/Restklassen Literatur [3-1] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne Verfahren der Kryptographie. 4. Auflage, Vieweg 2001 [3-2] Schmeh, Klaus: Kryptografie. dpunkt, 5. Auflage, 2013 [3-3] Hoffmann,

Mehr

Primzahlen. Herbert Koch Mathematisches Institut Universität Bonn Die Primfaktorzerlegung. a = st

Primzahlen. Herbert Koch Mathematisches Institut Universität Bonn Die Primfaktorzerlegung. a = st Primzahlen Herbert Koch Mathematisches Institut Universität Bonn 12.08.2010 1 Die Primfaktorzerlegung Wir kennen die natürlichen Zahlen N = 1, 2,..., die ganzen Zahlen Z, die rationalen Zahlen (Brüche

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Universität Hamburg Winter 2016/17 Fachbereich Mathematik Janko Latschev Lösungsskizzen 8 Grundlagen der Mathematik Präsenzaufgaben (P13) Primfaktorzerlegungen Die Primfaktorzerlegungen lauten: a) 66 =

Mehr

Prof. S. Krauter Dezimalbruchdarstellung rationaler Zahlen DezDarst.doc. Über die Darstellung von rationalen Zahlen als Dezimalbrüche.

Prof. S. Krauter Dezimalbruchdarstellung rationaler Zahlen DezDarst.doc. Über die Darstellung von rationalen Zahlen als Dezimalbrüche. 1 Prof. S. Krauter Dezimalbruchdarstellung rationaler Zahlen DezDarst.doc Über die Darstellung von rationalen Zahlen als Dezimalbrüche. Anmerkung: Die Beschränkung auf die Dezimaldarstellung ist unnötig.

Mehr

PRIMZAHLEN PATRICK WEGENER

PRIMZAHLEN PATRICK WEGENER PRIMZAHLEN PATRICK WEGENER 1. Einführung: Was sind Primzahlen? Eine ganze Zahl p, welche größer als 1 ist, heißt Primzahl, wenn sie nur durch 1 und sich selbst teilbar ist. Mit teilbar meinen wir hier

Mehr

Kap. II: Kryptographie

Kap. II: Kryptographie Chr.Nelius: Zahlentheorie (SoSe 2017) 39 Kap. II: Kryptographie 9. Allgemeines und Beispiele Was ist Kryptographie? Die Kryptographie handelt von der Verschlüsselung (Chiffrierung) von Nachrichten zum

Mehr

Grundkurs Mathematik I

Grundkurs Mathematik I Prof. Dr. H. Brenner Osnabrück WS 2016/2017 Grundkurs Mathematik I Vorlesung 21 Ein guter Schüler lernt auch bei einem schlechten Lehrer... Kleinstes gemeinsames Vielfaches und größter gemeinsamer Teiler

Mehr

Mathematische Grundlagen der Kryptografie (1321) SoSe 06

Mathematische Grundlagen der Kryptografie (1321) SoSe 06 Mathematische Grundlagen der Kryptografie (1321) SoSe 06 Klausur am 19.08.2006: Lösungsvorschläge zu den Aufgaben zu Aufgabe I.1 (a) Das numerische Äquivalent zu KLAUSUR ist die Folge [10, 11, 0, 20, 18,

Mehr

Übung zur Vorlesung Diskrete Strukturen I

Übung zur Vorlesung Diskrete Strukturen I Technische Universität München WS 2002/03 Institut für Informatik Aufgabenblatt 8 Prof. Dr. J. Csirik 2. Dezember 2002 Brandt & Stein Übung zur Vorlesung Diskrete Strukturen I Abgabetermin: Tutorübungen

Mehr

Kapitel 3 Elementare Zahletheorie

Kapitel 3 Elementare Zahletheorie Kapitel 3 Elementare Zahletheorie 89 Kapitel 3.1 Ganze Zahlen, Gruppen und Ringe 90 Die ganzen Zahlen Menge der ganzen Zahlen Z={..., 3, 2, 1,0,1,2,3,...} Es gibt zwei Operationen Addition: Z Z Z, (a,b)

Mehr

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler Kapitel 3: Die Sätze von Euler, Fermat und Wilson In diesem Kapitel wollen wir nun die eulersche -Funktion verwenden, um einen berühmten Satz von Euler zu formulieren, aus dem wir dann mehrere interessante

Mehr

Kapitel 2. Elementare Zahlentheorie Primfaktorzerlegung

Kapitel 2. Elementare Zahlentheorie Primfaktorzerlegung Kapitel 2. Elementare Zahlentheorie 2.1. Primfaktorzerlegung Menge der ganzen Zahlen Z = {..., 3, 2, 1, 0, 1, 2, 3,...} Addition Inverse Multiplikation Z Z Z, Z Z, Z Z Z, (a, b) a + b a a (a, b) a b Ausgezeichnete

Mehr

Lösungen der Aufgaben

Lösungen der Aufgaben Lösungen der Aufgaben Aufgabe 1.3.1 Es gibt 42 mögliche Verschlüsselungen. Aufgabe 2.3.4 Ergebnisse sind 0, 4 und 4 1 = 4. Aufgabe 2.3.6 Da in Z 9 10 = 1 ist, erhalten wir x = c 0 + + c m = c 0 + + c m.

Mehr

Kapitel 2: Zahlentheoretische Algorithmen Gliederung

Kapitel 2: Zahlentheoretische Algorithmen Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

Zahlentheorie I - Tipps & Lösungen. Aktualisiert: 15. Oktober 2016 vers Teilbarkeit

Zahlentheorie I - Tipps & Lösungen. Aktualisiert: 15. Oktober 2016 vers Teilbarkeit Schweizer Mathematik-Olympiade smo osm Zahlentheorie I - Tipps & Lösungen Aktualisiert: 15. Oktober 2016 vers. 1.2.0 1 Teilbarkeit Einstieg 1.1 Zeige, dass 900 ein Teiler von 10! ist. Tipp: Schreibe 900

Mehr

Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche '-Funktion, RSA

Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche '-Funktion, RSA Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche '-Funktion, RSA Manfred Gruber http://www.lrz-muenchen.de/~gruber SS 2009, KW 15 Kleiner Fermatscher Satz Satz 1. Sei p prim und a 2 Z p. Dann

Mehr

3 Primzahlen. j,... stets Primzahlen. 3.1 Satz. Jedes a > 1 ist als Produkt von Primzahlen darstellbar (Primfaktorzerlegung. n=1

3 Primzahlen. j,... stets Primzahlen. 3.1 Satz. Jedes a > 1 ist als Produkt von Primzahlen darstellbar (Primfaktorzerlegung. n=1 3 Primzahlen Die Zahl 1 hat nur einen positiven Teiler, nämlich 1. Jede Zahl a > 1 hat mindestens zwei positive Teiler: 1 und a. Definition. Eine Primzahl ist eine Zahl a > 1, welche nur die Teiler 1 und

Mehr

Kryptographie. Teilnehmer: Gruppenleiter: Humboldt-Universität zu Berlin.

Kryptographie. Teilnehmer: Gruppenleiter: Humboldt-Universität zu Berlin. Kryptographie Teilnehmer: Kevin Huber Philippe Gruse Vera Koldewitz Philipp Jakubahs Julian Zimmert Maximilian Werk Hermann-Hesse-Oberschule Heinrich-Hertz-Oberschule Gruppenleiter: Ulf Kühn Humboldt-Universität

Mehr

Interim. Kapitel Einige formale Definitionen

Interim. Kapitel Einige formale Definitionen Kapitel 1 Interim Da ich keine Infos über Titel und Nummerierungen anderer Kapitel dieser Vorlesung habe, nenne ich dies einfach mal Kapitel 1. 17.11.04 1.1 Einige formale Definitionen Wir rekapitulieren

Mehr

Computeralgebra in der Lehre am Beispiel Kryptografie

Computeralgebra in der Lehre am Beispiel Kryptografie Kryptografie Grundlagen RSA KASH Computeralgebra in der Lehre am Beispiel Kryptografie Institut für Mathematik Technische Universität Berlin Kryptografie Grundlagen RSA KASH Überblick Kryptografie mit

Mehr

1.2 Eigenschaften der ganzen Zahlen

1.2 Eigenschaften der ganzen Zahlen Lineare Algebra I WS 2015/16 c Rudolf Scharlau 13 1.2 Eigenschaften der ganzen Zahlen Dieser Abschnitt handelt von den gewöhlichen ganzen Zahlen Z und ihren Verknüpfungen plus und mal. Man kann die natürlichen

Mehr

Diskrete Strukturen. Vorlesung 15: Arithmetik. 5. Februar 2019

Diskrete Strukturen. Vorlesung 15: Arithmetik. 5. Februar 2019 1 Diskrete Strukturen Vorlesung 15: Arithmetik 5. Februar 2019 Nächste Termine Modul Diskrete Strukturen Hörsaalübung (Mo. 9:15) Vorlesung (Di. 17:15) 4.2. Tutorium (Klausurvorbereitung) 11.2. 12.2. 5.2.

Mehr

Studienmaterial Einführung in das Rechnen mit Resten

Studienmaterial Einführung in das Rechnen mit Resten Studienmaterial Einführung in das Rechnen mit Resten H.-G. Gräbe, Institut für Informatik, http://www.informatik.uni-leipzig.de/~graebe 12. April 2000 Die folgenden Ausführungen sind aus Arbeitsmaterialien

Mehr

Primzahltest für Mersenne-Primzahlen

Primzahltest für Mersenne-Primzahlen Primzahltest für Mersenne-Primzahlen Satz Lucas-Lehmer Test Sei n = 2 p 1 N für p P\{2}. Wir definieren die Folge S k durch S 1 = 4 und S k = S 2 k 1 2. Falls n S p 1, dann ist n prim. Beweis: Seien ω

Mehr

$Id: ring.tex,v /05/03 15:13:26 hk Exp $

$Id: ring.tex,v /05/03 15:13:26 hk Exp $ $Id: ring.tex,v 1.13 2012/05/03 15:13:26 hk Exp $ 3 Ringe 3.1 Der Ring Z m In der letzten Sitzung hatten wir die sogenannten Ringe eingeführt, dies waren Mengen A versehen mit einer Addition + und einer

Mehr

Literatur. ITSec SS 2017 Teil 7/Restklassen

Literatur. ITSec SS 2017 Teil 7/Restklassen Literatur [7-1] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne Verfahren der Kryptographie. 4. Auflage, Vieweg 2001 [7-2] Schmeh, Klaus: Kryptografie. dpunkt, 5. Auflage, 2013 [7-3] Hoffmann,

Mehr

Zahlentheorie. Stefan Takacs Linz, am 2. Juni 2004

Zahlentheorie. Stefan Takacs Linz, am 2. Juni 2004 Zahlentheorie Anna Rieger 0355556 Stefan Takacs 0356104 Daniela Weberndorfer 0355362 Linz, am 2. Juni 2004 Zusammenfassung Die vorliegende Arbeit über die grundlegenden Sätze der Zahlentheorie beschäftigt

Mehr

Kapitel 2. Ganze Zahlen. 2.1 Teilbarkeit

Kapitel 2. Ganze Zahlen. 2.1 Teilbarkeit Kapitel 2 Ganze Zahlen In diesem Kapitel setzen wir voraus, dass die Menge Z der ganzen Zahlen, ihre Ordnung und die Eigenschaften der Addition und Multiplikation ganzer Zahlen dem Leser vertraut sind.

Mehr

Teilbarkeit und Teilbarkeitsregeln: Wiederholung

Teilbarkeit und Teilbarkeitsregeln: Wiederholung Wiederholung Die Frage nach der Teilbarkeit von natürlichen Zahlen spielt in der Zahlentheorie eine wichtige Rolle. Du kennst sicherlich schon einige Fakten und Regeln dazu oder hast zumindest schon einmal

Mehr

1. Übung Elemente der Zahlentheorie SS2016

1. Übung Elemente der Zahlentheorie SS2016 1. Übung Elemente der Zahlentheorie SS2016 1. Sei n IN eine natürliche Zahl. Zeigen Sie mit Hilfe vollständiger Induktion: (a) 1+2+3+...+(n 1)+n = n(n+1), 2 (b) 1+4+9+...+(n 1) 2 +n 2 = n(n+1)(2n+1), 6

Mehr

Lineare Algebra I 5. Tutorium Die Restklassenringe /n

Lineare Algebra I 5. Tutorium Die Restklassenringe /n Lineare Algebra I 5. Tutorium Die Restklassenringe /n Fachbereich Mathematik WS 2010/2011 Prof. Dr. Kollross 19. November 2010 Dr. Le Roux Dipl.-Math. Susanne Kürsten Aufgaben In diesem Tutrorium soll

Mehr

Die Menge C der komplexen Zahlen wird im Kapitel Weitere Themen behandelt.

Die Menge C der komplexen Zahlen wird im Kapitel Weitere Themen behandelt. 1 1 Funktionen 1.1 Grundlegende Zahlenmengen Georg Cantor (1845-1918) hat den Begriff der Menge eingeführt. Man versteht darunter die Zusammenfassung einzelner Dinge, welche Elemente genannt werden, zu

Mehr

Faktorisierungen und Teilbarkeiten natürlicher Zahlen. Teiler natürlicher Zahlen

Faktorisierungen und Teilbarkeiten natürlicher Zahlen. Teiler natürlicher Zahlen Faktorisierungen und Teilbarkeiten natürlicher Zahlen Erinnerung: Eine natürliche Zahl heißt faktorisierbar, wenn sie als Produkt mit Faktoren geschrieben werden kann. Beispiel: 21= 1 21 oder 21= 3 7 Natürlich

Mehr

Klausur zu Mathematische Grundlagen BachelorStudiengänge der Informatik

Klausur zu Mathematische Grundlagen BachelorStudiengänge der Informatik Klausur zu Mathematische Grundlagen BachelorStudiengänge der Informatik SS 2016, 16.07.2016 Prof. Dr. Hans-Jürgen Steens Name: Vorname: Matrikelnummer: Die Klausur besteht aus 23 Aufgaben. Es sind maximal

Mehr

2. Grundlagen. A) Mengen

2. Grundlagen. A) Mengen Chr.Nelius: Zahlentheorie (SoSe 2019) 5 A) Mengen 2. Grundlagen Eine Menge ist durch Angabe ihrer Elemente bestimmt. Man kann eine Menge aufzählend oder beschreibend definieren. Im ersten Falle werden

Mehr

Folien der 15. Vorlesungswoche

Folien der 15. Vorlesungswoche Folien der 15. Vorlesungswoche Mathematische Analyse von RSA I (1) Wir wählen zwei große Primzahlen p und q (p q) und setzen n = p q. Wir arbeiten von nun an in Z n und berücksichtigen, dass wie später

Mehr

9. Musterlösung zu Mathematik für Informatiker I, WS 2003/04

9. Musterlösung zu Mathematik für Informatiker I, WS 2003/04 9. Musterlösung zu Mathematik für Informatiker I, WS 2003/04 KATHRIN TOFALL, MICHAEL NÜSKEN Die mit * gekennzeichneten Aufgabenteile und Aufgaben sind freiwillig. Die dort erworbenen Punkte werden als

Mehr

1 Vorbereitung: Potenzen 2. 2 Einstieg und typische Probleme 3

1 Vorbereitung: Potenzen 2. 2 Einstieg und typische Probleme 3 Das vorliegende Skript beschäftigt sich mit dem Thema Rechnen mit Kongruenzen. Das Skript entsteht entlang einer Unterrichtsreihe in der Mathematischen Schülergesellschaft (MSG) im Jahr 2013. Die vorliegende

Mehr

Praktisch modulo n rechnen

Praktisch modulo n rechnen Mathematik I für Informatiker Das Lemma von Euler-Fermat p. 1 Praktisch modulo n rechnen Addition und Multiplikation modulo n sind auch dann algorithmisch kein großes Problem, wenn mit großen Zahlen gerechnet

Mehr

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. ***

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. *** Universität Bonn Mathematisches Institut Dr. Michael Welter Übungen zum Vorkurs Mathematik für Studienanfänger 2013 Einige Zeichen und Konventionen: IN := {1, 2, 3, 4,...} Die Menge der natürlichen Zahlen

Mehr

Prüfungsfragen zur Vorlesung Algebra und Diskrete Mathematik. Sommersemester 2018

Prüfungsfragen zur Vorlesung Algebra und Diskrete Mathematik. Sommersemester 2018 Prüfungsfragen zur Vorlesung Algebra und Diskrete Mathematik Sommersemester 2018 Erläutern Sie die Sätze über die Division mit Rest für ganze Zahlen und für Polynome (mit Koeffizienten in einem Körper).

Mehr

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 3. Der euklidische Algorithmus

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 3. Der euklidische Algorithmus Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung 3 Der euklidische Algorithmus Euklid (4. Jahrhundert v. C.) Definition 3.1. Seien zwei Elemente a, b (mit b 0) eines euklidischen Bereichs

Mehr

Musterlösung Zahlentheorie Frühlingssemester 2015, Aufgabenblatt 1

Musterlösung Zahlentheorie Frühlingssemester 2015, Aufgabenblatt 1 Aufgabenblatt 1 40 Punte Aufgabe 1 (Teilermengen) Seien a = 128 und b = 129. a) Beschreiben Sie die Teilermengen T(a) und T(b) in aufzählender Form. 2 b) Seien p, q zwei verschiedene Primzahlen. (i) Wie

Mehr

Vorlesung Diskrete Strukturen Gruppe und Ring

Vorlesung Diskrete Strukturen Gruppe und Ring Vorlesung Diskrete Strukturen Gruppe und Ring Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2009/10 1 Bernhard Ganter, TU Dresden Modul Einführung in

Mehr

Übungen zum Seminar Grundlagen der Mathematik Blatt 10 Abgabe: Dienstag Aufgabe 1 (15 Punkte + 5 Bonuspunkte = 20 Punkte)

Übungen zum Seminar Grundlagen der Mathematik Blatt 10 Abgabe: Dienstag Aufgabe 1 (15 Punkte + 5 Bonuspunkte = 20 Punkte) Universität Ulm Gerhard Baur Bianca Jaud Übungen zum Seminar Grundlagen der Mathematik Blatt 10 Abgabe: Dienstag 12.01.2016 Aufgabe 1 (15 Punkte + 5 Bonuspunkte = 20 Punkte) 1) Lesen Sie sich die Texte

Mehr

Elemente der Algebra und Zahlentheorie Musterlösung, Serie 3, Wintersemester vom 15. Januar 2006

Elemente der Algebra und Zahlentheorie Musterlösung, Serie 3, Wintersemester vom 15. Januar 2006 Prof. E.-W. Zink Institut für Mathematik Humboldt-Universität zu Berlin Elemente der Algebra und Zahlentheorie Musterlösung, Serie 3, Wintersemester 2005-06 vom 15. Januar 2006 2te, korrigierte und erweiterte

Mehr

IT-Security. Teil 7: Restklassen

IT-Security. Teil 7: Restklassen IT-Security Teil 7: Restklassen 20.04.17 1 Literatur [7-1] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne Verfahren der Kryptographie. 4. Auflage, Vieweg 2001 [7-2] Schmeh, Klaus: Kryptografie.

Mehr

Zahlentheorie. Diskrete Strukturen. Sommersemester Uta Priss ZeLL, Ostfalia. Hausaufgaben Primzahlen Teiler und Modulo Hashfunktion

Zahlentheorie. Diskrete Strukturen. Sommersemester Uta Priss ZeLL, Ostfalia. Hausaufgaben Primzahlen Teiler und Modulo Hashfunktion Zahlentheorie Diskrete Strukturen Uta Priss ZeLL, Ostfalia Sommersemester 2016 Diskrete Strukturen Zahlentheorie Slide 1/27 Agenda Hausaufgaben Primzahlen Teiler und Modulo Hashfunktion Diskrete Strukturen

Mehr

χ a : N + {0, 1, 1} {( a χ a (n) = χ a (n ). ψ(mn) < ψ(m)ψ(n).

χ a : N + {0, 1, 1} {( a χ a (n) = χ a (n ). ψ(mn) < ψ(m)ψ(n). September 007, Zahlentheorie 1 a) Formulieren Sie das quadratische Reziprozitätsgesetz einschließlich der Definitionen der Legendre- und Jacobi-Symbole. b) Für a Z \ {0} definieren wir durch χ a (n) =

Mehr

Mathematisches Kaleidoskop 2014 Materialien Teil 2. Dr. Hermann Dürkop

Mathematisches Kaleidoskop 2014 Materialien Teil 2. Dr. Hermann Dürkop Mathematisches Kaleidoskop 2014 Materialien Teil 2 Dr. Hermann Dürkop 1 1.6 Quadratische Reste und das Legendre-Symbol Im folgenden seien die Moduln p immer Primzahlen. Wir haben bisher gesehen, ob und

Mehr

10. Teilbarkeit in Ringen

10. Teilbarkeit in Ringen 70 Andreas Gathmann 10. Teilbarkeit in Ringen Ein wichtiges Konzept in Ringen, das ihr für den Fall des Ringes Z bereits aus der Schule kennt, ist das von Teilern also der Frage, wann und wie man ein Ringelement

Mehr

Danach arithmetische Fragestellungen wie vollkommene Zahlen und Dreieckszahlen der Griechen.

Danach arithmetische Fragestellungen wie vollkommene Zahlen und Dreieckszahlen der Griechen. Was ist Zahlentheorie? Ursprünglich ist die Zahlentheorie (auch: Arithmetik) ein Teilgebiet der Mathematik, welches sich allgemein mit den Eigenschaften der ganzen Zahlen und insbesondere mit den Lösungen

Mehr

3 Public-Key-Kryptosysteme

3 Public-Key-Kryptosysteme Stand: 05.11.2013 Vorlesung Grundlagen und Methoden der Kryptographie Dietzfelbinger 3 Public-Key-Kryptosysteme 3.1 Verschlüsselung von Nachrichten Wir betrachten ganz einfache Kommunikationsszenarien.

Mehr

Chr.Nelius: Grundzüge der Algebra (WS2005/06) 1. (14.1) DEF: Ein kommutativer Ring (K, +, ) heißt ein Körper, wenn gilt: 1) 1 K 0 K 2) K = K \ {0 K }

Chr.Nelius: Grundzüge der Algebra (WS2005/06) 1. (14.1) DEF: Ein kommutativer Ring (K, +, ) heißt ein Körper, wenn gilt: 1) 1 K 0 K 2) K = K \ {0 K } Chr.Nelius: Grundzüge der Algebra (WS2005/06) 1 14 Körper (14.1) DEF: Ein kommutativer Ring (K, +, ) heißt ein Körper, wenn gilt: 1) 1 K 0 K 2) K = K \ {0 K } (14.2) BEM: a) Ist K ein Körper, so ist (K

Mehr

Name: Mustermann Vorname: Max Matrikel-Nr.: Studienfach:...

Name: Mustermann Vorname: Max Matrikel-Nr.: Studienfach:... apl. Prof. Dr. Klaus Reinhardt 22. März 2013 Name: Mustermann Vorname: Max Matrikel-Nr.: 123456 Studienfach:........................ Wichtige Hinweise: 1. Prüfen Sie Ihr exemplar auf Vollständigkeit (ein

Mehr

7 Die Sätze von Fermat, Euler und Wilson

7 Die Sätze von Fermat, Euler und Wilson 53 7 Die Sätze von Fermat, Euler und Wilson Es gibt einige Sätze aus der elementaren Zahlentheorie, die Spezialfälle von Aussagen über endliche Gruppen sind. Z.B. gilt für ein beliebiges Element x einer

Mehr

Der kleine Satz von Fermat

Der kleine Satz von Fermat Der kleine Satz von Fermat Luisa-Marie Hartmann 5. Mai 2017 Inhaltsverzeichnis 1 Einleitung 3 2 Hauptteil 4 2.1 Prime Restklassengruppen............................ 4 2.2 Ordnung von Gruppenelementen........................

Mehr

Bitte tragen Sie zuerst in Druckschrift Ihren Namen und Ihre Matrikelnummer ein.

Bitte tragen Sie zuerst in Druckschrift Ihren Namen und Ihre Matrikelnummer ein. Klausur zur Vorlesung Zahlentheorie 21. Juli 2010 12 Uhr 15 14 Uhr 00 Ruhr-Universität Bochum PD. Dr. Claus Mokler Bitte tragen Sie zuerst in Druckschrift Ihren Namen und Ihre Matrikelnummer ein. Name,

Mehr

p Z >1 ist Primzahl, wenn gilt Euklid:

p Z >1 ist Primzahl, wenn gilt Euklid: Grundlegende Tatsachen über den Ring Z Z; +, ist ein nullteilerfreier Ring Divisionseigenschaft a Z, b Z > q, r Z : a = b q + r, r < b Arithmetik Grundlegende Tatsachen über den Ring Z Euklidischer Algorithmus

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 10.01.2014 Alexander Lytchak 1 / 9 Erinnerung: Zwei ganz wichtige Gruppen Für jede Gruppe (G, ) und jedes Element g

Mehr

Kapitel III Ringe und Körper

Kapitel III Ringe und Körper Kapitel III Ringe und Körper 1. Definitionen und Beispiele Definition 117 Eine Algebra A = S,,, 0, 1 mit zwei zweistelligen Operatoren und heißt ein Ring, falls R1. S,, 0 eine abelsche Gruppe mit neutralem

Mehr

Fibonacci-Zahlen und goldener Schnitt

Fibonacci-Zahlen und goldener Schnitt Fibonacci-Zahlen und goldener Schnitt Suche eine Darstellung der Form F n = x n für reelle Zahl x > 0. Aus der definierenden Gleichung folgt sofort x 2 = x + 1. Dann liefert die p-q-formel: x 1,2 = 1 2

Mehr

7. Musterlösung zu Mathematik für Informatiker I, WS 2003/04

7. Musterlösung zu Mathematik für Informatiker I, WS 2003/04 7. Musterlösung zu Mathematik für Informatiker I, WS 2003/04 KATHRIN TOFALL Aufgabe 7. (Symmetrischer EEA). (9 Punkte) Ziel dieser Aufgabe ist es zu zeigen, was man gewinnt, wenn man bei der Division mit

Mehr

ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe.

ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe. ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe. Das heißt, um den ggt von zwei 1000-Bit-Zahlen zu ermitteln,

Mehr

IT-Sicherheitsmanagement. Teil 3: Restklassen

IT-Sicherheitsmanagement. Teil 3: Restklassen IT-Sicherheitsmanagement Teil 3: Restklassen 26.10.18 1 Literatur I [3-1] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne Verfahren der Kryptographie. 4. Auflage, Vieweg 2001 [3-2] Schmeh,

Mehr

2008W. Vorlesung im 2008W Institut für Algebra Johannes Kepler Universität Linz

2008W. Vorlesung im 2008W   Institut für Algebra Johannes Kepler Universität Linz Mathematik Institut für Algebra Johannes Kepler Universität Linz Vorlesung im http://www.algebra.uni-linz.ac.at/students/win/ml Inhalt Definierende Eigenschaften Definition 0 ist eine natürliche Zahl;

Mehr

modulo s auf Z, s. Def

modulo s auf Z, s. Def 16. Januar 2007 Arbeitsblatt 5 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen I. Gasser, H. Strade, B. Werner WiSe 06/07 21.11.06 Präsenzaufgaben: 1) Seien

Mehr