Übung zur Vorlesung Statistik I WS Übungsblatt 6

Größe: px
Ab Seite anzeigen:

Download "Übung zur Vorlesung Statistik I WS Übungsblatt 6"

Transkript

1 Übung zur Vorlesung Statistik I WS Übungsblatt November 2012 Aufgabe 17 (4 Punkte): Sei X B(n, p) eine binomial verteilte Zufallsvariable, die ein Zufallseperiment mit n unabhängigen Wiederholungen und Trefferwahrscheinlichkeit p beschreibt. Sei weiter Z die standardisierte Zufallsvariable zu X. Plotten Sie für A n = 10 und p = 0.5 B n = 10 und p = 0.1 C n = 1000 und p = 0.5 D n = 1000 und p = 0.1 die Verteilungsfunktion von Z im Bereich ( 4, 4). Zeichnen Sie noch in die vier Diagramme die Kurve der Verteilungsfunktion der Standardnormalverteilung ein. Beurteilen Sie anhand der Graphiken die Approimationsgüte des Zentralen Grenzwertsatzes und geben Sie eine Rangfolge an. Hinweis: Die Verteilungsfunktion F () = P(Z ) von Z ist eine Stufenfunktion. Bestimmen Sie zunächst die Position ihrer Unstetigkeitsstellen und dann die Höhe der Stufen. Den Plot einer Stufenfunktion erhält man mit plot und der Option type= s. Die Kurve der Standardnormalverteilung kann mit der Funktion points den schon erstellten Graphiken beigefügt werden. Lösung: A > n <- 10 > p <- 0.5

2 Die Verteilungsfunktion der standardisierten Zufallsvariable Z von X B(n, p) lautet ( ) X np F () = P(Z ) = P. np(1 p) Für k = k np, k = 0,..., n gilt np(1 p) F ( k ) = P ( X np np(1 p) k np np(1 p) ) = P(X k). Die Verteilungsfunktion für Z nimmt daher bei k = k np, k IR np(1 p) die gleichen Werte an wie die Verteilungsfunktion von X bei k. Deshalb liegen die Sprungstellen von F bei k, k = 0,..., n und die Sprunghöhen sind die gleichen wie die der zugehörigen Binomialverteilung. > <- (0:n-n*p)/sqrt(n*p*(1-p)) > y <- pbinom(0:n, size=n, prob=p) > plot(=,y=y, type="s", lim=c(-4,4), ylim=c(0,1), col="red") > points(=seq(-4,4,1/1000),y=pnorm(seq(-4,4,1/1000)), + type="l", col="blue") y

3 B > n <- 10 > p <- 0.1 > <- (0:n-n*p)/sqrt(n*p*(1-p)) > [1] [7] Da der kleinste Wert von größer als 4 ist, muss um 4 und y um 0 ergänzt werden > <- c(-4,) > y <- pbinom(0:n, size=n, prob=p) > y <- c(0,y) > plot(=,y=y, type="s", lim=c(-4,4), ylim=c(0,1), col="red") > points(=seq(-4,4,1/1000),y=pnorm(seq(-4,4,1/1000)), type="l", col="blue") y C > n < > p <- 0.5 > <- (0:n-n*p)/sqrt(n*p*(1-p)) > y <- pbinom(0:n, size=n, prob=p)

4 > plot(=,y=y, type="s", lim=c(-4,4), ylim=c(0,1), col="red") > points(=seq(-4,4,1/1000),y=pnorm(seq(-4,4,1/1000)), type="l", col="blue") y D > n < > p <- 0.1 > <- (0:n-n*p)/sqrt(n*p*(1-p)) > y <- pbinom(0:n, size=n, prob=p) > plot(=,y=y, type="s", lim=c(-4,4), ylim=c(0,1), col="red") > points(=seq(-4,4,1/1000),y=pnorm(seq(-4,4,1/1000)), type="l", col="blue")

5 y Offensichtlich lautet die Reihenfolge bezüglich der Approimationsgüte ( schlecht nach gut ): Diagramm 2, Diagramm 1, Diagramm 4 und Diagramm 3. Aufgabe 18 (4 Punkte): Seien X i, i IN unabhängige auf (0, 1) gleichverteilte Zufallsvariablen. Seien Z n die standardisierten Zufallsvariablen von n i=1 X i. Erzeugen Sie in R für A n = 1 B n = 2 C n = 5 jeweils N = Zufallszahlen, die wie Z n verteilt sind. Speichern Sie die Zufallszahlen in Vektoren Z1, Z2 und Z5. Plotten Sie die empirischen Verteilungsfunktionen für Z1, Z2 und Z5 in jeweils einem Diagramm und ergänzen Sie die Diagramme mit Kurven der Standardnormalverteilung. Hinweis: Die empirische Verteilungsfunktion F S für einen Vektor (Stichprobe) S der Länge n ist folgendermaßen definiert: F S () = {t S t }. n

6 Zeigen Sie zunächst: Sind alle Werte in S verschieden, dann ist F S () eine Stufenfunktion mit einheitlicher Stufenhöhe 1/n und die Sprungstellen liegen gerade bei den Werten von S. Lösung: Für die Berechnung der empirischen Verteilungsfunktion spielt die Reihenfolge der Werte in S keine Rolle. Wir nehmen daher an, dass S = ( 1,..., N ) aufsteigend geordnet ist. F S hat dann bei jedem k, k = 1,..., N eine Sprungstelle der Höhe 1/N und ist zwischen den Sprungstellen konstant. Da die Vektoren Z1, Z2 und Z5 Zufallszahlen einer stetigen Verteilung sind, kann angenommen werden, dass sie nur verschiedene Einträge enthalten. A Da Erwartungswert und Varianz einer auf (0, 1) gleichverteilten Zufallsvariable 1/2 bzw, 1/12 sind, erhält man durch > set.seed(2888) > N < > Z1 <- (runif(n)-1/2)/sqrt(1/12) den gewünschten Vektor. Die empirische Verteilungsfunktion hat an den Sprungstellen die Koordinaten > <- sort(z1) > y <- seq(1/n,1,1/n) > plot(=, y=y,type="s", col="red") > points(=, y=pnorm(), type="l", col="blue")

7 y B Für n = 2 hat die Summe von zwei unabhängigen und auf (0, 1) gleichverteilten Zufallsvariablen den Erwartungswert 1 und die Varianz 1/6. > S <- runif(n)+runif(n) > Z2 <- (S-1)/sqrt(1/6) > <- sort(z2) > y <- seq(1/n,1,1/n) > plot(=, y=y,type="s", col="red") > points(=, y=pnorm(), type="l", col="blue")

8 y C > S <- runif(n)+runif(n)+runif(n)+runif(n)+runif(n) > Z5 <- (S-5/2)/sqrt(5/12) > <- sort(z5) > y <- seq(1/n,1,1/n) > plot(=, y=y,type="s", col="red") > points(=, y=pnorm(), type="l", col="blue")

9 y Aufgabe 19 (5 Punkte): A Seien X 1 und X 2 unabhängige poissonverteilte Zufallsvariablen mit Erwartungswert λ 1 bzw. λ 2. Zeigen Sie, dass Y = X 1 + X 2 poissonverteilt mit Erwartungswert λ 1 + λ 2 ist. Hinweis: Für beliebiges k IN 0 gilt P(Y = k) = P(X 1 = 0 X 2 = k X 1 = 1 X 2 = k 1 X 1 = k X 2 = 0) = P(X 1 = 0 X 2 = k) + P(X 1 = 0 X 2 = k) + + P(X 1 = k X 2 = 0) = p(λ 1, 0)p(λ 2, k) + p(λ 1, 1)p(λ 2, k 1) + + p(λ 1, k)p(λ 2, 0) Das letzte Gleichheitszeichen folgt aus der Unabhängigkeit von X 1 und X 2. Die Symbole und bezeichne das logische und bzw. oder und λ λk p(λ, k) = e sind die Elementarwahrscheinlichkeiten der Poissonverteilung. Zur Lösung der Aufgabe werden Sie die allgemeine Binomische k! Formel n ( ) n (a + b) n = a i b n i i benötigen. i=0

10 B C Begründen Sie mit Teilaufgabe A und dem Zentralen Grenzwertsatz, dass die Possonverteilung mit großem Erwartungswert λ durch eine Normalverteilung angenähert werden darf. Die jährliche Inzidenzrate (=Anteil der Neuerkrankungen) für Lungenkrebs liegt bei 0.05 %. Sei Y die Zufallsvariable, die die Anzahl der Neuerkrankungen in einer Population von n = Individuen während eines bestimmten Jahres angibt. Welche Verteilungsannahme ist für Y sinnvoll? Begründen Sie Ihre Wahl. Welchen Erwartungswert und Varianz hat Y unter dieser Annahme? Berechnen Sie die Wahrscheinlichkeit dafür, dass Y um mehr als 0.1% von ihrem Erwartungswert abweicht. Rechnen Sie in R einmal eakt und vergleichen Sie dann die eakte Lösung mit der Näherungslösung des Zentralen Grenzwertsatzes. Lösung: A (2 P) Mit dem Hinweis folgt: P(Y = k) = = = k p(λ 1, i)p(λ 2, k i) = i=0 k i=0 e λ 1 λi 1 = e (λ 1+λ 2 ) 1 k! λ k i i! e λ 2 2 (k i)! = k i=0 k! i!(k i)! λi 1λ k 1 2 = = e (λ 1+λ 2 ) (λ 1 + λ 2 ) k k! Das letzte Gleichheitszeichen folgt aus der Binomischen Formel. Damit ist P(Y = k) = p(λ 1 +λ 2, k) nachgewiesen. Da das für beliebiges k IN 0 gilt, ist Y poissonverteilt mit Erwartungswert λ 1 + λ 2. B (1 P) Eine poissonverteilte Zufallsvariable Y mit großem Erwartungswert λ kann wegen A als Summe von n unabhängigen poissonverteilten Zufallsvariablen mit Erwartungswert λ/n geschrieben werden: n Y = i=1 mit E(X i ) = λ/n, i = 1,..., n. Wählt man n = [λ] (größte ganze Zahl λ), dann ist E(X i ) 1 und n ist groß, wenn λ groß ist. Aus dem Zentralen Grenzwertsatz folgt dann, dass Y näherungsweise normalverteilt mit Erwartungswert und Varianz λ ist. X i

11 C (2 P) Die Wahrscheinlichkeit, für jedes der Individuen in einem bestimmten Jahr an Lungenkrebs zu erkranken, ist klein (p=0.0005). Da anderseits die Anzahl der unabhängigen Wiederholungen mit n = groß ist, kann Y als poissonverteilt mit Erwartungswert λ = pn = angenommen werden. 0.1% Abweichung von bedeutet Y < oder Y > 40040, d.h. mit eakter Rechnung erhält man > ppois(39959,40000) + (1-ppois(40040,40000)) [1] und mit der Approimation des Zentralen Grenzwertsatzes > pnorm(( )/sqrt(40000)) + (1-pnorm(( )/sqrt(40000))) [1] Schicken Sie Ihre Lösung bis spätestens Sonntag, den direkt an Ihre(n) Tutor(in): franzime@zedat.fu-berlin.de (Franziska Metge). s.richter.fu@gm.de (Stina Richter) r3p10id0@zedat.fu-berlin.de (Ivo Parchero)

Übung Zeigen Sie, dass dies als Grenzwert der Wahrscheinlichkeitsfunktion der Binomialverteilung mit

Übung Zeigen Sie, dass dies als Grenzwert der Wahrscheinlichkeitsfunktion der Binomialverteilung mit Übung 2 24..23 Ü b u n g 2 Aufgabe Die Poissonverteilung P(λ) hat die Wahrscheinlichkeitsfunktion p(x) = λx e λ (x ) x! Zeigen Sie, dass dies als Grenzwert der Wahrscheinlichkeitsfunktion der Binomialverteilung

Mehr

Übung zur Vorlesung Statistik I WS Übungsblatt 9

Übung zur Vorlesung Statistik I WS Übungsblatt 9 Übung zur Vorlesung Statistik I WS 2012-2013 Übungsblatt 9 17. Dezember 2012 Aufgabe 26 (4 Punkte): In einer Studie mit n = 10 Patienten soll die Wirksamkeit eines Medikaments gegen Bluthochdruck geprüft

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Karin Waldherr & Pantelis Christodoulides 11. Mai 2011 Waldherr / Christodoulides Einführung in Quantitative Methoden- 8.VO 1/40 Poisson-Verteilung Diese Verteilung

Mehr

Verteilung von Summen

Verteilung von Summen Verteilung von Summen Beispiel: Würfelwurf Frage: Wie verhält sich die Verteilung der Augensumme von -Würfeln bei wachsendem? Zur Beantwortung führen wir ein Simulationseperiment durch. 6 Würfe mit 1 Würfel

Mehr

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) :=

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := Definition 2.34. Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := x f(x)dx der Erwartungswert von X, sofern dieses Integral existiert. Entsprechend wird die Varianz V(X)

Mehr

Übung zur Vorlesung Statistik I WS Übungsblatt 12

Übung zur Vorlesung Statistik I WS Übungsblatt 12 Übung zur Vorlesung Statistik I WS 2013-2014 Übungsblatt 12 20. Januar 2014 Die folgenden ufgaben sind aus ehemaligen Klausuren! ufgabe 38.1 (1 Punkt: In einer Studie werden 10 Patienten therapiert. Die

Mehr

von x-würfeln bei wachsendem n? Zur Beantwortung führen wir ein Simulationsexperiment durch.

von x-würfeln bei wachsendem n? Zur Beantwortung führen wir ein Simulationsexperiment durch. Zentraler Grenzwertsatz Die Normalverteilung verdankt ihre universelle theoretische und praktische Bedeutung dem zentralen Grenzwertsatz. Unabhängig von der konkreten k Ausgangsverteilung konvergiert die

Mehr

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK vom 17. Juli 01 (Dauer: 90 Minuten) Übersicht über

Mehr

Übung zur Vorlesung Statistik I für Biowissenschaften WS Übungsblatt 4

Übung zur Vorlesung Statistik I für Biowissenschaften WS Übungsblatt 4 Übung zur Vorlesung Statistik I für iowissenschaften WS 2015-2016 Übungsblatt 4 9. November 2015 ufgabe 9 (6 Punkte): Für eine Population im Hardy-Weinberg Gleichgewicht sei bekannt, dass der heterozygote

Mehr

Statistik für Ingenieure Vorlesung 5

Statistik für Ingenieure Vorlesung 5 Statistik für Ingenieure Vorlesung 5 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 28. November 2017 3.4 Wichtige stetige Verteilungen 3.4.1 Exponentialverteilung Parameter:

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 17. November 2010 1 Gesetze Das Gesetz der seltenen Ereignisse Das schwache Gesetz der großen Zahl 2 Verteilungsfunktionen

Mehr

Übung zur Vorlesung Statistik I für Biowissenschaften WS Übungsblatt 7

Übung zur Vorlesung Statistik I für Biowissenschaften WS Übungsblatt 7 Übung zur Vorlesung Statistik I für iowissenschaften WS 205-206 Übungsblatt 7 30. November 205 ufgabe 9 (4 Punkte): eim Gesellschaftsspiel Mensch ärgere ich nicht muss man eine Sechs würfeln, um eine Figur

Mehr

Biostatistik, Sommer 2017

Biostatistik, Sommer 2017 1/51 Biostatistik, Sommer 2017 Wahrscheinlichkeitstheorie: Verteilungen, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 8. Vorlesung: 09.06.2017 2/51 Inhalt 1 Verteilungen Normalverteilung Normalapproximation

Mehr

Übung zur Vorlesung Statistik I für Biowissenschaften WS Übungsblatt 6

Übung zur Vorlesung Statistik I für Biowissenschaften WS Übungsblatt 6 Übung zur Vorlesung Statisti I für iowissenschaften WS 2015-2016 Übungsblatt 6 23. November 2015 ufgabe 15 (6 Punte:) Für 0 p 1 sei mit Ω = {(z 1, z 2, z 3 ) z i = 0, 1; i = 1, 2, 3} P((z 1, z 2, z 3 ))

Mehr

f(x) = P (X = x) = 0, sonst heißt Poisson-verteilt mit Parameter (oder Rate) λ > 0, kurz X P o(λ). Es gilt x x! 1 Wahrscheinlichkeitsrechnung 212

f(x) = P (X = x) = 0, sonst heißt Poisson-verteilt mit Parameter (oder Rate) λ > 0, kurz X P o(λ). Es gilt x x! 1 Wahrscheinlichkeitsrechnung 212 1.6.2 Poisson Verteilung Eine weitere wichtige diskrete Verteilung ist die Poisson-Verteilung. Sie modelliert die Anzahl (eher seltener) Ereignisse in einem Zeitintervall (Unfälle, Todesfälle; Sozialkontakte,

Mehr

Biostatistik, Sommer 2017

Biostatistik, Sommer 2017 1/52 Biostatistik, Sommer 2017 Prof. Dr. Achim Klenke http://www.aklenke.de 7. Vorlesung: 02.06.2017 2/52 Inhalt 1 Wahrscheinlichkeit Bayes sche Formel 2 Diskrete Stetige 3/52 Wahrscheinlichkeit Bayes

Mehr

Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK. für Studierende der INFORMATIK

Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK. für Studierende der INFORMATIK Institut für Stochastik Prof. Dr. Daniel Hug Name: Vorname: Matr.-Nr.: Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK Datum: 08. Februar 0 Dauer:

Mehr

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung 2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung Die einfachste Verteilung ist die Gleichverteilung, bei der P(X = x i ) = 1/N gilt, wenn N die Anzahl möglicher Realisierungen von

Mehr

Klausur Statistik Lösungshinweise

Klausur Statistik Lösungshinweise Klausur Statistik Lösungshinweise Prüfungsdatum: 21. Januar 2016 Prüfer: Etschberger, Heiden, Jansen Studiengang: IM und BW Punkte: 15, 15, 12, 14, 16, 18 ; Summe der Punkte: 90 Aufgabe 1 15 Punkte Bei

Mehr

Wahrscheinlichkeitstheorie und Statistik

Wahrscheinlichkeitstheorie und Statistik Wahrscheinlichkeitstheorie und Statistik Definitionen und Sätze Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2018 2.5.2018 Diskrete Wahrscheinlichkeitsräume Diskreter

Mehr

Lösungen zu Übungsblatt 9 Höhere Mathematik2/Stochastik 2 Master KI/PI

Lösungen zu Übungsblatt 9 Höhere Mathematik2/Stochastik 2 Master KI/PI Lösungen zu Übungsblatt 9 Höhere Mathematik/Stochastik Anpassung von Verteilungen Zu Aufgabe ) a) Zeichnen des Histogranmmes: Um das Histogramm zu zeichnen, benötigen wir die Höhe der Balken. Die Höhe

Mehr

Statistik I für Betriebswirte Vorlesung 5

Statistik I für Betriebswirte Vorlesung 5 Statistik I für Betriebswirte Vorlesung 5 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 7. Mai 2018 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 5 Version: 30. April

Mehr

von x-würfeln bei wachsendem n? Zur Beantwortung führen wir ein Simulationsexperiment durch.

von x-würfeln bei wachsendem n? Zur Beantwortung führen wir ein Simulationsexperiment durch. Zentraler Grenzwertsatz Die Normalverteilung verdankt ihre universelle theoretische und praktische Bedeutung dem zentralen Grenzwertsatz. Unabhängig von der konkreten k Ausgangsverteilung konvergiert nämlich

Mehr

Zentraler Grenzwertsatz

Zentraler Grenzwertsatz Statistik 2 für SoziologInnen Zentraler Grenzwertsatz Univ.Prof. Dr. Marcus Hudec Statistik für SoziologInnen 1 Zentraler Grenzwertsatz Inhalte Themen dieses Kapitels sind: Der zentrale Grenzwertsatz und

Mehr

Stetige Verteilungen, Unabhängigkeit & ZGS

Stetige Verteilungen, Unabhängigkeit & ZGS Mathematik II für Biologen Stetige Verteilungen, & ZGS 26. Juni 2009 Stetige Verteilungen, & ZGS Wiederholung Stetige Zufallsvariable Definition Eigenschaften, Standardisierung Zusammenhang von Poisson-

Mehr

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen

7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen 7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen 7.7.1 Die Laplace-Verteilung Sei X eine gleich verteilte Zufallsvariable mit den Werten in der Menge Ω X = {x i R : i = 1,...,n}, d.h. f (x i = 1

Mehr

Statistik 1 Beispiele zum Üben

Statistik 1 Beispiele zum Üben Statistik 1 Beispiele zum Üben 1. Ein Kühlschrank beinhaltet 10 Eier, 4 davon sind faul. Wir nehmen 3 Eier aus dem Kühlschrank heraus. (a Bezeichne die Zufallsvariable X die Anzahl der frischen herausgenommenen

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

5 Binomial- und Poissonverteilung

5 Binomial- und Poissonverteilung 45 5 Binomial- und Poissonverteilung In diesem Kapitel untersuchen wir zwei wichtige diskrete Verteilungen d.h. Verteilungen von diskreten Zufallsvariablen): die Binomial- und die Poissonverteilung. 5.1

Mehr

Handelt es sich bei den folgenden um diskrete oder stetige Zufallsvariablen?

Handelt es sich bei den folgenden um diskrete oder stetige Zufallsvariablen? 1. Handelt es sich bei den folgenden um diskrete oder stetige Zufallsvariablen? a.) Anzahl der Kunden, die an der Kasse in der Schlange stehen. b.) Die Menge an Energie, die pro Tag von einem Energieversorgungsunternehmen

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 6. Stock, Taubertsberg R. 06-06 (Persike) R. 06-31 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet03.sowi.uni-mainz.de/

Mehr

Kapitel VII. Einige spezielle stetige Verteilungen

Kapitel VII. Einige spezielle stetige Verteilungen Kapitel VII Einige spezielle stetige Verteilungen D. 7.. (Normalverteilung) Eine stetige Zufallsgröße X sei als normalverteilt bezeichnet, wenn sie folgende Wahrscheinlichkeitsdichte besitzt: µ f ( ; µ,

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Einführung in einige Teilbereiche der Wintersemester 206 Prof. Dr. Stefan Etschberger HSA Unabhängigkeit von Ereignissen A, B unabhängig: Eintreten von A liefert keine Information über P(B). Formal: P(A

Mehr

Stochastik für die Naturwissenschaften

Stochastik für die Naturwissenschaften Stochastik für die Naturwissenschaften Dr. C.J. Luchsinger 7. n (Konvergenz, LLN, CLT) Literatur Kapitel 7 n heisst für uns n gross * Statistik in Cartoons: Kapitel 5, Seite 114 in Kapitel 6 * Stahel:

Mehr

Spezielle diskrete Verteilungen

Spezielle diskrete Verteilungen 9 Eindimensionale Zufallsvariablen Spezielle diskrete Verteilungen 9.9 Spezielle diskrete Verteilungen Im Folgenden: Vorstellung spezieller (parametrischer) Verteilungsfamilien, die häufig Verwendung finden.

Mehr

Spezielle diskrete Verteilungen

Spezielle diskrete Verteilungen 9 Eindimensionale Zufallsvariablen Spezielle diskrete Verteilungen 9.9 Spezielle diskrete Verteilungen Im Folgenden: Vorstellung spezieller (parametrischer) Verteilungsfamilien, die häufig Verwendung finden.

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 21. Dezember 2011 1 Definition Binomialverteilung Geometrische Verteilung Poissonverteilung 2 Standardisierte Verteilung

Mehr

Stochastik. 1. Wahrscheinlichkeitsräume

Stochastik. 1. Wahrscheinlichkeitsräume Stochastik 1. Wahrscheinlichkeitsräume Ein Zufallsexperiment ist ein beliebig oft und gleichartig wiederholbarer Vorgang mit mindestens zwei verschiedenen Ergebnissen, bei dem der Ausgang ungewiß ist.

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Stetige Zufallsvariable Verteilungsfunktion: Dichtefunktion: Integralrechnung:

Mehr

70 Wichtige kontinuierliche Verteilungen

70 Wichtige kontinuierliche Verteilungen 70 Wichtige kontinuierliche Verteilungen 70. Motivation Zufallsvariablen sind nicht immer diskret, sie können oft auch jede beliebige reelle Zahl in einem Intervall [c, d] einnehmen. Beispiele für solche

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Sommersemester 2016 Prof. Dr. Stefan Etschberger Hochschule Augsburg Zufallsvariablen Beschreibung von Ereignissen

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR STOCHASTIK SS 2010 Karlsruher Institut für Technologie Priv.-Doz. Dr. D. Kadelka Klausur Wahrscheinlichkeitstheorie und Statistik vom 14.9.2010 Musterlösungen Aufgabe 1: Gegeben sei eine Urliste

Mehr

Stetige Verteilungen, Unabhängigkeit & ZGS

Stetige Verteilungen, Unabhängigkeit & ZGS Mathematik II für Biologen Stetige Verteilungen, & ZGS 19. Juni 2015 Stetige Verteilungen, & ZGS Stetige Zufallsvariable Dichte & Verteilungsfunktion Eigenschaften & Kennzahlen Definition Eigenschaften,

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 20/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt 4 Lösungshinweise (ohne Ganantie auf Fehlerfreiheit. Wenn man beim Roulette auf Rot oder Schwarz setzt, erhält

Mehr

Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK)

Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) für Studierende des Maschinenbaus vom 7. Juli (Dauer: 8 Minuten) Übersicht über die

Mehr

A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen:

A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen: 5 Diskrete Verteilungen 1 Kapitel 5: Diskrete Verteilungen A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen: 5 0.6 x 0.4 5 x (i) P x (x)

Mehr

Binomialverteilung. Häufigkeit, mit der Ereignis A bei n unabhängigen Versuchen eintritt. Träger von X : X = {0, 1, 2,..., n}.

Binomialverteilung. Häufigkeit, mit der Ereignis A bei n unabhängigen Versuchen eintritt. Träger von X : X = {0, 1, 2,..., n}. Binomialverteilung Konstruktionsprinzip: Ein Zufallsexperiment wird n mal unabhängig durchgeführt. Wir interessieren uns jeweils nur, ob ein bestimmtes Ereignis A eintritt oder nicht. X = Häufigkeit, mit

Mehr

Statistik im Versicherungs- und Finanzwesen

Statistik im Versicherungs- und Finanzwesen Springer Gabler PLUS Zusatzinformationen zu Medien von Springer Gabler Grimmer Statistik im Versicherungs- und Finanzwesen Eine anwendungsorientierte Einführung 4. Auflage Übungsaufgaben zu Kapitel 7 [Tet

Mehr

Probeklausur Statistik II

Probeklausur Statistik II Prof. Dr. Chr. Müller PROBE-KLAUSUR 1 1 2 3 4 5 6 7 8 Gesamt: 15 8 16 16 7 8 15 15 100 Probeklausur Statistik II Name: Vorname: Fachrichtung: Matrikel-Nummer: Bitte beachten Sie folgendes: 1) Die Klausur

Mehr

1 Stochastische Konvergenz 2

1 Stochastische Konvergenz 2 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

Die Varianz (Streuung) Definition

Die Varianz (Streuung) Definition Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ

Mehr

BSc Bioinformatik Wintersemester 2013/2014 Nachklausur zur Statistik I Freie Universität Berlin

BSc Bioinformatik Wintersemester 2013/2014 Nachklausur zur Statistik I Freie Universität Berlin Sc ioinformatik Wintersemester 013/014 Nachklausur zur Statistik I Freie Universität erlin 4. pril 014 Matrikelnummer Nachname Vorname Unterschrift ufgabe 1 (4 Punkte): Zu einem Wahrscheinlichkeitsraum

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Zufallsvariable Erinnerung: Merkmal, Merkmalsausprägung Deskriptive Statistik:

Mehr

Beziehungen zwischen Verteilungen

Beziehungen zwischen Verteilungen Kapitel 5 Beziehungen zwischen Verteilungen In diesem Kapitel wollen wir Beziehungen zwischen Verteilungen betrachten, die wir z.t. schon bei den einzelnen Verteilungen betrachtet haben. So wissen Sie

Mehr

Diskrete Verteilungen

Diskrete Verteilungen Diskrete Verteilungen Bernoulli-Verteilung: X Bernoulli(p) Symbol für «verteilt wie» «Eperiment» mit zwei Ausgängen: «Erfolg» ( 1) oder «Misserfolg» ( ). Die Erfolgswahrscheinlichkeit sei p. Wertebereich

Mehr

Statistik I für Betriebswirte Vorlesung 4

Statistik I für Betriebswirte Vorlesung 4 Statistik I für Betriebswirte Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 25. April 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

Hypergeometrische Verteilung

Hypergeometrische Verteilung Hypergeometrische Verteilung Typischer Anwendungsfall: Ziehen ohne Zurücklegen Durch den Ziehungsprozess wird die Wahrscheinlichkeit des auch hier zu Grunde liegenden Bernoulli-Experimentes verändert.

Mehr

6.6 Poisson-Verteilung

6.6 Poisson-Verteilung 6.6 Poisson-Verteilung Die Poisson-Verteilung ist eine Wahrscheinlichkeitsverteilung, die zur Modellierung der Anzahl von zufälligen Vorkommnissen in einem bestimmten räumlichen oder zeitlichen Abschnitt

Mehr

Statistik II. Wintersemester 2016/2017. Prof. Dr. Antje Mahayni Oliver Lubos. Mercator School of Management Department of Accounting & Finance

Statistik II. Wintersemester 2016/2017. Prof. Dr. Antje Mahayni Oliver Lubos. Mercator School of Management Department of Accounting & Finance Statistik II Übung Wintersemester 2016/2017 Prof. Dr. Antje Mahayni Oliver Lubos Mercator School of Management Department of Accounting & Finance Oliver Lubos/Prof. Dr. Antje Mahayni Statistik II Übung

Mehr

Ausgewählte spezielle Verteilungen

Ausgewählte spezielle Verteilungen Ausgewählte spezielle Verteilungen In Anwendungen werden oft Zufallsvariablen betrachtet, deren Verteilung einem Standardmodell entspricht. Zu den wichtigsten dieser Modelle gehören: diskrete Verteilungen:

Mehr

Stochastik Musterlösung 4

Stochastik Musterlösung 4 ETH Zürich HS 218 RW, D-MATL, D-MAVT Prof. Marloes H. Maathuis Koordinator Dr. Marvin S. Müller Stochastik Musterlösung 4 1. Die Zufallsvariable, die die Anzahl eingehender Telefonanrufe in einer Telefonzentrale

Mehr

Vorname: Nachname: Matrikel-Nr.: Klausur Statistik

Vorname: Nachname: Matrikel-Nr.: Klausur Statistik Vorname: Nachname: Matrikel-Nr.: Klausur Statistik Prüfer Etschberger, Heiden, Jansen Prüfungsdatum 21. Januar 2016 Prüfungsort Augsburg Studiengang IM und BW Bearbeitungszeit: 90 Minuten Punkte: 90 Die

Mehr

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme Binomialverteilung Wahrscheinlichkeitsfunktion Konstruktionsprinzip: Ein Zufallsexperiment wird n mal unabhängig durchgeführt. Wir interessieren uns jeweils nur, ob ein bestimmtes Ereignis A eintritt oder

Mehr

Statistik I für Betriebswirte Vorlesung 3

Statistik I für Betriebswirte Vorlesung 3 Statistik I für Betriebswirte Vorlesung 3 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 15. April 2019 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 3 Version: 1. April

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2

Mehr

Heute. Die Binomialverteilung. Poissonverteilung. Approximation der Binomialverteilung durch die Normalverteilung

Heute. Die Binomialverteilung. Poissonverteilung. Approximation der Binomialverteilung durch die Normalverteilung Heute Die Binomialverteilung Poissonverteilung Approximation der Binomialverteilung durch die Normalverteilung Arbeiten mit Wahrscheinlichkeitsverteilungen Die Binomialverteilung Man werfe eine Münze n

Mehr

Mathematica: u=5;s=1;plot[exp[-0.5((x-u)/s)^2],{x,0,10}] 76

Mathematica: u=5;s=1;plot[exp[-0.5((x-u)/s)^2],{x,0,10}] 76 4. Normalverteilung Gauß'sche Glockenkurve: P(a X b) = b 1 x 1 a e dx 1 0.8 0.6 0.4 0. 4 6 8 10 Mathematica: u=5;s=1;plot[exp[-0.5((x-u)/s)^],{x,0,10}] 76 Zentraler Grenzwertsatz: Es sei X 1, X,... eine

Mehr

Zentraler Grenzwertsatz

Zentraler Grenzwertsatz Statistik 2 für SoziologInnen Zentraler Grenzwertsatz Univ.Prof. Dr. Marcus Hudec Statistik für SoziologInnen 1 Zentraler Grenzwertsatz Inhalte Themen dieses Kapitels sind: Der zentrale Grenzwertsatz und

Mehr

Fit for Abi & Study Stochastik

Fit for Abi & Study Stochastik Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 11. November 2010 1 Erwartungswert und Varianz Erwartungswert Varianz und Streuung Rechenregeln Binomialverteilung

Mehr

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Version: 22. September 2015 Evelina Erlacher 1 Mengen Es sei Ω eine Menge (die Universalmenge ) und A, B seien Teilmengen von Ω. Dann schreiben

Mehr

Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007

Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007 Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007 Prof. Dr. F. Liese Dipl.-Math. M. Helwich Serie 8 Termin: 1. Juni 2007 Aufgabe

Mehr

Bestimmte Zufallsvariablen sind von Natur aus normalverteilt. - naturwissenschaftliche Variablen: originär z.b. Intelligenz, Körpergröße, Messfehler

Bestimmte Zufallsvariablen sind von Natur aus normalverteilt. - naturwissenschaftliche Variablen: originär z.b. Intelligenz, Körpergröße, Messfehler 6.6 Normalverteilung Die Normalverteilung kann als das wichtigste Verteilungsmodell der Statistik angesehen werden. Sie wird nach ihrem Entdecker auch Gaußsche Glockenkurve genannt. Die herausragende Stellung

Mehr

Statistische Inferenz

Statistische Inferenz Statistische Inferenz Prinzip der statistischen Inferenz Datensätze = Stichproben aus einer Gesamtpopulation (meistens) Beispiel : Messung der Körpertemperatur von 106 gesunden Individuen man vermutet,

Mehr

Kapitel 2 Wahrscheinlichkeitsrechnung

Kapitel 2 Wahrscheinlichkeitsrechnung Definition 2.77: Normalverteilung & Standardnormalverteilung Es sei µ R und 0 < σ 2 R. Besitzt eine stetige Zufallsvariable X die Dichte f(x) = 1 2 πσ 2 e 1 2 ( x µ σ ) 2, x R, so heißt X normalverteilt

Mehr

Motivation. Benötigtes Schulwissen. Übungsaufgaben. Wirtschaftswissenschaftliches Zentrum 10 Universität Basel. Statistik

Motivation. Benötigtes Schulwissen. Übungsaufgaben. Wirtschaftswissenschaftliches Zentrum 10 Universität Basel. Statistik Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Statistik Dr. Thomas Zehrt Ausblick Motivation Wir werfen einen Würfel 000-mal und wir möchten die Wahrscheinlichkeit P bestimmen, dass zwischen

Mehr

Mathematik für Naturwissenschaften, Teil 2

Mathematik für Naturwissenschaften, Teil 2 Lösungsvorschläge für die Aufgaben zur Vorlesung Mathematik für Naturwissenschaften, Teil Zusatzblatt SS 09 Dr. J. Schürmann keine Abgabe Aufgabe : Eine Familie habe fünf Kinder. Wir nehmen an, dass die

Mehr

Aufgaben. d) Seien X und Y Poissonverteilt mit Parameter µ, X, Y P(µ). 2. Dann ist die Summe auch Poissonverteilt mit (X + Y ) P(2µ).

Aufgaben. d) Seien X und Y Poissonverteilt mit Parameter µ, X, Y P(µ). 2. Dann ist die Summe auch Poissonverteilt mit (X + Y ) P(2µ). Aufgaben 1. Bei den folgenden 10 Fragen ist jeweils genau eine Antwort richtig. Es gibt pro richtig beantwortete Frage 1 Punkt und pro falsche Antwort 1/2 Punkt Abzug. Minimal erhält man für die gesamte

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenho Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2 Elementare

Mehr

Stetige Verteilungen Rechteckverteilung

Stetige Verteilungen Rechteckverteilung Stetige Verteilungen Rechteckverteilung Die Längenabweichungen X produzierter Werkstücke von der Norm seien gleichmäßig verteilt zwischen a = mm und b = 4mm. Die Dichtefunktion lautet also f(x) = für a

Mehr

Grundgesamtheit, Merkmale, Stichprobe. Eigenschaften der Stichprobe. Klasseneinteilung, Histogramm. Arithmetisches Mittel, empirische Varianz

Grundgesamtheit, Merkmale, Stichprobe. Eigenschaften der Stichprobe. Klasseneinteilung, Histogramm. Arithmetisches Mittel, empirische Varianz - 1 - Grundgesamtheit, Merkmale, Stichprobe Dimension, Umfang Skalierung Eigenschaften der Stichprobe kennzeichnende Größen Eigenschaften der Stichprobe kennzeichnende Größen Punktediagramm, Regressionsgerade,

Mehr

Marcus Hudec. Statistik 2 für SoziologInnen. Grenzwertsätze. Marcus Hudec. Statistik für SoziologInnen 1 Zentraler Grenzwertsatz

Marcus Hudec. Statistik 2 für SoziologInnen. Grenzwertsätze. Marcus Hudec. Statistik für SoziologInnen 1 Zentraler Grenzwertsatz Statistik 2 für SoziologInnen Grenzwertsätze Marcus Hudec Statistik für SoziologInnen 1 Zentraler Grenzwertsatz Inhalte Themen dieses Kapitels sind: Der zentrale Grenzwertsatz und seine Bedeutung für die

Mehr

Der Erwartungswert E[g(X)] von g(x) ist definiert. g(x k )w(x = x k ),

Der Erwartungswert E[g(X)] von g(x) ist definiert. g(x k )w(x = x k ), 2.5 Parameter einer Verteilung 2.5. Erwartungswert X eine Zufallsvariable, g : R R stetig. Der Erwartungswert E[g(X)] von g(x) ist definiert durch: E[g(X)] := k g(x k )w(x = x k ), falls X diskret ist

Mehr

Die Familie der χ 2 (n)-verteilungen

Die Familie der χ 2 (n)-verteilungen Die Familie der χ (n)-verteilungen Sind Z 1,..., Z m für m 1 unabhängig identisch standardnormalverteilte Zufallsvariablen, so genügt die Summe der quadrierten Zufallsvariablen χ := m Z i = Z 1 +... +

Mehr

Die Familie der χ 2 (n)-verteilungen

Die Familie der χ 2 (n)-verteilungen Die Familie der χ (n)-verteilungen Sind Z 1,..., Z m für m 1 unabhängig identisch standardnormalverteilte Zufallsvariablen, so genügt die Summe der quadrierten Zufallsvariablen χ := m Z i = Z 1 +... +

Mehr

Vorlesung 7a. Der Zentrale Grenzwertsatz

Vorlesung 7a. Der Zentrale Grenzwertsatz Vorlesung 7a Der Zentrale Grenzwertsatz als Erlebnis und Das Schwache Gesetz der Großen Zahlen Wiederholung: Die Normalverteilung Dichtefunktion ϕ der Standardnormalverteilung ϕ(x) 0.0 0.1 0.2 0.3 0.4

Mehr

Zufallsvariable: Verteilungen & Kennzahlen

Zufallsvariable: Verteilungen & Kennzahlen Mathematik II für Biologen 12. Juni 2015 Zufallsvariable Kennzahlen: Erwartungswert Kennzahlen: Varianz Kennzahlen: Erwartungstreue Verteilungsfunktion Beispiel: Exponentialverteilung Kennzahlen: Erwartungswert

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR STOCHASTIK SS 2007 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Dipl.-Math. oec. W. Lao Klausur (Maschineningenieure) Wahrscheinlichkeitstheorie und Statistik vom 2.9.2007 Musterlösungen

Mehr