12. Flächenmomente. Umwelt-Campus Birkenfeld Technische Mechanik II

Größe: px
Ab Seite anzeigen:

Download "12. Flächenmomente. Umwelt-Campus Birkenfeld Technische Mechanik II"

Transkript

1 Technische Mechanik 1. Flächenmomente Prof. Dr.-ng. T. Preußler Flächenmomente werden in der tatik ur Berechnung von pannungen infolge Biegung, chub und Torsion sowie bei tabilitätsuntersuchungen (Knicken, Beulen) benötigt. Fächenmomente sind rein geometrischen Größen und hängen ausschließlich vom Querschnitt des Profils ab. Flächenmomente ergeben sich, wenn die Flächenelemente eines Querschnitts mit ihrem bstand um Koordinatenursprung multipliiert und die Produkte über der Gesamtfläche aufsummiert werden. Je nachdem, ob der bstand r linear oder quadratisch eingeht unterscheidet man wischen Flächenmomente 1. und. Ordnung. 1 0 r d

2 Technische Mechanik 1.1 tatisches Moment Die statischen Momente (Flächenmoment 1. Ordnung) in der Form = d Prof. Dr.-ng. T. Preußler traten schon bei der Bestimmung von Flächenschwerpunkten auf und besitt die Einheit [m 3, cm 3 bw. mm 3 ]. Der ndex beieht sich dabei auf die chse, um die das statische Moment wirkt. Die chwerpunktskoordinaten ergeben sich damit aus 1 1 s = d = s = d = Für ein Koordinatensstem, dessen chsen mit den chwereachsen der Fläche usammenfallen, gilt = = 0 = 0 = = 0 = 0 s Das statische Moment beüglich chwerpunktskoordinaten ist null. = s d

3 Technische Mechanik 1. Flächenträgheitsmoment Prof. Dr.-ng. T. Preußler Flächenträgheitsmomente (Momente. Ordnung) sind ein Maß für den Widerstand eines Querschnitts gegen Verformung infolge von Momenten. ie werden in den Einheiten [m 4, cm 4 bw. mm 4 ] angegeben. Der Name leitet sich aus den in der Kinetik bekannten Massenträgheitsmomenten ab. Man unterscheidet: a) xiales (äquatoriales) Flächenträgheitsmoment Die axialen Flächenträgheitsmomente ergeben sich aus dem Quadrat des bstandes eines Flächenelements d von der Beugsachse integriert über der Gesamtfläche. = d = d xiale Flächenträgheitsmomente sind immer positiv 3 0 d

4 Technische Mechanik Prof. Dr.-ng. T. Preußler b) Gemischtes (deviatorisches) Flächenträgheitsmoment Das gemischte Flächenträgheitsmoment ist das Produkt der bstände eines Flächenelements d von den Beugsachsen integriert über der Gesamtfläche. = p d Das gemischte Flächenträgheitsmoment kann sowohl positiv als auch negativ sein. Für Querschnitte mit mindestens einer mmetrieachse wird es Null. c) Polares Flächenträgheitsmoment Das polare Flächenträgheitsmoment ist das Quadrat des bstandes eines Flächenelements d vom Koordinatenursprung integriert über der Gesamtfläche. = r d = + ( ) d = + Die umme der axialen Flächenträgheitsmomente ergibt das polare Flächenträgheitsmoment. Es ist ebenfalls immer positiv. 4 0 r d

5 Technische Mechanik Prof. Dr.-ng. T. Preußler 1..1 Berechnung durch ntegration Liegen die Begrenungslinien der Flächen als Funktionen vor, lassen sich die Flächenträgheitsmomente durch Doppelintegration ermitteln. Beispiel: xiale Flächenträgheitsmomente beüglich des chwerpunktes b h 5

6 Technische Mechanik Prof. Dr.-ng. T. Preußler Beispiel: Kreis R dr dϕ r d=r dϕ dr lternative Berechnung in Polarkoordinaten 6

7 Technische Mechanik Prof. Dr.-ng. T. Preußler Übung: Flächenträgheitsmomente eines Rechtecks beüglich des Randes 0 b h Man erkennt, dass die axialen Flächenträgheitsmomente beüglich der Ränder viermal so groß sind wie die auf den chwerpunkt beogenen Flächenträgheitsmomente und dass das gemischte Flächenträgheitsmoment ungleich Null ist. 7

8 Technische Mechanik 1.3 Zusammengesette Flächen Prof. Dr.-ng. T. Preußler Bisher wurden nur einfache Flächen betrachtet, deren Flächenträgheitsmomente in Tabellen usammen gefasst sind. Für Querschnitte mit unstetigem oder gekrümmten Rand ist die ntegration aufwendig. Diese lässt sich oftmals umgehen, indem kompliierte Querschnitte aus einfachen Flächen usammen gesett werden. 1 1, 1, 1 1 1,,,,, Dau müssen die Flächenträgheitsmomente der Teilflächen auf ein gemeinsames Koordinatensstem beogen werden, was eine Parallelverschiebung und ggf. eine Drehung der Flächenträgheitsmomente erforderlich macht. 8

9 Technische Mechanik Prof. Dr.-ng. T. Preußler Flächenmomente bei Parallelverschiebung Geht man von einem Koordinatensstem auf ein dau parallel verschobenes Beugssstem über, müssen die Werte der Flächenträgheitsmomente entsprechend umgerechnet werden. d, chwereachsen, parallel verschobene chsen, chwerpunktsabstand 0 9

10 Technische Mechanik Prof. Dr.-ng. T. Preußler Für das axiale Flächenträgheitsmoment (Flächenmoment. Ordnung) gilt = d = = 0 = Damit folgt für das Flächenträgheitsmoment beüglich der chse der at von Hugens-teiner = + = + ) ( d = und analog für das Trägheitsmoment um die chse d + d + d = + Das Flächenträgheitsmoment um chsen, die um chwerpunktskoordinatensstem parallel verschoben sind, ist gleich der umme des Trägheitsmoments beogen auf den chwerpunkt und dem Produkt aus der Fläche und dem Quadrat des bstandes der chsen um chwerpunkt. 10

11 Technische Mechanik Prof. Dr.-ng. T. Preußler Das Produkt aus der Fläche und dem Quadrat des bstandes der chwerpunktskoordinaten ist stets positiv. chwerpunkt-trägheitsmomente sind daher minimal gegenüber Flächenträgheitsmomenten beüglich parallel verschobener chsen. Für das gemischte Flächenträgheitsmoment (Deviationsmoment) ergibt sich und damit = d + = d = ( + )( + ) d d + = = 0 = 0 = d + d = + Bei der nwendung des teiner-ates auf das gemischte Flächenträgheitsmoment sind die chwerpunktabstände mit ihrem Voreichen einutragen. 11

12 Technische Mechanik Prof. Dr.-ng. T. Preußler ett sich ein Querschnitt aus mehreren Teilflächen usammen, gilt n = i= 1 n = i= 1 n = i= 1 ( ( ( i i i + + i i + i ) i i ) i ) i,, i, i, i i, i n - Trägheitsmomente der Gesamtfläche - Trägheitsmomente der Teilflächen i - bstände der chwerpunkte - nahl der Teilflächen ussparungen oder Löcher in Querschnittsflächen werden berücksichtigt, wenn die ugehörigen Trägheitsmomente und Flächen im teiner-nsat negativ eingetragen werden. llgemein ist u beachten, dass der at von teiner nur den Zusammenhang wischen den Flächenträgheitsmomenten beüglich der chwereachsen und den dau parallel verschobenen Koordinatenachsen angibt, nicht jedoch für wei beliebige Beugsssteme gilt. 1

13 Technische Mechanik Prof. Dr.-ng. T. Preußler Beispiel: Zusammengesettes L-Profil Gesucht: chwerpunkt, Flächenträgheitsmomente

14 Technische Mechanik Prof. Dr.-ng. T. Preußler... Fortsetung: Zusammengesettes L-Profil alternative Berechnung als Differen weier Rechtecke

15 Technische Mechanik Übung: Zusammengesettes -Profil Gesucht: xiale Flächenträgheitsmomente Prof. Dr.-ng. T. Preußler

16 Technische Mechanik Prof. Dr.-ng. T. Preußler 1.3. Flächenmomente bei Koordinatendrehung Flächenträgheitsmomente unterliegen bei Koordinatendrehung den gleichen tensoriellen Gesetmäßigkeiten, wie sie für pannungen und Dehnungen gelten. ind die Flächenträgheitsmomente, und für ein gegebenes Koordinatensstem gegeben, lassen sich die Flächenträgheitsmomente ζ, η und ζη für ein um den Winkel α gedrehten Koordinatensstem analog u den bekannten Transformationsgleichungen berechnen: + ζ = + cosα sin α + η = cosα + sin α ηζ = sin α + cosα = m Vergleich u den Transformationsgleichungen für pannung und Dehnung ist auf die teilweise davon abweichenden Voreichen der Terme u achten! ζη 16 ζ 0 d α η

17 Technische Mechanik Prof. Dr.-ng. T. Preußler Die Richtung der Hauptträgheitsmomente ergeben sich entsprechend mit tan α H = p + = + = 1 + = const. = η ζ + 1, = ± ( ) + und die ugehörigen Hauptträgheitsmomente erhält man aus mit den nvarianten Hauptträgheitsmomente wirken in Richtung der Hauptträgheitsachsen, für die das gemischte Flächenträgheitsmoment verschwindet. Für mmetrielinien ist das gemischte Flächenmoment immer Null, d. h. jede mmetrielinie ist gleicheitig eine Hauptträgheitsachse. Zwei ueinander senkrechte chwerpunktachsen, von denen eine mmetrielinie ist, sind stets Hauptträgheitsachsen. 17

18 Technische Mechanik Prof. Dr.-ng. T. Preußler Beispiel: L-Profil Gegeben: = 0833 mm 4, = 1300 mm 4 und = 9375 mm 4 Gesucht: Hauptträgheitsachsen, Hauptträgheitsmomente 1 α H 18

2. Flächenträgheitsmomente

2. Flächenträgheitsmomente . Flächenträgheitsmomente.1 Definitionen. Zusammengesette Querschnitte.3 Hauptachsen Prof. Dr. Wandinger 3. Balken TM 3.-1 .1 Definitionen Flächenträgheitsmomente: Die ur Berechnung der Spannungen eingeführten

Mehr

2. Flächenträgheitsmomente

2. Flächenträgheitsmomente . Flächenträgheitsmomente.1 Definitionen. Zusammengesette Querschnitte.3 Hauptachsen Prof. Dr. Wandinger 3. Balken TM 3.-1 .1 Definitionen Flächenträgheitsmomente: Die ur Berechnung der Spannungen eingeführten

Mehr

Musterlösung zur 10. Übung Mechanik II SS 08. Aufgabe 1: Schubspannungen infolge Querkraft: Bei dünnwandigen Querschnitten t 1, t 2

Musterlösung zur 10. Übung Mechanik II SS 08. Aufgabe 1: Schubspannungen infolge Querkraft: Bei dünnwandigen Querschnitten t 1, t 2 Musterlösung ur 10. Übung Mechanik II SS 08 Aufgabe 1: Schubspannungen infolge Querkraft: Bei dünnwandigen Querschnitten t 1, t 2 b, h können die Schubspannungen in Richtung der bereichsweise einuführenden

Mehr

4. Balken. Brücken Tragflügel KFZ-Karosserie: A-Säule, B-Säule Rahmen: Fahrrad, Motorrad. Prof. Dr. Wandinger 2. Festigkeitslehre TM 2.

4. Balken. Brücken Tragflügel KFZ-Karosserie: A-Säule, B-Säule Rahmen: Fahrrad, Motorrad. Prof. Dr. Wandinger 2. Festigkeitslehre TM 2. 4. Balken Balken sind eindimensionale Idealisierungen für Bauteile, die Längskräfte, Querkräfte und Momente übertragen können. Die Querschnittsabmessungen sind klein gegenüber der Länge. Beispiele: Brücken

Mehr

11 Balkenbiegung Technische Mechanik Balkenbiegung

11 Balkenbiegung Technische Mechanik Balkenbiegung 11 Balkenbiegung Balkenbiegung 2 Motivation / Einführung Ziele: Berechnung der Balkendurchbiegung (Deformation) Berechnung der Schnittgrößen für statisch unbestimmte Systeme Balken Definition Stabförmig;

Mehr

Institut für Allgemeine Mechanik der RWTH Aachen

Institut für Allgemeine Mechanik der RWTH Aachen Prof. Dr.-Ing. D. Weichert 4.Übung Mechanik II 2008 9.05.2008. Aufgabe Ein rechteckiges Blech wird spiel- und spannungsfrei in eine undehnbare Führung eingepaßt. Dann wird die Temperatur des Blechs um

Mehr

Modulprüfung in Technischer Mechanik am 16. August Festigkeitslehre. Aufgaben

Modulprüfung in Technischer Mechanik am 16. August Festigkeitslehre. Aufgaben Modulrüfung in Technischer Mechanik am 6. August 206 Aufgaben Name: Vorname: Matr.-Nr.: Fachrichtung: Hinweise: Bitte schreiben Sie deutlich lesbar. Zeichnungen müssen sauber und übersichtlich sein. Die

Mehr

Mechanik 2. Übungsaufgaben

Mechanik 2. Übungsaufgaben Mechanik 2 Übungsaufgaben Professor Dr.-Ing. habil. Jörg Schröder Universität Duisburg Essen, Standort Essen Fachbereich 10 - Bauwesen Institut für Mechanik Übung zu Mechanik 2 Seite 1 Aufgabe 1 Berechnen

Mehr

EINFÜHRUNG IN DIE TENSORRECHNUNG

EINFÜHRUNG IN DIE TENSORRECHNUNG EINFÜHRUNG IN DIE TENSORRECHNUNG Teil 3 SIEGFRIED PETRY Fassung vom 5. Juni 06 I n h a l t Transformation der Komponenten eines Vektors bei Basiswechsel. Einführung einer neuen Basis. Transformation der

Mehr

Stoffgesetze Spannungszustand

Stoffgesetze Spannungszustand 16. 9.4 Stoffgesete Spannungsustand Belastungen ereugen in elastischen Bauteilen einen Spannungsustand, der sowohl vom Ort als auch von der Orientierung (Winkel) des betrachteten Schnittes beüglich der

Mehr

7.3 Lorentz Transformation

7.3 Lorentz Transformation 26 KAPITEL 7. SPEZIELLE RELATIVITÄTSTHEORIE 7.3 Lorent Transformation In diesem Abschnitt sollen die Transformationen im 4-dimensionalen Minkowski Raum betrachtet werden. Dabei wollen wir uns auf solche

Mehr

2. Definieren Sie die 2 Arten von Verzerrungen. Vorzeichenregeln.

2. Definieren Sie die 2 Arten von Verzerrungen. Vorzeichenregeln. FESTIGKEITSLEHRE 1. Definieren Sie den Begriff "Widerstandsmoment". Erläutern Sie es für Rechteck und doppelt T Querschnitt. Antwort Die Widerstandsmomente sind geometrische Kennzeichen des Querschnittes.

Mehr

An ein Standard U-Profil ist eine Platte mit quaderförmigem Querschnitt angeschweißt.

An ein Standard U-Profil ist eine Platte mit quaderförmigem Querschnitt angeschweißt. Festigkeitslehre. Übung. Aufgabe: Berechnung von Flächenträgheitsmomenten (FTM) An ein Standard U-Profil ist eine Platte mit quaderförmigem Querschnitt angeschweißt. Gegeben: a = 60 mm v = 0 mm s = 4,

Mehr

Herbst 2010 Seite 1/14. Gottfried Wilhelm Leibniz Universität Hannover Klausur Technische Mechanik II für Maschinenbau. Musterlösungen (ohne Gewähr)

Herbst 2010 Seite 1/14. Gottfried Wilhelm Leibniz Universität Hannover Klausur Technische Mechanik II für Maschinenbau. Musterlösungen (ohne Gewähr) Seite 1/14 rage 1 ( 2 Punkte) Ein Stab mit kreisförmiger Querschnittsfläche wird mit der Druckspannung σ 0 belastet. Der Radius des Stabes ist veränderlich und wird durch r() beschrieben. 0 r () Draufsicht:

Mehr

Biegung Berechnung des Biegemomentes aus der gemessenen Dehnung bzw aus der gemessenen Brückenverstimmung

Biegung Berechnung des Biegemomentes aus der gemessenen Dehnung bzw aus der gemessenen Brückenverstimmung Messen mit Dehnungsmessstreifen Formelsammlung für die elementaren Lastfälle Stand: 21.01.2018, Kab. Biegung Berechnung des Biegemomentes aus der gemessenen Dehnung bzw aus der gemessenen Brückenverstimmung

Mehr

3. Erweiterung der trigonometrischen Funktionen

3. Erweiterung der trigonometrischen Funktionen 3. Erweiterung der trigonometrischen Funktionen 3.1. Polarkoordinaten 1) Rechtwinklige und Polarkoordinaten Üblicherweise gibt man die Koordinaten eines Punktes in der Ebene durch ein Zahlenpaar vor: P(x

Mehr

1. Querkraftschub in offenen Profilen

1. Querkraftschub in offenen Profilen 1. Querkrftschub in offenen Profilen 1.1 Schubfluss 1.2 Schubmittelpunkt Prof. Dr. Wndinger 5. Dünnwndige Profile TM 2 5.1-1 Geometrie: Die Profilkoordinte s wird entlng der Profilmittellinie gemessen.

Mehr

Klausur Technische Mechanik 2

Klausur Technische Mechanik 2 1.) (3+6+3 Punkte) Auf den dargestellten smmetrischen Spindelrasenmäher mit der Gewichtskraft G und der Spurweite 4L wirken die dargestellten Kräfte. Keine Kräfte in x-richtung sind u berücksichtigen Die

Mehr

3. Trägheitstensor. Starrkörperdynamik Prof. Dr. Wandinger. 2. Der starre Körper

3. Trägheitstensor. Starrkörperdynamik Prof. Dr. Wandinger. 2. Der starre Körper 3. Trägheitstensor Im Beispiel der rollenden Scheibe hängt der Drall linear von der Winkelgeschwindigkeit ab. Bei der Berechnung des Dralls treten Integrale über die Geometrie des starren örpers auf. Es

Mehr

MECHANIK & WERKSTOFFE

MECHANIK & WERKSTOFFE MECHANIK & WERKSTOFFE Statik Lagerung von Körpern 1-wertig Pendelstütze Seil (keine Lasten dazwischen) (nur Zug) Loslager Anliegender Stab Kraft in Stabrichtung Kraft in Seilrichtung Kraft in Auflagefläche

Mehr

5.1 Gruppe paralleler Kräfte 5.2 Körperschwerpunkt 5.3 Flächenschwerpunkt. 5. Schwerpunkt. Prof. Dr. Wandinger 1. Statik TM 1.5-1

5.1 Gruppe paralleler Kräfte 5.2 Körperschwerpunkt 5.3 Flächenschwerpunkt. 5. Schwerpunkt. Prof. Dr. Wandinger 1. Statik TM 1.5-1 5.1 Gruppe paralleler Kräfte 5.2 Körperschwerpunkt 5.3 Flächenschwerpunkt 5. Schwerpunkt Prof. Dr. Wandinger 1. Statik TM 1.5-1 5.1 Gruppe paralleler Kräfte G 1 G 2 G R G i G n P x x 1 S x S Gesucht: Angriffspunkt,

Mehr

3 Koordinatentransformationen

3 Koordinatentransformationen 8 MATHEMATISCHE GRUNDLAGEN DER COMPUTERGEOMETRIE 3 Koordinatentransformationen Für die Darstellung von dreidimensionalen Objekten wird grundsätlich eine Reihe von Transformationen ausgeführt, die von den

Mehr

Hausübung 2. y z. Aufgabe 2.1a: Berechnung von Querschnittswerten. Baumechanik II - Sommersemester Nachzügler PVL Hausübung 2

Hausübung 2. y z. Aufgabe 2.1a: Berechnung von Querschnittswerten. Baumechanik II - Sommersemester Nachzügler PVL Hausübung 2 Hausübung 2 Name, Vorname: Matr.Nr.: 1112975 Ausgabe: 15.01.2015 Rückgabe: 11.02.2015 Anerkannt: ja / nein Aufgabe 2.1a: : Berechnung von Querschnittswerten Für den dargestellten Querschnitt eines Fertigteilträgers

Mehr

4. Verzerrungen. Der Abstand von zwei Punkten ändert sich. Der Winkel zwischen drei Punkten ändert sich

4. Verzerrungen. Der Abstand von zwei Punkten ändert sich. Der Winkel zwischen drei Punkten ändert sich 4. Verzerrungen Wird ein Körper belastet, so ändert sich seine Geometrie. Die Punkte des Körpers ändern ihre Lage. Sie erfahren eine Verschiebung. Ist die Verschiebung für benachbarte Punkte unterschiedlich,

Mehr

TM II SS10 Aufgabenblatt 6

TM II SS10 Aufgabenblatt 6 T II SS10 Aufgabenblatt 6 aple Initialisierung (1) 22.06.2010 T2_UE6_2.mw 1 1 s 2 x S y 3 Flächenträgheitsmoment Berechnung mit Rechteckflächen & Steinerverschiebung (2) (3) da t

Mehr

1. Ebene gerade Balken

1. Ebene gerade Balken 1. Ebene gerade Balken Betrachtet werden gerade Balken, die nur in der -Ebene belastet werden. Prof. Dr. Wandinger 4. Schnittlasten bei Balken TM 1 4.1-1 1. Ebene gerade Balken 1.1 Schnittlasten 1.2 Balken

Mehr

Übung zu Mechanik 1 Seite 19

Übung zu Mechanik 1 Seite 19 Übung zu Mechanik 1 Seite 19 Aufgabe 33 Bestimmen Sie die Lage des Flächenschwerpunktes für den dargestellten Plattenbalkenquerschnitt! (Einheit: cm) Aufgabe 34 Betimmen Sie die Lage des Flächenschwerpunktes

Mehr

3D-Transformationen. Kapitel Translation Skalierung

3D-Transformationen. Kapitel Translation Skalierung Kapitel 3 3D-Transformationen Wie im weidimensionalen Fall, werden die Definitionspunkte der Objekte als Spaltenvektoren mit homogener Koordinate geschrieben. Die notwendigen Transformationen werden wieder

Mehr

Hochschule Wismar University of Technology, Business and Design

Hochschule Wismar University of Technology, Business and Design achgebiet austatik und Holzbau Prof. Ralf-W. oddenberg Hochschule Wismar University of Technology, usiness and esign Prüfung Technische Mechanik I vom 7.. 5 Name, Vorname : Matr.-Nr. : ufgabe Summe Punkte

Mehr

2. Trägheitstensor. Prof. Dr. Wandinger 3. Kinetik des starren Körpers Dynamik

2. Trägheitstensor. Prof. Dr. Wandinger 3. Kinetik des starren Körpers Dynamik 2. Trägheitstensor Der Drall hängt ab von der Verteilung der Masse und der Geschwindigkeit über den örper. Die Geschwindigkeitsverteilung ergibt sich aus der Überlagerung einer Translation und einer Rotation.

Mehr

Kapitel D : Flächen- und Volumenberechnungen

Kapitel D : Flächen- und Volumenberechnungen Kapitel D : Flächen- und Volumenberechnungen Berechnung einfacher Flächen Bei Flächenberechnungen werden die Masse folgendermassen bezeichnet: = Fläche in m 2, dm 2, cm 2, mm 2, etc a, b, c, d = Bezeichnung

Mehr

Umwelt-Campus Birkenfeld Technische Mechanik II

Umwelt-Campus Birkenfeld Technische Mechanik II 7. 9.4 Stoffgesete Verformungsustnd Der Zusmmenhng wischen Spnnung und elstischer Verformung wird durch ds Hook sche Geset beschrieben und wurde für den einchsigen Fll bereits behndelt. Im folgenden wird

Mehr

2.3.1 Rechtshändiges und linkshändiges Koordinatensystem

2.3.1 Rechtshändiges und linkshändiges Koordinatensystem 2.3. Rechtshändiges und linkshändiges Koordinatensstem Die Koordinatenachsen im dreidimensionalen Raum lassen sich auf wei verschieden Arten anordnen: Linkshändig und Rechtshändig (s. Abbildung 2.9). Um

Mehr

K A P I T E L - I N T E G

K A P I T E L - I N T E G Seitee 1 / 17 K A P I T E L - I N T E G R A L R E C H N U N G 1 Grundlagen Ist eine gegebene Funktion die Ableitung einer Funktion,, also, so heißt STAMMFUNKTION oder ein INTEGRAL von. Die Integration

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 6: Drehimpuls, Verformung Dr. Daniel Bick 18. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 18. November 2016 1 / 27 Stoß auf Luftkissenschiene

Mehr

5 Kinematik der Rotation (Drehbewegungen) 6 Dynamik der Translation

5 Kinematik der Rotation (Drehbewegungen) 6 Dynamik der Translation Inhalt 1 4 Kinematik der Translation 4.1 Koordinatensysteme 4. Elementare Bewegungen 5 Kinematik der Rotation (Drehbewegungen) 6 Dynamik der Translation 6.1 Die Newton sche Aiome 6.1.1 Erstes Newton sches

Mehr

1. Zug und Druck in Stäben

1. Zug und Druck in Stäben 1. Zug und Druck in Stäben Stäbe sind Bauteile, deren Querschnittsabmessungen klein gegenüber ihrer änge sind: D Sie werden nur in ihrer ängsrichtung auf Zug oder Druck belastet. D Prof. Dr. Wandinger

Mehr

In den vorigen Abschnitten wurden die globalen kartesischen Koordinaten der Atome eines Moleküls transformiert.

In den vorigen Abschnitten wurden die globalen kartesischen Koordinaten der Atome eines Moleküls transformiert. 4 MATRXDARSTELLUNG VON SYMMETREOPERATONEN 33 4.8 Lokale Koordinatenachsen m Gegensat um globalen Koordinatensstem, das für das gesamte Molekül gilt, sind lokale Koordinatenachsen individuell für jedes

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 6: Drehimpuls, Verformung Dr. Daniel Bick 24. November 2017 Daniel Bick Physik für Biologen und Zahnmediziner 24. November 2017 1 / 28 Versuch: Newton Pendel

Mehr

Demo: Mathe-CD KOMPLEXE ZAHLEN

Demo: Mathe-CD KOMPLEXE ZAHLEN KMPLEXE ZAHLEN Diese Datei gibt einige Seiten Einblick in die Serie Komplexe Zahlen, und, die gegen Zusatbestellung auf der CD u haben ist. Abonnenten erhalten sie automatisch. Datei Nr. 50000 Januar 00

Mehr

Messung der Geradheit einer optischen Bank

Messung der Geradheit einer optischen Bank D.-I. Kurt Salmann HTBLuVA Mödling / Abt. Mechatronik Übungsanleitung Betriebslabor Optik Klassen: AFFW 1. Übung Gruppe geteilt (Brennweitenmessung / Geradheit einer optischen Bank) Messung der Geradheit

Mehr

Technische Mechanik für Wirtschaftsingenieure

Technische Mechanik für Wirtschaftsingenieure Technische Mechanik für Wirtschaftsingenieure von Ulrich Gabbert, Ingo Raecke 2. Auflage Hanser München 2004 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 446 22807 8 Zu Leseprobe schnell und portofrei

Mehr

Fakultät Maschinenwesen

Fakultät Maschinenwesen Fakultät Maschinenwesen TECHNISCHE UNIVERSITÄT DRESDEN Arbeitsgruppe Fernstudium TU Dresden. Fakultät Maschinenwesen/AG Fernstudium. 01062 Dresden Telefon: (0351) 463 33604 Telefax: (0351) 463 37717 Hinweise

Mehr

K U R S S T A T I K / F E S T I G K E I T S L E H R E

K U R S S T A T I K / F E S T I G K E I T S L E H R E BAULEITER HOCHBAU K U R S S T A T I K / F E S T I G K E I T S L E H R E QUERSCHNITTSWERTE ) Schwerpunktsbestimmungen ) Trägheitsmoment 3) Widerstandsmoment 4) Das statische Moment 5) Beispiele von Querschnittstabellen

Mehr

Anschauliche Parallelrisse und Hauptrisse

Anschauliche Parallelrisse und Hauptrisse Anschauliche Parallelrisse und Hauptrisse Seit frühester Kindheit wirst du im täglichen Leben immer wieder mit Bildern konfrontiert, sei es in Form von Bauanleitungen oder Produktinformationen. Du solltest

Mehr

0 1 0 b Die inverse Funktion muss die Translation um b sein und hat daher die homogene Matrix b b 1

0 1 0 b Die inverse Funktion muss die Translation um b sein und hat daher die homogene Matrix b b 1 Homogene Koorinaten Aufgabe. In homogener Darstellung ist ie Translation f R 4 R 4 um einen Vektor b R 3 eine lineare Funktion un kann aher urch eine Matri Vektor Multiplikation realisiert weren. Wie sieht

Mehr

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7 Sonja Hunscha - Koordinatensysteme 1 Inhalt Einleitung 2 1 Koordinatensysteme 2 1.1 Kartesisches Koordinatensystem 2 1.2 Polarkoordinaten 3 1.3 Zusammenhang zwischen kartesischen und Polarkoordinaten 3

Mehr

Mathematik Tutorium. x 2

Mathematik Tutorium. x 2 Mathematik Tutorium Fakultät Grundlagen Termin Algebra Aufgabe : Vereinfachen Sie die folgenden Ausdrücke: a) 5 ) : ) 5 b) n+ n c) an+ a n a n+ + a n d) ) ) : ) ) e) 5 f) 5 z + z 5 Aufgabe : Berechnen

Mehr

Technische Mechanik für Wirtschaftsingenieure

Technische Mechanik für Wirtschaftsingenieure Ulrich Gabbert/Ingo Raecke Technische Mechanik für Wirtschaftsingenieure 5., aktualisierte Auflage Mit 301 Abbildungen, 16 Tabellen, 83 Beispielen sowie einer CD-ROM Wi im Carl Hanser Verlag 1 Statik 11

Mehr

Hans-Jürgen Frieske. Technische Mechanik Statik. Modul Flächenschwerpunkt

Hans-Jürgen Frieske. Technische Mechanik Statik. Modul Flächenschwerpunkt Hans-Jürgen Frieske Technische Mechanik Statik Modul Flächenschwerpunkt Statik 5.4 - Flächenschwerpunkt 5 Es liegt von der Statik her ein Zwei-Kräfte-Problem vor. Es gilt in der STTIK der Zwei-Kräfte-Satz.

Mehr

2. Der ebene Spannungszustand

2. Der ebene Spannungszustand 2. Der ebene Spannungszustand 2.1 Schubspannung 2.2 Dünnwandiger Kessel 2.3 Ebener Spannungszustand 2.4 Spannungstransformation 2.5 Hauptspannungen 2.6 Dehnungen 2.7 Elastizitätsgesetz Prof. Dr. Wandinger

Mehr

3. Allgemeine Kraftsysteme

3. Allgemeine Kraftsysteme 3. Allgemeine Kraftsysteme 3.1 Parallele Kräfte 3.2 Kräftepaar und Moment 3.3 Gleichgewicht in der Ebene Prof. Dr. Wandinger 1. Statik TM 1.3-1 3.1 Parallele Kräfte Bei parallelen Kräften in der Ebene

Mehr

Beispiel. Massenausgleich eines Reihenmotors

Beispiel. Massenausgleich eines Reihenmotors Beispiel. Massenausgleich eines Reihenmotors Es ist der Massenausgleich eines 4-Takt-3-Zylindermotors u untersuchen. Das Triebwerk hat folgende Auslegungsdaten: - Pleuelstangenverhältnis (r / L) 0.5 -

Mehr

COPRA Rollformen. Profile - Bandbreitenberechnung Statik - Sicken und Krallen

COPRA Rollformen. Profile - Bandbreitenberechnung Statik - Sicken und Krallen COPRA Rollformen Profile - Bandbreitenberechnung Statik - Sicken und Krallen Profile Profil erzeugen Bandbreitenberechnung Statik Sicken und Krallen Copyright data M Sheet Metal Solutions GmbH. All rights

Mehr

Institut für Technische und Num. Mechanik Technische Mechanik II/III Prof. Dr.-Ing. Prof. E.h. P. Eberhard SS 2010 P 2. Aufgabe 1 (13 Punkte)

Institut für Technische und Num. Mechanik Technische Mechanik II/III Prof. Dr.-Ing. Prof. E.h. P. Eberhard SS 2010 P 2. Aufgabe 1 (13 Punkte) nstitut für Technische und Num. Mechanik Technische Mechanik / Prof. Dr.-ng. Prof. E.h. P. Eberhard SS P 3. ugust achelor-prüfung in Technischer Mechanik / ufgabe (3 Punkte Eine Pendelstange (homogen Masse

Mehr

7) QUERSCHNITTSWERTE

7) QUERSCHNITTSWERTE BAULEITER HOCHBAU S T A T I K / F E S T I G K E I T S L E H R E 7) QUERSCHNITTSWERTE 1) Einleitung ) Schwerpunkt 3) Trägheitsmoment 4) Widerstandsmoment 5) Das statische Moment 6) Beispiele von Querschnittstabellen

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik TEHNISHE UNIVERSITÄT MÜNHEN Zentrum Mathematik Prof. Dr. Dr. Jürgen Richter-Gebert, Martin von Gagern Geometriekalküle WS 00/ Lösungen u ufgabenblatt (0. Oktober 00) Präsenaufgaben ufgabe. Dualität. Gegeben

Mehr

0,6 m. 0,4m. Gegeben seien die obigen drei auf den Balken wirkenden Kräfte mit:

0,6 m. 0,4m. Gegeben seien die obigen drei auf den Balken wirkenden Kräfte mit: Kurs: Statik Thema: Resultierende bestimmen Aufgabe 1) Wo liegt bei der Berechnung der Resultierenden der Unterschied zwischen Kräften mit einem gemeinsamen Angriffspunkt und Kräften mit unterschiedlichen

Mehr

Vektorrechnung Haus-Aufgabe

Vektorrechnung Haus-Aufgabe Vektorrechnung Haus-ufgabe H 9 0 9 Der irst des Walmdaches hat die Endpunkte (9 9) und H( 9) (in m). a) estimmen Sie das Volumen des Hauses, einschließlich des Dachraumes. b) Ermitteln Sie die Größe des

Mehr

TU Dortmund. Vorname: Nachname: Matr.-Nr.: Aufgabe 1 (Seite 1 von 3)

TU Dortmund. Vorname: Nachname: Matr.-Nr.: Aufgabe 1 (Seite 1 von 3) Aufgabe 1 (Seite 1 von 3) Bei der Messung eines belasteten Blechs wurden drei Dehnungs-Messstreifen (DMS) verwendet und wie rechts dargestellt appliziert. Die Dehnungen der entsprechenden DMS wurden zu

Mehr

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Vorkurs Mathematik Übungen zu Komplexen Zahlen Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten

Mehr

= -15 MPa. Zeichnen Sie den Mohrschen Spannungskreis und bestimmen Sie

= -15 MPa. Zeichnen Sie den Mohrschen Spannungskreis und bestimmen Sie Webinar: Elastostatik Thema: Mohrscher Spannungskreis Aufgabe: Mohrscher Spannungskreis Gegeben seien die folgenden Spannungen: σ x = -40 MPa, σ y = 60 MPa und τ xy = -15 MPa. Zeichnen Sie den Mohrschen

Mehr

Beispiele für gerade (einachsige) und schiefe (zweiachsige) Biegung: Betrachtung der Kräfte und Momente, die auf ein Balkenelement der Länge wirken:

Beispiele für gerade (einachsige) und schiefe (zweiachsige) Biegung: Betrachtung der Kräfte und Momente, die auf ein Balkenelement der Länge wirken: UNIVERITÄT IEGEN B 10 Lehrstuhl für Baustatik - chiefe Biegung - chiefe Biegung Kommt es bei einem Balken nicht nur u Durchbiegungen w in -Richtung, sondern auch u Durchbiegungen v in -Richtung, so spricht

Mehr

1 Trägheitstensor (Fortsetzung)

1 Trägheitstensor (Fortsetzung) 1 Trägheitstensor (Fortsetzung) Wir verallgemeinern den in der letzten Stunde gefundenen Trägheitstensor auf den Fall einer kontinuierlichen Massenverteilung durch die Einführung der Integration über das

Mehr

4.9 Der starre Körper

4.9 Der starre Körper 4.9 Der starre Körper Unter einem starren Körper versteht man ein physikalische Modell von einem Körper der nicht verformbar ist. Es erfolgt eine Idealisierung durch die Annahme, das zwei beliebig Punkte

Mehr

Kinetik des starren Körpers

Kinetik des starren Körpers Technische Mechanik II Kinetik des starren Körpers Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes 2.

Mehr

= 13, cm 4. = 3, cm 4. 3, cm 4 y. cm 3 y

= 13, cm 4. = 3, cm 4. 3, cm 4 y. cm 3 y Aufgabe : ) Biegespannungsverlauf: σ b, ) M M I I bh h b cm cm) cm cm), 8 cm, 56 cm σ b, ) N cm, 8 cm N cm, 56 cm 7, N cm 89, N cm ) Gleichung der neutralen Achse : σ b, ) : M M I 7, N cm 89, N cm P Die

Mehr

Mechanik 1. Übungsaufgaben

Mechanik 1. Übungsaufgaben Mechanik 1 Übungsaufgaben Universitätsprofessor Dr.-Ing. habil. Jörg Schröder Universität Duisburg-Essen, Standort Essen Fachbereich 10 - Bauwesen Institut für Mechanik Übung zu Mechanik 1 Seite 1 Aufgabe

Mehr

3. Erhaltungsgrößen und die Newton schen Axiome

3. Erhaltungsgrößen und die Newton schen Axiome Übungen zur T1: Theoretische Mechanik, SoSe13 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray James.Gray@physik.uni-muenchen.de 3. Erhaltungsgrößen und die Newton schen Axiome Übung 3.1:

Mehr

Aufgaben mit Lösungen zum Themengebiet: Geometrie bei rechtwinkligen Dreiecken

Aufgaben mit Lösungen zum Themengebiet: Geometrie bei rechtwinkligen Dreiecken Übungsaufgaben zur Satzgruppe des Pythagoras: 1) Seiten eines rechtwinkligen Dreiecks Sind folgende Aussagen richtig oder falsch? Verbessere, wenn notwendig! Die Katheten grenzen an den rechten Winkel.

Mehr

Projektionen von geometrischen Objekten

Projektionen von geometrischen Objekten Inhalt: Projektionen von geometrischen Objekten Überblick Hauptrisse Aonometrische Projektionen isometrisch dimetrisch trimetrisch Schiefwinklige Projektionen Kavalierprojektion Kabinettprojektion Perspektivische

Mehr

1.4 Kinetik des starren Körpers

1.4 Kinetik des starren Körpers 1.4 Kinetik des starren Körpers In diesem Kapitel rücken wieder Kräfte und Momente als Ursache der Bewegung in unseren Fokus. Nach den Überlegungen zur Kinematik der starren cheibe müssen wir über die

Mehr

x y Kenner der Kegelschnitte werden hier eine Ellipse erkennen, deren Hauptachsen aber nicht mit der Richtung der Koordinatenachsen zusammenfallen.

x y Kenner der Kegelschnitte werden hier eine Ellipse erkennen, deren Hauptachsen aber nicht mit der Richtung der Koordinatenachsen zusammenfallen. Matrizen / ensoren - eil ensoren - zweidimensionales Beispiel um das Eigenwertproblem zu verdeutlichen hier als Beispiel ein zweidimensionales Problem die entsprechenden Matrizen und Determinanten haben

Mehr

Technische Mechanik. Festigkeitslehre

Technische Mechanik. Festigkeitslehre Hans Albert Richard Manuela Sander Technische Mechanik. Festigkeitslehre Lehrbuch mit Praxisbeispielen, \ Klausuraufgaben und Lösungen Mit 180 Abbildungen Viewegs Fachbücher der Technik Vieweg VII Inhaltsverzeichnis

Mehr

Rheinische Fachhochschule Köln

Rheinische Fachhochschule Köln Rheinische Fachhochschule Köln Matrikel-Nr. Nachname Dozent Ianniello Semester Klausur Datum Fach Urteil BM, Ing. K 8 11.7.14 Kinetik, Kinematik Genehmigte Hilfsmittel: Punkte Taschenrechner Literatur

Mehr

Die 3D-Parameter des Adjust-Fensters im Programm Apophysis 2.08 Beta 3D Hack

Die 3D-Parameter des Adjust-Fensters im Programm Apophysis 2.08 Beta 3D Hack Die 3D-Parameter des Adjust-Fensters im Programm Apophysis 2.08 Beta 3D Hack Perspective und Pitch Das Bild wurde mit 4 TF s, jede mit der Variation Sinusoidalxy, erstellt. Wenn Sinusoidalxy_height = 0

Mehr

(6.29) Z X. Die standardnormalverteilte Zufallvariable Z, Z ~ N(0,1), weist den Erwartungswert (6.30) E(Z) = 0 und die Varianz (6.31) V(Z) = 1 auf.

(6.29) Z X. Die standardnormalverteilte Zufallvariable Z, Z ~ N(0,1), weist den Erwartungswert (6.30) E(Z) = 0 und die Varianz (6.31) V(Z) = 1 auf. Standardnormalverteilung Da die arameter μ und σ beliebige reelle Zahlenwerte bw. beliebige positive reelle Zahlenwerte (σ >0) annehmen können, gibt es unendlich viele Normalverteilungen. Die Dichtefunktion

Mehr

ist orthogonal, denn sie besteht aus zwei Spaltenmatrizen mit dem Betrag 1, deren Skalarprodukt verschwindet. Sie erfüllt deshalb die Bedingung

ist orthogonal, denn sie besteht aus zwei Spaltenmatrizen mit dem Betrag 1, deren Skalarprodukt verschwindet. Sie erfüllt deshalb die Bedingung 15.5 Der Mohrsche Spannungskreis 33 cos α sin α [ Q: ] = sin α cos α (15.36) ist orthogonal, denn sie besteht aus zwei Spaltenmatrizen mit dem Betrag 1, deren Skalarprodukt verschwindet. Sie erfüllt deshalb

Mehr

Aufgaben zur Festigkeit

Aufgaben zur Festigkeit Aufgaben zur estigkeit : Maimale Länge eines Drahtes l Wie lang darf ein Stahldraht mit R m =40 N/mm maimal sein, damit er nicht abreißt? Dichte von Stahl ρ=7850 kg/m 3 Lösung: = G A R m G = A l g l= G

Mehr

Biegung

Biegung 2. Biegung Wie die Normalkraft resultiert auch das Biegemoment aus einer Normalspannung. Das Koordinatensystem des Balkens wird so gewählt, dass die Flächenschwerpunkte der Querschnitte auf der x-achse

Mehr

14 MATHEMATISCHE GRUNDLAGEN DER COMPUTERGEOMETRIE. x y

14 MATHEMATISCHE GRUNDLAGEN DER COMPUTERGEOMETRIE. x y 4 MATHEMATISCHE GRUNDLAGEN DER COMPUTERGEOMETRIE 4 Projektionen 4. Parallelprojektion (a) Senkrechte Projektion auf eine Koordinatenebene Wir wählen als Projektionsebene die Ebene, d. h. in den Beeichnungen

Mehr

Klausur Technische Mechanik

Klausur Technische Mechanik Institut für Mechanik und Fluiddynamik Prof. Dr.-Ing. Ams Matrikelnummer: Klausur Technische Mechanik 05/02/13 Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Die Bearbeitungszeit

Mehr

Prof. D. Salamon Funktionentheorie ETH Zürich MATH, PHYS 3. November Musterlösungen 6

Prof. D. Salamon Funktionentheorie ETH Zürich MATH, PHYS 3. November Musterlösungen 6 Prof. D. Salamon Funktionentheorie ETH Zürich MATH, PHYS 3. November 009 Musterlösungen 6. Sei B r := { C < r} und f : C C durch 3 + definiert. Welches ist der grösste Wert von r so dass f Br injektiv

Mehr

Der Balken als wichtiges Tragelement ist bereits aus TEMECHI (Statik) bekannt.

Der Balken als wichtiges Tragelement ist bereits aus TEMECHI (Statik) bekannt. 13. Gerade Biegung Der Balken als wichtiges Tragelement ist bereits aus TEMECHI (Statik) bekannt. Seine Merkmale sind: aus: www.demagcranes.de Prismatischer Stab mit beliebigen Querschnitt Gerade oder

Mehr

a) b) c) d) e) f) g) h) i)

a) b) c) d) e) f) g) h) i) Ausgabe: 8.1.15 Übung 5: Schub Einleitung und Lernziele strukturen bestehen meist aus dünnwandigen Profilen. Während bei vollen Querschnitten die Schubspannungen oft kaum eine Rolle spielen, ist der Einfluss

Mehr

Institut für Allgemeine Mechanik der RWTH Aachen

Institut für Allgemeine Mechanik der RWTH Aachen Prof Dr-Ing D Weichert 1Übung Mechanik II SS 28 21428 1 Aufgabe An einem ebenen Element wirken die Spannungen σ 1, σ 2 und τ (Die Voreichen der Spannungen sind den Skien u entnehmen Geg: Ges: 1 σ 1 = 5

Mehr

1 Grundlagen der analytischen Geometrie

1 Grundlagen der analytischen Geometrie M. Pester 3 Grundlagen der analtischen Geometrie. Punkte, Vektoren, Geraden, Ebenen Einsat rechnerischer Methoden für die Behandlung geometrischer Beiehungen. Punkten werden Zahlentupel (Koordinaten) ugeordnet.

Mehr

Probe-Klausur Technische Mechanik B

Probe-Klausur Technische Mechanik B Haburg, den 8.. Prof. Dr.-Ing. habil. Thoas Kletschkowski Hochschule für Angewandte Wissenschaften Haburg Fakultät Technik und Inforatik Departent Fahreugtechnik und Flugeugbau Berliner Tor 9 99 Haburg

Mehr

Trigonometrie. Mag. DI Rainer Sickinger HTL. v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1

Trigonometrie. Mag. DI Rainer Sickinger HTL. v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1 Trigonometrie Mag. DI Rainer Sickinger HTL v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1 Definition von Sinus, Cosinus und Tangens am Einheitskreis Im rechtwinkligen Dreieck ist der Winkel zwischen

Mehr

Kreis - Tangente. 2. Vorbemerkung: Satz des Thales Eine Möglichkeit zur Bestimmung der Tangente benutzt den Satz des Thales.

Kreis - Tangente. 2. Vorbemerkung: Satz des Thales Eine Möglichkeit zur Bestimmung der Tangente benutzt den Satz des Thales. Kreis - Tangente 1. Allgemeines 2. Satz des Thales 3. Tangente an einem Punkt auf dem Kreis 4. Tangente über Analysis (an einem Punkt eines Ursprungkreises) 5. Tangente von einem Punkt (Pol) an den Kreis

Mehr

c) Der Umfang einer quadratförmigen Rabatte misst 60,4 m. Wie lange ist eine Seitenlänge?

c) Der Umfang einer quadratförmigen Rabatte misst 60,4 m. Wie lange ist eine Seitenlänge? 13.3 Übungen zur Flächenberechnung 13.3.1 Übungen Quadrat Berechnen Sie für diese Quadrate das gesuchte Maß, geben Sie das Resultat in der verlangten Einheit an. a) l 4,8 dm, A? cm 2, U? m A l 2 4,8 2

Mehr

Computergrafik Sommersemester 2004 Übungen

Computergrafik Sommersemester 2004 Übungen Sommersemester 4 Freiwillige Zusatzübung Aufgabe 6: Transformationen im zweidimensionalen aum Berechnen Sie die Transformationsmatri, die eine Szene zuerst um 3 Grad um den Ursprung dreht und anschließend

Mehr

Kinetik. Schwerpunktsatz (Impulssatz) F 2. F i (1) F 3 S F 4 F 1. r S. F ix. F ir. F iy. F iz. m z S = i. Technische Mechanik III FS 1

Kinetik. Schwerpunktsatz (Impulssatz) F 2. F i (1) F 3 S F 4 F 1. r S. F ix. F ir. F iy. F iz. m z S = i. Technische Mechanik III FS 1 und Eperimentelle Mechanik FS 1 Kinetik Bisher wurde nur die Kinematik von Bewegungen untersucht (d.h. Weg, Geschwindigkeit und Beschleunigung). Es sollen nun Kräfte (später auch Momente) mit diesen kinematischen

Mehr

Abbildung 1: Kettenfontäne (Bild: The New York Times, March 3, 2014 [1])

Abbildung 1: Kettenfontäne (Bild: The New York Times, March 3, 2014 [1]) Kettenfontäne Der Mould-Effekt Steve Mould zeigte im Jahr 2013 ein YouTube-Video, das grosse Beachtung fand und von mehr als zwei Millionen Menschen angeschaut wurde. Wird das eine Ende einer in einem

Mehr

5. Zustandsgleichung des starren Körpers

5. Zustandsgleichung des starren Körpers 5. Zustandsgleichung des starren Körpers 5.1 Zustandsgleichung 5.2 Körper im Schwerefeld 5.3 Stabilität freier Rotationen 2.5-1 5.1 Zustandsgleichung Zustand: Der Zustand eines starren Körpers ist durch

Mehr

4. Allgemeines ebenes Kräftesystem

4. Allgemeines ebenes Kräftesystem 4. llgemeines ebenes Kräftesystem Eine Gruppe von Kräften, die an einem starren Körper angreifen, bilden ein allgemeines Kräftesystem, wenn sich ihre Wirkungslinien nicht in einem gemeinsamen Punkt schneiden.

Mehr

14.3 Berechnung gekrümmter Flächen

14.3 Berechnung gekrümmter Flächen 4.3 Berechnung gekrümmter Flächen Gekrümmte Flächen werden berechnet, indem sie als Graph einer Funktion zweier Veränderlicher aufgefasst werden. Fläche des Graphen einer Funktion zweier Veränderlicher

Mehr