Ausarbeitung zum Modulabschluss. Graphentheorie. spannende Bäume, bewertete Graphen, optimale Bäume, Verbindungsprobleme

Größe: px
Ab Seite anzeigen:

Download "Ausarbeitung zum Modulabschluss. Graphentheorie. spannende Bäume, bewertete Graphen, optimale Bäume, Verbindungsprobleme"

Transkript

1 Universität Hamburg Fachbereich Mathematik Seminar: Proseminar Graphentheorie Dozentin: Haibo Ruan Sommersemester 2011 Ausarbeitung zum Modulabschluss Graphentheorie spannende Bäume, bewertete Graphen, optimale Bäume, Verbindungsprobleme Bearbeitet von Carolin Jens Matrikelnummer: Studienrichtung: Lehramt an Sonderschulen

2 Inhaltsverzeichnis 1. Einleitung Verbindungsprobleme Spannende Bäume Kontraktion Bewertete Graphen Optimale Bäume Algorithmus von Kruskal Algorithmus von Prim Unterschiede Literaturverzeichnis Seite 2

3 1. Einleitung Gegenstand dieser Ausarbeitung ist ein Abschnitt aus der Graphentheorie. Näher betrachtet werden Verbindungsprobleme, spannende Bäume, bewertete Graphen und optimale Bäume. Zunächst sollen die Unterthemen in das große Feld der Verbindungsprobleme eingeordnet werden. Danach werden spannende Bäume definiert, ausgewählte Beweise dazu erläutert und es wird auf kontrahierte Kanten eingegangen. Im Anschluss daran werden bewertete Graphen und optimale Bäume erklärt, die Algorithmen von Kruskal und Prim beschrieben und ihre Gültigkeit gezeigt. Den Abschluss bilden die signifikantesten Unterschiede, die zwischen beiden bestehen. Seite 3

4 2. Verbindungsprobleme Verbindungsprobleme sind im Allgemeinen Optimierungsprobleme und mit der Erstellung von kostengünstigen zusammenhängenden Netzwerken beschäftigt. Beispiele wären unter anderem das Ermitteln einer billigsten Flugstrecke, das Verlegen von Telefonleitungen unter dem geringsten Materialaufwand oder auch das mathematisch bekannte Problem des Handlungsreisenden. Es existieren Minimierungsprobleme und Maximierungsprobleme. Man unterscheidet drei Problemstellungen. Zum Einen werden Entscheidungsprobleme betrachtet, bei denen mehrere Lösungen gegeben sind und die optimalste gesucht wird. Des Weiteren existieren die eigentlichen Optimierungsprobleme, bei denen man den besten Wert der Lösung wissen möchte, und Suchprobleme, bei denen man eine möglichst gute Lösung finden möchte, soweit das Ermitteln einer optimalen Lösung nicht auf direktem Wege möglich ist. Die Lösung solcher Verbindungsprobleme wird am geeignetsten durch das Bestimmen minimal spannender Bäume (oder auch optimaler Bäume) herbeigeführt. Daher beleuchten wir im Folgenden spannende Bäume, bewertete Graphen und optimale Bäume. Seite 4

5 3. Spannende Bäume Definition Ein spannender Baum (oder Gerüst) eines Graphen G ist ein spannender Untergraph von G, der ein Baum ist. Um die Definition eines spannenden Baumes zu verstehen, müssen wir dazu zwei weitere Definitionen angeben. Definition Ein spannender Untergraph von G ist ein Untergraph H mit V(H)=V(G), d.h. H und G haben genau dieselbe Knotenmenge. Definition Ein Graph G heißt Baum, wenn er ein zusammenhängender azyklischer Graph ist. Zur Veranschaulichung stellen wir einen Graphen G und einen seiner dazugehörigen spannenden Bäume dar. Graph G spannender Baum von G Es ist nun eine eindeutige Verbindung zwischen zusammenhängenden Graphen G und ihren spannenden Bäumen erkennbar. Diese wird in folgendem Satz formuliert: Satz Ein Graph G ist dann und nur dann zusammenhängend, wenn er einen spannenden Baum enthält. Wir beweisen den Satz in zwei Schritten. Zunächst zeigen wir, dass ein zusammenhängender Graph G einen spannenden Baum enthält. Danach verdeutlichen wir, dass ein Graph G, der einen spannenden Baum enthält, zusammenhängend ist. Seite 5

6 Beweis: => Sei G ein zusammenhängender Graph mit n Knoten und q Kanten. Dann gilt, dass q n-1 ist, da G zusammenhängend ist. Wir nehmen an: 1) q = n-1. Dann ist G ein Baum. Dies kann über folgenden Widerspruch bewiesen werden: Wir nehmen an, dass G nicht azyklisch sei. D.h. also, dass es mindestens einen Zyklus in G gibt. Somit ist keine Kante dieses Zyklus eine Brücke. Wir wählen eine Kante e. Betrachten wir nun G-e, ist dieser Graph noch zusammenhängend. G-e hat nun aber n-2 Kanten und n Knoten, kann also nicht zusammenhängend sein. Hier findet sich unser Widerspruch. Da wir davon ausgegangen sind, dass G nicht azyklisch ist, können wir jetzt mit Sicherheit sagen, dass G wirklich ein Baum ist, wenn q = n-1 ist. Wir können nun einen spannenden Baum T annehmen für den T=G ist. 2) q > n-1. Dann ist G kein Baum, da mindestens einen Zyklus in G existiert. Wir wählen eine Kante e 1, die Teil dieses Zyklus ist. G-e 1 ist immer noch zusammenhängend, da e 1 keine Brücke ist. Der Graph G-e 1 hat somit n Knoten und q-1 Kanten. Falls q-1 = n-1 gilt, ist T = G-e 1 (mit dem ersten Teil des Beweises ist T ein spannender Baum von G). Falls q-1 > n-1 gilt, ist G-e 1 kein Baum und es existiert mindestens ein Zyklus in G-e 1. Wir wählen eine Kante e 2 und bilden G-{e 1,e 2 } = (G-e 1 )-e 2. Dieser Graph ist dann zusammenhängend und hat n Knoten und q-2 Kanten. Dieses Verfahren führt man nun solange fort, bis man einen Graphen mit n Knoten und q-(q-n+1) = n-1 Kanten erhält. Dieser Unterbaum enthält dieselbe Knotenmenge wie G, ist also ein spannender Baum von G. <= G enthalte einen spannenden Baum T. Dann existieren zwei zusammenhängende Knoten u und v. Zwischen den Knoten u und v gibt es einen Weg im spannenden Baum T, woraus folgt, dass dieser Weg auch in G existieren muss. Also ist der Graph G zusammenhängend. Seite 6

7 Nun hat ein Graph G nicht nur einen möglichen spannenden Baum, sondern viele verschiedene. Für vollständige Graphen kann man sie leicht errechnen. Satz Der vollständige Graph K n enthält n n-2 unterschiedliche spannende Bäume. Diesen Satz wollen wir an dieser Stelle nicht beweisen, sondern durch einige Beispiele veranschaulichen. K 3 hat = 3 unterschiedliche spannende Bäume. K 4 hat = 16 unterschiedliche spannende Bäume (jedoch nur zwei nichtisomorphe). K 6 hat = 1296 unterschiedliche spannende Bäume (jedoch nur sechs nichtisomorphe). Auch für Graphen, die nicht vollständig sind, gibt es einen Weg, die Anzahl der unterschiedlichen spannenden Bäume zu erhalten. Die Anzahl der unterschiedlichen (nicht notwendigerweise nichtisomorphen) spannenden Bäumen eines zusammenhängenden Graphen erhält man über folgende Gleichung: Ԏ(G) = Ԏ(G-e) + Ԏ(G*e) Was bedeutet aber G*e? Die Erklärung liefert uns die nächste Definition. Seite 7

8 3.1 Kontraktion Definition Eine Kante e (keine Schlinge) eines Graphen G heißt kontrahiert, wenn sie entfernt worden ist und dann ihre Endknoten verschmolzen sind. Der resultierende Graph wird mit G*e bezeichnet. e G G-e G*e Ein Beispiel soll die Ermittlung der verschiedenen spannenden Bäume mittels kontrahierter Kanten verdeutlichen. Ԏ(G)= = + = = = = Seite 8

9 4. bewertete Graphen Nachdem wir die Herleitung spannender Graphen betrachtet haben, definieren wir den Begriff des bewerteten Graphen: Definition Ein bewerteter Graph ist ein Graph G, in dem jeder Kante e eine reelle Zahl ω(e) zugeordnet wird, die als Bewertung (oder Länge) von e bezeichnet wird. Ist H ein Untergraph eines bewerteten Graphen, so ist die Bewertung ω(h) von H die Summe der Bewertungen ω(e 1 )+ +ω(e k ), wobei {e 1,,e k } die Menge der Kanten von H ist. Ein Beispiel eines bewerteten Graphen soll dies veranschaulichen: A 3 1 F B E 4 C D Ein solcher bewerteter Graph lässt sich auch in einer Matrix, ähnlich einer Adjazenzmatrix darstellen. Hier werden allerdings die Bewertungen der Kanten, anstatt deren Anzahl notiert. Sind zwei Knoten nicht durch eine Kante miteinander verbunden, schreibt man anstatt 0. Für unseren Graphen lässt sich folgende Matrix erstellen: Mithilfe bewerteter Graphen lassen sich optimale Bäume ermitteln. Seite 9

10 5. optimale Bäume Definition Ein spannender Baum mit der minimalsten Bewertung wird als minimal spannender Baum (oder optimaler Baum) von G bezeichnet. Zur Findung optimaler Bäume lassen sich verschiedene Algorithmen verwenden. Wir wollen hier zwei vorstellen: Den Algorithmus von Kruskal und den Algorithmus von Prim. 5.1 Algorithmus von Kruskal Der Algorithmus von Kruskal besteht aus folgenden drei Schritten: Schritt 1: Man wähle eine Kante e 1 von G, so dass ω(e 1 ) so klein wie möglich und e 1 keine Schlinge ist. Schritt 2: Wenn die Kanten e 1,e 2,,e i gewählt wurden, suche man die Kante e i+1, die noch nicht gewählt worden ist, so dass zum einen der entstehende Untergraph G[{e 1, e i+1 }] azyklisch ist und zum anderen ω(e i+1 ) so klein wie möglich ist, allerdings immer unter Berücksichtigung der ersten Bedingung. Schritt 3: Wenn G n Knoten hat, wird der Algorithmus beendet, nach dem n-1 Kanten gewählt worden sind. Andernfalls ist Schritt 2 zu wiederholen. Nun wollen wir beweisen, dass der Algorithmus von Kruskal einen minimal spannenden Baum erzeugt. Satz Es sei G ein bewerteter zusammenhängender Graph, in dem die Bewertungen aller Kanten durch nichtnegative Zahlen gegeben sind, und es sei T ein Untergraph von G, der nach dem Algorithmus von Kruskal erhalten wurde. Dann ist T ein minimal spannender Baum von G. Wir beweisen den Satz in zwei Schritten. Zunächst zeigen wir, dass T ein spannender Baum von G ist. Danach verdeutlichen wir, dass die Bewertung von T ein Minimum ist. Seite 10

11 Beweis: Nach Voraussetzung ist T ein azyklischer Untergraph von G mit n-1 Kanten, da er durch den Algorithmus von Kruskal erhalten wurde. Nun enthalte T m Knoten und k zusammenhängende Komponenten. Das führt dazu, dass T m-k Kanten besitzt (da er azyklisch ist), d.h. n-1 = 1-k. Da m n und k 1 gilt, ist wegen n-m = 1-k richtig, dass n = m und k = 1. Wir können erkennen, dass T zusammenhängend und ein spannender Untergraph von T ist, also einen spannenden Baum von G darstellt. Den zweiten Teil des Beweises zeigen wir durch einen Widerspruch. Wir nehmen an, es existiere ein spannender Baum S von G mit einer kleineren Bewertung als T, wodurch gilt, dass ω(s) < ω(t). Seien im Folgenden e 1,e 2,,e n-1 die Kanten von T in der Reihenfolge, wie sie nach dem Algorithmus von Kruskal ausgewählt wurden. Da S T, existiert eine erste Kante e k in T, die nicht in S ist. Somit können wir einen Untergraphen H = S+e k bilden, der n Kanten besitzt. Dieser ist aber kein Baum, da er einen Zyklus besitzt, den wir C nennen wollen. C enthält die Kante e k und eine Kante e S, die nicht in T existiert. Bilden wir nun den Graphen H-e, so ist dieser zusammenhängend und enthält n-1 Kanten. Somit ist H-e ein spannender Baum von G. Also haben wir bis hier herausgefunden, dass die Kante e kein Teil von T ist und e k die erste Kante in T ist, die nicht in S existiert. Damit gilt, dass ω(e k ) ω(e). H-e ist also durch den Austausch der Kanten e und e k gebildet worden. Wir können zusammenfassen, dass folgendes gilt: ω(e k ) ω(e) => ω(h-e) ω(s). Außerdem hat H-e eine Kante mehr mit T gemeinsam, als S. Dieses Verfahren wird nun solange wiederholt, bis wir S in T überführt haben. Damit ist die letzte Stufe unseres Beweises ω(t) ω(s). Hierin liegt der gesuchte Widerspruch und wir können mit Sicherheit sagen, dass ω(t) ein Minimum ist. Seite 11

12 5.2 Algorithmus von Prim Ein anderer Weg zur Erzeugung minimal spannender Bäume ist der Algorithmus von Prim. Er besteht aus vier Schritten. Schritt 1: Man wähle einen beliebigen Knoten v 1 von G. Schritt 2: Eine Kante e 1 = v 1 v 2 von G ist nun so zu wählen, dass v 2 v 1 und e 1 die kleinste Bewertung unter den mit v 1 verbundenen Kanten von G hat. Schritt 3: Wenn e 1,e 2,,e i unter Einbeziehung der Endpunkte v 1,v 2, v i+1 gewählt worden sind, wird eine Kante e i+1 = v j v k mit v j {v 1,,v i+1 } und v k {v 1,,v i+1 } so ausgesucht, so dass e i+1 die kleinste Bewertung unter den Kanten von G hat, die genau ein Ende in {v 1,,v i+1 } haben. Schritt 4: Man beende das Verfahren, nachdem n-1 Kanten gewählt worden sind. Andernfalls ist Schritt 3 zu wiederholen. Satz Es sei G ein bewerteter zusammenhängender Graph, in dem die Bewertungen aller Kanten durch nichtnegative Zahlen gegeben sind, und es sei T ein Untergraph von G, der nach dem Algorithmus von Prim erhalten wurde. Dann ist T ein minimal spannender Baum von G. Diesen Satz wollen wir an dieser Stelle nicht ausführlich beweisen. Nach der Beschreibung des Algorithmus von Prim ist T ein spannender Baum von G. Somit ist nur noch zu zeigen, dass die Bewertung von T ein Minimum ist. Dazu nimmt man an, dass ein minimal spannender Baum S von G existiert, der so viele Kanten wie möglich mit T gemeinsam hat. Man kann zeigen, das S = T ist, was durch einen Widerspruch erreicht werden kann. Seite 12

13 5.3 Unterschiede Zum Abschluss sollen einige wenige Unterschiede zwischen beiden Algorithmen in Tabellenform dargestellt werden. Algorithmus von Kruskal Dieser Algorithmus kann zu zahlreichen, gleichzeitig gebildeten Unterbäumen Führen, die dann zusammen gefügt werden. Dieser Algorithmus ist dadurch bestimmt Zyklen ermitteln zu können. Algorithmus von Prim Hier führt der Algorithmus zu einem einzigen, von einem Anfangsknoten ausgehenden, kontinuierlich anwachsenden Unterbaum. Hier ist das Problem beinhaltet, dass kein bereits gewählter Knoten nochmals ausgewählt werden kann. Seite 13

14 6. Literaturverzeichnis Clark, J.: Graphentheorie: Grundlagen und Anwendungen, Heidelberg: Spektrum, Akad. Verl. (1994) Seite 14

Minimal spannende Bäume

Minimal spannende Bäume http://www.uni-magdeburg.de/harbich/ Minimal spannende Fakultät für Informatik Otto-von-Guericke-Universität 2 Inhalt Definition Wege Untergraphen Kantengewichtete Graphen Minimal spannende Algorithmen

Mehr

Minimal spannender Baum

Minimal spannender Baum Minimal spannender Baum 16 1 2 21 5 11 19 6 6 3 14 33 10 5 4 18 Die Kreise zeigen die vorgesehenen Standorte neu zu errichtender Filialen einer Bank. Entlang der bestehenden Straßen sollen Telefonleitungen

Mehr

5. Bäume und Minimalgerüste

5. Bäume und Minimalgerüste 5. Bäume und Minimalgerüste Charakterisierung von Minimalgerüsten 5. Bäume und Minimalgerüste Definition 5.1. Es ein G = (V, E) ein zusammenhängender Graph. H = (V,E ) heißt Gerüst von G gdw. wenn H ein

Mehr

Bäume und Wälder. Seminar: Graphentheorie Sommersemester 2015 Dozent: Dr. Thomas Timmermann

Bäume und Wälder. Seminar: Graphentheorie Sommersemester 2015 Dozent: Dr. Thomas Timmermann Bäume und Wälder Seminar: Graphentheorie Sommersemester 2015 Dozent: Dr. Thomas Timmermann Ida Feldmann 2-Fach Bachelor Mathematik und Biologie 6. Fachsemester Inhaltsverzeichnis Einleitung 1 1. Bäume

Mehr

Datenstrukturen und Algorithmen (SS 2013)

Datenstrukturen und Algorithmen (SS 2013) Datenstrukturen und Algorithmen (SS 2013) Übungsblatt 10 Abgabe: Montag, 08.07.2013, 14:00 Uhr Die Übungen sollen in Gruppen von zwei bis drei Personen bearbeitet werden. Schreiben Sie die Namen jedes

Mehr

1. Einleitung wichtige Begriffe

1. Einleitung wichtige Begriffe 1. Einleitung wichtige Begriffe Da sich meine besondere Lernleistung mit dem graziösen Färben (bzw. Nummerieren) von Graphen (speziell von Bäumen), einem Teilgebiet der Graphentheorie, beschäftigt, und

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 4: Suchstrategien Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 14. April 2017 HALBORDNUNG TOPOLOGISCHE ORDNUNG TOPOLOGISCHES

Mehr

Graphen. Definitionen

Graphen. Definitionen Graphen Graphen werden häufig als Modell für das Lösen eines Problems aus der Praxis verwendet, wie wir im Kapitel 1 gesehen haben. Der Schweizer Mathematiker Euler hat als erster Graphen verwendet, um

Mehr

Proseminar Online Algorithmen, Prof. Dr. Rolf Klein

Proseminar Online Algorithmen, Prof. Dr. Rolf Klein Proseminar Online Algorithmen, Prof. Dr. Rolf Klein Vortrag von Michael Daumen am 13.12.2000 Thema : Minimum Spanning Tree und 2-Approximation der TSP-Tour Inhalt des Vortrags : 1. genaue Vorstellung des

Mehr

Seien u, v V, u v. Da G zusammenhängend ist, muss mindestens ein Pfad zwischen u und v existieren.

Seien u, v V, u v. Da G zusammenhängend ist, muss mindestens ein Pfad zwischen u und v existieren. Beweis: 1. 2. Seien u, v V, u v. Da G zusammenhängend ist, muss mindestens ein Pfad zwischen u und v existieren. Widerspruchsannahme: Es gibt zwei verschiedene Pfade zwischen u und v. Dann gibt es einen

Mehr

Algorithmen und Datenstrukturen 2-1. Seminar -

Algorithmen und Datenstrukturen 2-1. Seminar - Algorithmen und Datenstrukturen 2-1. Seminar - Dominic Rose Bioinformatics Group, University of Leipzig Sommersemster 2010 Outline 1. Übungsserie: 3 Aufgaben, insgesamt 30 28 Punkte A1 Spannbäume (10 8

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Minimale Spannbäume Maike Buchin 18.7., 20.7.2017 Einführung Motivation: Verbinde Inseln mit Fähren oder Städte mit Schienen und verbrauche dabei möglichst wenig Länge. Problem:

Mehr

Westfählische Wilhelms-Universität. Eulersche Graphen. Autor: Jan-Hendrik Hoffeld

Westfählische Wilhelms-Universität. Eulersche Graphen. Autor: Jan-Hendrik Hoffeld Westfählische Wilhelms-Universität Eulersche Graphen Autor: 21. Mai 2015 Inhaltsverzeichnis 1 Das Königsberger Brückenproblem 1 2 Eulertouren und Eulersche Graphen 2 3 Auffinden eines eulerschen Zyklus

Mehr

Einheit 11 - Graphen

Einheit 11 - Graphen Einheit - Graphen Bevor wir in medias res (eigentlich heißt es medias in res) gehen, eine Zusammenfassung der wichtigsten Definitionen und Notationen für Graphen. Graphen bestehen aus Knoten (vertex, vertices)

Mehr

Wie findet man den optimalen Weg zum Ziel? Klassische Probleme der Kombinatorischen Optimierung

Wie findet man den optimalen Weg zum Ziel? Klassische Probleme der Kombinatorischen Optimierung Wie findet man den optimalen Weg zum Ziel? Klassische Probleme der Kombinatorischen Optimierung Teilnehmer/innen: Markus Dahinten, Graf Münster Gymnasium Bayreuth Robert Fay, Herder Gymnasium Berlin Falko

Mehr

Minimal spannende Bäume

Minimal spannende Bäume Minimal spannende Bäume Ronny Harbich 4. Mai 006 (geändert 19. August 006) Vorwort Ich danke Patrick Bahr und meinem Bruder Steffen Harbich für die Unterstützung bei dieser Arbeit. Sie haben sowohl zu

Mehr

Westfälische Wilhelms-Universität Münster. Fachbereich: Mathematik und Informatik. Planare Graphen

Westfälische Wilhelms-Universität Münster. Fachbereich: Mathematik und Informatik. Planare Graphen Westfälische Wilhelms-Universität Münster Fachbereich: Mathematik und Informatik Planare Graphen Kreuzungslemma und Charakterisierung planarer Graphen nach Kuratowski Andrea Vollmer Seminar: Graphentheorie

Mehr

Übung zur Vorlesung Diskrete Mathematik (MAT.107) Blatt Beispiellösungen Abgabefrist:

Übung zur Vorlesung Diskrete Mathematik (MAT.107) Blatt Beispiellösungen Abgabefrist: Svenja Hüning, Michael Kerber, Hannah Schreiber WS 2016/2017 Übung zur Vorlesung Diskrete Mathematik (MAT.107) Blatt Beispiellösungen Abgabefrist: Hinweise: Dieses Blatt präsentiert Beispiellösungen zu

Mehr

Aufgabe 4.2 Sei G = (V, E, l) ein ungerichteter, gewichteter und zusammenhängender Graph.

Aufgabe 4.2 Sei G = (V, E, l) ein ungerichteter, gewichteter und zusammenhängender Graph. Aufgabe 4.2 Sei G = (V, E, l) ein ungerichteter, gewichteter und zusammenhängender Graph. a) Es seien W 1 = (V, E 1 ), W 2 = (V, E 2 ) Untergraphen von G, die beide Wälder sind. Weiter gelte E 1 > E 2.

Mehr

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V.

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V. Kapitel 4 Graphenalgorithmen 4.1 Definitionen Definition 4.1.1. Der Graph G = (V, E) ist über die beiden Mengen V und E definiert, wobei V die Menge der Knoten und E die Menge der Kanten in dem Graph ist.

Mehr

Kürzeste Wege in Graphen. Orte mit Straßenverbindungen. Coma I Rolf Möhring

Kürzeste Wege in Graphen. Orte mit Straßenverbindungen. Coma I Rolf Möhring Kürzeste Wege in Graphen Orte mit Straßenverbindungen Orte als Knoten eines Graphen Straßenverbindungen als Kanten eines Graphen Ungerichteter Graph G = (V,E) Kanten Knoten Knotenmenge V = {,,n} oder {,,n

Mehr

9 Minimum Spanning Trees

9 Minimum Spanning Trees Im Folgenden wollen wir uns genauer mit dem Minimum Spanning Tree -Problem auseinandersetzen. 9.1 MST-Problem Gegeben ein ungerichteter Graph G = (V,E) und eine Gewichtsfunktion w w : E R Man berechne

Mehr

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 4 für die Übung

Mehr

Isomorphie von Bäumen

Isomorphie von Bäumen Isomorphie von Bäumen Alexandra Weinberger 23. Dezember 2011 Inhaltsverzeichnis 1 Einige Grundlagen und Definitionen 2 1.1 Bäume................................. 3 1.2 Isomorphie..............................

Mehr

f h c 7 a 1 b 1 g 2 2 d

f h c 7 a 1 b 1 g 2 2 d ) Man bestimme mit Hilfe des Dijkstra-Algorithmus einen kürzesten Weg von a nach h: c 7 a b f 5 h 3 4 5 i e 6 g 2 2 d Beim Dijkstra-Algorithmus wird in jedem Schritt von den noch unmarkierten Knoten jener

Mehr

Statistik und Graphentheorie

Statistik und Graphentheorie Statistik und Graphentheorie Sommersemester 2014 24. März 2015 Teil Graphentheorie Matrikelnummer: 1 (12) 2 (12) 3 (12) 4 (12) 5 (12) (60) Aufgabe 1 (12 Punkte) Gegeben sei das folgende Netzwerk: (a) Berechnen

Mehr

Graphentheorie. Algebraic Graph Theory von Chris Godsil und Gordon Royle. Kapitel Seminararbeit. von. Katharina Mayr

Graphentheorie. Algebraic Graph Theory von Chris Godsil und Gordon Royle. Kapitel Seminararbeit. von. Katharina Mayr Graphentheorie Algebraic Graph Theory von Chris Godsil und Gordon Royle Kapitel 1.1 1.3 Seminararbeit von Katharina Mayr 01210559 Universität Graz Insitut für Mathematik und wissenschaftliches Rechnen

Mehr

Übung zur Vorlesung Diskrete Strukturen I

Übung zur Vorlesung Diskrete Strukturen I Technische Universität München WS 00/03 Institut für Informatik Aufgabenblatt 6 Prof. Dr. J. Csirik 18. November 00 Brandt & Stein Übung zur Vorlesung Diskrete Strukturen I Abgabetermin: Tutorübungen am

Mehr

Übersicht. Bielefeld Hannover. Kamen Paderborn. Unna Wünnenberg Kassel. Ziffer wählen. abheben. auflegen. Gespräch führen

Übersicht. Bielefeld Hannover. Kamen Paderborn. Unna Wünnenberg Kassel. Ziffer wählen. abheben. auflegen. Gespräch führen Übersicht Graphen beschreiben Objekte und Beziehungen zwischen ihnen geeignet für Modellierung verschiedener Aufgaben betrachten endliche, ungerichtete und endliche, gerichtete Graphen Graphen bestehen

Mehr

Graphentheorie. Kürzeste Wege. Kürzeste Wege. Kürzeste Wege. Rainer Schrader. 25. Oktober 2007

Graphentheorie. Kürzeste Wege. Kürzeste Wege. Kürzeste Wege. Rainer Schrader. 25. Oktober 2007 Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 25. Oktober 2007 1 / 20 2 / 20 Wir werden Optimierungsprobleme vom folgenden Typ betrachten: gegeben eine Menge X und eine Funktion

Mehr

Vorlesungstermin 2: Graphentheorie II. Markus Püschel David Steurer. Algorithmen und Datenstrukturen, Herbstsemester 2018, ETH Zürich

Vorlesungstermin 2: Graphentheorie II. Markus Püschel David Steurer. Algorithmen und Datenstrukturen, Herbstsemester 2018, ETH Zürich Vorlesungstermin 2: Graphentheorie II Markus Püschel David Steurer Algorithmen und Datenstrukturen, Herbstsemester 2018, ETH Zürich Wiederholung: Vollständige Induktion Ziel: zeige n N. A(n) für eine Aussage

Mehr

Übungsblatt 2 - Lösung

Übungsblatt 2 - Lösung Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 2 - Lösung Vorlesung Algorithmentechnik im WS 08/09 Ausgabe 04. November 2008 Abgabe 8. November, 5:0 Uhr (im Kasten vor Zimmer

Mehr

Tutoraufgabe 1 (Suchen in Graphen):

Tutoraufgabe 1 (Suchen in Graphen): Prof. aa Dr. E. Ábrahám Datenstrukturen und Algorithmen SS14 F. Corzilius, S. Schupp, T. Ströder Tutoraufgabe 1 (Suchen in Graphen): a) Geben Sie die Reihenfolge an, in der die Knoten besucht werden, wenn

Mehr

5 Graphen. Repräsentationen endlicher Graphen. 5.1 Gerichtete Graphen. 5.2 Ungerichtete Graphen. Ordnung von Graphen

5 Graphen. Repräsentationen endlicher Graphen. 5.1 Gerichtete Graphen. 5.2 Ungerichtete Graphen. Ordnung von Graphen Grundlagen der Mathematik für Informatiker 1 Grundlagen der Mathematik für Informatiker 5 Graphen 5.1 Gerichtete Graphen Definition 5.1 (V, E) heißt gerichteter Graph (Digraph), wenn V Menge von Knoten

Mehr

Kapitel IV Minimale Spannbäume

Kapitel IV Minimale Spannbäume Kapitel IV Minimale Spannbäume 1. Grundlagen Ein Graph G = (V, E) besteht aus einer Menge V von Knoten und einer Menge E von Kanten. Wir werden nur endliche Knoten- (und damit auch Kanten-) Mengen betrachten.

Mehr

Graphentheorie Graphentheorie. Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke

Graphentheorie Graphentheorie. Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke Graphen Graphentheorie Graphentheorie Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke 2 Was ist ein Graph? Ein Graph ist in der Graphentheorie eine abstrakte Struktur,

Mehr

4.2 Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition 4.2.1

4.2 Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition 4.2.1 Allgemeines. Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition.. (a) Ein Graph G =(V, E) heißt kreisfrei, wenn er keinen Kreis besitzt. Beispiel: Ein kreisfreier Graph: FG KTuEA, TU Ilmenau

Mehr

3. Minimale Spannbäume. Definition 99 T heißt minimaler Spannbaum (MSB, MST) von G, falls T Spannbaum von G ist und gilt:

3. Minimale Spannbäume. Definition 99 T heißt minimaler Spannbaum (MSB, MST) von G, falls T Spannbaum von G ist und gilt: 3. Minimale Spannbäume Sei G = (V, E) ein einfacher ungerichteter Graph, der o.b.d.a. zusammenhängend ist. Sei weiter w : E R eine Gewichtsfunktion auf den Kanten von G. Wir setzen E E: w(e ) = e E w(e),

Mehr

André Krischke Helge Röpcke. Graphen und Netzwerktheorie Grundlagen Methoden Anwendungen

André Krischke Helge Röpcke. Graphen und Netzwerktheorie Grundlagen Methoden Anwendungen André Krischke Helge Röpcke Graphen und Netzwerktheorie Grundlagen Methoden Anwendungen 8 Grundbegriffe der Graphentheorie für die Kante, die die beiden Knoten und verbindet. Der linke Graph in Bild. kann

Mehr

Approximationsalgorithmen

Approximationsalgorithmen Effiziente Algorithmen Lösen NP-vollständiger Probleme 320 Approximationsalgorithmen In polynomieller Zeit lässen sich nicht exakte Lösungen von NP-harten Problemen berechnen. Approximationsalgorithmen

Mehr

Teil 2: Graphenalgorithmen

Teil 2: Graphenalgorithmen Teil : Graphenalgorithmen Anwendungen Definitionen Datenstrukturen für Graphen Elementare Algorithmen Topologisches Sortieren Kürzeste Wege Minimal aufspannende Bäume Problemstellung Algorithmus von Prim

Mehr

Argumentationen zu ermöglichen, verlangen wir, dass diese Eigenschaft auch für induzierte Teilgraphen

Argumentationen zu ermöglichen, verlangen wir, dass diese Eigenschaft auch für induzierte Teilgraphen Kapitel 9 Perfekte Graphen 9.1 α- und χ-perfektheit Eine Clique in einem Graphen G ist ein induzierter vollstäniger Teilgraph. Die Cliquenzahl ω(g) ist die Kardinalität einer größten in G enthaltene Clique.

Mehr

Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung.

Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung. Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 14. November 2007 1 / 22 2 / 22 Gliederung eulersche und semi-eulersche Graphen Charakterisierung eulerscher Graphen Berechnung eines

Mehr

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Hausaufgabe 2 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Hausaufgabe 2 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008 Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 15 Computergraphik & Visualisierung Prof. Dr. Rüdiger Westermann Dr. Werner Meixner Wintersemester 2007/08 Lösungsblatt 9

Mehr

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume)

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) WS 2016/17 Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

2. Optimierungsprobleme 6

2. Optimierungsprobleme 6 6 2. Beispiele... 7... 8 2.3 Konvexe Mengen und Funktionen... 9 2.4 Konvexe Optimierungsprobleme... 0 2. Beispiele 7- Ein (NP-)Optimierungsproblem P 0 ist wie folgt definiert Jede Instanz I P 0 hat einen

Mehr

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008 Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 15 Computergraphik & Visualisierung Prof. Dr. Rüdiger Westermann Dr. Werner Meixner Wintersemester 2007/08 Lösungsblatt 8

Mehr

3. Musterlösung. Problem 1: Boruvka MST

3. Musterlösung. Problem 1: Boruvka MST Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 06/07 ITI Wagner. Musterlösung Problem : Boruvka MST pt (a) Beweis durch Widerspruch. Sei T MST von G, e die lokal minimale Kante eines

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

Übung zur Vorlesung Diskrete Strukturen I

Übung zur Vorlesung Diskrete Strukturen I Technische Universität München WS 00/0 Institut für Informatik Aufgabenblatt Prof. Dr. J. Csirik. November 00 Brandt & Stein Übung zur Vorlesung Diskrete Strukturen I Abgabetermin: Tutorübungen am. und.

Mehr

Satz 324 Sei M wie oben. Dann gibt es für ein geeignetes k Konstanten c i > 0 und Permutationsmatrizen P i, i = 1,...

Satz 324 Sei M wie oben. Dann gibt es für ein geeignetes k Konstanten c i > 0 und Permutationsmatrizen P i, i = 1,... Satz 324 Sei M wie oben. Dann gibt es für ein geeignetes k Konstanten c i > 0 und Permutationsmatrizen P i, i = 1,..., k, so dass gilt M = k c i P i i=1 k c i = r. i=1 Diskrete Strukturen 7.1 Matchings

Mehr

Eigenwerte und Netzwerkanalyse. Page Rank

Eigenwerte und Netzwerkanalyse. Page Rank A Google versucht die Bedeutung von Webseiten mithilfe des sogenannten zu ermitteln. Der einer Seite basiert ausschließlich auf der Verweisstruktur des Webs. Der Inhalt einer Seite hat dagegen keinen direkten

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 4 Prof. Dr. Gerhard Heyer Institut für Informatik Abteilung Automatische Sprachverarbeitung Universität Leipzig 24. April 2019 [Letzte Aktualisierung: 24/04/2019,

Mehr

Die Vermutungen von Hadwiger und

Die Vermutungen von Hadwiger und Die Vermutungen von Hadwiger und Hajós David Müßig Seminar zur Graphentheorie, WS 09/10 Wir alle kennen die Gleichung χ(x) ω(x). Diese Gleichung ist nicht nur einläuchtend, sondern auch mehr oder weniger

Mehr

Graphentheorie. Perfekte Graphen. Perfekte Graphen. Perfekte Graphen. Rainer Schrader. 22. Januar 2008

Graphentheorie. Perfekte Graphen. Perfekte Graphen. Perfekte Graphen. Rainer Schrader. 22. Januar 2008 Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 22. Januar 2008 1 / 47 2 / 47 eine Clique in G ist ein induzierter vollständiger Teilgraph Gliederung α- und χ-perfektheit Replikation

Mehr

\ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E.

\ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E. Das Komplement Ḡ = (V, ( V ) \ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E. Ein Graph H = (V, E )

Mehr

Univ.-Prof. Dr. Goulnara ARZHANTSEVA

Univ.-Prof. Dr. Goulnara ARZHANTSEVA Diskrete Mathematik Univ.-Prof. Dr. Goulnara ARZHANTSEVA SS 2018 c Univ.-Prof. Dr. Goulnara Arzhantseva Kapitel 08: Menger, König und Hall / Planare Graphen 1 / 30 Der Satz von Menger: s t trennende Kantenmenge

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 6 Prof. Dr. Gerhard Heyer Institut für Informatik Abteilung Automatische Sprachverarbeitung Universität Leipzig 16. Mai 2018 [Letzte Aktualisierung: 18/05/2018,

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 6: Graphentheorie

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 6: Graphentheorie Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kap. 6: Graphentheorie Lang 6 Beutelspacher 8.1-8.5 Meinel 11 zur Vertiefung: Aigner 6, 7 (7.4: Algorithmus von Dijkstra) Matousek

Mehr

Übungsaufgaben Graphentheorie, Wintersemester 2011/12

Übungsaufgaben Graphentheorie, Wintersemester 2011/12 Übungsaufgaben Graphentheorie, Wintersemester 2011/12 Frank Göring 25. Januar 2012 Zusammenfassung Übungsaufgaben zur Graphentheorievorlesung. 1 Bis 19.10.2011 1. Wir hatten einen Graphen G als zusammenhängend

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 7 und 8: Euler- und Hamilton-Graphen Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 17. April 2018 1/96 WIEDERHOLUNG Eulersche

Mehr

9: Gewichtete Graphen

9: Gewichtete Graphen Chr.Nelius: Graphentheorie (WS 06/7) 9 9: Gewichtete Graphen Beispiel: Eine Straßenkarte mit Entfernungsangaben zwischen den Orten ist ein Beispiel für einen gewichteten Graphen. (9.) DEF: Ein Graph G

Mehr

Grundbegriffe der Informatik Tutorium 8

Grundbegriffe der Informatik Tutorium 8 Grundbegriffe der Informatik Tutorium 8 Tutorium Nr. 16 Philipp Oppermann 22. Dezember 2014 KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

EDM, Algorithmen und Graphenspeicherung

EDM, Algorithmen und Graphenspeicherung EDM, Algorithmen und Graphenspeicherung 1 Graphenspeicherung Gespeichert werden soll ein Graph G = (V, E) bzw. Digraph D = (V, A). Man beachte: E ( ) V 2 bzw. E V 2 1.1 Adjazenzmatrix Graph G: A = (a vw

Mehr

Algorithmen und Datenstrukturen 13

Algorithmen und Datenstrukturen 13 19. Juli 2012 1 Besprechung Blatt 12 Fragen 2 Bäume AVL-Bäume 3 Graphen Allgemein Matrixdarstellung 4 Graphalgorithmen Dijkstra Prim Kruskal Fragen Fragen zu Blatt 12? AVL-Bäume AVL-Bäume ein AVL-Baum

Mehr

= n (n 1) 2 dies beruht auf der Auswahl einer zweielementigen Teilmenge aus V = n. Als Folge ergibt sich, dass ein einfacher Graph maximal ( n E = 2

= n (n 1) 2 dies beruht auf der Auswahl einer zweielementigen Teilmenge aus V = n. Als Folge ergibt sich, dass ein einfacher Graph maximal ( n E = 2 1 Graphen Definition: Ein Graph G = (V,E) setzt sich aus einer Knotenmenge V und einer (Multi)Menge E V V, die als Kantenmenge bezeichnet wird, zusammen. Falls E symmetrisch ist, d.h.( u,v V)[(u,v) E (v,u)

Mehr

Ganzzahlige lineare Programme

Ganzzahlige lineare Programme KAPITEL 5 Ganzzahlige lineare Programme Wir betrachten nun Optimierungsprobleme vom Typ (42) min c T x s.d. Ax = b, x 0, x ganzzahlig, wobei die Matrix A R m n und die Vektoren c R n, b R m gegeben seien.

Mehr

Algorithmen und Datenstrukturen 1 VL Übungstest WS Jänner 2009

Algorithmen und Datenstrukturen 1 VL Übungstest WS Jänner 2009 Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 2. Übungstest WS 2008 16. Jänner

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Dr. Hanjo Täubig Lehrstuhl für Eziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester 2007/08

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza)

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza) WS 2013/14 Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2013ws/ds/uebung/ 22. Januar 2014 ZÜ DS ZÜ XIII

Mehr

Geraden in der Ebene und Zerlegung von Graphen

Geraden in der Ebene und Zerlegung von Graphen Geraden in der Ebene und Zerlegung von Graphen Proseminar: Beweise aus dem Buch am 17.01.2015 von Ina Seidel 1 Historisches zu Sylvester und Gallai James Joseph Sylvester * 1814, 1897 war britischer Mathematiker.Unter

Mehr

MafI I: Logik & Diskrete Mathematik (F. Hoffmann)

MafI I: Logik & Diskrete Mathematik (F. Hoffmann) Lösungen zum 14. und letzten Aufgabenblatt zur Vorlesung MafI I: Logik & Diskrete Mathematik (F. Hoffmann) 1. Ungerichtete Graphen (a) Beschreiben Sie einen Algorithmus, der algorithmisch feststellt, ob

Mehr

2. Darstellungen. Digraphen und vollständige Orientierungen Satz: Ein stark zusammenhängender Digraph besteht aus einer einzigen Subkomponente.

2. Darstellungen. Digraphen und vollständige Orientierungen Satz: Ein stark zusammenhängender Digraph besteht aus einer einzigen Subkomponente. 2 Darstellungen Auffinden der Biblockzerlegung Es gibt effiziente Algorithmen 1 Schritt: Bestimmen der peripheren Bäume Es wird von den Knoten mit Gesamtgrad 1 ausgegangen und eine Markenverschiebungstechnik

Mehr

Kapitel 8: Bipartite Graphen Gliederung der Vorlesung

Kapitel 8: Bipartite Graphen Gliederung der Vorlesung Gliederung der Vorlesung 1. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen 3. Kürzeste Wege 4. Minimale spannende Bäume 5. Färbungen und Cliquen 6. Traveling Salesman Problem 7. Flüsse in Netzwerken

Mehr

Existenz unendlich vieler Primzahlen Es werden mehrere Beweise für die Existenz unendlich vieler Primzahlen vorgetragen.

Existenz unendlich vieler Primzahlen Es werden mehrere Beweise für die Existenz unendlich vieler Primzahlen vorgetragen. Seminarausarbeitung Existenz unendlich vieler Primzahlen Es werden mehrere Beweise für die Existenz unendlich vieler Primzahlen vorgetragen. Andre Eberhard Mat. Nr. 25200607 5. November 207 Inhaltsverzeichnis

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 5: Suchalgorithmen Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 20. März 2018 1/91 WIEDERHOLUNG - BÄUME / bin etc home

Mehr

Graphen Jiri Spale, Algorithmen und Datenstrukturen - Graphen 1

Graphen Jiri Spale, Algorithmen und Datenstrukturen - Graphen 1 Graphen 27 Jiri Spale, Algorithmen und Datenstrukturen - Graphen Motivation Einsatz: Berechnung von Entfernungen Auffinden von Zyklen in Beziehungen Ermittlung von Verbindungen Zeitmanagement Konzept:

Mehr

Vollständiger Graph. Definition 1.5. Sei G =(V,E) ein Graph. Gilt {v, w} E für alle v, w V,v w, dann heißt G vollständig (complete).

Vollständiger Graph. Definition 1.5. Sei G =(V,E) ein Graph. Gilt {v, w} E für alle v, w V,v w, dann heißt G vollständig (complete). Vollständiger Graph Definition 1.5. Sei G =(V,E) ein Graph. Gilt {v, w} E für alle v, w V,v w, dann heißt G vollständig (complete). Mit K n wird der vollständige Graph mit n Knoten bezeichnet. Bemerkung

Mehr

Relationen und Graphentheorie

Relationen und Graphentheorie Seite Graphentheorie- Relationen und Graphentheorie Grundbegriffe. Relationen- und Graphentheorie gehören zu den wichtigsten Hilfsmitteln der Informatik, die aus der diskretenmathematik stammen. Ein Graph

Mehr

Optimale Lösungen mit Greedy-Strategie erfordern Optimalität der Greedy-Wahl. Beispiele für optimale Greedy-Lösungen

Optimale Lösungen mit Greedy-Strategie erfordern Optimalität der Greedy-Wahl. Beispiele für optimale Greedy-Lösungen Wiederholung Optimale Lösungen mit Greedy-Strategie erfordern Optimalität der Greedy-Wahl unabhängig von Subproblemen Optimalität der Subprobleme Beispiele für optimale Greedy-Lösungen Scheduling Problem

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 13: Flüsse und Zuordnungen Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 9. Juni 2017 DURCHSATZ D(e) ist die maximale Flussmenge,

Mehr

Nachbarschaft, Grad, regulär, Inzidenz

Nachbarschaft, Grad, regulär, Inzidenz Nachbarschaft, Grad, regulär, Inzidenz Definition Eigenschaften von Graphen Sei G = (V, E) ein ungerichteter Graph. 1 Die Nachbarschaftschaft Γ(u) eines Knoten u V ist Γ(u) := {v V {u, v} E}. 2 Der Grad

Mehr

Studientag zur Algorithmischen Mathematik

Studientag zur Algorithmischen Mathematik Studientag zur Algorithmischen Mathematik Minimale aufspannende Bäume und Matchings Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 22. Mai 2011 Outline Minimale aufspannende

Mehr

Graph Paar (V,E) V: nichtleere Menge von Knoten (vertex) E: Menge von Kanten (edges): Relation (Verbindung) zwischen den Knoten

Graph Paar (V,E) V: nichtleere Menge von Knoten (vertex) E: Menge von Kanten (edges): Relation (Verbindung) zwischen den Knoten Graphentheorie Graph Paar (V,E) V: nichtleere Menge von Knoten (vertex) E: Menge von Kanten (edges): Relation (Verbindung) zwischen den Knoten gerichteter Graph (DiGraph (directed graph) E: Teilmenge E

Mehr

Graphen KAPITEL 3. Dieses Problem wird durch folgenden Graph modelliert:

Graphen KAPITEL 3. Dieses Problem wird durch folgenden Graph modelliert: KAPITEL 3 Graphen Man kann als Ursprung der Graphentheorie ein Problem sehen, welches Euler 1736 von Studenten aus Königsberg gestellt bekam. Der Fluss Pregel wird von 7 Brücken überquert, und die Frage

Mehr

Betriebswirtschaftliche Optimierung

Betriebswirtschaftliche Optimierung Institut für Statistik und OR Uni Graz 1 Approximationsalgorithmen auf metrischen Instanzen Minimum Spanning Tree Definition (Spannbaum) Ein Spannbaum in einem Graphen G = (V,E) ist ein kreisfreier Teilgraph

Mehr

Algorithmen und Datenstrukturen Tafelübung 14. Jens Wetzl 8. Februar 2012

Algorithmen und Datenstrukturen Tafelübung 14. Jens Wetzl 8. Februar 2012 Algorithmen und Datenstrukturen Tafelübung 14 Jens Wetzl 8. Februar 2012 Folien Keine Garantie für Vollständigkeit und/oder Richtigkeit Keine offizielle Informationsquelle LS2-Webseite Abrufbar unter:

Mehr

Ausarbeitung über den Satz von Menger und den Satz von König

Ausarbeitung über den Satz von Menger und den Satz von König Ausarbeitung über den Satz von Menger und den Satz von König Myriam Ezzedine, 0326943 Anton Ksernofontov, 0327064 Jürgen Platzer, 0025360 Nataliya Sokolovska, 0326991 1. Beweis des Satzes von Menger Bevor

Mehr

Überblick. TSP Vergleich der Lösungen. Das Travelling Salesman Problem. Nearest-Neighbor Heuristik für TSP

Überblick. TSP Vergleich der Lösungen. Das Travelling Salesman Problem. Nearest-Neighbor Heuristik für TSP Kap..1 Heuristiken Kap.. Approximative Algorithmen und Gütegarantien Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 3. VO DAP SS 008 14. Juli 009 Überblick

Mehr

Kap. 7.1 Heuristiken Kap. 7.2 Approximative Algorithmen und Gütegarantien

Kap. 7.1 Heuristiken Kap. 7.2 Approximative Algorithmen und Gütegarantien Kap. 7.1 Heuristiken Kap. 7.2 Approximative Algorithmen und Gütegarantien Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 23. VO DAP2 SS 2008 14. Juli 2009

Mehr

Matchings (Paarungen) in Graphen. PS Algorithmen auf Graphen SS `06 Steven Birr

Matchings (Paarungen) in Graphen. PS Algorithmen auf Graphen SS `06 Steven Birr Matchings (Paarungen) in Graphen PS Algorithmen auf Graphen SS `06 Steven Birr 1 Gliederung 1) Definitionen und Beispiele 2) Algorithmus des maximalen Matchings 3) Das Personal-Zuteilungsproblem Ungarischer

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Very simple methods for all pairs network flow analysis

Very simple methods for all pairs network flow analysis Very simple methods for all pairs network flow analysis obias Ludes 0.0.0. Einführung Um den maximalen Flusswert zwischen allen Knoten eines ungerichteten Graphen zu berechnen sind nach Gomory und Hu nur

Mehr

Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen)

Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen) WS 2015/16 Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Mathematische Modelle in den Naturwissenschaften Proseminar

Mathematische Modelle in den Naturwissenschaften Proseminar Mathematische Modelle in den Naturwissenschaften Proseminar Johannes Kepler Universität Linz Technische Mathematik Der Algorithmus von Ford und Fulkerson Ausgearbeitet von Julia Eder, Markus Eslitzbichler,

Mehr

Klausur Algorithmentheorie

Klausur Algorithmentheorie Prof. Dr. G. Schnitger Frankfurt, den 24.02.2011 M. Poloczek Klausur Algorithmentheorie WS 2010/2011 Name: Vorname: Geburtsdatum: Studiengang: BITTE GENAU LESEN Die Klausur besteht aus 4 Aufgaben, in denen

Mehr

Graphentheorie. Formale Grundlagen (WIN) 2008S, F. Binder. Vorlesung im 2008S

Graphentheorie. Formale Grundlagen (WIN) 2008S, F. Binder. Vorlesung im 2008S Minimale Graphentheorie Formale Grundlagen (WIN) Franz Binder Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Minimale Inhalt

Mehr

Vorkurs Informatik WiSe 16/17

Vorkurs Informatik WiSe 16/17 Institut für Programmierung Konzepte der Informatik Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe, 12.10.2016 Technische Universität Braunschweig, IPS Inhaltsverzeichnis Schilda-Rallye Was steckt

Mehr