Schulinterner Lehrplan für die Klasse 5 Mathematik

Größe: px
Ab Seite anzeigen:

Download "Schulinterner Lehrplan für die Klasse 5 Mathematik"

Transkript

1 Schulinterner Lehrplan für die Klasse 5 Mathematik 1

2 Inhalt 1 Die Fachgruppe Mathematik am HBG 3 2 Entscheidungen zum Unterricht Unterrichtsvorhaben Übersichtsraster Unterrichtsvorhaben Konkretisierte Unterrichtsvorhaben Grundsätze der fachmethodischen und fachdidaktischen Arbeit Grundsätze der Leistungsbewertung und Leistungsrückmeldung Lehr- und Lernmittel 14 3 Entscheidungen zu fach- und unterrichtsübergreifenden Fragen 14 4 Qualitätssicherung und Evaluation 14 2

3 1. 1 Die Fachgruppe Mathematik am Heinrich-Böll-Gymnasium Schulinterner Lehrplan Klasse 5 Entwurf vom

4 2. Entscheidungen zum Unterricht 2.1 Unterrichtsvorhaben Die Darstellung der Unterrichtsvorhaben im schulinternen Lehrplan besitzt den Anspruch, sämtliche im Kernlehrplan angeführten Kompetenzen abzudecken. Dies entspricht der Verpflichtung jeder Lehrkraft, Schülerinnen und Schülern Lerngelegenheiten zu ermöglichen, so dass alle Kompetenzerwartungen des Kernlehrplans von ihnen erfüllt werden können. Die entsprechende Umsetzung erfolgt auf zwei Ebenen: der Übersichts- und der Konkretisierungsebene. Im Übersichtsraster Unterrichtsvorhaben (Kapitel 2.1.1) wird die Verteilung der Unterrichtsvorhaben dargestellt. Sie ist laut Beschluss der Fachkonferenz verbindlich für die einzelnen Unterrichtsphasen, sofern nicht pädagogische oder schulorganisatorische Gründe eine Veränderung erforderlich machen. Das Übersichtsraster dient dazu, den Kolleginnen und Kollegen einen schnellen Überblick über die Zuordnung der Unterrichtsvorhaben zu den einzelnen Jahrgangsstufen sowie den im Kernlehrplan genannten Kompetenzen, Inhaltsfeldern und inhaltlichen Schwerpunkten zu verschaffen. Um Klarheit für die Lehrkräfte herzustellen und die Übersichtlichkeit zu gewährleisten, werden in der Kategorie Kompetenzen an dieser Stelle nur die übergeordneten Kompetenzerwartungen ausgewiesen, während die konkretisierten Kompetenzerwartungen erst auf der Ebene konkretisierter Unterrichtsvorhaben Berücksichtigung finden. Der ausgewiesene Zeitbedarf versteht sich als grobe Orientierungsgröße, die nach Bedarf über- oder unterschritten werden kann. 4

5 2.1.1 Übersichtsraster Unterrichtsvorhaben Die Kernlehrpläne betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung inhaltsbezogener (fachmathematischer) und prozessbezogener Kompetenzen erreicht werden kann. Entsprechend dieser Forderung sind die inhalts- und die prozessbezogenen Kompetenzen innerhalb aller Kapitel eng miteinander verwoben. So werden in den Aufgaben immer wieder Fähigkeiten der vier prozessbezogenen Kompetenzbereiche Argumentieren und,, und Werkzeuge aufgegriffen und geübt. Zusätzlich werden größere Aufgabenkontexte angeboten, die es den Schülerinnen und Schülern ermöglichen, sich intensiv mit einem Thema zu beschäftigen und einzelne prozessbezogene Fähigkeiten zu entwickeln. Auch wenn die prozessbezogenen Kompetenzen sich in allen Kapiteln wiederfinden, werden in der folgenden Tabelle beispielhaft diejenigen Kompetenzbereiche und Kompetenzen aufgeführt, auf die in dem jeweiligen Kapitel ein Schwerpunkt gelegt wurde. Kapitel I: Kapitel II: Kapitel III: Kapitel IV: Kapitel V: Kapitel VI: Thema: Thema: Thema: Thema: Thema: Thema: Mit Zahlen und Größen umgehen Symmetrie Mit Zahlen und Größen rechnen Flächen Quader und Würfel Brüche als Anteile Zentrale Kompetenzen: Zentrale Kompetenzen: Zentrale Kompetenzen: Zentrale Kompetenzen: Zentrale Kompetenzen: Zentrale Kompetenzen: Argumentieren/ Inhaltlicher Schwerpunkt: Große Zahlen darstellen, ordnen, runden Grundrechenarten ausführen Mit Größen rechnen Zeitbedarf:ca. 24 Std. Argumentieren/ Werkzeuge nutzen (Lineal, Geodreieck, Zirkel) Inhaltlicher Schwerpunkt: Punkt, Gerade, Strecke, Abstand Parallele, senkrechte Geraden Punkt- und Achsensymmetrie Eigenschaften von Grundfiguren (Rechteck, Quadrat, Parallelogramm, Dreieck) Zeitbedarf:ca. 24 Std. Argumentieren/ Inhaltlicher Schwerpunkt: Terme aufstellen Rechenvorteile anwenden Teilbarkeitsregeln anwenden Grundrechenarten ausführen Sachaufgaben lösen Zeitbedarf: ca.24 Std. Argumentieren/ Werkzeuge Inhaltlicher Schwerpunkt: Flächeneinheiten Flächeninhalt von Rechteck, Parallelogramm und Dreieck Umfang von Figuren Zeitbedarf:ca. 24 Std. Argumentieren/ Werkzeuge Inhaltlicher Schwerpunkt: Netze und Schrägbilder von Quader und Würfel Rauminhalte Oberflächeninhalt von Quader und Würfel Zeitbedarf:ca. 24 Std. Argumentieren/ Inhaltlicher Schwerpunkt: Brüche als Anteil eines Ganzen Kürzen und erweitern Brüche vergleichen Prozente Brüche als Quotienten Brüche auf dem Zahlenstrahl Zeitbedarf:ca. 24 Std. 5

6 2.1.2 Konkretisierte Unterrichtsvorhaben Zeitraum Lambacher Schweizer 5 Inhaltsbezogene Kompetenzen prozessbezogene Kompetenzen Klassenarbeit Ca.6 Wochen Kapitel I Mit Zahlen und Größen umgehen Erkundungen - Zahlenmauern erforschen - Ein besonderer Geburtstagskalender - Stadt, Land, Fluss einmal anders 1 Zählen und 2 Zahlen ordnen 3 Große Zahlen und Runden 4 Grundrechenarten 5 Rechnen mit Geld 6 Rechnen mit Längen 7 Rechnen mit Gewicht 8 Rechnen mit Zeit Wiederholen Vertiefen Vernetzen Stochastik Erheben Arithmetik / Algebra Ordnen Operieren Anwenden Daten erheben, in Ur- und Strichlisten zusammenfassen Häufigkeitstabellen zusammenstellen, mithilfe von Säulendiagrammen veranschaulichen natürliche Zahlen auf verschiedene Weise darstellen (Zifferndarstellung, Stellenwerttafel, Wortform) Größen in Sachsituationen mit geeigneten Einheiten darstellen Zahlen ordnen und vergleichen, natürliche Zahlen runden Grundrechenarten ausführen (Kopfrechnen und schriftliche Verfahren) arithmetische Kenntnisse von Zahlen und Größen anwenden, Techniken des Überschlagens und die Probe als Rechenkontrolle Argumentieren / Lesen Verbalisieren Präsentieren Vernetzen Begründen Erkunden Informationen aus einfachen mathematikhaltigen Darstellungen (Text, Bild, Tabelle) mit eigenen Worten wiedergeben mathematische Sachverhalte, Begriffe, Regeln und Verfahren mit eigenen Worten und geeigneten Fachbegriffen erläutern bei der Lösung von Problemen im Team arbeiten; über eigene und vorgegebene Lösungswege, Ergebnisse und Darstellungen sprechen, Fehler finden, erklären und korrigieren Ideen und Beiträge in kurzen Beiträgen präsentieren Begriffe an Beispielen miteinander in Beziehung setzen verschiedene Arten des Begründens intuitiv nutzen: Beschreiben von Beobachtungen, Plausibilitätsüberlegungen, Angeben von Beispielen oder Gegenbeispielen inner- und außermathematische Problemstellungen in eigenen Worten wiedergeben und relevante Größen aus ihnen entnehmen Exkursion Römische Zahlzeichen Systematisieren Funktionen Interpretieren Anzahlen auf systematische Weise bestimmen Beziehungen zwischen Zahlen und Größen in Tabellen und Diagrammen darstellen Informationen aus Tabellen und Diagrammen in einfachen Sachzusammenhängen ablesen Lösen Reflektieren Mathematisieren Validieren Realisieren Näherungswerte für erwartete Ergebnisse durch Schätzen und Überschlagen ermitteln Ergebnisse in Bezug auf die ursprüngliche Problemstellung deuten Situationen aus Sachaufgaben in mathematische Modelle übersetzen (Figuren, Diagramme, Terme) am Modell gewonnene Lösungen an der Realsituation überprüfen einem mathematischen Modell (Term, Figur, Diagramm) eine passende Realsituation zuordnen Möglicher Termin für KA 1 6

7 Zeitraum Lambacher Schweizer 5 Inhaltsbezogene Kompetenzen prozessbezogene Kompetenzen Klassenarbeit Ca. 6 Wochen Kapitel II Symmetrie Erkundungen - Linien falten - Verrückte Gesichter - Falten und Schneiden 1 Senkrechte und parallele Geraden Abstände 2 Koordinatensystem 3 Achsensymmetrische Figuren 4 Punktsymmetrische Figuren 5 Eigenschaften von Vielecken Wiederholen Vertiefen Vernetzen Geometrie Erfassen Konstruieren Grundbegriffe zur Beschreibung ebener Figuren verwenden: Punkt, Gerade, Strecke, Abstand, parallel, senkrecht, achsensymmetrisch, punktsymmetrisch Grundfiguren (Rechteck, Quadrat, Parallelogramm, Dreieck) benennen, charakterisieren und in ihrer Umwelt identifizieren grundlegende ebene Figuren zeichnen: parallele und senkrechte Geraden, Rechtecke, Quadrate, auch Muster; auch im ebenen Koordinatensystem (1. Quadrant) einfache ebene Figuren zeichnerisch spiegeln Argumentieren / Lesen Verbalisieren Präsentieren Vernetzen Begründen Informationen aus einfachen mathematikhaltigen Darstellungen (Text, Bild, Tabelle) mit eigenen Worten wiedergeben mathematische Sachverhalte, Begriffe, Regeln und Verfahren mit eigenen Worten und geeigneten Fachbegriffen erläutern bei der Lösung von Problemen im Team arbeiten; über eigene und vorgegebene Lösungswege, Ergebnisse und Darstellungen sprechen, Fehler finden, erklären und korrigieren Ideen und Beiträge in kurzen Beiträgen präsentieren Begriffe an Beispielen miteinander in Beziehung setzen verschiedene Arten des Begründens intuitiv nutzen: Beschreiben von Beobachtungen, Plausibilitätsüberlegungen, Angeben von Beispielen oder Gegenbeispielen Exkursion Tangram Werkzeuge Konstruieren Lineal, Geodreieck und Zirkel zum Messen und genauen Zeichnen nutzen Präsentationsmedien (z.b. Folie, Plakat, Tafel) nutzen Möglicher Termin für KA 2 7

8 Zeitraum Lambacher Schweizer 5 Inhaltsbezogene Kompetenzen prozessbezogene Kompetenzen Klassenarbeit Ca. Kapitel III Rechnen Arithmetik / Algebra Argumentieren / 6 Wochen Erkundungen - Rechnen leicht gemacht mit Linien und Steinen - Schätzen, Überlegen, Recherchieren Fermi-Fragen 1 Terme 2 Rechenvorteile beim Addieren und Multiplizieren 3 Ausklammern und Ausmultiplizieren 4 Potenzieren 5 Teilbarkeit 6 Schriftliches Addieren 7 Schriftliches Subtrahieren 8 Schriftliches Multiplizieren 9 Schriftliches Dividieren 10 Sachaufgaben systematisch lösen Ordnen Operieren Anwenden Systematisieren Größen in Sachsituationen mit geeigneten Einheiten darstellen Zahlen ordnen und vergleichen Grundrechenarten für natürliche Zahlen ausführen (Kopfrechnen und schriftliche Verfahren) Teiler und Vielfache natürlicher Zahlen bestimmen und Teilbarkeitsregeln für 2, 3, 5 und 10 anwenden arithmetische Kenntnisse von Zahlen und Größen anwenden, Strategien für Rechenvorteile nutzen; Techniken des Überschlagens und die Probe als Rechenkontrolle Anzahlen auf systematische Weise bestimmen Lesen Verbalisieren Präsentieren Vernetzen Begründen Lösen Reflektieren Informationen aus einfachen mathematikhaltigen Darstellungen (Text, Bild, Tabelle) mit eigenen Worten wiedergeben mathematische Sachverhalte, Begriffe, Regeln und Verfahren mit eigenen Worten und geeigneten Fachbegriffen erläutern bei der Lösung von Problemen im Team arbeiten; über eigene und vorgegebene Lösungswege, Ergebnisse und Darstellungen sprechen, Fehler finden, erklären und korrigieren Ideen und Beiträge in kurzen Beiträgen präsentieren Begriffe an Beispielen miteinander in Beziehung setzen verschiedene Arten des Begründens intuitiv nutzen: Beschreiben von Beobachtungen, Plausibilitätsüberlegungen, Angeben von Beispielen oder Gegenbeispielen in einfachen Problemsituationen mögliche mathematische Fragestellungen finden Ergebnisse in Bezug auf die ursprüngliche Problemstellung deuten Wiederholen Vertiefen Vernetzen Exkursion Zauberquadrate Mathematisieren Validieren Realisieren Werkzeuge Situationen aus Sachaufgaben in mathematische Modelle übersetzen (Terme, Figuren, Diagramme) am Modell gewonnene Lösungen an der Realsituation überprüfen einem mathematischen Modell (Term, Figur, Diagramm) eine passende Realsituation zuordnen Präsentationsmedien (z.b. Folie, Plakat, Tafel) nutzen; eigene Arbeit und Lernwege sowie die aus dem Unterricht erwachsenen Merksätze und Ergebnisse dokumentieren Möglicher Termin für KA 3 8

9 Zeitraum Lambacher Schweizer 5 Inhaltsbezogene Kompetenzen prozessbezogene Kompetenzen Klassenarbeit Ca. 6 Wochen Kapitel IV Flächen Erkundungen - Flächeninhalte schätzen und messen - Zusammenhänge zwischen Flächeninhalten untersuchen 1 Flächeninhalte vergleichen 2 Flächeneinheiten 3 Flächeninhalt eines Rechtecks 4 Flächeninhalt von Parallelogrammen und Dreiecken 5 Umfang von Figuren 6 Schätzen und Rechnen mit Maßstäben Wiederholen Vertiefen Vernetzen Exkursion Sportplätze sind auch Flächen Geometrie Erfassen Konstruieren Messen Arithmetik / Algebra Ordnen Operieren Anwenden Funktionen Anwenden Grundfiguren (Rechteck, Quadrat, Parallelogramm, Dreieck,) benennen, charakterisieren und in der Umwelt identifizieren grundlegende ebene Figuren zeichnen; auch im ebenen Koordinatensystem (1. Quadrant) Umfänge und Flächeninhalte von Rechtecken, Dreiecken, Parallelogrammen und daraus zusammengesetzten Figuren schätzen und bestimmen Längen und Umfänge von Vielecken schätzen und bestimmen. Größen in Sachsituationen mit geeigneten Einheiten darstellen Zahlen ordnen und vergleichen Grundrechenarten mit ganzen Zahlen ausführen arithmetische Kenntnisse von Zahlen und Größen anwenden, Techniken des Überschlagens und die Probe als Rechenkontrolle gängige Maßstabsverhältnisse nutzen Argumentieren / Lesen Verbalisieren Begründen Mathematisieren Validieren Erkunden Lösen Reflektieren Mathematisieren Validieren Realisieren Werkzeuge Konstruieren Recherchieren Informationen aus einfachen mathematikhaltigen Darstellungen (Text, Bild, Tabelle) mit eigenen,worten wiedergeben mathematische Sachverhalte, Begriffe, Regeln und Verfahren mit eigenen Worten und geeigneten Fachbegriffen erläutern verschiedene Arten des Begründens intuitiv nutzen: Beschreiben von Beobachtungen, Plausibilitätsüberlegungen, Angeben von Beispielen oder Gegenbeispielen Situationen aus Sachaufgaben in mathematische Modelle übersetzen (Terme, Figuren, Diagramme) am Modell gewonnene Lösungen an der Realsituation überprüfen inner- und außermathematische Problemstellungen in eigenen Worten wiedergeben und relevante Größen aus ihnen entnehmen Näherungswerte für erwartete Ergebnisse durch Schätzen und Überschlagen ermitteln; elementare mathematische Regeln und Verfahren (Messen, Rechnen, Schließen) zum Lösen von anschaulichen Alltagsproblemen nutzen Ergebnisse in Bezug auf die ursprüngliche Problemstellung deuten Situationen aus Sachaufgaben in mathematische Modelle übersetzen (Terme, Figuren, Diagramme) am Modell gewonnene Lösungen an der Realsituation überprüfen einem mathematischen Modell (Term, Figur, Diagramm) eine passende Realsituation zuordnen Lineal, Geodreieck zum Messen und genauen Zeichnen nutzen Präsentationsmedien (z.b. Folie, Plakat, Tafel) nutzen ihre Arbeit, ihre eigenen Lernwege und aus dem Unterricht erwachsene Merksätze und Ergebnisse (z. B. im Lerntagebuch, Merkheft) dokumentieren selbst erstellte Dokumente oder das Schulbuch zum Nachschlagen nutzen Möglicher Termin für KA 4 9

10 Zeitraum Lambacher Schweizer 5 Inhaltsbezogene Kompetenzen prozessbezogene Kompetenzen Klassenarbeit Ca. 6 Wochen Kapitel V Quader und Würfel Erkundungen - Hexominos verschiedene Wettbewerbe - Lauter Würfel (Projekt) - Haibecken 1 Netze von Quadern 2 Schrägbilder 3 Rauminhalte vergleichen 4 Volumeneinheiten 5 Volumen eines Quaders 6 Oberflächeninhalte von Quadern und Würfeln Wiederholen Vertiefen Vernetzen Exkursion mit Quadern und Würfeln Geometrie Erfassen Konstruieren Arithmetik / Algebra Ordnen Operieren Anwenden Grundbegriffe zur Beschreibung räumlicher Figuren verwenden: Punkt, Gerade, Strecke, parallel, senkrecht, achsensymmetrisch, punktsymmetrisch Grundfiguren und Grundkörper benennen, charakterisieren und in der Umwelt identifizieren: Rechteck, Quadrat, Parallelogramm, Dreieck, Quader, Würfel Schrägbilder skizzieren, Netze von Würfeln und Quadern entwerfen, Körper herstellen Größen in Sachsituationen mit geeigneten Einheiten darstellen Zahlen ordnen und vergleichen Grundrechenarten mit ganzen Zahlen ausführen arithmetische Kenntnisse von Zahlen und Größen anwenden, Strategien für Rechenvorteile, Techniken des Überschlagens und die Probe als Rechenkontrolle nutzen Argumentieren / Verbalisieren Präsentieren Vernetzen Erkunden Lösen Mathematisieren Validieren Realisieren Werkzeuge Konstruieren mathematische Sachverhalte, Begriffe, Regeln und Verfahren mit eigenen Worten und geeigneten Fachbegriffen erläutern bei der Lösung von Problemen im Team arbeiten; über eigene und vorgegebene Lösungswege, Ergebnisse und Darstellungen sprechen, Fehler finden, erklären und korrigieren Ideen und Beiträge in kurzen Beiträgen präsentieren Begriffe an Beispielen miteinander in Beziehung setzen inner- und außermathematische Problemstellungen in eigenen Worten wiedergeben und relevante Größen aus ihnen entnehmen Näherungswerte für erwartete Ergebnisse durch Schätzen und Überschlagen ermitteln Situationen aus Sachaufgaben in mathematische Modelle übersetzen (Terme, Figuren, Diagramme) am Modell gewonnene Lösungen an der Realsituation überprüfen einem mathematischen Modell (Term, Figur, Diagramm) eine passende Realsituation zuordnen Lineal und Geodreieck zum Messen und genauen Zeichnen nutzen Möglicher Termin für KA 5 10

11 Zeitraum Lambacher Schweizer 5 Inhaltsbezogene Kompetenzen prozessbezogene Kompetenzen Klassenarbeit Ca. 6 Wochen Kapitel VI Brüche das Ganze und seine Teile Erkundungen - Kuchen teilen - Klasse teilen - Falten - Lebendiges Domino - Ein Bruch gewinnt 1 Brüche und Anteile 2 Kürzen und erweitern 3 Brüche vergleichen 4 Prozente 5 Brüche als Quotienten 6 Brüche auf dem Zahlenstrahl Wiederholen Vertiefen Vernetzen Exkursion Kleinstes gemeinsames Vielfaches und größter gemeinsamer Teiler Arithmetik / Algebra Anwenden Geometrie Messen Einfache Bruchteile auf verschiedene Weise darstellen: handelnd, zeichnerisch an verschiedenen Objekten, durch Zahlensymbole und als Punkt auf der Zahlengerade; sie als Größen, Operatoren und Verhältnisse deuten. Das Grundprinzip des Kürzens und Erweiterns von Brüchen als Vergröbern bzw. Verfeinern der Einteilung nutzen Prozentzahlen als andere Darstellungsform für Brüche deuten und an der Zahlengerade darstellen. Umwandlungen zwischen Bruch und Prozentzahl durchführen Größen in Sachsituationen mit geeigneten Einheiten darstellen arithmetische Kenntnisse von Zahlen und Größen anwenden, Strategien für Rechenvorteile nutzen; Techniken des Überschlagens und die Probe als Rechenkontrolle Längen, Winkel, Umfänge von Vielecken, Flächeninhalte von Rechtecken schätzen und bestimmen Argumentieren / Lesen Verbalisieren Präsentieren Vernetzen Begründen Erkunden Lösen Reflektieren Informationen aus einfachen mathematikhaltigen Darstellungen (Text, Bild, Tabelle) mit eigenen Worten wiedergeben mathematische Sachverhalte, Begriffe, Regeln und Verfahren mit eigenen Worten und geeigneten Fachbegriffen erläutern bei der Lösung von Problemen im Team arbeiten; über eigene und vorgegebene Lösungswege, Ergebnisse und Darstellungen sprechen, Fehler finden, erklären und korrigieren Ideen und Ergebnisse in kurzen Beiträgen präsentieren Begriffe an Beispielen miteinander in Beziehung setzen (z.b. Produkt und Fläche: Quadrat und Rechteck; natürliche Zahlen und Brüche; Länge, Umfang, Fläche und Volumen) verschiedene Arten des Begründens intuitiv nutzen: Beschreiben von Beobachtungen, Plausibilitätsüberlegungen, Angeben von Beispielen oder Gegenbeispielen inner- und außermathematische Problemstellungen in eigenen Worten wiedergeben und relevante Größen aus ihnen entnehmen Elementare mathematische Regeln und Verfahren (Messen, Rechnen, Schließen) zum Lösen von anschaulichen Alltagsproblemen nutzen; Problemlösestrategien Beispiele finden, Überprüfen durch Probieren anwenden Ergebnisse in Bezug auf die ursprüngliche Problemstellung deuten Mathematisieren Validieren Situationen aus Sachaufgaben in mathematische Modelle übersetzen (Terme, Figuren, Diagramme) am Modell gewonnene Lösungen an der Realsituation überprüfen Möglicher Termin für KA 6 11

12 2.2 Grundsätze der fachmethodischen- und fachdidaktischen Arbeit Die Kapitel I bis III sollten nach Möglichkeit im 1.Halbjahr bearbeitet werden, Kapitel IV bis VI im 2.Halbjahr. Im 2.Halbjahr kann auch der Computer zur Unterstützung der Lernfortschritte eingesetzt werden (Geogebra, Lernapplets z.b. unter realmath).. Überfachliche Grundsätze: Geeignete Problemstellungen zeichnen die Ziele des Unterrichts vor und bestimmen die Struktur der Lernprozesse. Inhalt und Anforderungsniveau des Unterrichts berücksichtigen das Leistungsvermögen der Lernenden. Die Unterrichtsgestaltung ist auf die Ziele und Inhalte abgestimmt. Medien und Arbeitsmittel werden schülerorientiert eingesetzt. Die Schüler und Schülerinnen erreichen einen Lernzuwachs. Der Unterricht fördert eine aktive Teilnahme der Schüler und Schülerinnen. Der Unterricht fördert die Zusammenarbeit zwischen den Schülern/Innen und bietet ihnen Möglichkeiten zu eigenen Lösungen. Der Unterricht berücksichtigt die individuellen Lernwege der einzelnen Schüler und Schülerinnen. Die Schüler und Schülerinnen erhalten Gelegenheit zu selbstständiger Arbeit und werden dabei unterstützt. Der Unterricht fördert situationsbedingte strukturierte und funktionale Arbeitsweisen (Gruppen- Partner-, Einzelarbeit, Arbeit im Plenum) Die Lernumgebung ist vorbereitet; der Ordnungsrahmen wird eingehalten. Die Lehr- und Lernzeit wird intensiv für Unterrichtszwecke genutzt. Es herrscht ein positives pädagogisches Klima im Unterricht. Wertschätzende Rückmeldungen prägen die Bewertungskultur und den Umgang mit Schülern. Fachliche Grundsätze: Im Unterricht werden fehlerhafte Schülerbeiträge produktiv im Sinne einer Förderung des Lernfortschritts der gesamten Lerngruppe aufgenommen. 12

13 Der Unterricht ermutigt die Lernenden dazu, auch fachlich unvollständige Gedanken zu äußern und zur Diskussion zu stellen. Die Bereitschaft zu problemlösenden Arbeiten wird durch Ermutigungen und Tipps gefördert und unterstützt. Die Einstiege in neue Themen erfolgen in der Regel mithilfe sinnstiftender Kontexte, die an das Vorwissen der Lernenden anknüpfen und deren Bearbeitung sie in die dahinter stehende Mathematik führt. Es wird genügend Zeit eingeplant, in der sich die Lernenden neues Wissen aktiv konstruieren und in der sie angemessene Grundvorstellungen zu neuen Begriffen entwickeln können. Durch regelmäßiges wiederholendes Üben werden grundlegende Fertigkeiten wachgehalten. Im Unterricht werden an geeigneter Stelle differenzierende Aufgaben eingesetzt. Die Lernenden werden zu regelmäßiger, sorgfältiger und vollständiger Dokumentation der von ihnen bearbeiteten Aufgaben angehalten. Im Unterricht wird auf einen angemessenen Umgang mit fachsprachlichen Elementen geachtet. Digitale Medien werden regelmäßig dort eingesetzt, wo sie dem Lernfortschritt dienen Grundsätze der Leistungsbewertung und Leistungsrückmeldung Diese sind dem Leistungsbewertungskonzept zu entnehmen. 13

14 2.4. Lehr- und Lernmittel Lambacher Schweizer Mathematik für Gymnasien Kl.5 (Klett Verlag) 3 Entscheidungen zu fach- und unterrichtsübergreifenden Fragen Soweit die schulischen Rahmenbedingungen das ermöglichen, kann eine Exkursion zum Mathematikmuseum in Bonn durchgeführt werden. 4 Qualitätssicherung und Evaluation Die Inhalte des schulinternen Curriculums werden regelmäßig überprüft und ggf. in kleinen Teilen modifiziert. Die Fachkonferenz trägt durch diesen Prozess zur Qualitätsentwicklung und damit zur Qualitätssicherung des Faches Mathematik bei. Die Evaluation erfolgt jährlich. Zum Schuljahrsende werden die Erfahrungen des vergangenen Schuljahres in der Fachschaft gesammelt, bewertet und eventuell notwendige Konsequenzen und Handlungsschwerpunkte formuliert. Folgende Aspekte werden bei der Evaluation berücksichtigt: Funktionen (z.b. Fachvorsitz, Organisation von Wettbewerben) Personelle Ressourcen Materielle Ressourcen (Lehrwerk, Unterrichtsmaterialien, digitale Medien, Fachzeitschriften, Taschenrechner, usw.) Unterrichtsvorhaben (z.b. Austausch von Lernzirkeln, Wochenplänen, Arbeitsblättern) Leistungsbewertung 14

Unterrichtsvorhaben Mathematik 5 auf der Grundlage des G8-Kernlehrplans Lambacher Schweizer 5

Unterrichtsvorhaben Mathematik 5 auf der Grundlage des G8-Kernlehrplans Lambacher Schweizer 5 Unterrichtsvorhaben Mathematik 5 auf der Grundlage des G8-Kernlehrplans prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen Methodische 1. Halbjahr Argumentieren / bei der Lösung von Problemen im Team

Mehr

Stoffverteilungsplan Mathematik 5 für den G9-Zweig

Stoffverteilungsplan Mathematik 5 für den G9-Zweig Stoffverteilungsplan Mathematik 5 für den G9-Zweig prozessbezogene Kompetenzen inhaltsbezogene Kompetenzen Lehrbuch Argumentieren / Darstellungen (Text, Bild, Tabelle) mit eigenen Worten Begriffe, Regeln

Mehr

Schulinternes Curriculum Mathematik 5 / 6

Schulinternes Curriculum Mathematik 5 / 6 Die dargestellte Reihenfolge der Unterrichtsinhalte ist eine von mehreren sinnvollen Möglichkeiten und daher nicht bindend. Lambacher Schweizer 5 Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen

Mehr

Stoffverteilungsplan Mathematik im Jahrgang 5 Lambacher Schweizer 5

Stoffverteilungsplan Mathematik im Jahrgang 5 Lambacher Schweizer 5 Stoffverteilungsplan Mathematik im Jahrgang 5 Lambacher Schweizer 5 Kernlehrplan G8 Verbalisieren mathematische Sachverhalte, Begriffe, Regeln und Begründen verschiedene Arten des Begründens intuitiv nutzen:

Mehr

Schulinternes Curriculum Mathematik 5 Goethe-Gymnasium Lambacher Schweizer 5 Klettbuch

Schulinternes Curriculum Mathematik 5 Goethe-Gymnasium Lambacher Schweizer 5 Klettbuch Lambacher Schweizer 5 Klettbuch 3-12-734411-0 Kapitel I Natürliche Zahlen Erkundung 1 1. Zählen und darstellen S. 14 Nr.4 Stochastik Zahlen ordnen und vergleichen, natürliche Zahlen runden Verbalisieren

Mehr

Schulinternes Curriculum Mathematik Sekundarstufe I (Kl. 5 & 6) Stand: Oktober 2012

Schulinternes Curriculum Mathematik Sekundarstufe I (Kl. 5 & 6) Stand: Oktober 2012 Schulinternes Curriculum Mathematik Sekundarstufe I (Kl. 5 & 6) Stand: Oktober 2012 Fach: Mathematik Stand: 10/2012 Fachvorsitzender: Da Mathematik : Schulinternes Curriculum - Realschule Klasse 5 Die

Mehr

Stoffverteilungsplan Mathematik 5 / 6 auf der Grundlage des Kernlehrplans 2005

Stoffverteilungsplan Mathematik 5 / 6 auf der Grundlage des Kernlehrplans 2005 Stoffverteilungsplan Mathematik 5 / 6 auf der Grundlage des Kernlehrplans 2005 Die Kernlehrpläne betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung

Mehr

Schulinterne Lehrpläne der Städtischen Realschule Waltrop. im Fach: MATHEMATIK Klasse 5

Schulinterne Lehrpläne der Städtischen Realschule Waltrop. im Fach: MATHEMATIK Klasse 5 Funktionen 1 Natürliche Zahlen Lesen Informationen aus Text, Bild, Tabelle mit eigenen Worten wiedergeben Problemlösen Lösen Näherungswerte für erwartete Ergebnisse durch Schätzen und Überschlagen ermitteln

Mehr

Schulinterner Lehrplan Mathematik G8 Klasse 5

Schulinterner Lehrplan Mathematik G8 Klasse 5 Schulinterner Lehrplan Heinrich-Böll-Gymnasium 1/7 Jg 5, Stand: 07.12.2008 Schulinterner Lehrplan Mathematik G8 Klasse 5 Verbindliche Inhalte zu Kapitel I Natürliche Zahlen 1 Zählen und 2 Große Zahlen

Mehr

Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium

Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium Klasse 5 5 Kapitel I Natürliche Zahlen 1 Zählen und darstellen 2 Große Zahlen 3 Rechnen mit natürlichen Zahlen 4 Größen messen und

Mehr

Erzbischöfliche Liebfrauenschule Köln. Schulinternes Curriculum Fach: Mathematik Jg. 5

Erzbischöfliche Liebfrauenschule Köln. Schulinternes Curriculum Fach: Mathematik Jg. 5 Erzbischöfliche Liebfrauenschule Köln Schulinternes Curriculum Fach: Mathematik Jg. 5 Reihen- Buchabschnitt Themen Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen folge Die Schülerinnen und Schüler

Mehr

Schulinterner Lehrplan Version 2014 Lambacher Schweizer Kl. 5

Schulinterner Lehrplan Version 2014 Lambacher Schweizer Kl. 5 Schulinterner Lehrplan Version 2014 Lambacher Schweizer Kl. 5 1 Verbalisieren mathematische Sachverhalte, Begriffe, Regeln und Kommunizieren bei der Lösung von Problemen im Team arbeiten; über Begründen

Mehr

geeigneten Fachbegriffen erläutern Kommunizieren

geeigneten Fachbegriffen erläutern Kommunizieren Kapitel I Rationale Zahlen Arithmetik / Algebra Einfache Bruchteile auf verschiedene Weise darstellen: Lesen: Informationen aus Text, Bild, 1 Brüche und Anteile handelnd, zeichnerisch an wiedergeben 2

Mehr

Neue Wege Klasse 5 Schulcurriculum EGW Inhalt Neue Wege 5

Neue Wege Klasse 5 Schulcurriculum EGW Inhalt Neue Wege 5 Neue Wege Klasse 5 Schulcurriculum EGW Inhalt Neue Wege 5 1.1 Runden und Schätzen - Große Zahlen 1.2 Zahlen in Bildern Kapitel 2 Größen 2.1 Längen - Was sind 2.2 Zeit Größen? 2.3 Gewichte Kreuz und quer

Mehr

inhaltsbezogene Kompetenzen Die SuS... Kapitel I: Natürliche Zahlen

inhaltsbezogene Kompetenzen Die SuS... Kapitel I: Natürliche Zahlen prozessbezogene Kompetenzen Die SuS... Kapitel I: Natürliche Zahlen inhaltsbezogene Kompetenzen Die SuS... Kapitel I: Natürliche Zahlen konkrete Umsetzung zur Zielerreichung Die SuS können... Kapitel I:

Mehr

Lehrwerk: Lambacher Schweizer, Klett Verlag

Lehrwerk: Lambacher Schweizer, Klett Verlag Thema 1: Natürliche Zahlen 1 Zählen und darstellen 2 Große Zahlen 3 Zahlensysteme 4 Rechnen mit natürlichen Zahlen 5 Runden 6 Größen messen und schätzen (Zeit, Länge, Gewicht) 7 Mit Größen rechnen 1. Klassenarbeit

Mehr

Inhaltsübersicht Fach: Mathematik FachkollegInnen scj, krö, sja, nah,erf, sik Jahrgang: 5 Schuljahr: 2016/2017 Halbjahr: 1/2

Inhaltsübersicht Fach: Mathematik FachkollegInnen scj, krö, sja, nah,erf, sik Jahrgang: 5 Schuljahr: 2016/2017 Halbjahr: 1/2 Halbjahr/1 Zeit (in Wochen) Inhalte Seite inhaltsbezogene Kompetenzen Die Schülerinnen und Schüler prozessbezogene Kompetenzen Die Schülerinnen und Schüler Berufsorientierung 1 19.- 23.09.2016 Daten Daten

Mehr

Lehrwerk: Lambacher Schweizer, Klett Verlag

Lehrwerk: Lambacher Schweizer, Klett Verlag Lerninhalte 6 Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Thema 1: Rationale Zahlen 1 Teilbarkeit 2 Brüche und Anteile 3 ggt und kgv 4 Kürzen und Erweitern 5 Brüche auf der Zahlengeraden 6

Mehr

Zeitraum prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen Lambacher Schweizer 5 Bemerkungen

Zeitraum prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen Lambacher Schweizer 5 Bemerkungen auf Grlage des Kernlehrplans sowie der Vorschläge das Klett-Verlages in Bezug auf das Lehrwerk Lambacher Schweizer Verbalisieren mathematische Sachverhalte, Begriffe, Regeln Verfahren mit eigenen geeigneten

Mehr

Schulinterner Lehrplan

Schulinterner Lehrplan Fach Mathematik Jahrgangsstufe 5 Themen Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Natürliche Zahlen und Größen - große Zahlen - Stellentafel - Zahlenstrahl - Runden - Geld, Länge, Gewicht,Zeit

Mehr

Inhaltsbezogene Kompetenzen

Inhaltsbezogene Kompetenzen Rationale Zahlen Brüche und Anteile Was man mit einem Bruch alles machen kann Kürzen und Erweitern Die drei Gesichter einer rationalen Zahl Ordnung in die Brüche bringen Dezimalschreibweise bei Größen

Mehr

Stoffverteilungsplan Mathematik 5 / 6 auf der Grundlage des neuen G8 Kernlehrplans 2007 _ Stand:Okt.2015

Stoffverteilungsplan Mathematik 5 / 6 auf der Grundlage des neuen G8 Kernlehrplans 2007 _ Stand:Okt.2015 Jg 5. I Natürliche Zahlen Stochastik Zählen und Tabellen, Balken- und Säulendiagramme Große Zahlen Runden von Zahlen, Zahldarstellung, Potenzschreibweise Rechnen mit natürlichen Zahlen Grundrechenarten,

Mehr

Neue Wege Klasse 6 Schulcurriculum EGW

Neue Wege Klasse 6 Schulcurriculum EGW Neue Wege Klasse 6 Schulcurriculum EGW Inhalt Neue Wege 6 Kapitel 1 Ganze Zahlen 1.1 Negative Zahlen beschreiben Situationen und Vorgänge 1.2 Anordnung auf der Zahlengeraden 1.3 Addieren und Subtrahieren

Mehr

Band 5. Lösen elementare mathematische Regeln und Verfahren (Messen, Rechnen, Schließen) zum Lösen von anschaulichen Alltagsproblemen nutzen

Band 5. Lösen elementare mathematische Regeln und Verfahren (Messen, Rechnen, Schließen) zum Lösen von anschaulichen Alltagsproblemen nutzen Mathematik Neue Wege 5/6 Vergleich mit dem Kernlehrplan Mathematik für das Gymnasium (G8) in Nordrhein-Westfalen / Kompetenzerwartungen am Ende der Jahrgangsstufe 6 Viele der im Kernlehrplan aufgeführten

Mehr

Stoffverteilungsplan Mathematik im Jahrgang 6

Stoffverteilungsplan Mathematik im Jahrgang 6 eigenen Worten und relevante Größen aus (Messen, Rechnen, Schließen) zum von Einfache Bruchteile auf verschiedene Weise darstellen: handelnd, zeichnerisch als Flächenanteile, durch Zahlensymbole und als

Mehr

SCHULINTERNES CURRICULUM MATHEMATIK JUNI 2016 ( G 8 ) Seite 1 von 7

SCHULINTERNES CURRICULUM MATHEMATIK JUNI 2016 ( G 8 ) Seite 1 von 7 Seite 1 von 7 Kapitel I: Rationale Zahlen - Einfache Bruchteile auf verschiedene Weise darstellen: handelnd, zeichnerisch an verschiedene Objekten, durch Zahlensymbole und als Punkt auf der Zahlengerade;

Mehr

Schulinterner Lehrplan Mathematik G8 Klasse 6

Schulinterner Lehrplan Mathematik G8 Klasse 6 Schulinterner Lehrplan Heinrich-Böll-Gymnasium 1/6 Jg 6, Stand: 07.12.2008 Schulinterner Lehrplan Mathematik G8 Klasse 6 Verbindliche Inhalte zu Kapitel I Rationale Zahlen 1 Brüche und Anteile 2 Was man

Mehr

Inhaltsübersicht. Jahrgang: 6 Schuljahr: 2015/2016 Halbjahr: 1/2. inhaltsbezogene prozessbezogene Kompetenzen. Halbjahr/1 Zeit (in Wochen)

Inhaltsübersicht. Jahrgang: 6 Schuljahr: 2015/2016 Halbjahr: 1/2. inhaltsbezogene prozessbezogene Kompetenzen. Halbjahr/1 Zeit (in Wochen) Halbjahr/1 Zeit (in Wochen) Inhalte Seite inhaltsbezogene Kompetenzen prozessbezogene Kompetenzen / mögliche Berufsfelder / 1 6 Wochen 1 18.09.15 1. Teilbarkeit 1.1 Noch fit? 1.2 Teiler und Vielfache 1.3

Mehr

Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium

Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium Klasse 6 6 Kapitel I Rationale Zahlen 1 Brüche und Anteile 2 Was man mit einem Bruch alles machen kann 3 Kürzen und Erweitern 4 Die

Mehr

Schulinterne Lehrpläne der Städtischen Realschule Waltrop. im Fach: MATHEMATIK Klasse 6

Schulinterne Lehrpläne der Städtischen Realschule Waltrop. im Fach: MATHEMATIK Klasse 6 1 Teilbarkeit und Brüche Verbalisieren mathematische Sachverhalte, Begriffe, Regeln und Verfahren mit eigenen Worten und geeigneten Fachbegriffen erläutern Kommunizieren über eigene und vorgegebenen Lösungswege,

Mehr

Stoffverteilungsplan Klasse 5

Stoffverteilungsplan Klasse 5 Stoffverteilungsplan Klasse 978--1-1218-8 1. Natürliche Zahlen Große Zahlen beschreiben die Welt Große Zahlen lesen und schreiben Zählen und Schätzen Zahlen anordnen Zahlen runden Zahlenfolgen Zweiersystem

Mehr

Schulinterner Lehrplan Mathematik Klasse 5

Schulinterner Lehrplan Mathematik Klasse 5 Gesamtschule Gescher Schulinterner Lehrplan Mathematik Klasse 5 Als Lehrwerk wird das Buch Mathematik real 5, Differenzierende Ausgabe Nordrhein-Westfalen benutzt. Auf den Seiten Noch fit? können die Schülerinnen

Mehr

Schulinterner Lehrplan

Schulinterner Lehrplan Fach Mathematik Jahrgangsstufe 6 Themen Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Bruchzahlen - Wiederholen: Anteile als Bruch darstellen - Dezimalschreibweise - Dezimalschreibweisen vergleichen

Mehr

Stoffverteilungsplan Mathematik real Differenzierende Ausgabe Nordrhein-Westfalen Klasse 5

Stoffverteilungsplan Mathematik real Differenzierende Ausgabe Nordrhein-Westfalen Klasse 5 Stoffverteilungsplan Mathematik real Differenzierende Ausgabe Nordrhein-Westfalen Klasse 5 Die Planung basiert auf 35 Schulwochen. Dies ist um ca. drei Unterrichtswochen geringer als die planmäßig im Schuljahr

Mehr

Schulinterner Lehrplan Mathematik Klasse 6

Schulinterner Lehrplan Mathematik Klasse 6 Gesamtschule Gescher Schulinterner Lehrplan Mathematik Klasse 6 Als Lehrwerk wird das Buch Mathematik real 6, Differenzierende Ausgabe Nordrhein-Westfalen benutzt. Auf den Seiten Noch fit? können die Schülerinnen

Mehr

Mathematik Lehrplan Klasse 5. Schwerpunkt inhaltsbezogener Kompetenzen: Arithmetik/Algebra Prozessbezogene Kompetenzen: Medien/Methoden: Kompetenzen:

Mathematik Lehrplan Klasse 5. Schwerpunkt inhaltsbezogener Kompetenzen: Arithmetik/Algebra Prozessbezogene Kompetenzen: Medien/Methoden: Kompetenzen: Mathematik Lehrplan Klasse 5 Thema: Natürliche Zahlen Schwerpunkt inhaltsbezogener Arithmetik/Algebra 1 Natürliche Zahlen Große Zahlen beschreiben die Welt (S. 8-11) Große Zahlen lesen und schreiben (S.

Mehr

Schulinterner Lehrplan Version 2014 Lambacher Schweizer Kl. 6

Schulinterner Lehrplan Version 2014 Lambacher Schweizer Kl. 6 Schulinterner Lehrplan Version 2014 Lambacher Schweizer Kl. 6 i Vernetzen Begriffe an Beispielen miteinander in Beziehung (z.b..,,produkt und Fläche: Quadrat und Rechteck; natürliche,,,,,,,,,,,,,,,,,,,,,,,,,,,,zahlen

Mehr

Schulinterner Lehrplan für das Fach Mathematik an der Bertha-von-Suttner Gesamtschule in Dormagen Nievenheim (Stand 8/2011) Jahrgang 6

Schulinterner Lehrplan für das Fach Mathematik an der Bertha-von-Suttner Gesamtschule in Dormagen Nievenheim (Stand 8/2011) Jahrgang 6 Schulinterner Lehrplan für das Fach Mathematik an der Bertha-von-Suttner Gesamtschule in Dormagen Nievenheim (Stand 8/2011) Jahrgang 6 Die im Lehrplan angeführten nzahlen beziehen sich auf das verwendete

Mehr

Argumentieren/Kommunizieren

Argumentieren/Kommunizieren 4 Wochen Geometrie Erfassen Grundbegriffe, Kreisfläche, Kreislinie, Radius, Mittelpunkt, Durchmesser kennen, benennen und differenzieren Benennungen beim Winkel, Scheitel, Beschriftungen Neben, Scheitel,

Mehr

Schulinternes Curriculum Mathematik 6

Schulinternes Curriculum Mathematik 6 Kapitel I Rationale Zahlen Einstieg: Erkundungen 1 (Teiler), 4 und 5 1 Teilbarkeit S. 14, Regeln; S. 17 Nr. 15 2 Brüche und Anteile S. 20, Nr. 2 & 3; S. 2 Nr. 8 &10 3 Kürzen und Erweitern S. 25, Nr. 7-9;

Mehr

SRB- Schulinterner Lehrplan Mathematik Klasse 5

SRB- Schulinterner Lehrplan Mathematik Klasse 5 Problemlösen Lösen Näherungswerte für erwartete Ergebnisse durch Schätzen und Überschlagen ermitteln Funktionen Beziehungen zwischen Zahlen und zwischen Größen in Tabellen und Diagrammen darstellen Interpretieren

Mehr

Schülerinnen und Schüler

Schülerinnen und Schüler Inhalt Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen 1. Dezimalzahlen 7 Wochen Seite 8-39 Die Olympiade im Altertum Olympische Rekorde Dezimalzahlen lesen und schreiben Dezimalzahlen anordnen

Mehr

Gymnasium OHZ Schul-KC Mathematik Jahrgang 5 eingeführtes Schulbuch: Lambacher Schweizer 5

Gymnasium OHZ Schul-KC Mathematik Jahrgang 5 eingeführtes Schulbuch: Lambacher Schweizer 5 6 Wochen mathematische Sachverhalte, Begriffe, Regeln, Verfahren und Zusammenhänge mit eigenen Worten und geeigneten Fachbegriffen erläutern Lösungswege beschreiben, begründen und Mit symbolischen, formalen

Mehr

Matrix für die Planung standardorientierten Unterrichts im Fach Mathe

Matrix für die Planung standardorientierten Unterrichts im Fach Mathe Matrix für die Planung standardorientierten s im Fach Mathe Erdkunde (Temperaturen auf der Landkarte, Verlaufskurven) Messen- aber genau?! Umfang: 10 Stunden Jahrgangsstufe: 6 - unterschiedliche Skalen

Mehr

Schulinterner Lehrplan Mathematik Klasse 5( (

Schulinterner Lehrplan Mathematik Klasse 5( ( Schulinterner Lehrplan Mathematik Klasse 5( ( S chulbuch (SB): Lambacher Schweizer 5; ISBN 3-12-734451-1 (noch keine Arbeit mit dem Taschenrechner) Einsatz der Software Klett-Mathetrainer 5 zum Üben und

Mehr

Schulinterner Lehrplan Mathematik Stoffverteilungsplan für Klasse 6 Stand:

Schulinterner Lehrplan Mathematik Stoffverteilungsplan für Klasse 6 Stand: Schulinterner Lehrplan Mathematik Stoffverteilungsplan für Klasse 6 Stand:1.6.2011-1 - 5 Kapitel 1: Messen aber genau!? 1.1 Wir messen mit einem eigenen Längenmaß unterschiedliche Skalen Dezimalzahlen

Mehr

Von den Bildungsstandards und dem Kernlehrplan in NRW zum Stoffverteilungsplan

Von den Bildungsstandards und dem Kernlehrplan in NRW zum Stoffverteilungsplan Von den Bildungsstandards und dem Kernlehrplan in NRW zum Stoffverteilungsplan Anregungen für Mathematik in der HAUPTSCHULE auf der Grundlage von MAßSTAB 6 Überblick über die prozessbezogenen und inhaltsbezogenen

Mehr

Argumentieren/Kommunizieren

Argumentieren/Kommunizieren Im Fach Mathematik führen unsere SuS ein Merkheft. In diesem Heft werden alle grundlegenden Rechenregeln und Rechengesetze mit kleinen Beispielen aufgelistet. Die SuS verwenden das Heft zum Wiederholen

Mehr

Schulinternes Curriculum Mathematik

Schulinternes Curriculum Mathematik Jahrgangsstufe 5 Beschluss durch die Fachkonferenz am 8.12.2009 Lehrwerk: MatheLive 5 (Klett), Arbeitsheft Mathe Live 5 Weiteres Material: Geometriedreieck, Lineal, Bleisitift, ggf. Schere und Klebstoff

Mehr

Materialien/ Anregungen. prozessbezogene Kompetenzen laut Kernlehrplan. inhaltsbezogene Kompetenzen laut Kernlehrplan

Materialien/ Anregungen. prozessbezogene Kompetenzen laut Kernlehrplan. inhaltsbezogene Kompetenzen laut Kernlehrplan HARDTBERG GYMNASIUM DER STADT BONN Stand: Juni 2011 Schulinternes Curriculum Mathematik Das schulinterne Curriculum folgt dem Kernlehrplan für das Gymnasium Sekundarstufe I (G8) in Nordrhein-Westfalen

Mehr

Vom neuen Kernlehrplan in NRW zum Stoffverteilungsplan Anregungen für Mathematik in der REALSCHULE auf der Grundlage von Maßstab 6

Vom neuen Kernlehrplan in NRW zum Stoffverteilungsplan Anregungen für Mathematik in der REALSCHULE auf der Grundlage von Maßstab 6 Vom neuen Kernlehrplan in NRW zum Stoffverteilungsplan Anregungen für Mathematik in der REALSCHULE auf der Grundlage von Maßstab 6 Der Stoffverteilungsplan geht von folgenden Voraussetzungen aus: 1. Es

Mehr

inhaltsbezogene Kompetenzen Die SuS... Kapitel I: Rationale Zahlen

inhaltsbezogene Kompetenzen Die SuS... Kapitel I: Rationale Zahlen prozessbezogene Kompetenzen Die SuS... Kapitel I: Rationale Zahlen inhaltsbezogene Kompetenzen Die SuS... Kapitel I: Rationale Zahlen konkrete Umsetzung zur Zielerreichung Die SuS können... Kapitel I:

Mehr

Stoffverteilungsplan Mathematik Klasse 6

Stoffverteilungsplan Mathematik Klasse 6 Kapitel I Rationale Zahlen 1 Brüche und Anteile 2 Was man mit einem Bruch alles machen kann 3 Kürzen und Erweitern 4 Die drei Gesichter einer rationalen Zahl 5 Ordnung in die Brüche bringen 6 Dezimalschreibweise

Mehr

Schulcurriculum Mathematik

Schulcurriculum Mathematik Fachkonferenz Mathematik Schulcurriculum Mathematik Schuljahrgang 5 Lehrwerk: Fundamente der Mathematik 5, Schroedel-Verlag, ISBN 978-3-06-040348-6 Das Schulcurriculum ist auf Grundlange des Stoffverteilungsplans

Mehr

Stoffverteilungsplan Mathematik 5 / 6 Lehrwerk: Lambacher Schweizer 5/6

Stoffverteilungsplan Mathematik 5 / 6 Lehrwerk: Lambacher Schweizer 5/6 Klasse 5 Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Zeitraum Natürliche Zahlen Stochastik Erheben: Daten erheben, in Ur- und Strichlisten zusammenfassen Darstellen: Häufigkeitstabellen, Säulendiagramme

Mehr

Klasse 5. Inhalt(sfelder) Inhaltsbezogene Kompetenzen. Prozessbezogene Kompetenzen. Die Schülerinnen und Schüler... Die Schülerinnen und Schüler...

Klasse 5. Inhalt(sfelder) Inhaltsbezogene Kompetenzen. Prozessbezogene Kompetenzen. Die Schülerinnen und Schüler... Die Schülerinnen und Schüler... I Natürliche Zahlen 1. Zählen und darstellen stellen Beziehungen zwischen Zahlen und Größen in Tabellen bzw. Diagrammen (Säulendiagramm, Balkendiagramm) dar, lesen Informationen aus Tabellen und Diagrammen

Mehr

Hauscurriculum Klasse 5 (ab Schuljahr 2015/16)

Hauscurriculum Klasse 5 (ab Schuljahr 2015/16) 1 1. Statistische Erhebungen Natürliche Zahlen (4 Wochen) 1.1. Statistische Erhebungen in der Klasse 1.2 Große Zahlen Stellenwerttafel planen statistische Erhebungen in Form einer Befragung oder einer

Mehr

Schulinternes Curriculum Mathematik Gymnasium im GHZ Jahrgangsstufen 5/6

Schulinternes Curriculum Mathematik Gymnasium im GHZ Jahrgangsstufen 5/6 Seite1 Kernlehrplan Prozess- und inhaltsbezogene Kompetenzen Argumentieren und Kommunizieren geben Informationen aus einfachen mathematikhaltigen Darstellungen (Text, Bild, Tabelle) mit eigenen Worten

Mehr

Mathematik - Jahrgangsstufe 5

Mathematik - Jahrgangsstufe 5 Mathematik - Jahrgangsstufe 5 1. Natürliche Zahlen und Größen (Stochastik, Arithmetik/Algebra) Strichlisten, Tabellen und Diagramme Die Stellenwerttafel im Dezimalsystem & Runden Grundrechenarten: Summe,

Mehr

Mathematik Schuleigener Arbeitsplan Klasse 5 (Stand: Februar 2016)

Mathematik Schuleigener Arbeitsplan Klasse 5 (Stand: Februar 2016) stellen Fragen, äußern Vermutungen und bewerten erläutern mathematische Sachverhalte, Begriffe, Regeln, Verfahren und Zusammenhänge mit eigenen Worten und geeigneten Fachbegriffen. nutzen verschiedene

Mehr

Jahrgangsstufe 5. Eingesetzte Lehrmittel: - Griesel, Heinz (Hrsg.): Elemente der Mathematik 5. Schuljahr. Schroedel 2009.

Jahrgangsstufe 5. Eingesetzte Lehrmittel: - Griesel, Heinz (Hrsg.): Elemente der Mathematik 5. Schuljahr. Schroedel 2009. Jahrgangsstufe 5 Eingesetzte Lehrmittel: - Griesel, Heinz (Hrsg.): Elemente der Mathematik 5. Schuljahr. Schroedel 2009. Inhaltsbezogene Kompetenzen/konzeptbezogene Kompetenzen Stochastik, Schülerinnen

Mehr

Synopse zum neuen Kernlehrplan für die Hauptschule Schule: Schnittpunkt Plus Mathematik Differenzierende Ausgabe. Band Lehrer:

Synopse zum neuen Kernlehrplan für die Hauptschule Schule: Schnittpunkt Plus Mathematik Differenzierende Ausgabe. Band Lehrer: Synopse zum neuen Kernlehrplan für die Hauptschule Schule: Schnittpunkt Plus Mathematik Differenzierende Ausgabe Band 6 978-3-12-742421-8 Lehrer: - eine Sachsituation mit Blick auf eine konkrete Fragestellung

Mehr

Erzbischöfliche Liebfrauenschule Köln. Schulinternes Curriculum Fach: Mathematik Jg. 6

Erzbischöfliche Liebfrauenschule Köln. Schulinternes Curriculum Fach: Mathematik Jg. 6 Erzbischöfliche Liebfrauenschule Köln Schulinternes Curriculum Fach: Mathematik Jg. 6 Reihenfolge Buchabschnitt Themen Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen 1 1.1 1.7 Brüche mit gleichem

Mehr

Abfolge in 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen

Abfolge in 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen 1. Natürliche Zahlen und Größen 1.1 Große Zahlen Stellentafel 1.2 1.3 Zweiersystem 1.4 Römische Zahlzeichen 1.5 Anordnung der natürlichen Zahlen Zahlenstrahl 1.6 Runden von Zahlen Bilddiagramme 1.7 Länge

Mehr

Zahl der Unterrichtsstunden: 5 Wochen Inhaltsbezogene Kompetenzen Die Schülerinnen und Schüler

Zahl der Unterrichtsstunden: 5 Wochen Inhaltsbezogene Kompetenzen Die Schülerinnen und Schüler Nr. 1 des s (1. Halbjahr) Thema: Zahlen Zahl der Unterrichtsstunden: 5 Wochen stellen im Bereich Arithmetik/Algebra natürliche Zahlen dar (Zifferndarstellung, Stellenwerttafel, Wortform, Zahlenstrahl),

Mehr

Jahrgangsstufe Wir lernen uns kennen Datenerhebung und Darstellung von Zahlen und Größen (28 U.-Std.)

Jahrgangsstufe Wir lernen uns kennen Datenerhebung und Darstellung von Zahlen und Größen (28 U.-Std.) Jahrgangsstufe 5 5.1-5.2 Wir lernen uns kennen Datenerhebung und Darstellung von Zahlen und Größen (28 U.-Std.) erheben Daten und fassen sie in Ur- und Strichlisten zusammen. stellen Häufigkeitstabellen

Mehr

Kürzen und Erweitern Die drei Gesichter einer Vergröbern bzw. Verfeinern der Einteilung nutzen

Kürzen und Erweitern Die drei Gesichter einer Vergröbern bzw. Verfeinern der Einteilung nutzen Schulcurriculum Mathematik Städtisches Gymnasium Eschweiler Klasse 6 (G8) - rationale Zahlen - mit Zahlen und Symbolen umgehen Grundregeln für Rechenaus- einfache Brüche und Größen, Rechnen mit rationalen

Mehr

Problemlösen. Modellieren

Problemlösen. Modellieren Die Menge Bruchzahlen (Fortsetzung) Primfaktorzerlegungen zur Ermittlung von ggt und kgv Darstellen von Bruchteilen in Sachzusammenhängen und am Zahlenstrahl Eigenschaften von Bruchzahlen, Kürzen, Erweitern

Mehr

Seite 1 von 8. Schulinternes Curriculum Mathematik. Jahrgang 5

Seite 1 von 8. Schulinternes Curriculum Mathematik. Jahrgang 5 Seite 1 von 8 Schulinternes Curriculum Mathematik Jahrgang 5 Gültig ab: 2011/2012 Erläuterungen: prozessbezogene bereiche inhaltsbezogene bereiche P1 mathematisch argumentieren I1 Zahlen und Operationen

Mehr

Unterrichtseinheit Natürliche Zahlen I

Unterrichtseinheit Natürliche Zahlen I Fach/Jahrgang: Mathematik/5.1 Unterrichtseinheit Natürliche Zahlen I unterschiedliche Darstellungsformen verwenden und Beziehungen zwischen ihnen beschreiben (LE 8) Darstellungen miteinander vergleichen

Mehr

Fach / Jahrgangsstufe Mathematik / Jg6. Nr. des Unterrichtsvorhabens im Halbjahr Nr.1 im 1. Hj. Thema: Brüche

Fach / Jahrgangsstufe Mathematik / Jg6. Nr. des Unterrichtsvorhabens im Halbjahr Nr.1 im 1. Hj. Thema: Brüche Fach / Jahrgangsstufe Mathematik / Jg6 Nr. des Unterrichtsvorhabens im Halbjahr Nr.1 im 1. Hj. Thema: Brüche Zahl der Unterrichtsstunden: ca. 20 Unterrichtsstunden Inhaltsbezogene Kompetenzen Ø stellen

Mehr

1/6. Zeitraum Lambacher Schweizer 6 Inhaltsbezogene Kompetenzen prozessbezogene Kompetenzen. Methoden / Material

1/6. Zeitraum Lambacher Schweizer 6 Inhaltsbezogene Kompetenzen prozessbezogene Kompetenzen. Methoden / Material Schulinterner Lehrplan Mathematik Klasse 6 Schulbuch (SB): Lambacher Schweizer 6; ISBN 3-12-734461-9 (Einsatz Taschenrechner ab 2. Halbjahr - Casio fx-991 ES) Einsatz der Software Klett-Mathetrainer 6

Mehr

Mathematik 6. Thema, Inhalt, Leitidee und allgemeine mathematische Kompetenzen. inhaltsbezogene Kompetenzen. Die SuS. 1.

Mathematik 6. Thema, Inhalt, Leitidee und allgemeine mathematische Kompetenzen. inhaltsbezogene Kompetenzen. Die SuS. 1. Mathematik 6 Zeit Ca. 1. Teilbarkeitslehre Arithmetik/Algebra prozessbezogene Argumentieren/Kommunizieren Die SuS 16 h ca. 10 h 1.1 Teilbarkeit und Primzahlen 1.2 Größter gemeinsamer Teiler und kleinstes

Mehr

Stoffverteilungsplan für Klasse 5

Stoffverteilungsplan für Klasse 5 Stoffverteilungsplan für Klasse 5 Monat Woche Inhalte mathe live 5 Seite (Schwerpunkte mit Beispielen) Kapitel 1: Wir lernen uns kennen 1.1 Fragen und Auswerten - Strichlisten und Häufigkeiten - Diagramme

Mehr

Abfolge in 6 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen

Abfolge in 6 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen 1. 1.1 Mischungs- und Teilverhältnisse 1.2 Zahlenstrahl Gebrochene Zahlen 1.3 Ordnen von 1.4 Addieren und Subtrahieren von Kommutativ- und Assoziativgesetz der Addition 1.5 Vervielfachen und Teilen von

Mehr

Schulinternes Curriculum Mathematik

Schulinternes Curriculum Mathematik Schulinternes Curriculum Mathematik Inhaltsverzeichnis Vorwort...2 Sekundarstufe I...2 Kompetenzerwartungen...2 Jahrgangsstufe 5...3 Jahrgangsstufe 6...9 Jahrgangsstufe 7...15 Jahrgangsstufe 8...21 Jahrgangsstufe

Mehr

Abfolge in EdM 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen

Abfolge in EdM 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen 2.1.2 Konkretisierte Unterrichtsvorhaben Jahrgangsstufe 5 1 Buch: Elemente der Mathematik, Braunschweig, 2012, Westermann Schroedel Diesterweg Verlag, ISBN 978-3-507-87440-4 Abfolge in EdM 5 Prozessbezogene

Mehr

Mathematik - Klasse 6 -

Mathematik - Klasse 6 - Schuleigener Lehrplan Mathematik - Klasse 6 - Stand: 03.11.2011 2 I. Rationale Zahlen Die n Kompetenzen gelten grundsätzlich für alle Kapitel. Abweichungen werden gesondert aufgeführt. Die hier genannten

Mehr

Jahrgangsstufe Mehr oder weniger Ordnen von Bruchzahlen nach der Größe (16 U.-Std.)

Jahrgangsstufe Mehr oder weniger Ordnen von Bruchzahlen nach der Größe (16 U.-Std.) Jahrgangsstufe 6 6.1 Mehr oder weniger Ordnen von Bruchzahlen nach der Größe (16 U.-Std.) stellen einfache Bruchteile auf verschiedene Weise dar: handelnd, zeichnerisch an verschiedenen Objekten, durch

Mehr

Vom neuen Kernlehrplan in NRW zum Stoffverteilungsplan Anregungen für Mathematik in der REALSCHULE auf der Grundlage von Maßstab 5

Vom neuen Kernlehrplan in NRW zum Stoffverteilungsplan Anregungen für Mathematik in der REALSCHULE auf der Grundlage von Maßstab 5 Vom neuen Kernlehrplan in NRW zum Stoffverteilungsplan Anregungen für Mathematik in der REALSCHULE auf der Grundlage von Maßstab 5 Der Stoffverteilungsplan geht von folgenden Voraussetzungen aus: 1. Es

Mehr

Schulinterner Lehrplan Mathematik G8 Klasse 8

Schulinterner Lehrplan Mathematik G8 Klasse 8 Schulinterner Lehrplan Heinrich-Böll-Gymnasium 1/7 Jg 8, Stand: 1.11.2011 Schulinterner Lehrplan Mathematik G8 Klasse 8 Verbindliche Inhalte: Ergänzungen aus Kl. 7:Stochastik Wahrscheinlichkeit im ein-und

Mehr

(4) in Sachsituationen mathematische Problemstellungen und Zusammenhänge erkennen, geeignete Hilfsmittel und Strategien

(4) in Sachsituationen mathematische Problemstellungen und Zusammenhänge erkennen, geeignete Hilfsmittel und Strategien Mathematik 5. Klasse Grundschule Die Schülerin, der Schüler kann (1) mit den natürlichen Zahlen schriftlich und im Kopf rechnen (2) geometrische Objekte der Ebene und des Raumes erkennen, beschreiben und

Mehr

Kaiserin Auguste Viktoria Gymnasium Schuleigener Arbeitsplan Mathematik 2014 / 2015

Kaiserin Auguste Viktoria Gymnasium Schuleigener Arbeitsplan Mathematik 2014 / 2015 Kaiserin Auguste Viktoria Gymnasium Schuleigener Arbeitsplan Mathematik 2014 / 2015 Die Reihenfolge der Themen ist verbindlich, um Transparenz und Vergleichbarkeit zu sichern. Die Länge der Einheiten ist

Mehr

Mathematik - Klasse 5 -

Mathematik - Klasse 5 - Schuleigener Lehrplan Mathematik - Klasse 5 - Die n Kompetenzen gelten grundsätzlich für alle Kapitel. Abweichungen werden gesondert aufgeführt. Die hier genannten stellen eine mögliche Auswahl dar. I.

Mehr

Schulinternes Curriculum Mathematik Lambacher Schweizer 5 Jg. 5/6

Schulinternes Curriculum Mathematik Lambacher Schweizer 5 Jg. 5/6 Schulinternes Curriculum Mathematik Lambacher Schweizer 5 Jg. 5/6 Die Kernlehrpläne betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung inhaltsbezogener

Mehr

Die Jahrgangsteams sollen sich auf eine Reihenfolge der Inhalte (Kapitel) unter fachlichen und didaktischen Gesichtspunkten verständigen.

Die Jahrgangsteams sollen sich auf eine Reihenfolge der Inhalte (Kapitel) unter fachlichen und didaktischen Gesichtspunkten verständigen. Schulinternes Curriculum GymBarntrup SI 5 auf der Grundlage des neuen G8 Kernlehrplans 2007 Lambacher Schweizer 5 Stand: 31.05.2016 Klettbuch 3-12-734411-0 Die Kernlehrpläne betonen, dass eine umfassende

Mehr

Stoffverteilungsplan Mathematik Klasse 5 Lambacher Schweizer 5 ISBN

Stoffverteilungsplan Mathematik Klasse 5 Lambacher Schweizer 5 ISBN 1 Stoffverteilungsplan Mathematik Klasse 5 Lambacher Schweizer 5 Der Lehrplan betont, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung inhaltsbezogener

Mehr

Funktionen Darstellen: In Tabellenform notierte Zahlen und Größen werden mithilfe von Diagrammen veranschaulicht (S. 48 Nr. 3).

Funktionen Darstellen: In Tabellenform notierte Zahlen und Größen werden mithilfe von Diagrammen veranschaulicht (S. 48 Nr. 3). Themenreihenfolge im Schulbuch 1. Natürliche Zahlen und Größen Lernfeld: Zählen und Zahlen veranschaulichen 1.1 Große Zahlen Stellentafel 1.2 Zweiersystem Im Blickpunkt: Stellenwertsysteme 1.3 Römische

Mehr

Abfolge in EdM 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen 5. Anteile Brüche Argumentieren/Kommunizieren Arithmetik/Algebra

Abfolge in EdM 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen 5. Anteile Brüche Argumentieren/Kommunizieren Arithmetik/Algebra 5. Anteile Brüche Lernfeld: Nicht alles ist ganz 5.1 Einführung der Brüche 5.2 Bruch als Quotient natürlicher Zahlen 5.3 Anteile bei beliebigen Größen Drei Grundaufgaben Bist du fit Lesen: Die Schüler(innen)

Mehr

Synopse zum Kernlehrplan für die Gesamtschule/Sekundarschule/Realschule

Synopse zum Kernlehrplan für die Gesamtschule/Sekundarschule/Realschule Synopse zum Kernlehrplan für die Gesamtschule/Sekundarschule/Realschule Schnittpunkt Mathematik Band 8 978-3-12-742485-0 x x G-Kurs E-Kurs Zeitraum Inhaltsverzeichnis Rahmenlehrplan für die Sekundarstufe

Mehr

Jahrgangsstufe: Klasse 6 Fach: Mathematik Stand: 04/2016. Jahrgangsstufe 6. Thema: Rechnen mit Brüchen im Sachzusammenhang

Jahrgangsstufe: Klasse 6 Fach: Mathematik Stand: 04/2016. Jahrgangsstufe 6. Thema: Rechnen mit Brüchen im Sachzusammenhang Jahrgangsstufe 6 Schulbuch: Neue Wege 6 (2006) Anzahl schriftlicher Arbeiten: 3/3 Zeitrahmen: 1 Schulstunde Vereinbarung bezüglich Tests: Diagnosetest zu Beginn des Schuljahres Unterrichtsvorhaben 6.1

Mehr

Abgleich mit dem Kerncurriculum 2011 für die Jahrgänge 5 und 6 in G9 Klasse 5 Lambacher Schweizer 5 Klettbuch

Abgleich mit dem Kerncurriculum 2011 für die Jahrgänge 5 und 6 in G9 Klasse 5 Lambacher Schweizer 5 Klettbuch Lambacher Schweizer 2012 Abgleich mit dem Kerncurriculum 2011 für die Jahrgänge 5 und 6 in G9 1 von 8 Lambacher Schweizer 2012 Abgleich mit dem Kerncurriculum 2011 für die Jahrgänge 5 und 6 in G9 2 von

Mehr

GES Espenstraße Schulinterner Lehrplan Mathematik Stand Vorbemerkung

GES Espenstraße Schulinterner Lehrplan Mathematik Stand Vorbemerkung Vorbemerkung Die im Folgenden nach Jahrgängen sortierten Inhalte, inhaltsbezogenen Kompetenzen (IK) und prozessbezogenen Kompetenzen (PK) sind für alle im Fach Mathematik unterrichtenden Lehrer verbindlich.

Mehr

Funktionen Darstellen: Die Schüler(innen) stellen Berechnungen mit Brüchen in Tabellen und Diagrammen dar.

Funktionen Darstellen: Die Schüler(innen) stellen Berechnungen mit Brüchen in Tabellen und Diagrammen dar. Themenreihenfolge im Schulbuch 1. Bruchzahlen Lernfeld: Mehr oder weniger Bruch 1.1 Brüche mit gleichem Wert Erweitern und Kürzen Auf den Punkt gebracht: Arbeiten im Team 1.2 Mischungs- und Teilverhältnisse

Mehr

Schulinterner Lehrplan für das Mariengymnasium Warendorf Sekundarstufe I und II Mathematik

Schulinterner Lehrplan für das Mariengymnasium Warendorf Sekundarstufe I und II Mathematik Schulinterner Lehrplan für das Mariengymnasium Warendorf Sekundarstufe I und II Mathematik (Stand: Juli 2016) Inhaltsverzeichnis 1 Rahmenbedingungen der fachlichen Arbeit...3 1.1 Bedingungen des Unterrichts...3

Mehr

Abfolge in EdM 6 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen Bleib fit im Umgang mit Brüchen

Abfolge in EdM 6 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen Bleib fit im Umgang mit Brüchen Jahrgangsstufe 6 1 Buch: Elemente der Mathematik, Braunschweig 2013, Druck A 1, Westermann Schroedel Diesterweg Verlag, ISBN 978-3-507-87442-8 Abfolge in EdM 6 Prozessbezogene Kompetenzen Inhaltsbezogene

Mehr

inhaltsbezogene Kompetenzen prozessbezogene Kompetenzen Methoden

inhaltsbezogene Kompetenzen prozessbezogene Kompetenzen Methoden S t o f f v e r t e i l u n g s p l a n K l a s s e 5 G y m n a s i u m Nr. 1 2 Natürliche Zahlen 2.1 Große Zahlen - Stellentafel 2.4 Anordnung der natürlichen Zahlen - Zahlenstrahl 2.5 Runden von Zahlen

Mehr

Schulinterner Lehrplan Mathematik Jahrgangsstufe 6

Schulinterner Lehrplan Mathematik Jahrgangsstufe 6 Themenbereich: (1) Kreise Winkel - Symmetrie Buch: Mathe heute 6 (neu) Seiten: 6-43 Zeitrahmen:8 Wochen - Winkel, Punktsymmetrie, Kreis - Kreise Erfassen - Winkel - Messen und Zeichnen -Winkel, Kreise

Mehr

NORBERT - GYMNASIUM Knechtsteden Staatlich anerkanntes privates katholisches Gymnasium für Jungen und Mädchen

NORBERT - GYMNASIUM Knechtsteden Staatlich anerkanntes privates katholisches Gymnasium für Jungen und Mädchen NORBERT - GYMNASIUM Knechtsteden Staatlich anerkanntes privates katholisches Gymnasium für Jungen und Mädchen Schulinternes Curriculum Mathematik Einordnung in das christlich-katholische Profil Zwischen

Mehr

Kernlehrplan für das FSG Fachbereich Mathematik Jahrgangsstufe 6, 2016

Kernlehrplan für das FSG Fachbereich Mathematik Jahrgangsstufe 6, 2016 Kernlehrplan für das FSG Fachbereich Mathematik Jahrgangsstufe 6, 2016 Zeitraum 10 Unterrichtsvorhaben 1 Brüche und Dezimalzahlen 1.1 Natürliche Zahlen und Teilbarkeitsregeln 1.2 Brüche 1.3 Anteile 1.4

Mehr