Mathematische Grundlagen der Ökonomie Übungsblatt 8

Größe: px
Ab Seite anzeigen:

Download "Mathematische Grundlagen der Ökonomie Übungsblatt 8"

Transkript

1 Mathematische Grundlagen der Ökonomie Übungsblatt 8 Abgabe Donnerstag 7. Dezember, 0:5 in H = 20 Punkte Mit Lösungshinweisen zu einigen Aufgaben 29. Das Bisektionsverfahren sucht eine Nullstelle der stetigen Funktionen f. Nehme an, für a < b seien f a 0 f b. Eine analoge Methode funktioniert für f a 0 f b. Dann werden induktiv die Folgen a n und b n wie folgt definiert: Bezeichne den Mittelpunkt mit c n = a n +b n /2. Falls f c n 0, setze a n+ = a n und b n+ = c n, andernfalls setze a n+ = c n und b n+ = b n. Bei Anwendung dieses Verfahrens bricht man die Konstruktion der Folgen natürlich ab, sobald eine der Folgen eine Nullstelle trifft oder das Intervall die gewünschte Genauigkeit erreicht hat. Zeige: a a n b n für alle n {,2,,...}. b Im Intervall [a n,b n ] liegt eine Nullstelle der Funktion f für alle n {,2,,...}. c b n a n = 0. d Die Folgen a n und b n sind monoton und konvergieren gegen einen gemeinsamen Grenzwert, der eine Nullstelle der stetigen Funktion f ist. a a n b n für alle n {,2,,...} ist durch die Definition der Folgen sichergestellt, denn a n c n b n. b Die Konstruktion der Folgen stellt sicher, dass f a n 0 f b n für alle n {,2,,...}. Induktionsanfang n = : f a 0 f b gilt nach Voraussetzung. Induktionsschritt n n + : Es gelte also nach Induktionsannahme f a n 0 f b n. Falls f c n 0, ist f a n+ = f a n 0 und f b n+ = f c n 0. Ist hingegen f c n < 0, so ist f a n+ = f c n < 0 und f b n+ = f b n 0. In beiden Fällen ist also f a n+ 0 f b n+. Der Zwischenwertsatz für stetige Funktionen sagt dann, dass im Intervall [a n,b n ] mindestens eine Nullstelle liegt. c Bezeichne d n = b n a n. Nach Voraussetzung ist d endlich. Die Folgen werden so konstruiert, dass d n+ = d n /2 = d Induktion! und damit b n a n = d n = d + = 0. Noch zu zeigen ist also d n = + Induktionsanfang n = : d = d 2 + = d. Induktionsschritt n n + : d n+ = d n /2 = d n = d + /2 = d. d Die Folge a n ist nach Konstruktion monoton wachsend und b n ist monoton fallend. Denn entweder ist a n+ = a n oder a n+ = c n a n und entweder ist b n+ = b n oder b n+ = c n b n.

2 Da die Folge a n durch b und auch alle anderen b n nach oben beschränkt ist und b n durch a und alle anderen a n nach unten, sind beide Folgen konvergent. Nach dem vorher gezeigten ist nun b n a n = b n a n = 0 und damit b n = a n. Da nur der Grenzwert in allen Intervallen [a n,b n ] enthalten ist, muss er eine Nullstelle der stetigen Funktion f sein. 0. Ist die folgende Funktion auf dem angegebenen Definitionsbereich umkehrbar? Ist sie monoton? Wenn ja, bestimme den Wertebereich und die Umkehrfunktion. a f x = x 2 + 2x +, Df = R Diese Funktion ist nicht umkehrbar. Z.B. ist f 2 = = f 0. b f x = x 2 + 2x +, Df = [, Der Definitionsbereich ist hier auf den wachsenden Teil der Parabel beschränkt, und auf diesem ist die Funktion umkehrbar. Der Wertebereich ist [0, Es ist y = x 2 +2x+ = x+ 2 y = x+. Da x vorausgesetzt wurde, ist interessiert hier nur die Lösung y = x + bzw. y = x. Die Umkehrfunktion ist also in der Notation y f y, Df W f, wobei Df = W f und W f = Df x x, [0, [,. Bemerkung: Die Funktion wäre auch dann umkehrbar, wenn der Definitionsbereich auf, ] beschränkt worden wäre, denn dort ist die Parabel streng monoton fallend. In diesem Fall wäre die Umkehrfunktion x x, [0,,]. c f x = x + 2, Df = [0, Die Funktion ist auf dem angegebenen Definitionsbereich streng wachsend und der Wertebereich ist [2,. Weiter ist unter den geltenden Voraussetzungen y = x + 2 y 2 = x = y 2 2 = x. Die umgekehrte Implikation im letzten Schritt gilt wegen y [2, ebenfalls. Die Umkehrfunktion ist also x x 2 2, [2, [0,. d f x = ex e x +, Df = R Die Umformung f x = ex e x + = ist in einigen der folgenden Schritte + ex nützlich. Die Funktion x e x ist streng monoton fallend, also ist x +e x streng monoton wachsend. Der Wertebereich ist 0,, denn die Funktion ist auf R stetig, streng monoton wachsend und es ist x e x e x + = x e x x e x + = = 0 2

3 sowie x + e x = + x e x = + 0 =. Mit den Voraussetzungen x R und y 0, ist y = + e x + ex = /y e x = /y x = ln/y y y x = ln/y = ln = ln y y Die Umkehrfunktion ist also x ln x x, 0, R Versuche jeweils, Funktion und Umkehrfunktion grob zu skizzieren. In welchem Verhältnis stehen die Graphen von Funktion und Umkehrfunktion geometrisch? Den Graphen der Umkehrfunktion erhält man aus dem Graphen der Funktion durch Spiegelung am Graphen der Funktion x x. Nochmalige Spiegelung an dieser Geraden ergibt wieder den Graphen der Funktion selbst.. In den folgenden Argumenten stecken FEHLER. Wo genau? a Vorsicht Fehler! e x e x = 2 logarithmieren liefert x x = 2 2x = 2 x = Im Allgemeinen ist e x e x = lne x e x lne x lne x = x x. Zudem müsste man die Logarithmusfunktion auch auf die rechte Seite anwenden.

4 Es sei hier noch einmal gewarnt: Im Allgemeinen ist für a,b > 0 und x,y R lna + b lna + lnb = lnab lna b lna lnb = lna/b e x + e y e x+y = e x e y e x e y e xy = ea e x x + y n x n + y n x + y 2 = x 2 + 2xy + y 2 x 2 + y 2 x y 2 = x 2 2xy + y 2 x 2 y 2 = x + yx y a x = e x lna lna x = x lna ab x = e x lnab = e x lna+lnb = a x b x a x a y = e x lna+y lna = a x+y a y x = e x lnay = e x y lna = a xy = a x y a xy b Vorsicht Fehler! e x e x = 2 multiplizieren mit e x e 2x = 2e x e 2x 2e x + = 2 e x 2 = 2 e x = 2 e x = e x = auf beiden Seiten 2 2e x addieren Binomische Formel Wurzel ziehen liefert auf beiden Seiten addieren auf beiden Seiten mit multiplizieren Dies ist unmöglich da e x > 0 für alle x R, also gibt es keine Lösung. Die Wurzel so ziehen wie oben geschehen ist keine Äquivalenzumformung. Aber es ist a 2 = a. Zudem muss die Wurzelfunktion auf beide Seiten angewendet werden. Richtig wäre also... e x 2 = 2 e x = 2 e x = 2 oder e x = 2 e x = + 2 oder e x = 2 x = ln + 2 oder dieser Fall ist unmöglich Hätte man oben nach der Anwendung der Binomischen Formel statt e x 2 den äquivalenten Term e x 2 geschrieben, hätte man Glück gehabt und die Lösung erhalten. Es ist e x 2 = e x 2 = 2 e x 2 = e x 2. Bei unvorsichtigem Quadrieren können neue Lösungen «entstehen», die durch eine Probe am Ende wieder aussortiert werden können. Man darf dann aber keine Äquivalenz sondern nur eine Implikation schreiben. Bei unvorsichtigem Wurzelziehen wie oben können dagegen Lösungen «verloren gehen». Auch eine Probe kann dann die Aufgabe nicht mehr retten. c Vorsicht Fehler! 4

5 Es ist = 2 n+ = = 0. Deshalb = 22n = = + 2n = 4n = 2 n+ = 0. Im Allgemeinen ist 4 n = n +. Das richtige Ergebnis wäre selbstverständlich + 2 n + = = 22n =. 2 d Vorsicht Fehler! Oder sollte man den vorherigen Grenzwert doch eher so berechnen? = = 22n 2n 2 = + = 0 = + 2n + 0 = 0 = 0 Es 0 = und 0 =. Und es gibt auch keine andere Rechtfertigung, um von der ersten zur zweiten Zeile zu kommen. Die Regel für Brüche in der Art + = + kann ebenfalls nicht eingesetzt werden, da der Grenzwert im Nenner = 0 ist. Beachte, dass beim Kürzen bzw. Erweitern eines Bruches alle Summanden in Zähler und Nenner gleichermaßen einbezogen werden müssen. Es ist z.b sondern und damit + = = + 2n = 2 sondern = e Vorsicht Fehler! + n n = + = n n = n Die erste Gleichung ist falsch, denn es ist n n für alle n {,2,,...}. «Bestätigt» wird dies durch + n = n + n n = n + n n = + n n = 5

6 Denn wegen 0 n n für alle n 2 und = 0 ist nach dem Einschließungskriterium n n = 0. Das Argument mit dem Einschließungskriterium ist richtig. Jedoch ist im Allgemeinen + n n n + n n. Der richtige Grenzwert ist + n n = e, wobei e 2,7 die Eulersche Zahl ist. f Vorsicht Fehler! Es sei y = e 2x. Einerseits ist e 2x y = e x e x y. Andererseits ist nach der dritten Binomischen Formel e 2x y = e x + ye x y. Vergleich der rechten Seiten ergibt e x = e x + y, also e x = 2e x. Da e x 0, kann man beide Seiten durch e x teilen und erhält = 2. Einsetzen von y = e 2x bzw. y = e x zeigt deutlicher, wo der Fehler liegt. Vergleich der rechten Seiten ergibt nicht unmittelbar e x = e x + e x, sondern e x e x e x = e x + e x e x e x. Hier kann man nicht beide Seiten durch e x e x = 0 teilen, und deshalb ist der Schluss e x = e x + e x falsch. 0a = 0b gilt immer, ganz egal ob a = b oder a b. Hier ist die Tarnung des Teilens durch Null nicht allzu gut, bei längeren Rechnungen lässt sich so etwas besser verstecken. Wann immer so etwas geschieht, können beliebig falsche Ergebnisse folgen. Zusatz: Mittels vollständiger Induktion kann man daraus folgern, dass alle natürlichen Zahlen gleich sind! Wenn = 2 wäre, könnte man daraus in der Tat beinahe beliebigen Unfug folgern. Alle unter der Voraussetzung = 2 gezogenen Schlüsse gelten aber nur dann, wenn diese Voraussetzung erfüllt ist, und das ist nie der Fall. g Vorsicht Fehler! Wähle n {,2,,...} beliebige reelle Zahlen. Es wird behauptet, dass alle ausgewählten Zahlen gleich sind. Induktionsanfang: Wird nur eine Zahl ausgewählt, so sind offensichtlich alle gewählten Zahlen gleich. Induktionsschritt n n + : Streiche eine Zahl, die weder die größte noch die kleinste ist. Die verbliebenen n Zahlen sind nach Induktionsannahme gleich, und da die gestrichene Zahl weder die größte noch die kleinste ist, muss auch sie gleich den anderen sein. Auch wenn das hier nicht steht, muss wohl gemeint sein, dass die n Zahlen nicht unbedingt verschieden sein müssen, sonst wäre die Behauptung noch unsinniger als sie ohnehin ist. Interpretieren wir die Voraussetzung also auf diese Weise und wenden uns dem angeblichen «Beweis» zu. Zunächst ist die Formulierung «Streiche eine Zahl, die weder die größte noch die kleinste ist» nicht exakt. Es können durchaus mehrere Zahlen «die größte» sein, und wenn alle Zahlen gleich sind, wie das in der Induktionshypothese angenommen werden soll, sind sogar alle gleichzeitig «die größte» und «die kleinste». Hier muss also gemeint sein «Streiche eine Zahl, so dass sich Maximum und Minimum der Menge nicht verändern» oder «Streiche eine Zahl, die entweder mehr als einmal in der Menge enthalten ist oder die weder die größte noch die kleinste ist». Der eigentliche Fehler liegt aber darin, dass die Induktion nicht vollständig ist da nicht alle Induktionsschritte gültig sind. Gleich der erste Induktionsschritt ist falsch: Es ist im Schritt 2 nicht immer möglich, eine Zahl zu streichen, ohne Maximum und Minimum der gewählten Zahlen zu verändern. Denn wenn nur zwei 6

7 reelle Zahlen zur Auswahl stehen und beide nicht gleich sind, ist eine die alleinige größte und die andere die alleinige kleinste. Dies ist eine Variante der gescheiterten «alle Personen in diesem Raum sind gleich groß» Induktion. h Vorsicht Fehler! Einerseits k = = = k = 2 = 2 k Es ist nicht k = k dies gilt nur für ungerade k, für gerade ist k = k. Andererseits k = k = = 4 = 4 Also 2 = 4 und damit schon wieder = 2? Die vorherige Rechnung ist richtig, aber da die erste falsch ist, kann man nicht auf die falsche Gleichung 2 = 4 schließen. Oder gar k = n = n n n = 0 n = n 2 n n = n denn 2 n 2 n n = n 2 n 2 n 2 n und letzteres konvergiert gegen 0 woraus mit dem Einschließungskriterium der behauptete Grenzwert folgt. Im ersten Schritt wurde k «aus Versehen» durch n ersetzt. Die weiteren Schritte sind korrekt, aber der Fehler im ersten Schritt ruiniert das Ergebnis. 7

f(x 0 ) = lim f(b k ) 0 0 ) = 0

f(x 0 ) = lim f(b k ) 0 0 ) = 0 5.10 Zwischenwertsatz. Es sei [a, b] ein Intervall, a < b und f : [a, b] R stetig. Ist f(a) < 0 und f(b) > 0, so existiert ein x 0 ]a, b[ mit f(x 0 ) = 0. Wichtig: Intervall, reellwertig, stetig Beweis.

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 6. (n+1)!. Daraus folgt, dass e 1/x < (n+

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 6. (n+1)!. Daraus folgt, dass e 1/x < (n+ D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger Lösung - Serie 6 1. MC-Aufgaben (Online-Abgabe) 1. Für alle ganzen Zahlen n 1 gilt... (a) e 1/x = o(x n ) für x 0 + (b) e 1/x = o(x n ) für x 0 + (c)

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 1

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 1 D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie. Frage Welche der Aussagen sind richtig? Eine divergente Folge ist nicht beschränkt. Falsch. Z.B. ist {( ) n } n N beschränkt und divergent.

Mehr

Musterlösung zum Weihnahchtsübungsblatt. Teil 1 von Martin Fabricius. Aufgabe 1

Musterlösung zum Weihnahchtsübungsblatt. Teil 1 von Martin Fabricius. Aufgabe 1 Musterlösung zum Weihnahchtsübungsblatt Teil von Martin Fabricius Aufgabe a) Diese Aufgabe kann z. B. durch ausmultiplizieren gelöst werden: (433) 7 = 4 7 3 +3 7 + 7 +3 7 0 = 4 343+3 49+ 7+3 = 37+47+4+3

Mehr

Serie 4 2 = 10. ) ist). Dann gilt für alle n n 0

Serie 4 2 = 10. ) ist). Dann gilt für alle n n 0 Serie 4. Aufgabe 336 Punkte) Gegeben seien zwei reelle Zahlenfolgen durch a n : 0 n, n N b n : n n, n N Bestimmen Sie die Grenzwerte a bzw. b der Folgen a n ) n N bzw. b n ) n N. Geben Sie jeweils zu gegebenem

Mehr

Analysis 1 für Informatiker (An1I)

Analysis 1 für Informatiker (An1I) Hochschule für Technik Rapperswil Analysis 1 für Informatiker (An1I) Stand: 2012-11-13 Inhaltsverzeichnis 1 Funktionen 3 1.1 Gerade, ungerade und periodische Funktionen..................... 3 1.2 Injektive,

Mehr

Potenzen, Wurzeln, Logarithmen

Potenzen, Wurzeln, Logarithmen KAPITEL 3 Potenzen, Wurzeln, Logarithmen 3.1 Funktionen und Umkehrfunktionen.............. 70 3.2 Wurzeln............................ 72 3.3 Warum ist a 2 + b 2 a + b?................. 73 3.4 Potenzfunktion........................

Mehr

Mathematik für Ökonomen Kompakter Einstieg für Bachelorstudierende Lösungen der Aufgaben aus Kapitel 5 Version 1.0 (11.

Mathematik für Ökonomen Kompakter Einstieg für Bachelorstudierende Lösungen der Aufgaben aus Kapitel 5 Version 1.0 (11. Mathematik für Ökonomen Kompakter Einstieg für Bachelorstudierende Lösungen der Aufgaben aus Kapitel 5 Version.0. September 05) E. Cramer, U. Kamps, M. Kateri, M. Burkschat 05 Cramer, Kamps, Kateri, Burkschat

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie 5. MC-Aufgaben Online-Abgabe. Durch zweifache Anwendung der Regel von Bernoulli-de l Hôpital folgt Stimmt diese Überlegung? lim x x 3 +

Mehr

lim Der Zwischenwertsatz besagt folgendes:

lim Der Zwischenwertsatz besagt folgendes: 2.3. Grenzwerte von Funktionen und Stetigkeit 35 Wir stellen nun die wichtigsten Sätze über stetige Funktionen auf abgeschlossenen Intervallen zusammen. Wenn man sagt, eine Funktion f:[a,b] R, definiert

Mehr

Die Lösungen der Gleichung b x = log b (x)

Die Lösungen der Gleichung b x = log b (x) Die Lösungen der Gleichung b = log b () wgnedin@math.uni-koeln.de 17. Januar 2014 In der ersten Vorlesung des Wintersemesters wurde folgende Frage gestellt: Wieviele Lösungen hat die Gleichung ( ) 1 =

Mehr

Lösungen zum Übungsblatt 7

Lösungen zum Übungsblatt 7 Lösungen zum Übungsblatt 7 Mirko Getzin Universität Bielefeld Fakultät für Mathematik 5. Dezember 203 Ich gebe keine Gewähr auf eine vollständige Richtigkeit der Lösungen zu den Übungsaufgaben. Das Dokument

Mehr

$Id: stetig.tex,v /06/26 15:40:18 hk Exp $

$Id: stetig.tex,v /06/26 15:40:18 hk Exp $ $Id: stetig.tex,v 1.11 2012/06/26 15:40:18 hk Exp $ 9 Stetigkeit 9.1 Eigenschaften stetiger Funktionen Am Ende der letzten Sitzung hatten wir eine der Grundeigenschaften stetiger Funktionen nachgewiesen,

Mehr

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Aufgaben und en Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Wintersemester 2008/2009 Übung 6 Einleitung Eventuell auftretende Fragen zum Übungsblatt sollen beantwortet werden. Dazu ist es erforderlich,

Mehr

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5 3 Folgen 3.1 Definition und Beispiele Eine Abbildung a : Æ Ê heißt (reelle) Zahlenfolge. Statt a(n) schreiben wir kürzer a n und bezeichnen die ganze Folge mit (a n ) n Æ oder einfach (a n ), was aber

Mehr

e. Für zwei reelle Zahlen x,y R gelten die Additionstheoreme sin(x+y) = cos(x) sin(y)+sin(x) cos(y). und f. Für eine reelle Zahl x R gilt e ix = 1.

e. Für zwei reelle Zahlen x,y R gelten die Additionstheoreme sin(x+y) = cos(x) sin(y)+sin(x) cos(y). und f. Für eine reelle Zahl x R gilt e ix = 1. 8. GRENZWERTE UND STETIGKEIT VON FUNKTIONEN 51 e. Für zwei reelle Zahlen x,y R gelten die Additionstheoreme cos(x+y) = cos(x) cos(y) sin(x) sin(y) und sin(x+y) = cos(x) sin(y)+sin(x) cos(y). f. Für eine

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl WS 008/09 Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge

Mehr

Prüfungsteil B, Aufgabengruppe 2, Analysis. Bayern Aufgabe 1. Bundesabitur Mathematik: Musterlösung. Abitur Mathematik Bayern 2014

Prüfungsteil B, Aufgabengruppe 2, Analysis. Bayern Aufgabe 1. Bundesabitur Mathematik: Musterlösung. Abitur Mathematik Bayern 2014 Bundesabitur Mathematik: Prüfungsteil B, Aufgabengruppe, Bayern 014 Aufgabe 1 a) 1. SCHRITT: DEFINITIONSBEREICH BESTIMMEN Bei einem Bruch darf der Nenner nicht null werden, d.h. es muss gelten: x 5 0 x

Mehr

Bezeichnung von Funktionen x := y:=

Bezeichnung von Funktionen x := y:= Bezeichnung von Funktionen x := y:= Bezeichnung von Funktionen x := y:= Analytische Darstellung (Funktionsgleichung) Explizit: (aufgelöst nach y) Analytische Darstellung (Funktionsgleichung) Explizit:

Mehr

Analysis I. 2. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 2. Übungsstunde. Steven Battilana. battilana.uk/teaching Analysis I. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching March 5, 07 Erinnerung (Euler Formel). e iϕ = cos ϕ + i sin ϕ. Die Polarform von z = x + iy C sei Euler Formel z

Mehr

Alternativ kann man auch die Differenz a n+1 a n betrachten:

Alternativ kann man auch die Differenz a n+1 a n betrachten: Aufgabe 1 Folgen auf Monotonie und Beschränktheit prüfen. a) Beschränktheit? Die Folge ( ) n N mit = n + ( 1) n ist nach unten beschränkt, denn es gilt n + ( 1) n n 1 1 für alle n N. Allerdings ist die

Mehr

Mathematische Grundlagen der Ökonomie Übungsblatt 11

Mathematische Grundlagen der Ökonomie Übungsblatt 11 Mathematische Grundlagen der Ökonomie Übungsblatt 11 Abgabe Donnerstag 1. Januar, 10:15 in H3 3+4+8+5 = 0 Punkte Mit Lösungshinweisen zu einigen Aufgaben 43. Die Funktion f sei auf einem Intervall I R

Mehr

Jede beschränkte und monotone Folge (a n ) n N konvergiert, d.h. es gibt ein a R, so dass lim

Jede beschränkte und monotone Folge (a n ) n N konvergiert, d.h. es gibt ein a R, so dass lim Beispiel 3.10 ( 1) n n a n a+nd aq n 1 (a > 0) n monoton steigend d 0 q 1 nein nein streng monoton steigend d > 0 q > 1 nein nein monoton fallend d 0 0 q 1 streng monoton fallend d < 0 0 < q < 1 ja nein

Mehr

(alternierendes Vorzeichen) a n := ( 1)n n + 1 a n := 3n 2 7n a n := n(n 1)(n 2), n 3

(alternierendes Vorzeichen) a n := ( 1)n n + 1 a n := 3n 2 7n a n := n(n 1)(n 2), n 3 ANALYSIS FÜR PHYSIK UND VERWANDTE FÄCHER I 43 2. Folgen und Reihen Folgen und Reihen werden in jedem Analysislehrbuch besprochen, siehe etwa [H, Kapitel III], [K, Kapitel 5], [J2, Kapitel 23] oder [M,

Mehr

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie (KIT) WS 202/3 Institut für Analysis 26..202 Prof. Dr. Tobias Lamm Dr. Patrick Breuning Höhere Mathematik I für die Fachrichtung Physik 7. Übungsblatt Aufgabe Untersuchen

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Gleichung Eine Gleichung erhalten wir durch Gleichsetzen zweier Terme. Kapitel 3 Gleichungen und Ungleichungen linke Seite = rechte Seite Grundmenge: Menge aller Zahlen, die wir als Lösung der Gleichung

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Kapitel 3 Gleichungen und Ungleichungen Josef Leydold Auffrischungskurs Mathematik WS 2017/18 3 Gleichungen und Ungleichungen 1 / 58 Gleichung Eine Gleichung erhalten wir durch Gleichsetzen zweier Terme.

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Kapitel 3 Gleichungen und Ungleichungen Josef Leydold Auffrischungskurs Mathematik WS 2017/18 3 Gleichungen und Ungleichungen 1 / 58 Gleichung Eine Gleichung erhalten wir durch Gleichsetzen zweier Terme.

Mehr

5 Stetigkeit und Differenzierbarkeit

5 Stetigkeit und Differenzierbarkeit 5 Stetigkeit und Differenzierbarkeit 5.1 Stetigkeit und Grenzwerte von Funktionen f(x 0 ) x 0 Graph einer stetigen Funktion. Analysis I TUHH, Winter 2006/2007 Armin Iske 127 Häufungspunkt und Abschluss.

Mehr

Aufgabe 1 Zeigen Sie mittels vollständiger Induktion, dass für alle n N. n(n + 1)(2n + 1) 6. j 2 = gilt.

Aufgabe 1 Zeigen Sie mittels vollständiger Induktion, dass für alle n N. n(n + 1)(2n + 1) 6. j 2 = gilt. Aufgabe Zeigen Sie mittels vollständiger Induktion, dass für alle n N j 2 j n(n + )(2n + ) gilt. Der Beweis wird mit Hilfe vollständiger Induktion geführt. Wir verifizieren daher zunächst den Induktionsanfang,

Mehr

{, wenn n gerade ist,, wenn n ungerade ist.

{, wenn n gerade ist,, wenn n ungerade ist. 11 GRENZWERTE VON FUNKTIONEN UND STETIGKEIT 60 Mit anderen Worten, es ist lim f(x) = b lim f (, a)(x) = b, x a x a wobei f (, a) die Einschränkung von f auf (, a) ist. Entsprechendes gilt für lim x a.

Mehr

Mathematik für Wirtschaftsinformatiker

Mathematik für Wirtschaftsinformatiker UNIVERSITÄT SIEGEN Prof. Dr. Alfred Müller 12. Februar 2009 Klausuraufgaben Mathematik für Wirtschaftsinformatiker Beachten Sie folgende Hinweise: (1) Überprüfen Sie Ihr Exemplar auf Vollständigkeit! Die

Mehr

Musterlösung zur Probeklausur zur Mathematik für Biologen

Musterlösung zur Probeklausur zur Mathematik für Biologen Lehrstuhl A für Mathematik Aachen, den 15.01.04 Prof. Dr. R. Stens P. - M. Küpper Musterlösung zur Probeklausur zur Mathematik für Biologen Aufgabe 1: a) Vereinfachen Sie die folgenden Terme so weit wie

Mehr

(a) Wie gross ist der Ameisenstaat ungefähr nach 1, 2, 3 oder allgemein n Wochen?

(a) Wie gross ist der Ameisenstaat ungefähr nach 1, 2, 3 oder allgemein n Wochen? Mathematik I für Naturwissenschaften Dr. Christine Zehrt 04.0.8 Übung 3 (für Pharma/Geo/Bio) Uni Basel Besprechung der Lösungen: 8. Oktober 08 in den Übungsstunden Aufgabe In einem Ameisenstaat mit einer

Mehr

Stetigkeit. Definitionen. Beispiele

Stetigkeit. Definitionen. Beispiele Stetigkeit Definitionen Stetigkeit Sei f : D mit D eine Funktion. f heißt stetig in a D, falls für jede Folge x n in D (d.h. x n D für alle n ) mit lim x n a gilt: lim f x n f a. Die Funktion f : D heißt

Mehr

5 Teilmengen von R und von R n

5 Teilmengen von R und von R n 5 Teilmengen von R und von R n Der R n ist eine mathematische Verallgemeinerung: R n = {x = (x 1,...,x n ) : x i R} = R }... {{ R }. n mal Für x R ist x der Abstand zum Nullpunkt. Die entsprechende Verallgemeinerung

Mehr

Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Übungsblatt 1

Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Übungsblatt 1 Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 1 Hausaufgaben Aufgabe 1.1 Zeigen Sie mit vollständiger Induktion:

Mehr

11 Logarithmus und allgemeine Potenzen

11 Logarithmus und allgemeine Potenzen Logarithmus und allgemeine Potenzen Bevor wir uns mit den Eigenschaften von Umkehrfunktionen, und insbesondere mit der Umkehrfunktion der Eponentialfunktion ep : R R + beschäftigen, erinnern wir an den

Mehr

Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1. 1 Grundlagen 2. 2 Der Graph einer Funktion 4. 3 Umkehrbarkeit 5

Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1. 1 Grundlagen 2. 2 Der Graph einer Funktion 4. 3 Umkehrbarkeit 5 Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1 Inhaltsverzeichnis 1 Grundlagen 2 2 Der Graph einer Funktion

Mehr

Analysis I. 3. Beispielklausur mit Lösungen

Analysis I. 3. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 3. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine Abbildung F von einer Menge L in eine

Mehr

Mathematische und statistische Methoden für Pharmazeuten

Mathematische und statistische Methoden für Pharmazeuten Mathematische und statistische Methoden für Pharmazeuten Josef Berger 11. Juni 2018 Dieses Manuskript enthält auszugsweise einige Teile der Vorlesung. Das Lesen des Manuskriptes ersetzt nicht den Besuch

Mehr

Lösung - Serie 3. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe)

Lösung - Serie 3. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) D-MAVT/D-MATL Analysis I HS 018 Dr. Andreas Steiger Lösung - Serie 3 MC-Aufgaben (Online-Abgabe) 1. Es sei die Funktion f : [0, ) [0, ) definiert durch f(x) = ln(x + 1), wobei der Logarithmus ln zur Basis

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 4. Übungsblatt

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 4. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 0/4 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 4. Übungsblatt Aufgabe

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Sommersemester 0 Mathematik 3 für Informatik Hausaufgabenblatt Lösungshinweise ohne Garantie auf Fehlerfeiheit). Seien f ) = { {, falls, falls und f ) =. ln, falls a) Skizzieren

Mehr

a 0, a 1, a 2, a 3,... Dabei stehen die drei Pünktchen für unendlich oft so weiter.

a 0, a 1, a 2, a 3,... Dabei stehen die drei Pünktchen für unendlich oft so weiter. 7 Folgen 30 7 Folgen Wir betrachten nun (unendliche) Folgen von Zahlen a 0, a, a 2, a 3,.... Dabei stehen die drei Pünktchen für unendlich oft so weiter. Bezeichnung Wir bezeichnen mit N die Menge der

Mehr

Lösungen 4.Übungsblatt

Lösungen 4.Übungsblatt Karlsruher Institut für Technology (KIT) WS 2011/2012 Institut für Analysis Priv.-Doz. Dr. Gerd Herzog Dipl.-Math.techn. Rainer Mandel Lösungen 4.Übungsblatt Aufgabe 13 (K) Bestimmen Sie sämtliche Häufungswerte

Mehr

x e x sin(x) lim oder lim bestimmen lassen.

x e x sin(x) lim oder lim bestimmen lassen. Es folgt nun noch ein Nachtrag zum Thema Grenzwerte von Funktionen. Wir hatten in Abschnitt 2.6 Beispiele von Funktionen gesehen, bei denen die üblichen Grenzwertregeln nicht weiterhelfen, etwa bei Quotienten

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0 KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 03/4 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 0. Übungsblatt Aufgabe

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppitz, Dr. I. Rybak 4. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 9 Prof. Dr. M. Stroppel Prof. Dr. N. Knarr Lösungshinweise zu en Hausaufgaben: Aufgabe H. a)

Mehr

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08)

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) 1 Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) Kapitel 4: Konvergenz und Stetigkeit Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 22. November 2007) Folgen Eine Folge

Mehr

1 Folgen und Stetigkeit

1 Folgen und Stetigkeit 1 Folgen und Stetigkeit 1.1 Folgen Eine Folge ist eine durchnummerierte Zusammenfassung von reellen Zahlen. Sie wird geschrieben als (a 1, a 2, a 3,...) = (a n ) n N. Es ist also a n R. Der Index n gibt

Mehr

Ferienkurs Seite 1. Technische Universität München Ferienkurs Analysis 1 Stetigkeit, Konvergenz, Topologie

Ferienkurs Seite 1. Technische Universität München Ferienkurs Analysis 1 Stetigkeit, Konvergenz, Topologie Ferienkurs Seite Technische Universität München Ferienkurs Analysis Hannah Schamoni Stetigkeit, Konvergenz, Topologie Lösung 2.03.202. Gleichmäßige Konvergenz Entscheiden Sie, ob die folgenden auf (0,

Mehr

Teil I Auswahlfragen

Teil I Auswahlfragen UNIVERSITÄT KOBLENZ LANDAU INSTITUT FÜR MATHEMATIK Dr. Dominik Faas Grundlagen der Analysis Sommersemester 010 Klausur vom 07.09.010 Teil I Auswahlfragen Name: Hinweise: Bei den folgenden Auswahlfragen

Mehr

1.3 Funktionen einer reellen Veränderlichen und ihre Darstellung im x, y - Koordinatensystem

1.3 Funktionen einer reellen Veränderlichen und ihre Darstellung im x, y - Koordinatensystem .0.0. Funktionen einer reellen Veränderlichen und ihre Darstellung im, - Koordinatensstem Vereinbarungen Wir betrachten vorerst nur noch Funktionen f, deren Definitionsund Wertebereich jeweils R oder ein

Mehr

heißt Exponentialreihe. Die durch = exp(1) = e (Eulersche Zahl). n! + R m+1(x) R m+1 (x) = n! m m + 2

heißt Exponentialreihe. Die durch = exp(1) = e (Eulersche Zahl). n! + R m+1(x) R m+1 (x) = n! m m + 2 9 DIE EXPONENTIALREIHE 48 absolut konvergent. Beweis. Wegen x n+ n! n + )!x n = x n + < 2 für n 2 x folgt dies aus dem Quotientenkriterium 8.9). Definition. Die Reihe x n heißt Exponentialreihe. Die durch

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppitz, Dr. I. Rybak 14. Gruppenübung zur Vorlesung Höhere Mathematik 1 Sommersemester 009 Prof. Dr. M. Stroppel Prof. Dr. N. Knarr Lösungshinweise zu den Hausaufgaben: Aufgabe

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 11. Übungsblatt. { wachsend fallend

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 11. Übungsblatt. { wachsend fallend UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl WS 8/9 Aufgabe Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge

Mehr

Klausur zur Analysis I WS 01/02

Klausur zur Analysis I WS 01/02 Klausur zur Analysis I WS 0/0 Prof. Dr. E. Kuwert. Februar 00 Aufgabe (4 Punkte) Berechnen Sie unter a) und b) jeweils die Ableitung von f für x (0, ): a) f(x) = e sin x b) f(x) = x α log x a) f (x) =

Mehr

2.5 Komplexe Wurzeln. Mathematik für Naturwissenschaftler I 2.5

2.5 Komplexe Wurzeln. Mathematik für Naturwissenschaftler I 2.5 Mathematik für Naturwissenschaftler I 2.5 Die Periodizität von e z ist der Grund, warum im Komplexen Logarithmen etwas schwieriger zu behandeln sind als im Reellen: Der natürliche Logarithmus ist die Umkehrung

Mehr

1 Folgen und Stetigkeit

1 Folgen und Stetigkeit 1 Folgen und Stetigkeit 1.1 Folgen Eine Folge ist eine durchnummerierte Zusammenfassung von reellen Zahlen. Sie wird geschrieben als (a 1, a 2, a 3,...) = (a n ) n N. Es ist also a n R. Der Index n gibt

Mehr

1. Begründen Sie, ob durch folgende Vorschriften reelle Funktionen y = f(x) definiert werden.

1. Begründen Sie, ob durch folgende Vorschriften reelle Funktionen y = f(x) definiert werden. Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen Elementare Funktionen. Begründen Sie, ob durch folgende Vorschriften reelle Funktionen y = f( definiert werden. { { 2

Mehr

17 Logarithmus und allgemeine Potenz

17 Logarithmus und allgemeine Potenz 7 Logarithmus und allgemeine Potenz 7. Der natürliche Logarithmus 7.3 Die allgemeine Potenz 7.4 Die Exponentialfunktion zur Basis a 7.5 Die Potenzfunktion zum Exponenten b 7.6 Die Logarithmusfunktion zur

Mehr

D-BAUG Analysis I HS 2015 Dr. Meike Akveld. Clicker Fragen

D-BAUG Analysis I HS 2015 Dr. Meike Akveld. Clicker Fragen D-BAUG Analysis I HS 05 Dr. Meike Akveld Clicker Fragen Frage Der Satz: Dieser Satz ist falsch ist wahr ist richtig weiss ich nicht Es handelt hier um eine sogenannte Paradoxie. Die Paradoxie dieses Satzes

Mehr

Elementare Beweismethoden

Elementare Beweismethoden Elementare Beweismethoden Christian Hensel 404015 Inhaltsverzeichnis Vortrag zum Thema Elementare Beweismethoden im Rahmen des Proseminars Mathematisches Problemlösen 1 Einführung und wichtige Begriffe

Mehr

f : x 2 x f : x 1 Exponentialfunktion zur Basis a. Für alle Exponentialfunktionen gelten die Gleichungen (1) a x a y = a x+y (2) ax a y = ax y

f : x 2 x f : x 1 Exponentialfunktion zur Basis a. Für alle Exponentialfunktionen gelten die Gleichungen (1) a x a y = a x+y (2) ax a y = ax y 5. Die natürliche Exponentialfunktion und natürliche Logarithmusfunktion ================================================================== 5.1 Die natürliche Exponentialfunktion f : x 2 x f : x 1 2 x

Mehr

Mathematik für Sicherheitsingenieure I A

Mathematik für Sicherheitsingenieure I A Priv.-Doz. Dr. J. Ruppenthal Wuppertal, 9.0.08 Dr. T. Pawlaschyk Mathematik für Sicherheitsingenieure I A Aufgabe. (5+5+6+4 Punkte) a) Geben Sie für jede der folgenden Aussagen an, ob sie WAHR oder FALSCH

Mehr

Ferienkurs Stetigkeit und Konvergenz Seite 1. Technische Universität München Ferienkurs Analysis 1. Musterlösung = lim.

Ferienkurs Stetigkeit und Konvergenz Seite 1. Technische Universität München Ferienkurs Analysis 1. Musterlösung = lim. Ferienkurs Stetigkeit und Konvergenz Seite Technische Universität München Ferienkurs Analysis Hannah Schamoni Stetigkeit und Konvergenz Musterlösung 6.03.20. Grenzwerte I Berechnen Sie lim f(), lim f()

Mehr

b liegt zwischen a und c.

b liegt zwischen a und c. 2 DIE ANORDNUNGSAXIOME 5 (2.4) a, b, c R : (a < b 0 < c) ac < bc Monotoniegesetz der Multiplikation Bezeichnungen a > b : b < a (> wird gelesen: größer als ) a b : a < b oder a = b a b : a > b oder a =

Mehr

Staatsexamen Herbst 2017 Differential- und Integralrechnung, Thema I

Staatsexamen Herbst 2017 Differential- und Integralrechnung, Thema I Staatsexamen Herbst 17 Differential- und Integralrechnung, Thema I 1. a) Die Aussage ist wahr! Sei s R der Reihenwert der Reihe k=1 Da a n = s n s n 1 für n, ist also b) Die Aussage ist falsch! a k, also

Mehr

Unendliche Potenzen. Thomas Peters Thomas Mathe-Seiten 7. August 2010

Unendliche Potenzen. Thomas Peters Thomas Mathe-Seiten  7. August 2010 Unendliche Potenzen Thomas Peters Thomas Mathe-Seiten www.mathe-seiten.de 7. August 00 In diesem Artikel werden wir uns einem zunächst bizarr anmutenden Thema widmen, nämlich den unendlichen Kettenbrüchen,

Mehr

Mathematische Grundlagen (01141) SoSe 2009

Mathematische Grundlagen (01141) SoSe 2009 Mathematische Grundlagen (04) SoSe 2009 Klausur am 29.08.2009: Musterlösungen Aufgabe Im Induktionsanfang sei n 0 = 0. Dann gilt Somit gilt der Induktionsanfang. 0 Die Induktionsvoraussetzung ist, dass

Mehr

2. Gruppenübung zur Vorlesung. Höhere Mathematik 2. Sommersemester 2013 L := 2. sin(2x) + 1 sin(x)

2. Gruppenübung zur Vorlesung. Höhere Mathematik 2. Sommersemester 2013 L := 2. sin(2x) + 1 sin(x) O. Alaya, R. Bauer M. Fetzer, K. Sanei Kashani B. Krinn, J. Schmid. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 03 Lösungshinweise zu den Hausaufgaben: Aufgabe H 5. Stetigkeit Gegeben ist

Mehr

c < 1, (1) c k x k0 c k = x k0

c < 1, (1) c k x k0 c k = x k0 4.14 Satz (Quotientenkriterium). Es sei (x k ) Folge in K. Falls ein k 0 existiert, so dass für k k 0 gilt x k 0 und x k+1 x k c < 1, (1) so ist x k absolut konvergent. Beweis. Aus (1) folgt mit vollständiger

Mehr

Mathematische Grundlagen (01141) SoSe 2010

Mathematische Grundlagen (01141) SoSe 2010 Mathematische Grundlagen (4) SoSe Klausur am 8.8.: Musterlösungen Aufgabe Sei n. Es gilt (+) (+)(+). Es gilt somit der Induktionsanfang. Als Induktionsannahme nehmen wir an, dass n n(n+)(n+) für ein n

Mehr

Mathematisches Argumentieren und Beweisen Beweisarten Besipiele. Hagen Knaf, WS 2014/15

Mathematisches Argumentieren und Beweisen Beweisarten Besipiele. Hagen Knaf, WS 2014/15 Mathematisches Argumentieren und Beweisen Beweisarten Besipiele Hagen Knaf, WS 2014/15 Im Folgenden sind einige der in der Vorlesung besprochenen Beispielbeweise für die verschiedenen Beweisarten aufgeführt

Mehr

9. Übungsblatt zur Vorlesung Mathematik I für Informatik

9. Übungsblatt zur Vorlesung Mathematik I für Informatik Fachbereich Mathematik Prof. Dr. Thomas Streicher Dr. Sven Herrmann Dipl.-Math. Susanne Pape 9. Übungsblatt zur Vorlesung Mathematik I für Informatik Wintersemester 2009/2010 8./9. Dezember 2009 Gruppenübung

Mehr

g(x) := (x 2 + 2x + 4) sin(x) für z 1 := 1 + 3i und z 2 := 1 + i. Geben Sie das Ergebnis jeweils

g(x) := (x 2 + 2x + 4) sin(x) für z 1 := 1 + 3i und z 2 := 1 + i. Geben Sie das Ergebnis jeweils . Aufgabe Punkte a Berechnen Sie den Grenzwert n + n + 3n. b Leiten Sie die folgenden Funktionen ab. Dabei ist a R eine Konstante. fx : lnx e a, gx : x + x + 4 sinx c Berechnen Sie z z und z z in der Form

Mehr

13. Übungsblatt zur Mathematik I für Maschinenbau

13. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 3. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 00/ 07.0.-.0. Aufgabe G Stetigkeit) a) Gegeben

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 17 Potenzreihen Definition 17.1. Es sei (c n ) n N eine Folge von reellen Zahlen und x eine weitere reelle Zahl. Dann heißt

Mehr

Klausurvorbereitung Höhere Mathematik Lösungen

Klausurvorbereitung Höhere Mathematik Lösungen Klausurvorbereitung Höhere Mathematik Lösungen Yannick Schrör Christian Mielers. Februar 06 Ungleichungen Bestimme die Lösungen für folgende Ungleichungen. x+ > x + x + Fall : x, x + > x + 6 Lösung im

Mehr

3 Folgen und Stetigkeit

3 Folgen und Stetigkeit 3 Folgen und Stetigkeit 3.1 Folgen Eine Folge ist eine durchnummerierte Zusammenfassung von reellen Zahlen. Sie wird geschrieben als (a 1, a 2, a 3,...) = (a n ) n N. Es ist also a n R. Der Index n gibt

Mehr

eine reelle oder komplexe Folge ist, kann man daraus eine neue Folge {s n } n=0 konstruieren durch s n = a 0 + a a n, s n = a k.

eine reelle oder komplexe Folge ist, kann man daraus eine neue Folge {s n } n=0 konstruieren durch s n = a 0 + a a n, s n = a k. Analysis, Woche 7 Reihen I A 7. Folgen aus Folgen Wenn a n eine reelle oder komplexe Folge ist, kann man daraus eine neue Folge s n konstruieren durch s n = a 0 + a + + a n, oder netter geschrieben s n

Mehr

Inhaltsverzeichnis. Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden. Mathematischer Vorkurs.

Inhaltsverzeichnis. Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden. Mathematischer Vorkurs. Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Exponentialfunktionen und Logarithmen Inhaltsverzeichnis 1 Einführung 2 2

Mehr

Serie 4: Flächeninhalt und Integration

Serie 4: Flächeninhalt und Integration D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr. Ana Cannas Serie 4: Flächeninhalt und Integration Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom. und 4. Oktober.. Das Bild zeigt

Mehr

Dem Anschein nach werden diese Zahlen kleiner und kleiner und streben gegen Null. Was sollen sie sonst auch tun? Aber der Begriff

Dem Anschein nach werden diese Zahlen kleiner und kleiner und streben gegen Null. Was sollen sie sonst auch tun? Aber der Begriff 47 5 Irrationales 5.1 Folgen, Konvergenz und Vollständigkeit Eine Abbildung a : N R definiert eine Folge von reellen Werten a 1 = a(1), a 2 = a(2), a 3 = a(3),... Solche Zahlenfolgen werden uns dazu dienen,

Mehr

(a) Welche der folgenden Funktionen ist injektiv, surjektiv beziehungsweise bijektiv? x 1 + x

(a) Welche der folgenden Funktionen ist injektiv, surjektiv beziehungsweise bijektiv? x 1 + x Aufgabe Injektiv und Surjektiv) a) Welche der folgenden Funktionen ist injektiv, surjektiv beziehungsweise bijektiv?. f : Z N; x x 2. 2. f : R R; x x x.. f : R [, ]; x sin x. 4. f : C C; z z 4. b) Zeigen

Mehr

Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version A)

Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version A) Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, 10.1.009 (Version A) Kennwort: Übungsgruppe: (Sie können ein beliebiges Kennwort wählen, um Ihre Anonymität zu wahren! Da die Probeklausur

Mehr

Zusammenfassung: Beweisverfahren

Zusammenfassung: Beweisverfahren LGÖ Ks VMa 11 Schuljahr 216/217 Zusammenfassung: Beweisverfahren Inhaltsverzeichnis Teilbarkeitslehre... 1 Mathematische Sätze... 1 Bedingungen für innere Extremstellen... 3 Beweisverfahren... 3 Für Experten...

Mehr

Zusammenfassung: Beweisverfahren

Zusammenfassung: Beweisverfahren LGÖ Ks VMa 11 Schuljahr 217/218 Zusammenfassung: Beweisverfahren Inhaltsverzeichnis Teilbarkeitslehre... 1 Mathematische Sätze... 1 Bedingungen für Extremstellen und Wendestellen... 2 Beweisverfahren...

Mehr

Vollständige Induktion. Analysis I. Guofang Wang. Universität Freiburg

Vollständige Induktion. Analysis I. Guofang Wang. Universität Freiburg Universität Freiburg 26.10.2011 Vollständige Induktion Wir unterbrechen jetzt die Diskussion der Axiome der reellen Zahlen, um das Beweisverfahren der vollständigen Induktion kennenzulernen. Wir setzen

Mehr

Übungsblatt 2: Lösungen

Übungsblatt 2: Lösungen Übungsblatt 2: Lösungen 3..208 ) Bei Teilaufgabe (c) liegt eine unecht gebrochen rationale Funktionen vor, daher ist hier eine einleitende Polynomdivision zur ufspaltung in einen polynomialen nteil (symptote)

Mehr

Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS12/13 Dipl.-Math. T. Pawlaschyk,

Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS12/13 Dipl.-Math. T. Pawlaschyk, Musterlo sungen zu Blatt Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS2/ Dipl.-Math. T. Pawlaschyk, 29.0.2 Thema: Wiederholung Aufgabe Zeigen Sie, dass

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Oliver Matte Max Lein Zentralübung Mathematik für Physiker 2 Analysis ) Wintersemester 200/20 Lösungsblatt 5 2..200) 32. Häufungspunkte Sei a

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 5: Konvergenz Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 15. Dezember 2011) Folgen Eine Folge x 0, x 1,

Mehr

2. Eigenschaften von Zahlenfolgen

2. Eigenschaften von Zahlenfolgen . Eigenschaften von Zahlenfolgen.. Monotone Folgen ) Definition Eine Folge heisst streng monoton wachsend, wenn für alle n gilt: an+ > an. (D.h. jedes Folgenglied ist grösser als sein Vorgänger. Man sagt

Mehr

Funktionen. x : Variable von f oder Argument f x : Funktionswert, Wert der Funktion f an der Stelle x D f. : Definitionsmenge(Urbildmenge)

Funktionen. x : Variable von f oder Argument f x : Funktionswert, Wert der Funktion f an der Stelle x D f. : Definitionsmenge(Urbildmenge) Funktionen Eine Funktion oder Abbildung ist eine Beziehung zwischen zwei nicht leere Mengen D f und Z, die jedem Element x aus einer Menge D f genau ein Element y aus anderer Menge Z zuordnet. f : D f

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 25/6): Differential und Integralrechnung 3 3. (Herbst 2, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende Tatsachen

Mehr