Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Clusteranalyse. Christoph Sawade/Niels Landwehr/Tobias Scheffer

Größe: px
Ab Seite anzeigen:

Download "Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Clusteranalyse. Christoph Sawade/Niels Landwehr/Tobias Scheffer"

Transkript

1 Universität Potsdam Institut für Informati Lehrstuhl Maschinelles Lernen Clusteranalyse Christoph Sawade/iels Landwehr/Tobias Scheffer

2 Überblic Problemstellung/Motivation Deterministischer Ansatz: K-Means Probabilistischer Ansatz: Gaußsche Mischmodelle Bayesscher Ansatz: Gaußsche Mischmodelle + Priors 2

3 Überblic Problemstellung/Motivation Deterministischer Ansatz: K-Means Probabilistischer Ansatz: Gaußsche Mischmodelle Bayesscher Ansatz: Gaußsche Mischmodelle + Priors 3

4 Clusteranalyse: Was ist Clustern? Wir haben Datenpunte Mermalsvetoren Wir wollen Einteilung der Datenpunte in Cluster 4

5 Clusteranalyse: Was ist Clustern? Annahme oft, dass Datenpunte zu verschiedenen Klassen gehören aber wir sehen eine Klassenlabels! icht-überwachtes Lernen: reonstruiere Klassen ohne Labels 5

6 Clusteranalyse: Anwendungen Überblic über eine Doumentenolletion Z.B. Suchmaschine: Suchwort Kohl Liefert grosse Menge von Doumenten Helmut Kohl (Politi) Kohl (Gemüse) Kohl s (US Kaufhaus) Idee: zeige dem utzer die Cluster, um genauere Auswahl des Themas zu ermöglichen 6

7 Clusteranalyse: Anwendungen Spam Kampagnen identifizieren Spam-Kampagne: große Menge ähnlicher (aber nicht gleicher) s Eine Kampagne ist ein deutlicher Cluster ähnlicher s 7

8 Überblic Problemstellung/Motivation Deterministischer Ansatz: K-Means Probabilistischer Ansatz: Gaußsches Mischmodell Bayesscher Ansatz: Gaußsches Mischmodell + Priors 8

9 Problemstellung Clustering (Deterministisch) Gegeben Daten mit Anzahl vermuteter Cluster Gesucht Zuweisung der Daten zu Clustern,,K Clusterzentren Oft problematisch (woher wissen wir K?) x z.b. liegt im 3. Cluster 9

10 Problemstellung Clustering (Deterministisch) Gesucht Zuweisung der Daten zu Clustern: Clusterzentren Ziel/Optimierungsriterium K µ,..., µ, =,..., K K Abstand zwischen Punten im selben Cluster lein und Abstand zwischen Punten in verschiedenen Clustern groß Minimiere quadratische Abstand zum Clusterzentrum: K J = r x µ n= = n n Minimieren in r,..., r und µ,..., µ 2 n K 0

11 K-Means Algorithmus Gleichzeitiges Min. über und schwierig Iterativer Algorithmus: Abwechselnde Minimierung Starte mit zufälligen Update Iteriere bis Konvergenz Expectation Maximization Konvergenz sicher, weil J immer sint aber im Allgemeinen nur loales Optimum

12 K-Means Algorithmus Expectation Schritt Einfach: ordne jeden Punt dem ihm nächsten Cluster(zentrum) zu 2

13 K-Means Algorithmus Maximization Schritt Ableitungen ull setzen 3

14 K-Means Algorithmus Maximization Schritt Schwerpunt der Punte, die in den Cluster fallen 4

15 K-Means: Beispiel K = 2 5

16 K-Means: Beispiel K = 2 6

17 K-Means: Beispiel K = 2 7

18 K-Means: Beispiel K = 2 8

19 K-Means: Beispiel K = 2 9

20 K-Means: Beispiel K = 2 20

21 K-Means: Beispiel K = 2 2

22 K-Means: Beispiel K = 2 Kostenfuntion J fällt ontinuierlich Iterationen 22

23 Kommentare K-Means Einfach zu implementieren Relativ schnell: O(K) per Iteration ur loales Optimum garantiert: unterschiedliche Startwerte = unterschiedliche Lösungen Keine Konfidenz für Clusterzugehörigeit Muss Anzahl Cluster vorgeben 23

24 Probabilistisches Clustern besser Clustern sollte Konfidenz liefern: für einige Datenpunte önnen wir eine sichere Entscheidung treffen! Probabilistisches Clustern Beobachtete Daten Clustern Cluster oder 2? Probabilistische Cluster Ursprüngliche Klassen (nicht beobachtet) Sicher Cluster 3! 24

25 Vorgegebene Anzahl von Clustern? Woher wissen wir, wie viele Cluster in Daten? Manchmal lar aus der Anwendungsdomäne Oftmals aber auch unlar Besser wäre es, wenn Anzahl Cluster vom Clustering Algorithmus mit bestimmt wird 25

26 Überblic Problemstellung/Motivation Deterministischer Ansatz: -Means Probabilistischer Ansatz: Gaußsches Mischmodell Bayesscher Ansatz: Gaußsches Mischmodell + Priors 26

27 Probabilistisches Clustern mit Generativem Modell Idee: Generatives Modell, das die Daten erzeugt haben önnte Modell hat Parametervetor Clusterzugehörigeit: verstecte Variable in diesem Modell Modell Daten Θ= ( π, µ, Σ) Θ= ( π, µ, Σ) 27

28 Probabilistisches Clustern: Gaußsches Mischmodell Ersetze feste Clusterzuweisungen r,..., r durch entsprechende Zufallsvariablen z,..., z Zufallsvariable Clusterzugehörigeit z z z... zk 2 = Generativer Prozess für x n Wähle Clusteromponente z, abhängig von π Generiere Beobachtung x n, abhängig von z, µ, Σ z : x in Cluster = 0 : sonst D z.b. 0 0 z = 0 Komponente 2 Komponente Komponente 3 28

29 Probabilistisches Clustern: Gaußsches Mischmodell Cluster wählen, anschliessend Datenpunt generieren Verteilung über Clusterzugehörigeit z: multinomial K π π,.. πk π i i= Pa ramete r = (., ), = Verteilung über Datenpunte gegeben Cluster: Multivariate ormalverteilungen K z p ( x z) = ( x µ, Σ ) = Parameter: µ =( µ,..., µ ) (Clusterzentren); Σ= ( Σ,..., Σ ) (Kovarianzmatrizen) K Cluster-spezifische Parameter K 29

30 Probabilistisches Clustern: Gaußsches Mischmodell Verteilung der Daten in einem Cluster Clusterzentrum ormalverteilung p( x z = ) = ( x µ, Σ ) Clusterovarianz = exp ( x µ Σ µ Z 2 T ) ( x ) Beispiel D=2: Dichte, Samples aus Verteilung ormalisierer Z = 2π Σ D/2 /2 30

31 Probabilistisches Clustern: Gaußsches Mischmodell Interpretation der Parameter µ, Σ D Parameter µ ist der Mittelpunt des Clusters Kovarianzmatrix Σ M ( DxD ) beschreibt die Form des Clusters, d.h. wie Dichte um den Mittelwert streut 3

32 Beispiel Gaußsches Mischmodell Gesamtmodell: Gaußsches Mischmodell Erzeugt Daten bestehend aus mehreren Clustern Beispiel K = 3, 500 Datenpunte gezogen Clusterzentren Clusterovarianzen Geben an, wie die Punte um das Clusterzentrum streuen 32

33 Probabilistisches Clustern: Gaußsches Mischmodell Wir ziehen Datenpunte aus dem Gaußschen Mischmodell Graphisches Modell, Parameter explizit (Parameter eine ZV) z z2 z3 x x2 µ x 3 π Σ z x Plate-otation Parameter oppeln Beobachtungen 33

34 Clustern mit Gaußschem Mischmodell Modellparameter Θ beschreiben Datenverteilung Relative Größe der Cluster: Lage der Cluster: Form der Cluster: Clustern = Anpassen des Modells an Daten = Parameterlernen 34

35 Clustern mit Gaußschem Mischmodell (Maximum Lielihood) Parameterlernproblem Gegeben: Daten X = { x,..., x } Gesucht: Parameter Θ= ( π, µ, Σ) Optimierungsriterium Lielihood: arg max px ( Θ ) = arg max p( x Θ) (i.i.d) Θ Θ n= = arg max p( x, z Θ) Θ n= = arg max p( z π ) p( x z, µ, Σ) Θ n= n Produt von Summen: schwierig zu optimieren z z n n n n n n n 35

36 Maximum Lielihood: Vollständige Daten Zunächst Vereinfachung: vollständig beobachtete Daten Definiere * Θ = Z = { z,..., z } (Clus terzugehörigeiten) arg max pxz (, Θ) Θ = arg max p( z π ) p( x z, µ, Σ) Θ n= zn = arg max π ( x µ, Σ ) Θ n= = K = arg max z (log( π ) + log( ( x µ, Σ )) Θ n= = K n n n n n n n n z n Produt von Produten: leichter zu optimieren (Log!) 36

37 Maximum Lielihood: Vollständige Daten Zunächst Vereinfachung: vollständig beobachtete Daten * Θ = Lielihood Maximierung ist relativ einfach, wenn wir X und Z ennen (geschlossene Lösung) π = arg max pxz (, Θ) * * µ = znx n= Θ n = z, z {0,} Indiator: x in Cluste r? n n n n= 37

38 Maximum Lielihood: Vollständige Daten Zunächst Vereinfachung: vollständig beobachtete Daten * Θ = arg max pxz (, Θ) Θ Lielihood Maximierung ist relativ einfach, wenn wir X und Z ennen (geschlossene Lösung) Σ = ) ) * * * zn ( xn µ ( x n µ n= = z, z {0,} Indiator: x in Cluste r? n n n n= T 38

39 EM Algorithmus Problem: Z nicht beobachtet! Wir müssen schwieriges Problem lösen: * Θ = Θ px Θ = Θ pzn xn Θ n= z arg max ( ) arg max (, ) Lösung mit dem EM-Algorithmus ( Expectation- Maximization ) n 39

40 EM Algorithmus Iteratives Verfahren: bestimme Betrachte Q-Funtion Beginne mit zufälligem. Iteriere: Expectation: Maximization: Theorem (Konvergenz): Θ Allerdings nur loales Maximum Θ, Θ, Θ, Parameterwert im letzten Schritt 40

41 EM für Gaußsches Mischmodell Q-Funtion für Gaußsches Mischmodell [ ] Q( ΘΘ, ) = log pxz (, Θ) X, Θ t Z = pz ( X, Θ )log px (, Z Θ) Z = pz ( X, Θ ) z (log π + log ( x µ, Σ )) t n n Z n= = K = pz ( X, Θ ) z (log π + log ( x µ, Σ )) n= = Z K n= = t K [ ] t t n n = z X, Θ (log π + log ( x µ, Σ )) n t n (Def. Erwartungswert) 4

42 EM für Gaußsches Mischmodell Q-Funtion = Lielihood der vollständigen Daten, wobei Indiatoren ersetzt sind durch ihre Erwartungswerte K log pxz (, Θ ) = z (log( π ) + log( ( x µ, Σ )) K n= = n n Q( ΘΘ, ) = [ z X, Θ ](log( π ) + log( ( x µ, Σ) ) t n t n n= = "Responsibilities" 42

43 EM für Gaußsches Mischmodell Expectation Schritt: Berechnung der Responsibilities γ ( z ): = [ z X, Θ ] = pz ( = x, Θ ) n n t n n t = = = = pz ( n =, xn Θt ) p( x Θ ) K pz ( =, x Θ ) j= K n n n t t pz ( =, x Θ ) nj n t p( z = Θ ) p( x z =, Θ ) j= j= n t n n t pz ( = Θ ) p( x z =, Θ ) nj t n nj t π ( x µ, Σ ) K n π ( x µ, Σ ) j n j j 43

44 EM für Gaußsches Mischmodell Maximization Schritt: maximiere in Ergebnis: π = µ = γ( zn ) x = γ ( zn ), n= n= n= [ ] Q( ΘΘ, ) = log pxz (, Θ) X, Θ Σ = γ ( zn )( xn µ )( x ) n µ n t Θ= ( π, µ, Σ) Erwarteter Anteil von Punten in Cluster Gewichteter Mittelwert für Cluster T Erwartete Anzahl von Punten in Cluster t Gewichtete Kovarianz für Cluster 44

45 Zusammenfassung EM EM Zusammenfassung: Starte mit zufälligen Expectation: berechne Responsibilities Maximization: Wiederholen bis Konvergenz weiche Clusterzugehörigeiten Berechnung der neuen Parameter gegeben weiche Clusterzugehörigeiten Gaußsches Mischmodell + EM Weicher K-Means 45

46 Vergleich mit K-Means (formal) Gaußsches Mischmodell mit festen Clusterovarianzen Expectation: Maximization: Für ε 0 harte Berechnung der neuen Clusterzentren Im Grenzfall ε 0 wird Gaußsches Mischmodell zu K- Means 46

47 Beispiel Gaußsches Mischmodell Clustering 47

48 Beispiel Gaußsches Mischmodell Clustering 48

49 Beispiel Gaußsches Mischmodell Clustering 49

50 Beispiel Gaußsches Mischmodell Clustering 50

51 Beispiel Gaußsches Mischmodell Clustering 5

52 Überblic Problemstellung/Motivation Deterministischer Ansatz: -Means Probabilistischer Ansatz: Gaußsches Mischmodell Bayesscher Ansatz: Gaußsches Mischmodell + Priors 52

53 Problem I: Singularitäten EM maximiert Lielihood Problem: Singularität für Lielihood wird unendlich für! Overfitting : Modell zu sehr an Daten angepasst In der Praxis: Während EM diesen Fall detetieren und entsprechende Clusteromponente neu initialisieren 53

54 Problem II: Wie bestimmt man Anzahl der Cluster? Maximum Lielihood Schätzung Je mehr Komponenten wir zulassen, desto größer wird (bis Anzahl Komponenten = ) Modell mit Clustern nutzlos! Lielihood ann nicht über Anzahl Cluster entscheiden Ebenfalls Overfitting Phänomen 54

55 Disussion Gaußsches Mischmodell Probabilistisches Verfahren Singularitäten Anzahl Cluster muss vorgegeben werden Problem ist der Maximum Lielihood Ansatz ML Ansatz erlaubt, Parameter zu sehr an den Datensatz anzupassen (Overfitting) Lösung: Regularisierung durch Prior 55

56 Prior Verteilungen für Gaußsches Mischmodell Gaußsches Mischmodell ann durch Prior Verteilungen erweitert werden ZV Prior-Verteilung Erwartung für Parameterwerte (degenerative Fälle unwahrscheinlich) Gesamtverteilung Σ p( π, µ, ) = p( π ) p( µ Σ) p( Σ) 56

57 Prior Verteilungen für Gaußsches Mischmodell Prior auf Mischgewichten: Dirichlet Verteilung Hyperparameter ormalisierer Beispiel K = 2 Konjugierter Prior: Günstig für Bayessche Inferenz (Posterior hat dieselbe Form wie Prior) 57

58 Prior Verteilungen für Gaußsches Mischmodell Gesucht: ur vereinfachter Fall: univariate Gaußverteilung Konjugierter Prior: ormal Gamma Verteilung Hyperparameter, die Form der Verteilung bestimmen ormal-gamma Verteilung mit 58

59 MAP Lösung Gaußsches Mischmodell Maximum a posteriori Parameterschätzung: Anpassung des EM Algorithmus: maximiere Entsprechende Änderung im M-Schritt notwendig (eine Details) 59

60 Vorteile von Prior Verteilung Löst das Problem der Singularitäten Prior verhindert den Fall 60

61 Bayessche Lösung MAP Bayes Wenn Hauptinteresse Clusterzugehörigeit ist, wollen wir eigentlich die Bayessche Lösung Maximum a posteriori Lösung ann als (grobe) Approximation an Bayes-Lösung verstanden werden Algorithmen für die Bayessche Lösung: Variational Inference, Sampling (eine Details) 6

62 Vorteile von Prior Verteilung Löst das Problem, dass wir Anzahl Cluster vorgeben müssen In der endgültig gefundenen Lösung sind die Responsibilities für einige Komponenten oft ull Grund (anschaulich): Wenn eine Komponente eine Daten erlärt, ann die a-posteriori Verteilung der Parameter auf die Prior-Verteilung gesetzt werden Details im Bishop-Textbuch Automatischer Trade-off zwischen begrenzter Modellomplexität und Anpassung an Daten 62

63 Zusammenfassung Clusterproblem Deterministischer Ansatz: K-Means Schnell, einfach, nicht probabilistisch Probabilistischer Ansatz mit Gaußschem Mischmodell Allgemeiner + eleganter als K-Means Training mit EM Algorithmus Verstecte Variable (Clusterzugehörigeit) Konstruiere Modell, das die Daten erzeugt haben önnte Prior-Verteilungen auf Parametern um Overfitting zu vermeiden 63

64 Acnowledgements Folien (insb. Grafien) basierend auf C. Bishop, Pattern Recognition and Machine Learning, Kapitel 9/0 64

65 EM für Gaußsches Mischmodell MAP-Schätzung Maximization Schritt: maximiere in Ergebnis: Erwarteter Anteil von Punten in Cluster ML-Schätzung: Prior: MAP-Schätzung: π = Θ= ( π, µ, Σ) ( ΘΘ, ) = ( ΘΘ, ) + log ( Θ), p( Θ) p( π,, π ) p( µ Σ ) p( Σ ) t t p p π = K = = K α, = = (, ) C(,, ) µ µ α α π + α K = + α K 65

66 EM für Gaußsches Mischmodell MAP-Schätzung Maximization Schritt: maximiere in Ergebnis: Gewichteter Mittelwert für Cluster ML-Schätzung: Prior: MAP-Schätzung: Θ= ( π, µ, Σ) ( ΘΘ, ) = ( ΘΘ, ) + log ( Θ), p( Θ) p( π,, π ) p( µ Σ ) p( Σ ) t t p ( ) = (, ) p µ σ µ µ βσ K = = µ = γ( zn ) x n= µ = γ( z ) n xn β µ 0 β + n= n + 66

67 EM für Gaußsches Mischmodell MAP-Schätzung Maximization Schritt: maximiere in Ergebnis: Gewichtete Kovarianz für Cluster ML-Schätzung: Prior: MAP-Schätzung: Θ= ( π, µ, Σ) ( ΘΘ, ) = ( ΘΘ, ) + log ( Θ), p( Θ) p( π,, π ) p( µ Σ ) p( Σ ) t t p ( ) = (, ) p µ σ µ µ βσ σ 2 K = = = γ ( zn )( xn µ )( x ) n µ n= σ µ µ 2 2 = ( )( ) γ zn xn µ + n= 2 + a β 2 2 ( σ0 ) = ( σ, ) p Gam ab ( ) b T 67

Clusteranalyse: Gauß sche Mischmodelle

Clusteranalyse: Gauß sche Mischmodelle Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Clusteranalyse: Gauß sche Mischmodelle iels Landwehr Überblick Problemstellung/Motivation Deterministischer Ansatz: K-Means Probabilistischer

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Christoph Sawade/Niels Landwehr/Tobias Scheffer

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Christoph Sawade/Niels Landwehr/Tobias Scheffer Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Clusteranalyse Christoph Sawade/Niels Landwehr/Tobias Scheffer Überblick Problemstellung/Motivation Deterministischer i ti Ansatz:

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Clusteranalyse. Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Clusteranalyse. Niels Landwehr Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Clusteranalyse Niels Landwehr Überblick Problemstellung/Motivation Deterministischer Ansatz: K-Means Probabilistischer Ansatz:

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Clusteranalyse. Tobias Scheffer Thomas Vanck

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Clusteranalyse. Tobias Scheffer Thomas Vanck Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Clusteranalyse Tobias Scheffer Thomas Vanck Überblick Problemstellung/Motivation Deterministischer Ansatz: K-Means Probabilistischer

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Tobias Scheffer Christoph Sawade

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Tobias Scheffer Christoph Sawade Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Clusteranalyse Tobias Scheffer Christoph Sawade Heute: Niels Landwehr Überblick Problemstellung/Motivation Deterministischer Ansatz:

Mehr

Überblick. Grundkonzepte des Bayes schen Lernens. Wahrscheinlichstes Modell gegeben Daten Münzwürfe Lineare Regression Logistische Regression

Überblick. Grundkonzepte des Bayes schen Lernens. Wahrscheinlichstes Modell gegeben Daten Münzwürfe Lineare Regression Logistische Regression Überblic Grundonepte des Bayes schen Lernens Wahrscheinlichstes Modell gegeben Daten Münwürfe Lineare Regression Logistische Regression Bayes sche Vorhersage Münwürfe Lineare Regression 14 Modell für Münwürfe

Mehr

Mustererkennung. Übersicht. Unüberwachtes Lernen. (Un-) Überwachtes Lernen Clustering im Allgemeinen k-means-verfahren Gaussian-Mixture Modelle

Mustererkennung. Übersicht. Unüberwachtes Lernen. (Un-) Überwachtes Lernen Clustering im Allgemeinen k-means-verfahren Gaussian-Mixture Modelle Mustererkennung Unüberwachtes Lernen R. Neubecker, WS 01 / 01 Übersicht (Un-) Überwachtes Lernen Clustering im Allgemeinen k-means-verfahren 1 Lernen Überwachtes Lernen Zum Training des Klassifikators

Mehr

SBWL Tourismusanalyse und Freizeitmarketing

SBWL Tourismusanalyse und Freizeitmarketing SBWL Tourismusanalyse und Freizeitmarketing Vertiefungskurs 4: Multivariate Verfahren 2 Teil 3: Mischmodelle / Modellgestützte Clusteranalyse Achim Zeileis & Thomas Rusch Institute for Statistics and Mathematics

Mehr

Latente Dirichlet-Allokation

Latente Dirichlet-Allokation Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Latente Dirichlet-Allokation Tobias Scheffer Peter Haider Paul Prasse Themenmodellierung Themenmodellierung (Topic modeling) liefert

Mehr

Institut für Informatik Lehrstuhl Maschinelles Lernen. Christoph Sawade/Niels Landwehr/Tobias Scheffer

Institut für Informatik Lehrstuhl Maschinelles Lernen. Christoph Sawade/Niels Landwehr/Tobias Scheffer Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Graphische Modelle Christoph Sawade/iels Landwehr/Tobias Scheffer Graphische Modelle: Inferenz Wir haben eine Domäne durch gemeinsame

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Sprachtechnologie. Tobias Scheffer Thomas Vanck

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Sprachtechnologie. Tobias Scheffer Thomas Vanck Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Sprachtechnologie Tobias Scheffer Thomas Vanck Statistik & Maschinelles Lernen Statistik: Deskriptive Statistik: Beschreibung (Tabellen,

Mehr

Überblick. Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung

Überblick. Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Grundlagen Überblick Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Klassifikation bei bekannter Wahrscheinlichkeitsverteilung Entscheidungstheorie Bayes-Klassifikator

Mehr

SBWL Tourismusanalyse und Freizeitmarketing

SBWL Tourismusanalyse und Freizeitmarketing SBWL Tourismusanalse und Freizeitmarketing Vertiefungskurs 4: Multivariate Verfahren 2 Teil 3: Mischmodelle / Modellgestützte Clusteranalse Achim Zeileis Department of Statistics and Mathematics FleMi

Mehr

3.2 Maximum-Likelihood-Schätzung

3.2 Maximum-Likelihood-Schätzung 291 Die Maximum-Likelihood-Schätzung ist die populärste Methode zur Konstruktion von Punktschätzern bei rein parametrischen Problemstellungen. 292 3.2.1 Schätzkonzept Maximum-Likelihood-Prinzip: Finde

Mehr

Statistische Sprachmodelle

Statistische Sprachmodelle Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Statistische Sprachmodelle Tobias Scheffer Thomas Vanck Statistische Sprachmodelle Welche Sätze sind Elemente einer Sprache (durch

Mehr

Bayessche Lineare Regression

Bayessche Lineare Regression Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Baessche Lineare Regression Niels Landwehr Überblick Baessche Lernproblemstellung. Einführendes Beispiel: Münzwurfexperimente.

Mehr

Lineare Klassifikationsmethoden

Lineare Klassifikationsmethoden Verena Krieg Fakultät für Mathematik und Wirtschaftswissenschaften 08. Mai 2007 Inhaltsverzeichnis 1. Einführung 2. Lineare Regression 3. Lineare Diskriminanzanalyse 4. Logistische Regression 4.1 Berechnung

Mehr

Methoden zur Cluster - Analyse

Methoden zur Cluster - Analyse Kapitel 4 Spezialvorlesung Modul 10-202-2206 (Fortgeschrittene Methoden in der Bioinformatik) Jana Hertel Professur für Bioinformatik Institut für Informatik Universität Leipzig Machine learning in bioinformatics

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Maschinelles Lernen

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Maschinelles Lernen Universität Potsdam Institut für Informatik Lehrstuhl Niels Landwehr, Silvia Makowski, Christoph Sawade, Tobias Scheffer Organisation Vorlesung/Übung, praktische Informatik. 4 SWS. Übung: Di 10:00-11:30

Mehr

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38 Dynamische Systeme und Zeitreihenanalyse Multivariate Normalverteilung und ML Schätzung Kapitel 11 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Multivariate

Mehr

Überblick. Grundkonzepte des Bayes schen Lernens. Wahrscheinlichstes Modell gegeben Daten Münzwürfe Lineare Regression Logistische Regression

Überblick. Grundkonzepte des Bayes schen Lernens. Wahrscheinlichstes Modell gegeben Daten Münzwürfe Lineare Regression Logistische Regression Überblick Grundkonzepte des Baes schen Lernens Wahrscheinlichstes Modell gegeben Daten Münzwürfe Lineare Regression Logistische Regression Baes sche Vorhersage Münzwürfe Lineare Regression 57 Erinnerung:

Mehr

Teil IX. Verteilungen an Daten anpassen ( Maximum-Likelihood-Schätzung. fitten ) Woche 7: Maximum-Likelihood-Schätzung. Lernziele

Teil IX. Verteilungen an Daten anpassen ( Maximum-Likelihood-Schätzung. fitten ) Woche 7: Maximum-Likelihood-Schätzung. Lernziele Woche 7: Maimum-Lielihood-Schätzung Patric Müller ETHZ Teil IX Verteilungen an Daten anpassen ( fitten ): Maimum-Lielihood-Schätzung WBL 17/19, 12.06.2017 Wahrscheinlicheit

Mehr

Generative Modelle. Generative Modelle 1 / 49

Generative Modelle. Generative Modelle 1 / 49 Generative Modelle Generative Modelle 1 / 49 Die Zielstellung Bisher: Lerne eine unbekannte Zielfunktion approximativ nach Beobachtung zufällig erzeugter Beispiele Jetzt: Finde möglichst viel über die

Mehr

Varianzkomponentenschätzung

Varianzkomponentenschätzung Qualitas AG Varianzkomponentenschätzung Peter von Rohr Qualitas AG Peter von Rohr Folien ZL I+II LFW C11 October 29, 2015 2 / 23 Multiple Lineare Regression Annahmen Modell y = Xb + e Varianz der Fehler

Mehr

Vorlesung Wissensentdeckung

Vorlesung Wissensentdeckung Vorlesung Wissensentdeckung Klassifikation und Regression: nächste Nachbarn Katharina Morik, Uwe Ligges 14.05.2013 1 von 24 Gliederung Funktionsapproximation 1 Funktionsapproximation Likelihood 2 Kreuzvalidierung

Mehr

Hidden-Markov-Modelle

Hidden-Markov-Modelle Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Hidden-Markov-Modelle Tobias Scheffer Thomas Vanck Hidden-Markov-Modelle: Wozu? Spracherkennung: Akustisches Modell. Geschriebene

Mehr

4. Verteilungen von Funktionen von Zufallsvariablen

4. Verteilungen von Funktionen von Zufallsvariablen 4. Verteilungen von Funktionen von Zufallsvariablen Allgemeine Problemstellung: Gegeben sei die gemeinsame Verteilung der ZV en X 1,..., X n (d.h. bekannt seien f X1,...,X n bzw. F X1,...,X n ) Wir betrachten

Mehr

Generative Modelle. Generative Modelle 1 / 49

Generative Modelle. Generative Modelle 1 / 49 Generative Modelle Generative Modelle 1 / 49 Die Zielstellung Bisher: Lerne eine unbekannte Zielfunktion approximativ nach Beobachtung zufällig erzeugter Beispiele Jetzt: Finde möglichst viel über die

Mehr

VII Unüberwachte Data-Mining-Verfahren

VII Unüberwachte Data-Mining-Verfahren VII Unüberwachte Data-Mining-Verfahren Clusteranalyse Assoziationsregeln Generalisierte Assoziationsregeln mit Taxonomien Formale Begriffsanalyse Self Organizing Maps Institut AIFB, 00. Alle Rechte vorbehalten.

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB. Unüberwachtes Lernen: Clustern von Instanzen

INTELLIGENTE DATENANALYSE IN MATLAB. Unüberwachtes Lernen: Clustern von Instanzen INTELLIGENTE DATENANALYSE IN MATLAB Unüberwachtes Lernen: Clustern von Instanzen Literatur Chris Bishop: Pattern Recognition and Machine Learning. Jiawei Han und Micheline Kamber: Data Mining Concepts

Mehr

Probabilistische Graphische Modelle

Probabilistische Graphische Modelle Probabilistische Graphische Modelle 1 Probabilistische Graphische Modelle Sven Wachsmuth Universität Bielefeld, Technische Fakultät, AG Angewandte Informatik WS 2006/2007 Probabilistische Graphische Modelle

Mehr

Frequentisten und Bayesianer. Volker Tresp

Frequentisten und Bayesianer. Volker Tresp Frequentisten und Bayesianer Volker Tresp 1 Frequentisten 2 Die W-Verteilung eines Datenmusters Nehmen wir an, dass die wahre Abhängigkeit linear ist, wir jedoch nur verrauschte Daten zur Verfügung haben

Mehr

Fortgeschrittene Ökonometrie: Maximum Likelihood

Fortgeschrittene Ökonometrie: Maximum Likelihood Universität Regensburg, Lehrstuhl für Ökonometrie Sommersemester 202 Fortgeschrittene Ökonometrie: Maximum Likelihood Poissonverteilung Man betrachte die poisson-verteilten Zufallsvariablen y t, t =, 2,...,

Mehr

Gibbs sampling. Sebastian Pado. October 30, Seien X die Trainingdaten, y ein Testdatenpunkt, π die Parameter des Modells

Gibbs sampling. Sebastian Pado. October 30, Seien X die Trainingdaten, y ein Testdatenpunkt, π die Parameter des Modells Gibbs sampling Sebastian Pado October 30, 2012 1 Bayessche Vorhersage Seien X die Trainingdaten, y ein Testdatenpunkt, π die Parameter des Modells Uns interessiert P (y X), wobei wir über das Modell marginalisieren

Mehr

Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017

Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017 Mustererkennung Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017 Optimierung: Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen Optimierungsprobleme Optimierung Suche nach dem Maximum oder Minimum

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayes sches Lernen. Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayes sches Lernen. Niels Landwehr Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Bayes sches Lernen Niels Landwehr Überblick Grundkonzepte des Bayes schen Lernens Wahrscheinlichstes Modell gegeben Daten Münzwürfe

Mehr

Lineare Regression. Christian Herta. Oktober, Problemstellung Kostenfunktion Gradientenabstiegsverfahren

Lineare Regression. Christian Herta. Oktober, Problemstellung Kostenfunktion Gradientenabstiegsverfahren Lineare Regression Christian Herta Oktober, 2013 1 von 33 Christian Herta Lineare Regression Lernziele Lineare Regression Konzepte des Maschinellen Lernens: Lernen mittels Trainingsmenge Kostenfunktion

Mehr

Clustering. Herbert Stoyan Stefan Mandl. 18. Dezember 2003

Clustering. Herbert Stoyan Stefan Mandl. 18. Dezember 2003 Clustering Herbert Stoyan Stefan Mandl 18. Dezember 2003 Einleitung Clustering ist eine wichtige nicht-überwachte Lernmethode Andwenungen Marketing: Finde Gruppen von Kunden mit gleichem Kaufverhalten,

Mehr

Modellierung von Baumeffekten Modellierung von Baumeffekten mit Methoden der räumlichen Statistik

Modellierung von Baumeffekten Modellierung von Baumeffekten mit Methoden der räumlichen Statistik mit Methoden der räumlichen Statistik Motivation Einzelbaumeffekte wie Streu- und Feinwurzelausbreitung sind von großer Bedeutung für die Walddynamik, insbesondere wenn Wechselwirkungen/Interaktionen zwischen

Mehr

Lineare Klassifikatoren

Lineare Klassifikatoren Universität Potsdam Institut für Informatik Lehrstuhl Lineare Klassifikatoren Christoph Sawade, Blaine Nelson, Tobias Scheffer Inhalt Klassifikationsproblem Bayes sche Klassenentscheidung Lineare Klassifikator,

Mehr

Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar "Statistische Methoden in der Physik"

Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar Statistische Methoden in der Physik Studentenseminar "Statistische Methoden in der Physik" Gliederung 1 2 3 Worum geht es hier? Gliederung 1 2 3 Stichproben Gegeben eine Beobachtungsreihe x = (x 1, x 2,..., x n ): Realisierung der n-dimensionalen

Mehr

Mathematische Grundlagen (Bayes sches Lernen)

Mathematische Grundlagen (Bayes sches Lernen) Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Mathematische Grundlagen (Bayes sches Lernen) Tobias Scheffer Michael Großhans Paul Prasse Uwe Dick Anwendungsbeispiel 1: Diagnostik

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 6 Genzwertsätze Einführung 1 Wahrscheinlichkeit: Definition und Interpretation

Mehr

Untersuchung von Algorithmen zur Fehlerlokalisation und Prognose in Automatisierungsprozessen. Yongrui Qiao Yongrui Qiao

Untersuchung von Algorithmen zur Fehlerlokalisation und Prognose in Automatisierungsprozessen. Yongrui Qiao Yongrui Qiao Untersuchung von Algorithmen zur Fehlerloalisation und Prognose in Automatisierungsprozessen Yongrui Qiao Yongrui Qiao Übersicht. Motivation und Problemstellung. Theoretische Grundlagen stochastisch-gestörter

Mehr

Wissensentdeckung in Datenbanken

Wissensentdeckung in Datenbanken Wissensentdeckung in Datenbanken Modellklassen, Verlustfunktionen Nico Piatkowski und Uwe Ligges 02.05.2017 1 von 15 Literatur Trevor Hastie, Robert Tibshirani, Jerome Friedman. The Elements of Statistical

Mehr

LDA-based Document Model for Adhoc-Retrieval

LDA-based Document Model for Adhoc-Retrieval Martin Luther Universität Halle-Wittenberg 30. März 2007 Inhaltsverzeichnis 1 2 plsi Clusterbasiertes Retrieval 3 Latent Dirichlet Allocation LDA-basiertes Retrieval Komplexität 4 Feineinstellung Parameter

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 1 Inhalt der heutigen Vorlesung Statistik und Wahrscheinlichkeitsrechnung Zusammenfassung der vorherigen Vorlesung Übersicht über Schätzung und

Mehr

3.4 Bayes-Verfahren Begrifflicher Hintergrund. Satz 3.22 (allgemeines Theorem von Bayes)

3.4 Bayes-Verfahren Begrifflicher Hintergrund. Satz 3.22 (allgemeines Theorem von Bayes) 3.4 Bayes-Verfahren 203 3.4.1 Begrifflicher Hintergrund Satz 3.22 (allgemeines Theorem von Bayes) Seien X und U zwei Zufallsvariablen mit gemeinsamer Wahrscheinlichkeitsfunktion f X,U ( ) bzw. Dichte f

Mehr

So lösen Sie das multivariate lineare Regressionsproblem von Christian Herta

So lösen Sie das multivariate lineare Regressionsproblem von Christian Herta Multivariate Lineare Regression Christian Herta Oktober, 2013 1 von 34 Christian Herta Multivariate Lineare Regression Lernziele Multivariate Lineare Regression Konzepte des Maschinellen Lernens: Kostenfunktion

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Maschinelles Lernen. Tobias Scheffer Michael Brückner

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Maschinelles Lernen. Tobias Scheffer Michael Brückner Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Maschinelles Lernen Tobias Scheffer Michael Brückner Organisation Vorlesung/Übung, praktische Informatik. 4 SWS. Übung: Mo 10:00-11:30

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Christoph Sawade/Niels Landwehr/Tobias Scheffer

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Christoph Sawade/Niels Landwehr/Tobias Scheffer Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Graphische Modelle Christoph Sawade/iels Landwehr/Tobias Scheffer Graphische Modelle Modellierung einer Domäne mit verschiedenen

Mehr

Seminar in Statistik - FS Nonparametric Bayes. Handout verfasst von. Ivo Francioni und Philippe Muller

Seminar in Statistik - FS Nonparametric Bayes. Handout verfasst von. Ivo Francioni und Philippe Muller Seminar in Statistik - FS 2008 Nonparametric Bayes Handout verfasst von Ivo Francioni und Philippe Muller Zürich, 17. März 2008 1 EINLEITUNG 1 1 Einleitung Bis jetzt haben wir in der Bayes schen Statistik

Mehr

Die Maximum-Likelihood-Methode

Die Maximum-Likelihood-Methode Vorlesung: Computergestützte Datenauswertung Die Maximum-Likelihood-Methode Günter Quast Fakultät für Physik Institut für Experimentelle Kernphysik SS '17 KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Mehr

Reinforcement Learning

Reinforcement Learning Reinforcement Learning 1. Allgemein Reinforcement Learning 2. Neuronales Netz als Bewertungsfunktion 3. Neuronales Netz als Reinforcement Learning Nils-Olaf Bösch 1 Allgemein Reinforcement Learning Unterschied

Mehr

Bayesianische FDR (Teil2)

Bayesianische FDR (Teil2) des Multiplen Testens FDR, FNR FDR 13.12.2010 Inhalt FDR, FNR FDR 1 2 FDR, FNR FDR Inhalt FDR, FNR FDR 1 2 FDR, FNR FDR Bedingte Wahrscheinlichkeit FDR, FNR FDR (Ω, F, P) W-Raum, A 1, A 2,...A n F, A i

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung 11. Vorlesung Jochen Köhler 10.05.011 1 Inhalt der heutigen Vorlesung Zusammenfassung Parameterschätzung Übersicht über Schätzung und Modellbildung Modellevaluation

Mehr

Topicmodelle. Gerhard Heyer, Patrick Jähnichen Universität Leipzig. tik.uni-leipzig.de

Topicmodelle. Gerhard Heyer, Patrick Jähnichen Universität Leipzig. tik.uni-leipzig.de Topicmodelle Universität Leipzig heyer@informa tik.uni-leipzig.de jaehnichen@informatik.uni-leipzig.de Institut für Informatik Topicmodelle Problem: je mehr Informationen verfügbar sind, desto schwieriger

Mehr

Modellanpassung und Parameterschätzung. A: Übungsaufgaben

Modellanpassung und Parameterschätzung. A: Übungsaufgaben 7 Modellanpassung und Parameterschätzung 1 Kapitel 7: Modellanpassung und Parameterschätzung A: Übungsaufgaben [ 1 ] Bei n unabhängigen Wiederholungen eines Bernoulli-Experiments sei π die Wahrscheinlichkeit

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Hypothesenbewertung

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Hypothesenbewertung Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Hypothesenbewertung Christoph Sawade/Niels Landwehr Dominik Lahmann Tobias Scheffer Überblick Hypothesenbewertung, Risikoschätzung

Mehr

Bayesianische FDR (Teil 1)

Bayesianische FDR (Teil 1) Bayesianische FDR (Teil 1) Mareile Große Ruse Seminar Multiples Testen 08.11.2010 Übersicht Übersicht Übersicht Alternative: Übersicht Alternative: Übersicht Alternative: Bedingte Wahrscheinlichkeit (Ω,

Mehr

Fakultät Verkehrswissenschaften Friedrich List Professur für Ökonometrie und Statistik, insb. im Verkehrswesen. Statistik II. Prof. Dr.

Fakultät Verkehrswissenschaften Friedrich List Professur für Ökonometrie und Statistik, insb. im Verkehrswesen. Statistik II. Prof. Dr. Statistik II Fakultät Verkehrswissenschaften Friedrich List Professur für Ökonometrie und Statistik, insb. im Verkehrswesen Statistik II 2. Parameterschätzung: 2.1 Grundbegriffe; 2.2 Maximum-Likelihood-Methode;

Mehr

Grundlagen zu neuronalen Netzen. Kristina Tesch

Grundlagen zu neuronalen Netzen. Kristina Tesch Grundlagen zu neuronalen Netzen Kristina Tesch 03.05.2018 Gliederung 1. Funktionsprinzip von neuronalen Netzen 2. Das XOR-Beispiel 3. Training des neuronalen Netzes 4. Weitere Aspekte Kristina Tesch Grundlagen

Mehr

Mathematische Werkzeuge R. Neubecker, WS 2018 / 2019 Optimierung Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen

Mathematische Werkzeuge R. Neubecker, WS 2018 / 2019 Optimierung Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen Mustererkennung Mathematische Werkzeuge R. Neubecker, WS 018 / 019 Optimierung Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen 1 Optimierung Optimierungsprobleme Suche nach dem Maximum oder Minimum

Mehr

Mathematische Statistik Aufgaben zum Üben. Schätzer

Mathematische Statistik Aufgaben zum Üben. Schätzer Prof. Dr. Z. Kabluchko Wintersemester 2016/17 Philipp Godland 14. November 2016 Mathematische Statistik Aufgaben zum Üben Keine Abgabe Aufgabe 1 Schätzer Es seien X 1,..., X n unabhängige und identisch

Mehr

Überblick. Überblick. Bayessche Entscheidungsregel. A-posteriori-Wahrscheinlichkeit (Beispiel) Wiederholung: Bayes-Klassifikator

Überblick. Überblick. Bayessche Entscheidungsregel. A-posteriori-Wahrscheinlichkeit (Beispiel) Wiederholung: Bayes-Klassifikator Überblick Grundlagen Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Klassifikation bei bekannter Wahrscheinlichkeitsverteilung Entscheidungstheorie Bayes-Klassifikator

Mehr

4.Tutorium Multivariate Verfahren

4.Tutorium Multivariate Verfahren 4.Tutorium Multivariate Verfahren - Clusteranalyse - Hannah Busen: 01.06.2015 und 08.06.2015 Nicole Schüller: 02.06.2015 und 09.06.2015 Institut für Statistik, LMU München 1 / 17 Gliederung 1 Idee der

Mehr

x p 2 (x )dx, Hinweis: es ist nicht erforderlich, zu integrieren!

x p 2 (x )dx, Hinweis: es ist nicht erforderlich, zu integrieren! Aufgabe T- Gegeben seien zwei normalverteilte Zufallsvariablen X N(µ, σ) 2 und X 2 N(µ 2, σ2) 2 mit pdf p (x) bzw. p 2 (x). Bestimmen Sie x (als Funktion der µ i, σ i, sodass x p (x )dx = + x p 2 (x )dx,

Mehr

2.3 Intervallschätzung

2.3 Intervallschätzung 2.3.1 Motivation und Hinführung Bsp. 2.15. [Wahlumfrage] Der wahre Anteil der rot-grün Wähler unter allen Wählern war 2009 auf eine Nachkommastelle gerundet genau 33.7%. Wie groß ist die Wahrscheinlichkeit,

Mehr

Statistische Tests Übersicht

Statistische Tests Übersicht Statistische Tests Übersicht Diskrete Stetige 1. Einführung und Übersicht 2. Das Einstichprobenproblem 3. Vergleich zweier unabhängiger Gruppen (unverbundene Stichproben) 4. Vergleich zweier abhängiger

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB

INTELLIGENTE DATENANALYSE IN MATLAB INTELLIGENTE DATENANALYSE IN MATLAB Unüberwachtes Lernen Literatur Chris Bishop: Pattern Recognition i and Machine Learning. Jiaweii Han und Micheline Kamber: Data Mining i Concepts and Techniques. Ulrike

Mehr

Statistische Entscheidungstheorie

Statistische Entscheidungstheorie KAPITEL 6 Statistische Entscheidungstheorie 6.1. Verlustfunktion, Risiko, Minimax Schätzer Es sei (, A, (P θ ) θ ) ein statistisches Modell. Das heißt, ist die Menge aller möglichen Stichproben, A ist

Mehr

5. Clusteranalyse Vorbemerkungen. 5. Clusteranalyse. Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften

5. Clusteranalyse Vorbemerkungen. 5. Clusteranalyse. Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften 5. Clusteranalyse Vorbemerkungen 5. Clusteranalyse Lernziele: Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften benennen und anwenden können, einen Test auf das Vorhandensein einer

Mehr

i =1 i =2 i =3 x i y i 4 0 1

i =1 i =2 i =3 x i y i 4 0 1 Aufgabe (5+5=0 Punkte) (a) Bei einem Minigolfturnier traten 6 Spieler gegeneinander an. Die Anzahlen der von ihnen über das gesamte Turnier hinweg benötigten Schläge betrugen x = 24, x 2 = 27, x = 2, x

Mehr

Statistics, Data Analysis, and Simulation SS 2015

Statistics, Data Analysis, and Simulation SS 2015 Mainz, 2. Juli 2015 Statistics, Data Analysis, and Simulation SS 2015 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Konjugierte Prior Konjugierte Prior

Mehr

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Intervallschätzung

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Intervallschätzung 0 Einführung 1 Wahrscheinlichkeitsrechnung Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Intervallschätzung Motivation und Hinführung Der wahre Anteil der rot-grün Wähler 009 war genau

Mehr

Optimal-trennende Hyperebenen und die Support Vector Machine. Volker Tresp

Optimal-trennende Hyperebenen und die Support Vector Machine. Volker Tresp Optimal-trennende Hyperebenen und die Support Vector Machine Volker Tresp 1 (Vapnik s) Optimal-trennende Hyperebenen (Optimal Separating Hyperplanes) Wir betrachten wieder einen linearen Klassifikator

Mehr

Maschinelles Lernen II

Maschinelles Lernen II Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Maschinelles Lernen II Niels Landwehr Organisation Vorlesung/Übung 4 SWS. Ort: 3.01.2.31. Termin: Vorlesung: Dienstag, 10:00-11:30.

Mehr

Vorlesung Stetige Verteilungen / Mathematische Behandlung

Vorlesung Stetige Verteilungen / Mathematische Behandlung B E A C D Z Faultät Verehrswissenschaften Friedrich List Professur für Verehrsströmungslehre Verehrssystemtheorie I+II (V.-Wirtschaft) Vorlesung..0 Stetige Verteilungen / Mathematische Behandlung Neufert,

Mehr

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Mainz, 26. Juni 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Dr. Michael O. Distler

Mehr

7. Übungsblatt - Lösungsskizzen

7. Übungsblatt - Lösungsskizzen Einführung in die Wahrscheinlicheitstheorie und Statisti Prof. Dr. Jan Johannes Sandra Schluttenhofer Wintersemester 08/9 7. Übungsblatt - Lösungssien Aufgabe 5 Faltung und Ausdünnung einer Poisson-Verteilung,

Mehr

Klassifikation von Daten Einleitung

Klassifikation von Daten Einleitung Klassifikation von Daten Einleitung Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl Informatik 8) Klassifikation von Daten Einleitung

Mehr

DWT 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen 330/467 Ernst W. Mayr

DWT 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen 330/467 Ernst W. Mayr 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen Wir betrachten nun ein Verfahren zur Konstruktion von Schätzvariablen für Parameter von Verteilungen. Sei X = (X 1,..., X n ). Bei X

Mehr

Statistische Methoden der Datenanalyse Wintersemester 2011/2012 Albert-Ludwigs-Universität Freiburg

Statistische Methoden der Datenanalyse Wintersemester 2011/2012 Albert-Ludwigs-Universität Freiburg Statistische Methoden der Datenanalyse Wintersemester 2011/2012 Albert-Ludwigs-Universität Freiburg Dr. Stan Lai und Prof. Markus Schumacher Physikalisches Institut Westbau 2 OG Raum 008 Telefonnummer

Mehr

Schätzverfahren ML vs. REML & Modellbeurteilung mittels Devianz, AIC und BIC. Referenten: Linda Gräfe & Konstantin Falk

Schätzverfahren ML vs. REML & Modellbeurteilung mittels Devianz, AIC und BIC. Referenten: Linda Gräfe & Konstantin Falk Schätzverfahren ML vs. REML & Modellbeurteilung mittels Devianz, AIC und BIC Referenten: Linda Gräfe & Konstantin Falk 1 Agenda Schätzverfahren ML REML Beispiel in SPSS Modellbeurteilung Devianz AIC BIC

Mehr

Allgemeine lineare Modelle

Allgemeine lineare Modelle 262 Merkpunkte Allgemeine lineare Modelle Multiple lineare Regression mit nicht-normalen Zufallsabweichungen bilden eine harmlose" Verallgemeinerung der multiplen lin. Regr. Beispiele: Gumbel-Regression,

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Tobias Scheffer, Tom Vanck, Paul Prasse

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Tobias Scheffer, Tom Vanck, Paul Prasse Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Sprachtechnologie Tobias Scheffer, Tom Vanck, Paul Prasse Organisation Vorlesung/Übung, praktische Informatik. 4 SWS. Termin: Montags,

Mehr

Der Metropolis-Hastings Algorithmus

Der Metropolis-Hastings Algorithmus Der Algorithmus Michael Höhle Department of Statistics University of Munich Numerical Methods for Bayesian Inference WiSe2006/07 Course 30 October 2006 Markov-Chain Monte-Carlo Verfahren Übersicht 1 Einführung

Mehr

Übersicht. 1 Einführung in Markov-Chain Monte-Carlo Verfahren. 2 Kurze Wiederholung von Markov-Ketten

Übersicht. 1 Einführung in Markov-Chain Monte-Carlo Verfahren. 2 Kurze Wiederholung von Markov-Ketten Markov-Chain Monte-Carlo Verfahren Der Algorithmus Michael Höhle Department of Statistics University of Munich Numerical Methods for Bayesian Inference WiSe2006/07 Course 30 October 2006 Übersicht 1 Einführung

Mehr

Wissensentdeckung in Datenbanken

Wissensentdeckung in Datenbanken Wissensentdeckung in Datenbanken Belief Propagation, Strukturlernen Nico Piatkowski und Uwe Ligges 29.06.2017 1 von 13 Überblick Was bisher geschah... Modellklassen Verlustfunktionen Numerische Optimierung

Mehr

UE Statistische Mustererkennung WS 2018 Angaben zur 2ten Aufgabengruppe

UE Statistische Mustererkennung WS 2018 Angaben zur 2ten Aufgabengruppe UE Statistische Mustererkennung WS 2018 Angaben zur 2ten Aufgabengruppe 1 Aufgabe UE-II.1 Generieren Sie je 1000 Stichproben (samples) mit Umfang 5/30/100/500 für die Normalverteilung N(µ, σ 2 ) = N(4,

Mehr

9 Robuste Methoden. 9.1 Einfluss und Robustheit. i (x i x) 2 = i x iy i. c 1 = x 2 + i (x i x) 2. Einfache Regression: 9.1 Einfluss und Robustheit 205

9 Robuste Methoden. 9.1 Einfluss und Robustheit. i (x i x) 2 = i x iy i. c 1 = x 2 + i (x i x) 2. Einfache Regression: 9.1 Einfluss und Robustheit 205 9.1 Einfluss und Robustheit 205 9 Robuste Methoden 9.1 Einfluss und Robustheit a Sensitivität. Eine Beobachtung hinzufügen. Effekt? Einfache Regression: β = i(x i x)y i i (x i x) 2 = i x iy i β = β+ x,

Mehr

Deskriptive Beschreibung linearer Zusammenhänge

Deskriptive Beschreibung linearer Zusammenhänge 9 Mittelwert- und Varianzvergleiche Mittelwertvergleiche bei k > 2 unabhängigen Stichproben 9.4 Beispiel: p-wert bei Varianzanalyse (Grafik) Bedienungszeiten-Beispiel, realisierte Teststatistik F = 3.89,

Mehr

2 Alle Standardabweichungen σ i sind bekannt, bzw. die Kovarianzmatrix der Daten ist bekannt: Minimieren der χ 2 - Funktion.

2 Alle Standardabweichungen σ i sind bekannt, bzw. die Kovarianzmatrix der Daten ist bekannt: Minimieren der χ 2 - Funktion. 2 Alle Standardabweichungen σ i sind bekannt, bzw. die Kovarianzmatrix der Daten ist bekannt: Minimieren der χ 2 - Funktion. 2.1 Allgemeine Behandlung Definition der χ 2 -Funktion. Hier definieren wir

Mehr

Stochastik Praktikum Markov Chain Monte Carlo Methoden

Stochastik Praktikum Markov Chain Monte Carlo Methoden Stochastik Praktikum Markov Chain Monte Carlo Methoden Humboldt-Universität zu Berlin 14.10.2010 Problemstellung Wie kann eine Zufallsstichprobe am Computer simuliert werden, deren Verteilung aus einem

Mehr

Biostatistik, Sommer 2017

Biostatistik, Sommer 2017 1/51 Biostatistik, Sommer 2017 Wahrscheinlichkeitstheorie: Verteilungen, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 8. Vorlesung: 09.06.2017 2/51 Inhalt 1 Verteilungen Normalverteilung Normalapproximation

Mehr

Punktschätzer Optimalitätskonzepte

Punktschätzer Optimalitätskonzepte Kapitel 1 Punktschätzer Optimalitätskonzepte Sei ein statistisches Modell gegeben: M, A, P ϑ Sei eine Funktion des Parameters ϑ gegeben, γ : Θ G, mit irgendeiner Menge G, und sei noch eine Sigma-Algebra

Mehr

Einführung in die Maximum Likelihood Methodik

Einführung in die Maximum Likelihood Methodik in die Maximum Likelihood Methodik Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Gliederung 1 2 3 4 2 / 31 Maximum Likelihood

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Graphische Modelle. Christoph Sawade/Niels Landwehr/Tobias Scheffer

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Graphische Modelle. Christoph Sawade/Niels Landwehr/Tobias Scheffer Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Graphische Modelle Christoph Sawade/Niels Landwehr/Tobias Scheffer Graphische Modelle Werkzeug zur Modellierung einer Domäne mit

Mehr

1.2 Summen von Zufallsvariablen aus einer Zufallsstichprobe

1.2 Summen von Zufallsvariablen aus einer Zufallsstichprobe 1.2 Summen von Zufallsvariablen aus einer Zufallsstichprobe Nachdem eine Stichprobe X 1,..., X n gezogen wurde berechnen wir gewöhnlich irgendwelchen Wert damit. Sei dies T = T (X 1,..., X n, wobei T auch

Mehr