Statistik I für Betriebswirte Vorlesung 2

Größe: px
Ab Seite anzeigen:

Download "Statistik I für Betriebswirte Vorlesung 2"

Transkript

1 Statistik I für Betriebswirte Vorlesung 2 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 11. April 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung 2 Version: 7. April

2 Eigenschaften bedingter Wahrscheinlichkeiten Im Allgemeinen gilt P(A B) P(B A)! Bei fester Bedingung B kann man wie mit (unbedingten) Wahrscheinlichkeiten rechnen, z.b. P(A B) = 1 P(A B) ; P(A 1 A 2 B) = P(A 1 B) + P(A 2 B), falls A 1 A 2 =. Multiplikationsregeln Es gilt P(A B) = P(A B) P(B) = P(B A) P(A). Sind A1,..., A n zufällige Ereignisse mit P(A 1... A n 1 ) > 0, dann gilt P(A 1 A 2... A n ) = P(A 1 ) P(A 2 A 1 ) P(A 3 A 1 A 2 )... P(A n A 1 A 2... A n 1 ). Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung 2 Version: 7. April

3 Übungsbeispiel In einer Urne befinden sich 10 Kugeln (7 rote und 3 schwarze). Es werden 4 Kugeln rein zufällig ohne Zurücklegen entnommen. Wie groß ist die Wahrscheinlichkeit für das Ereignis A, dass alle 4 gezogene Kugeln rot sind? Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung 2 Version: 7. April

4 Formel der totalen Wahrscheinlichkeit Berechnung der totalen (unbedingten) Wahrscheinlichkeit aus den bedingten Wahrscheinlichkeiten: als gewichtetes Mittel. ( Sei B 1,..., B n eine Zerlegung von Ω mit P(B i ) 0, i = 1,..., n ein vollständiges Ereignissystem, eine Fallunterscheidung, d.h. n ) B i = Ω, B i B j = für i j. i=1 Dann lautet die Formel der totalen Wahrscheinlichkeit: für ein beliebiges zufälliges Ereignis A Ω gilt P(A) = n P(A B i )P(B i ). i=1 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung 2 Version: 7. April

5 Formel von Bayes Unter den Bedingungen des Satzes der totalen Wahrscheinlichkeit gilt die Formel von Bayes P(B i A) = P(A B i) P(A) = P(A B i)p(b i ) P(A) = P(A B i)p(b i ). n P(A B j )P(B j ) j=1 P(B i ) heißen auch a-priori -Wahrscheinlichkeiten. P(B i A) heißen auch a-posteriori -Wahrscheinlichkeiten, sie liefern eine Korrektur der ursprünglichen Wahrscheinlichkeiten, wenn bekannt ist, dass das zufällige Ereignis A eingetreten ist. Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung 2 Version: 7. April

6 Übungsbeispiel Drei Zulieferer liefern eine Komponente zur Produktion eines Erzeugnisses im Anzahlverhältnis 5 : 3 : 2. Die Fehlerquote betrage bei Komponenten der 1. Zulieferfirma 7%, bei Komponenten der 2. Zulieferfirma 4% und bei Komponenten der 3. Zulieferfirma 2%. 1. Wie groß ist die Wahrscheinlichkeit dafür, dass eine aus der Gesamtliefermenge rein zufällig ausgewählte Komponente defekt ist? 2. Es werde eine Komponente aus der Gesamtzuliefermenge rein zufällig ausgewählt und überprüft. Dabei stellt man fest, dass die Komponente defekt ist. Mit welcher Wahrscheinlichkeit wurde diese Komponente von der 1., 2., bzw. 3. Zulieferfirma geliefert? Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung 2 Version: 7. April

7 Beispiel Diagnoseverfahren Diagnoseverfahren liefern im Allg. nicht 100%ig richtige Ergebnisse: Ein Fehler wird nicht erkannt. Ein Fehler wird fälschlicherweise angezeigt. Resultierende Frage: Wie groß ist die Wahrscheinlichkeit, dass ein als fehlerhaft angezeigter Gegenstand tatsächlich fehlerhaft ist? Beispiel: A = {Gegenstand ist tatsächlich fehlerhaft}, P(A) = B = {Gegenstand wird als fehlerhaft angezeigt}. Wahrscheinlichkeit für eine Fehlererkennung: P(B A) = 0.9. Wahrscheinlichkeit für die Identifizierung eines einwandfreien Gegenstandes: P(B A) = Gesucht: P(A B). Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung 2 Version: 7. April

8 Partielle totale Wahrscheinlichkeit, Simpson-Paradox Partielle totale Wahrscheinlichkeit P(A C) bei Zerlegung B 1,..., B n ; A, C sind Ereignisse, P(C) > 0 : P(A C) = n P(A B i C) P(B i C). i=1 Simpson-Paradox: z.b. Zerlegung B, B, Ereignisse A, C 1, C 2. Es kann sein, dass gilt P(A C 1 ) < P(A C 2 ) aber P(A C 1 B) > P(A C 2 B), P(A C 1 B) > P(A C 2 B). Das Phänomen basiert darauf, dass Einzelergebnisse unterschiedlich gewichtet in das Gesamtergebnis eingehen. Bei statistischen Auswertung kann es so passieren, dass die Bewertung von Teilgruppen anders ausfällt als die der zusammengefassten Daten. Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung 2 Version: 7. April

9 Beispiel für Simpson-Paradox Betrachte folgende Ereignisse: A StudentIn bricht Studium ab, G 1 StudentIn ist weiblich, G 2 StudentIn ist männlich, F 1 StudentIn studiert Fach 1, F 2 StudentIn studiert Fach 2. Gegeben sind folgende bedingte Wahrscheinlichkeiten P(A G 1 F 1 ) = 0.1 > P(A G 1 F 2 ) = 0.05, P(A G 2 F 1 ) = 0.2 > P(A G 2 F 2 ) = 0.15, P(G 1 F 1 ) = 0.9 P(G 2 F 1 ) = 0.1, P(G 1 F 2 ) = 0.2 P(G 2 F 2 ) = 0.8. Daraus folgt (aus der Formel für partielle totale Wahrscheinlichkeit): P(A F 1 ) = P(A G 1 F 1 ) P(G 1 F 1 ) + P(A G 2 F 1 ) P(G 2 F 1 ) = = 0.11 < P(A F 2 ) = P(A G 1 F 2 ) P(G 1 F 2 ) + P(A G 2 F 2 ) P(G 2 F 2 ) = = Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung 2 Version: 7. April

10 1.4 Stochastische Unabhängigkeit Es kann vorkommen (und tut es in wichtigen Situationen auch), dass das Eintreten des Ereignisses B nichts an der Wahrscheinlichkeit für das Eintreten des Ereignisses A ändert, d.h. es gilt P(A B) = P(A). Definition: Zwei zufällige Ereignisse A und B zu einem Zufallsversuch heißen (stochastisch) unabhängig, wenn gilt In diesem Fall gelten dann auch P(A B) = P(A) P(B). P(A B) = P(A) bzw. P(B A) = P(B) (falls P(B) > 0 bzw. P(A) > 0), d.h. die bedingten Wahrscheinlichkeiten sind gleich den unbedingten Wahrscheinlichkeiten der beiden Ereignisse. Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung 2 Version: 7. April

11 Unabhängigkeit von mehr als 2 Ereignissen Zufällige Ereignisse A 1,..., A n zu einem Zufallsversuch heißen paarweise unabhängig, falls alle Paare von ausgewählten Ereignissen unabhängig sind, d.h. P(A i A j ) = P(A i ) P(A j ) für alle i j. Diese Ereignisse heißen in Gesamtheit oder total oder vollständig (stochastisch) unabhängig, falls eine entsprechende Formel für alle möglichen Auswahlen (nicht nur von Paaren) gilt, d.h. für alle 2 k n, 1 i 1 <... < i k n gilt P(A i1... A ik ) = P(A i1 )... P(A ik ). Aus der totalen Unabhängigkeit der Ereignisse A 1,..., A n folgt die paarweise Unabhängigkeit der Ereignisse, aber die Umkehrung gilt im Allgemeinen nicht. Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung 2 Version: 7. April

12 Beispiel, Eigenschaften unabhängiger Ereignisse Beispiel: (Zweifacher Münzwurf mit symmetrischer Münze) A = {1. Wurf Zahl}, B = {2. Wurf Zahl}. Satz: A und B seien unabhängige Ereignisse zu einem zufälligen Versuch. Dann sind auch die zufälligen Ereignisse A und das Komplement von B, also B, unabhängig. Ebenso sind in diesem Fall A und B sowie auch A und B jeweils unabhängige Ereignisse. Summenformel für unabhängige Ereignisse A 1,..., A n : P(A 1... A n ) = 1 (1 P(A 1 ))... (1 P(A n )). Die Unabhängigkeit von Ereignissen wird der Einfachheit halber häufig vorausgesetzt, oft auch dann, wenn sie sachlich schwer begründbar ist. Oft beziehen sich unabhängige Ereignisse auf Versuchswiederholungen etc., die sich (scheinbar) nicht gegenseitig beeinflussen. Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung 2 Version: 7. April

13 Anwendung in Zuverlässigkeitstheorie Betrachten die Serien- und Parallelschaltung von Bauteilen, Teilsystemen (z.b. in Produktionslinien) etc., die unabhängig voneinander ausfallen oder funktionstüchtig sind. 2 Bauteile T 1, T 2, F i = {Bauteil T i funktioniert}, P(F i ) = p i, F i stochastisch unabhängig (i = 1, 2). Serien- oder Reihenschaltung funktioniert, wenn sowohl T 1 als auch T 2 funktionieren: P(F 1 F 2 ) = P(F 1 )P(F 2 ) = p 1 p 2. Parallelschaltung funktioniert, wenn T 1 oder T 2 oder beide Bauteile funktionieren (also mindestens eines der Bauteile funktioniert): P(F 1 F 2 ) = P(F 1 ) + P(F 2 ) P(F 1 F 2 ) = p 1 + p 2 p 1 p 2. Bei komplizierteren Schaltungen Zerlegung in einfachere Teilsysteme (reine Serien- und Parallelschaltungen). Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung 2 Version: 7. April

14 1.5 Kombinatorische Formeln Geg.: n Objekte, z.b. {1, 2,..., n}. Die Anzahl aller möglichen Reihenfolgen beträgt n! = n ( n Fakultät ). Geg.: n Objekte, die in k unterschiedlichen Sorten vorliegen, bestehend jeweils aus n i, i = 1,..., k, nicht unterscheidbaren Objekten (2 k n und n n k = n). Die Anzahl aller möglichen Reihenfolgen beträgt ( ) n = n 1, n 2,..., n k n! n 1! n 2!... n k! ( Polynomialkoeffizient ). Im Spezialfall k = 2, d.h. gegeben sind n Objekte, jedes gehört zu einer von zwei Sorten (z.b. Erfolg, Misserfolg ), gilt n 1 = m, n 2 = n m und die Anzahl aller möglichen Reihenfolgen beträgt ( ) n = m n! m!(n m)! ( Binomialkoeffizient ). Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung 2 Version: 7. April

15 Kombinatorische Formeln II Nun seien n Objekte gegeben. Dann ist eine Frage, wie viele Möglichkeiten es gibt, um daraus k Objekte auszuwählen? Die Antwort ist abhängig davon, ob sich in der Auswahl Objekte wiederholen dürfen (m.w.) oder nicht (o.w.) o.r. m.r. ob es auf die Reihenfolge der Auswahl (oder eine zusätzliche Anordnung) ankommt (m.r.) oder nicht (o.r.). ( o.w. ) n ( m.w. ) n + k 1 k k Kombinationen ( ) n k! k n k Variationen Beispiel: n = 4, k = 2. Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung 2 Version: 7. April

16 Kombinatorische Formeln III Lottomodell Auswahl ohne Wiederholung und ohne Reihenfolge. N Anzahl der tippbaren Zahlen (N = 49), M Anzahl der Gewinnzahlen (M = 6), n Anzahl der Zahlen im Tipp (n = 6), m Anzahl der Gewinnzahlen im Tipp (z.b. m = 4). Anzahl der möglichen Fälle = Anzahl aller möglichen Tipps = Anz. der Möglichkeiten, aus N Zahlen n auszuwählen (o.w.,o.r.) ( ) N =. n Anz. der günstigen Fälle = Anz. der Möglichkeiten, aus den M Gewinnzahlen m auszuwählen (o.w.,o.r.) mal Anz. der Möglichkeiten, die restlichen n m getippten Zahlen aus den N M Nichtgewinnzahlen auszuwählen = ( M m ) ( N M n m ). Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung 2 Version: 7. April

17 Kombinatorische Formeln IV Lottomodell Man erhält die Formel für die Wahrscheinlichkeiten ( M ( P ( m Richtige in einem Tipp ) = m) N M ) n m ( N. n) Dies ist auch ein wichtiges Modell für die Qualitätskontrolle, mit den Werten N Losgröße, M n m gilt Anzahl der Ausschussstücke darunter, Anzahl der zufällig gezogenen Kontrollstücke (Stichprobe), Anzahl der Ausschussstücke in der Stichprobe, ( M ( P ( m Ausschussstücke in der Stichprobe ) = m) N M ) n m ( N. n) Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung 2 Version: 7. April

Statistik für Ingenieure Vorlesung 2

Statistik für Ingenieure Vorlesung 2 Statistik für Ingenieure Vorlesung 2 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 24. Oktober 2016 2.4 Bedingte Wahrscheinlichkeiten Häufig ist es nützlich, Bedingungen

Mehr

Statistik I für Betriebswirte Vorlesung 5

Statistik I für Betriebswirte Vorlesung 5 Statistik I für Betriebswirte Vorlesung 5 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik 07. Mai 2015 PD Dr. Frank Heyde Statistik I für Betriebswirte Vorlesung 5 1 Klassische Wahrscheinlichkeitsdefinition

Mehr

Satz von der totalen Wahrscheinlichkeit

Satz von der totalen Wahrscheinlichkeit htw saar 1 Satz von der totalen Wahrscheinlichkeit Sei (Ω, P) ein Wahrscheinlichkeitsraum, und B 1,, B n seien paarweise disjunkte Ereignisse mit B i = Ω. Für jedes Ereignis A gilt dann: P(A) = P(A B 1

Mehr

STOCHASTISCHE UNABHÄNGIGKEIT. Annika Pohlmann Philipp Oel Wilhelm Dück

STOCHASTISCHE UNABHÄNGIGKEIT. Annika Pohlmann Philipp Oel Wilhelm Dück STOCHASTISCHE UNABHÄNGIGKEIT Annika Pohlmann Philipp Oel Wilhelm Dück 1 GLIEDERUNG 1) Bedingte Wahrscheinlichkeiten 2) Unabhängigkeit für mehr als zwei Ereignisse 3) Unabhängigkeit für Zufallsvariable

Mehr

Einführung in die Wahrscheinlichkeitsrechnung

Einführung in die Wahrscheinlichkeitsrechnung Marco Cattaneo Institut für Statistik Ludwig-Maximilians-Universität München Sommersemester 2011 1. Wahrscheinlichkeitsrechnung 2. Diskrete Zufallsvariable 3. Stetige Zufallsvariable 4. Grenzwertsätze

Mehr

Welche Axiome sind Grundlage der axiomatischen Wahrscheinlichkeitsdefinition von Kolmogoroff?

Welche Axiome sind Grundlage der axiomatischen Wahrscheinlichkeitsdefinition von Kolmogoroff? 2. Übung: Wahrscheinlichkeitsrechnung Aufgabe 1 Welche Axiome sind Grundlage der axiomatischen Wahrscheinlichkeitsdefinition von Kolmogoroff? a) P ist nichtnegativ. b) P ist additiv. c) P ist multiplikativ.

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren. 1. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen)

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren. 1. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen) Dr. Jürgen Senger INDUKTIVE STATISTIK Wahrscheinlichkeitstheorie, Schätz- und Testverfahren ÜUNG. - LÖSUNGEN. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen Die Urne enthält 4 weiße und 8 rote Kugeln.

Mehr

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente Mehrstufige Zufallsexperimente Inhalt 6.1 6.1 Mehrstufige Experimente 6.2 6.2 Bedingte Wahrscheinlichkeiten Seite 2 6.1 Mehrstufige Experimente Grundvorstellung: Viele Viele Experimente werden der der

Mehr

Allgemeine diskrete Wahrscheinlichkeitsräume II. Beispiel II. Beispiel I. Definition 6.3 (Diskreter Wahrscheinlichkeitsraum)

Allgemeine diskrete Wahrscheinlichkeitsräume II. Beispiel II. Beispiel I. Definition 6.3 (Diskreter Wahrscheinlichkeitsraum) Allgemeine diskrete Wahrscheinlichkeitsräume I Allgemeine diskrete Wahrscheinlichkeitsräume II Verallgemeinerung von Laplaceschen Wahrscheinlichkeitsräumen: Diskrete Wahrscheinlichkeitsräume Ω endlich

Mehr

Einführung. Wahrscheinlichkeit. 1 Wahrscheinlichkeit: Definition und Interpretation. 2 Elementare Wahrscheinlichkeitsrechnung, bedingte

Einführung. Wahrscheinlichkeit. 1 Wahrscheinlichkeit: Definition und Interpretation. 2 Elementare Wahrscheinlichkeitsrechnung, bedingte Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2 Elementare Wahrscheinlichkeitsrechnung, bedingte Wahrscheinlichkeit Axiome nach Kolmogorov Gegeben sei ein Zufallsexperiment mit Ergebnisraum

Mehr

Rumpfskript. Elementare Wahrscheinlichkeitsrechnung. Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen

Rumpfskript. Elementare Wahrscheinlichkeitsrechnung. Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen Rumpfskript Elementare Wahrscheinlichkeitsrechnung Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen Vorbemerkung Vorbemerkung Das vorliegende Skript heißt nicht nur Rumpf skript, sondern

Mehr

Aufgabe 1. Übung Wahrscheinlichkeitsrechnung Markus Kessler Seite 1 von 8. Die Ereignisse A, B und C erfüllen die Bedingungen

Aufgabe 1. Übung Wahrscheinlichkeitsrechnung Markus Kessler Seite 1 von 8. Die Ereignisse A, B und C erfüllen die Bedingungen Ü b u n g 1 Aufgabe 1 Die Ereignisse A, B und C erfüllen die Bedingungen P(A) = 0. 7, P(B) = 0. 6, P(C) = 0. 5 P(A B) = 0. 4, P(A C) = 0. 3, P(B C) = 0. 2, P(A B C) = 0. 1 Bestimmen Sie P(A B), P(A C),

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 8. Übung SS 16: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 8. Übung SS 16: Woche vom Übungsaufgaben 8. Übung SS 16: Woche vom 30. 5. 3.6. 2016 Stochastik II: Klassische Wkt.-Berechnung; Unabhängigkeit Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/ vanselow/...

Mehr

htw saar 1 KAPITEL 4 BEDINGTE WAHRSCHEINLICHKEIT UND STOCHASTISCHE UNABHÄNGIGKEIT Hans-Peter Hafner WS 2016/2017

htw saar 1 KAPITEL 4 BEDINGTE WAHRSCHEINLICHKEIT UND STOCHASTISCHE UNABHÄNGIGKEIT Hans-Peter Hafner WS 2016/2017 htw saar 1 KAPITEL 4 BEDINGTE WAHRSCHEINLICHKEIT UND STOCHASTISCHE UNABHÄNGIGKEIT htw saar 2 Gliederung 25.01. Bedingte Wahrscheinlichkeit: Motivation und Definition Multiplikationssatz Stochastische Unabhängigkeit:

Mehr

3. Kombinatorik Modelltheoretische Wahrscheinlichkeiten Regeln der Kombinatorik

3. Kombinatorik Modelltheoretische Wahrscheinlichkeiten Regeln der Kombinatorik 3. Kombinatorik Modelltheoretische Wahrscheinlichkeiten lassen sich häufig durch Abzählen der günstigen und möglichen Fällen lösen. Kompliziertere Fragestellungen bedürfen aber der Verwendung mathematischer

Mehr

3. Kombinatorik Modelltheoretische Wahrscheinlichkeiten Regeln der Kombinatorik

3. Kombinatorik Modelltheoretische Wahrscheinlichkeiten Regeln der Kombinatorik 3. Kombinatorik Modelltheoretische Wahrscheinlichkeiten lassen sich häufig durch Abzählen der günstigen und möglichen Fällen lösen. Kompliziertere Fragestellungen bedürfen aber der Verwendung mathematischer

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 9. Übung SS 16: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 9. Übung SS 16: Woche vom Übungsaufgaben 9. Übung SS 16: Woche vom 5. 6. 10. 6. 2016 Stochastik III: Totale Wkt., S.v.Bayes, Diskrete ZG Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/ vanselow/...

Mehr

Stochastik und Statistik für Ingenieure Vorlesung 4

Stochastik und Statistik für Ingenieure Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Stochastik und Statistik für Ingenieure Vorlesung 4 30. Oktober 2012 Quantile einer stetigen Zufallsgröße Die reelle Zahl

Mehr

Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26)

Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26) Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26 Ein Wahrscheinlichkeitsraum (Ω, P ist eine Menge Ω (Menge aller möglichen Ausgänge eines Zufallsexperiments: Ergebnismenge versehen mit einer Abbildung

Mehr

a) (A B) tritt ein = A tritt ein oder B tritt ein. = Mindestens eines der Ereignisse A, B tritt ein.

a) (A B) tritt ein = A tritt ein oder B tritt ein. = Mindestens eines der Ereignisse A, B tritt ein. Lösungsvorschläge zu den Aufgaben von Blatt 6: 43) 7 Telefonzellen ( 7 Kugeln in der Urne); 3 davon sind von je einem Benutzer besetzt ( 3 Kugeln in die Stichprobe). Die Telefonzellen werden nicht mehrfach

Mehr

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen?

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen? 1 Kombinatorik Aus einer Grundgesamtheit mit n Elementen wird eine Stichprobe k Elementen entnommen. Dabei kann die Stichprobe geordnet oder ungeordnet sein. "Geordnet" bedeutet, dass die Reihenfolge der

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 3. Vorlesung - 21.10.2016 Bedingte Wahrscheinlichkeit In einer Urne sind 2 grüne und 3 blaue Kugeln. 2 Kugeln werden ohne Zürücklegen gezogen. Welches ist die Wahrscheinlichkeit, dass : a) man eine grüne

Mehr

= 7! = 6! = 0, 00612,

= 7! = 6! = 0, 00612, Die Wahrscheinlichkeit, dass Prof. L. die Wette verliert, lässt sich wie folgt berechnen: Ω = {(i 1,..., i 7 ) : i j {1... 7}, j = 1... 7}, wobei i, j für den Wochentag steht, an dem die Person j geboren

Mehr

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit 3 Bedingte Wahrscheinlichkeit, Unabhängigkeit Bisher : (Ω, A, P) zur Beschreibung eines Zufallsexperiments Jetzt : Zusatzinformation über den Ausgang des Experiments, etwa (das Ereignis) B ist eingetreten.

Mehr

Bedingte Wahrscheinlichkeiten

Bedingte Wahrscheinlichkeiten Bedingte Wahrscheinlichkeiten Bei der Betrachtung der Ereignisse A und B eines Zufallsexperiments muss man die beiden im folgendem beschrieben zwei Situationen unterscheiden. 1. Das Ereignis A und B tritt

Mehr

Musterlösungen zu den Aufgaben aus. Statistische Methoden in den Wirtschafts- und Sozialwissenschaften

Musterlösungen zu den Aufgaben aus. Statistische Methoden in den Wirtschafts- und Sozialwissenschaften Musterlösungen zu den Aufgaben aus Statistische Methoden in den Wirtschafts- und Sozialwissenschaften von Prof. Dr. Hans Peter Litz Oldenbourg-Verlag München,.Auflage 1998 Teil II. Wahrscheinlichkeitstheoretische

Mehr

UE Statistik 1, SS 2015, letztes Update am 5. März Übungsbeispiele

UE Statistik 1, SS 2015, letztes Update am 5. März Übungsbeispiele UE Statistik, SS 05, letztes Update am 5. März 05 Übungsbeispiele Beispiele mit Musterlösungen finden Sie auch in dem Buch Brannath, W., Futschik, A., Krall, C., (00) Statistik im Studium der Wirtschaftswissenschaften..

Mehr

Unabhängigkeit KAPITEL 4

Unabhängigkeit KAPITEL 4 KAPITEL 4 Unabhängigkeit 4.1. Unabhängigkeit von Ereignissen Wir stellen uns vor, dass zwei Personen jeweils eine Münze werfen. In vielen Fällen kann man annehmen, dass die eine Münze die andere nicht

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 12. Dezember 2012 1 Kombinatorik Fakultät Binomialkoeffizienten Urnenmodelle 2 Definition Fakultät Die Zahl n! =

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Abiturvorbereitung Wahrscheinlichkeitsrechnung S. 1 von 9 Wahrscheinlichkeitsrechnung Kombinatorik Formeln für Wahrscheinlichkeiten Bedingte Wahrscheinlichkeiten Zusammenfassung wichtiger Begriffe Übungsaufgaben

Mehr

Statistik I für Humanund Sozialwissenschaften

Statistik I für Humanund Sozialwissenschaften Statistik I für Humanund Sozialwissenschaften 3. Übung Lösungsvorschlag Gruppenübung G 8 a) Ein Professor möchte herausfinden, welche 5 seiner insgesamt 8 Mitarbeiter zusammen das kreativste Team darstellen.

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 6 5 Hilfsmittel aus der Kombinatorik 7 1 Vorbemerkungen

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Wahrscheinlichkeit und Zufallsvorgänge Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Wie hoch ist das Risiko, dass ein System, das aus mehreren Komponenten besteht, ausfällt?

Wie hoch ist das Risiko, dass ein System, das aus mehreren Komponenten besteht, ausfällt? In diesem Kapitel werden wir den egriff Wahrscheinlichkeit und die Grundlagen der Wahrscheinlichkeitsrechnung kennenlernen, um z.. folgende Fragestellungen zu beantworten. Wie hoch ist das Risiko, dass

Mehr

Wahrscheinlichkeitsrechnung für die Mittelstufe

Wahrscheinlichkeitsrechnung für die Mittelstufe Wahrscheinlichkeitsrechnung für die Mittelstufe Wir beginnen mit einem Beispiel, dem Münzwurf. Es wird eine faire Münze geworfen mit den Seiten K (für Kopf) und Z (für Zahl). Fair heißt, dass jede Seite

Mehr

Lösungsskizzen zur Präsenzübung 07

Lösungsskizzen zur Präsenzübung 07 Lösungsskizzen zur Präsenzübung 07 Hilfestellung zur Vorlesung Anwendungen der Mathematik im Wintersemester 2015/2016 Fakultät für Mathematik Universität Bielefeld Veröffentlicht am 14. Dezember 2015 von:

Mehr

Vorlesung Statistik, WING, ASW Wahrscheinlichkeit in Laplace Versuchen. Kombinatorische Formeln. Bedingte Wahrscheinlichkeit

Vorlesung Statistik, WING, ASW Wahrscheinlichkeit in Laplace Versuchen. Kombinatorische Formeln. Bedingte Wahrscheinlichkeit Wahrscheinlichkeit in Laplace Versuchen Kombinatorische Formeln Bedingte Wahrscheinlichkeit Multiplikationssatz Unabhängigkeit Melanie Kaspar 1 Formel der totalen Wahrscheinlichkeit Satz von Bayes Melanie

Mehr

Vorlesung Statistik WING ASW Melanie Kaspar, Prof. Dr. B. Grabowski 1

Vorlesung Statistik WING ASW Melanie Kaspar, Prof. Dr. B. Grabowski 1 Melanie Kaspar, Prof. Dr. B. Grabowski 1 Aus diesen Eigenschaften lassen sich alle weiteren Eigenschaften ableiten: Beweis zu 1) Melanie Kaspar, Prof. Dr. B. Grabowski 2 Aufgabe Die Wahrscheinlichkeit

Mehr

4 Übungsaufgaben zu Kapitel 4

4 Übungsaufgaben zu Kapitel 4 4 Übungsaufgaben zu Kapitel 4 4.1 Aufgabe. In einer Schachtel liegen vier mit 1 bis 4 nummerierte Kugeln. Wie lautet die Ergebnismenge, wenn zwei Kugeln mit einem Griff gezogen werden? 4.2 Aufgabe. Welche

Mehr

Wahrscheinlichkeitstheorie

Wahrscheinlichkeitstheorie Kapitel 2 Wahrscheinlichkeitstheorie Josef Leydold c 2006 Mathematische Methoden II Wahrscheinlichkeitstheorie 1 / 24 Lernziele Experimente, Ereignisse und Ereignisraum Wahrscheinlichkeit Rechnen mit Wahrscheinlichkeiten

Mehr

Teil II. Wahrscheinlichkeitsrechnung

Teil II. Wahrscheinlichkeitsrechnung Teil II Wahrscheinlichkeitsrechnung Deskriptive Statistik und Wahrscheinlichkeitsrechnung (SS 2014) Folie 129 5 Zufallsexperimente Inhaltsverzeichnis (Ausschnitt) 5 Zufallsexperimente Ergebnisse Ereignisse

Mehr

Kombinatorik kompakt. Stochastik WS 2016/17 1

Kombinatorik kompakt. Stochastik WS 2016/17 1 Kombinatorik kompakt Stochastik WS 2016/17 1 Übersicht Auswahl/Kombinationen von N aus m Elementen Statistische unterscheidbare ununterscheidbare Physik Objekte (gleiche) Objekte ( ohne m N m+n 1 ) N mit

Mehr

Teil II. Wahrscheinlichkeitsrechnung. Inhaltsverzeichnis (Ausschnitt) Zufallsexperimente (Zufallsvorgänge) Ergebnisse

Teil II. Wahrscheinlichkeitsrechnung. Inhaltsverzeichnis (Ausschnitt) Zufallsexperimente (Zufallsvorgänge) Ergebnisse 5 Zufallsexperimente Inhaltsverzeichnis (Ausschnitt) Teil II Wahrscheinlichkeitsrechnung 5 Zufallsexperimente Ergebnisse Ereignisse Wahrscheinlichkeiten Deskriptive Statistik und Wahrscheinlichkeitsrechnung

Mehr

11 Unabhängige Ereignisse

11 Unabhängige Ereignisse 11 Unabhängige Ereignisse In engem Zusammenhang mit dem Begriff der bedingten Wahrscheinlichkeit steht der Begriff der Unabhängigkeit von Ereignissen. Wir klären zuerst, was man unter unabhängigen Ereignissen

Mehr

Für die Wahrscheinlichkeit P A (B) des Eintretens von B unter der Bedingung, dass das Ereignis A eingetreten ist, ist dann gegeben durch P(A B) P(A)

Für die Wahrscheinlichkeit P A (B) des Eintretens von B unter der Bedingung, dass das Ereignis A eingetreten ist, ist dann gegeben durch P(A B) P(A) 3. Bedingte Wahrscheinlichkeit ================================================================== 3.1 Vierfeldertafel und Baumdiagramm Sind A und B zwei Ereignisse, dann nennt man das Schema B B A A P

Mehr

Elemente der Stochastik (SoSe 2016) 6. Übungsblatt

Elemente der Stochastik (SoSe 2016) 6. Übungsblatt Dr. M. Weimar 19.05.2016 Elemente der Stochastik (SoSe 2016 6. Übungsblatt Aufgabe 1 ( Punkte Eine Klausur, die insgesamt von zwölf Kursteilnehmern geschrieben wurde, soll von drei Gutachtern bewertet

Mehr

Wahrscheinlichkeitsrechnung [probability]

Wahrscheinlichkeitsrechnung [probability] Wahrscheinlichkeitsrechnung [probability] Hinweis: Die Wahrscheinlichkeitsrechnung ist nicht Gegenstand dieser Vorlesung. Es werden lediglich einige Begriffsbildungen bereitgestellt und an Beispielen erläutert,

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit von Ereignissen

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit von Ereignissen 3 Bedingte Wahrscheinlichkeit, Unabhängigkeit von Ereignissen 3.1 Einführung Bsp. 19 (3-maliges Werfen einer Münze) Menge der Elementarereignisse: Ω {zzz,zzw,zwz,wzz,zww,wzw,wwz,www}. Ω 2 3 8 N Wir definieren

Mehr

Discrete Probability - Übungen (SS5) Wahrscheinlichkeitstheorie. 1. KR, Abschnitt 6.1, Aufgabe 5: 2. KR, Abschnitt 6.1, Aufgabe 7:

Discrete Probability - Übungen (SS5) Wahrscheinlichkeitstheorie. 1. KR, Abschnitt 6.1, Aufgabe 5: 2. KR, Abschnitt 6.1, Aufgabe 7: Discrete Probability - Übungen (SS5) Felix Rohrer Wahrscheinlichkeitstheorie 1. KR, Abschnitt 6.1, Aufgabe 5: Bestimmen Sie die Wahrscheinlichkeit dafür, dass die Augensumme von zwei geworfenen Würfeln

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 3. November 2010 1 Kombinatorik Fakultät Binomialkoeffizienten Urnenmodelle 2 Definition Tabellen Fakultät, Beispiel

Mehr

Wahrscheinlichkeit (Teschl/Teschl 2, Kap. 26)

Wahrscheinlichkeit (Teschl/Teschl 2, Kap. 26) Wahrscheinlichkeit (Teschl/Teschl 2, Kap. 26) Gegeben Menge Ω (Wahscheinlichkeitsraum, Menge aller möglichen Ausgänge eines Zufallsexperiments), Abbildung P : P(Ω) [0, 1] (Wahrscheinlichkeit): Jeder Teilmenge

Mehr

Grundbegrie der Wahrscheinlichkeitsrechnung

Grundbegrie der Wahrscheinlichkeitsrechnung Die Benutzung dieser Materialien ist auf Herbst 2017 beschränkt. Diese Hilfsmaterialien sind nur für unseren Studenten gemeint, dürfen also nicht weiterverteilt werden. Grundbegrie der Wahrscheinlichkeitsrechnung

Mehr

Sachrechnen/Größen WS 14/15-

Sachrechnen/Größen WS 14/15- Kapitel Daten & Wahrscheinlichkeit 3.1 Kombinatorische Grundlagen 3.2 Kombinatorik & Wahrscheinlichkeit in der Grundschule 3.3 Daten Darstellen 3.1 Kombinatorische Grundlagen Verschiedene Bereiche der

Mehr

D. Ulmet IT 4 Blatt 5 Stochastik I SS 2005

D. Ulmet IT 4 Blatt 5 Stochastik I SS 2005 D. Ulmet IT 4 Blatt 5 Stochastik I SS 2005 Aufgabe 1: Von den Ereignissen A, B und C trete a) nur A ein, b) genau eines ein, c) höchstens eines ein, d) mindestens eines ein, e) mindestens eines nicht ein,

Mehr

4. Kombinatorik *) In der Kombinatorik werden drei wichtige Symbole benötigt: o n! o (n) k o

4. Kombinatorik *) In der Kombinatorik werden drei wichtige Symbole benötigt: o n! o (n) k o *) Die Berechnung der Wahrscheinlichkeit im Laplace-Experiment wirkt zunächst einfach. Man muss einfach die Anzahl der günstigen Fälle durch die Anzahl der möglichen Fälle teilen. Das Feststellen dieser

Mehr

Einführung in die Wahrscheinlichkeitsrechnung

Einführung in die Wahrscheinlichkeitsrechnung Einführung in die Wahrscheinlichkeitsrechnung Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) Wahrscheinlichkeitsrechnung

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Wahrscheinlichkeitstheorie:, Unabhängigkeit Prof. Dr. Achim Klenke http://www.aklenke.de 6. Vorlesung: 02.12.2011 1/30 Inhalt 1 Wahrscheinlichkeit 2 2/30 Wahrscheinlichkeit

Mehr

W.12 Kombinatorik 1. vermischte Aufgaben zu Vertauschungsmöglichkeiten ( )

W.12 Kombinatorik 1. vermischte Aufgaben zu Vertauschungsmöglichkeiten ( ) 1 Die Kombinatorik ist die Lehre von den Vertauschungsmöglichkeiten. Da man eigentlich fast jede Wahrscheinlichkeit mit irgendwelchen Vertauschungsmöglichkeiten multiplizieren muss, ist es naheliegend,

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Teil V Wahrscheinlichkeitsrechnung Inhaltsangabe 6 Einführung in die Wahrscheinlichkeitsrechnung 125 6.1 Kombinatorik......................... 125 6.2 Grundbegri e......................... 129 6.3 Wahrscheinlichkeiten.....................

Mehr

Grundlagen der Kombinatorik

Grundlagen der Kombinatorik Statistik 1 für SoziologInnen Grundlagen der Kombinatorik Univ.Prof. Dr. Marcus Hudec Zufallsauswahl aus Grundgesamtheiten In der statistischen Praxis kommt dem Ziehen von Stichproben größte Bedeutung

Mehr

Bayes'scher Satz und diskrete Verteilungen

Bayes'scher Satz und diskrete Verteilungen Die Benutzung dieser Materialien ist auf Herbst 2017 beschränkt. Diese Hilfsmaterialien sind nur für unseren Studenten gemeint, dürfen also nicht weiterverteilt werden. Bayes'scher Satz und diskrete Verteilungen

Mehr

KAPITEL 5. Erwartungswert

KAPITEL 5. Erwartungswert KAPITEL 5 Erwartungswert Wir betrachten einen diskreten Wahrscheinlichkeitsraum (Ω, P) und eine Zufallsvariable X : Ω R auf diesem Wahrscheinlichkeitsraum. Die Grundmenge Ω hat also nur endlich oder abzählbar

Mehr

2.2 Ereignisse und deren Wahrscheinlichkeit

2.2 Ereignisse und deren Wahrscheinlichkeit 2.2 Ereignisse und deren Wahrscheinlichkeit Literatur: [Papula Bd., Kap. II.2 und II.], [Benning, Kap. ], [Bronstein et al., Kap. 1.2.1] Def 1 [Benning] Ein Zufallsexperiment ist ein beliebig oft wiederholbarer,

Mehr

Grundwissen zur Stochastik

Grundwissen zur Stochastik Grundwissen zur Stochastik Inhalt: ABHÄNGIGE EREIGNISSE...2 ABHÄNGIGKEIT UND UNABHÄNGIGKEIT VON ERGEBNISSEN...2 ABHÄNGIGKEIT UND UNABHÄNGIGKEIT VON MERKMALEN IN VIERFELDERTAFELN...2 ABSOLUTE HÄUFIGKEIT...2

Mehr

Kapitel 5 Stochastische Unabhängigkeit

Kapitel 5 Stochastische Unabhängigkeit Kapitel 5 Stochastische Unabhängigkeit Vorlesung Wahrscheinlichkeitsrechnung I vom SoSe 2009 Lehrstuhl für Angewandte Mathematik 1 FAU 5.1 Das Konzept der stochastischen Unabhängigkeit. 1 Herleitung anhand

Mehr

1. Grundlagen der Wahrscheinlichkeitsrechnung

1. Grundlagen der Wahrscheinlichkeitsrechnung 1. Grundlagen der Wahrscheinlichkeitsrechnung Ereignisse und Wahrscheinlichkeiten Zufälliger Versuch: Vorgang, der (zumindest gedanklich) beliebig oft wiederholbar ist und dessen Ausgang innerhalb einer

Mehr

Stochastik - Kapitel 2

Stochastik - Kapitel 2 " k " h(a) n = bezeichnet man als die relative Häufigkeit des Ereignisses A bei n Versuchen. n (Anmerkung: für das kleine h wird in der Literatur häufig auch ein r verwendet) k nennt man die absolute Häufigkeit

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Stochastik Marco Boßle Jörg Hörner Mathematik Online Frühjahr 2011 PV-Kurs HM 3 Stochastik 1-1 Zusammenfassung Wahrscheinlichkeitsraum (WR): Menge der Elementarereignisse

Mehr

KAPITEL 2. Kombinatorik

KAPITEL 2. Kombinatorik KAPITEL 2 Kombinatori In der Kombinatori geht es um das Abzählen von Kombinationen 21 Geburtstagsproblem Beispiel 211 (Geburtstagsproblem In einem Raum befinden sich 200 Studenten Wie groß ist die Wahrscheinlicheit,

Mehr

9. Elementare Wahrscheinlichkeitsrechnung

9. Elementare Wahrscheinlichkeitsrechnung 9. Elementare Wahrscheinlichkeitsrechnung Beispiel (Einmaliges Würfeln): verbal mengentheoretisch I. Zufällige Ereignisse Beispiel (Einmaliges Würfeln): Alle möglichen Ausgänge 1,,, 6 des Experiments werden

Mehr

SS 2017 Torsten Schreiber

SS 2017 Torsten Schreiber 173 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Wird die Anordnung von unterschiedlichen Objekten eines Experiments untersucht, so handelt es sich um eine. Möchte man die Anzahl der möglichen

Mehr

Musterlösung. Abitur Mathematik Bayern G Bayern Aufgabe 1. Abitur Mathematik: Musterlösung. Stochastik II

Musterlösung. Abitur Mathematik Bayern G Bayern Aufgabe 1. Abitur Mathematik: Musterlösung. Stochastik II Abitur Mathematik: Bayern 2012 Aufgabe 1 a) VIERFELDERTAFEL P(R ) = 88 % und P(V) = 18 % stehen in der Aufgabenstellung. 60 % in der Angabe stehen für die bedingte Wahrscheinlichkeit P R (V). P(R V) =

Mehr

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung Programm Wiederholung Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung Binomialverteilung Hypergeometrische Verteilung Wiederholung verschiedene Mittelwerte für verschiedene Skalenniveaus

Mehr

Aufgabenblock 3. Durch zählen erhält man P(A) = 10 / 36 P(B) = 3 / 36 P(C) = 18 / 36 und P(A B) = 3 /

Aufgabenblock 3. Durch zählen erhält man P(A) = 10 / 36 P(B) = 3 / 36 P(C) = 18 / 36 und P(A B) = 3 / Aufgabenblock 3 Aufgabe ) A sei das Ereignis: schwerer Verkehrsunfall B sei das Ereignis: Alkohol ist im Spiel Herr Walker betrachtet die Wahrscheinlichkeit P(B A) = 0.3 und errechnet daraus P(-B A) =

Mehr

Zusammenfassung Stochastik

Zusammenfassung Stochastik Zusammenfassung Stochastik Die relative Häufigkeit Ein Experiment, dessen Ausgang nicht vorhersagbar ist, heißt Zufallsexperiment (ZE). Ein Würfel wird 40-mal geworfen, mit folgendem Ergebnis Augenzahl

Mehr

Kapitel IV - Spezielle Verteilungen: Diskrete Verteilungen

Kapitel IV - Spezielle Verteilungen: Diskrete Verteilungen Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel IV - Spezielle Verteilungen: Diskrete Verteilungen Markus Höchstötter Lehrstuhl

Mehr

P A P( A B) Definition Wahrscheinlichkeit

P A P( A B) Definition Wahrscheinlichkeit Unabhaengige Ereignisse edingte Wahrscheinlichkeit Definition Wahrscheinlichkeit Die Wahrscheinlichkeit eines Ereignisses ist das Verhältnis der günstigen Ergebnisse zur Gesamtmenge der Ergebnisse nzahl

Mehr

Die Formel für Kombinationen wird verwendet, wenn

Die Formel für Kombinationen wird verwendet, wenn 1. Übung: Kombinatorik Aufgabe 1 Die Formel für Kombinationen wird verwendet, wenn a) Alle n Elemente angeordnet werden sollen. b) Aus n Elementen k Elemente gezogen werden sollen. c) Die Reihenfolge der

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http://brinkmann-du.de Seite 1 17.09.2012 Lösungen Stichproben und Zählstrategien II : A1 A1 Aus schwarzen und weißen Mühlsteinen werden Türme gebaut, indem immer acht Steine übereinander

Mehr

Statistik Einführung // Wahrscheinlichkeitstheorie 3 p.2/58

Statistik Einführung // Wahrscheinlichkeitstheorie 3 p.2/58 Statistik Einführung Wahrscheinlichkeitstheorie Kapitel 3 Statistik WU Wien Gerhard Derflinger Michael Hauser Jörg Lenneis Josef Leydold Günter Tirler Rosmarie Wakolbinger Statistik Einführung // Wahrscheinlichkeitstheorie

Mehr

1. Ziehg.: N M. falls nicht-rote K. in 1. Ziehg. gezogen

1. Ziehg.: N M. falls nicht-rote K. in 1. Ziehg. gezogen 6.4 Hyergeometrische Verteilung Gegeben ist eine Urne, die mit N Kugeln gefüllt ist. Es seien M dieser Kugeln rot und N-M Kugeln nicht rot. Wir entnehmen n Kugeln, d.h. eine Stichrobe des Umfangs n. Dabei

Mehr

Das System funktioniert, wenn A UND B gleichzeitig funktionieren. A: Komponente A funktioniert. A : B :

Das System funktioniert, wenn A UND B gleichzeitig funktionieren. A: Komponente A funktioniert. A : B : Ein System, das aus einer Serien-Schaltung mit zwei Komponenten besteht, funktioniert dann, wenn beide einzelnen Komponenten gleichzeitig funktionieren. Die Komponenten bzw. seien unabhängig von einander,

Mehr

1 Übungen zu Wahrscheinlichkeitsrechnung und Zufallsvariablen

1 Übungen zu Wahrscheinlichkeitsrechnung und Zufallsvariablen 1 Übungen zu Wahrscheinlichkeitsrechnung und Zufallsvariablen Zoltán Zomotor Versionsstand: 16. März 2016, 11:21 This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0

Mehr

Mathe-Camp 2017 Stochastik: Geometrische Wahrscheinlichkeiten

Mathe-Camp 2017 Stochastik: Geometrische Wahrscheinlichkeiten Mathe-Camp 2017 Stochastik: Geometrische Wahrscheinlichkeiten Jo rn Saß, sass@mathematik.uni-kl.de Fachbereich Mathematik, TU Kaiserslautern Arbeitsgruppe Stochastische Steuerung und Finanzmathematik Kaiserslautern

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung. Semester Begleitendes Skriptum zur Vorlesung im FH-Masterstudiengang Technisches Management von Günther Karigl FH Campus Wien 206/7 Inhaltsverzeichnis. Semester: Wahrscheinlichkeitsrechnung

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 . Grundlagen der Wahrscheinlichkeitstheorie. Zufallsereignisse, Ereignisraum und Ereignismenge Zufallsexperiment: nach einer bestimmten Vorschrift ausgeführter, unter gleichen edingungen beliebig oft wiederholbarer

Mehr

Satz 18 (Satz von der totalen Wahrscheinlichkeit)

Satz 18 (Satz von der totalen Wahrscheinlichkeit) Ausgehend von der Darstellung der bedingten Wahrscheinlichkeit in Gleichung 1 zeigen wir: Satz 18 (Satz von der totalen Wahrscheinlichkeit) Die Ereignisse A 1,..., A n seien paarweise disjunkt und es gelte

Mehr

Zusammengesetzte Zufallsexperimente - Baumdiagramme und Pfadregeln ==================================================================

Zusammengesetzte Zufallsexperimente - Baumdiagramme und Pfadregeln ================================================================== Zusammengesetzte Zufallsexperimente - Baumdiagramme und Pfadregeln ================================================================== Ein Zufallsexperiment heißt zusammegesetzt, wenn es es die Kombination

Mehr

Einführung in die Stochastik 6. Übungsblatt

Einführung in die Stochastik 6. Übungsblatt Einführung in die Stochastik 6. Übungsblatt Fachbereich Mathematik SS M. Kohler 3. Mai A. Fromkorth D. Furer Gruppen und Hausübung Aufgabe (a) Die Wahrscheinlichkeit, dass eine S Bahn Verspätung hat, betrage.3.

Mehr

Ergebnis Ergebnisraum Ω. Ereignis. Elementarereignis

Ergebnis Ergebnisraum Ω. Ereignis. Elementarereignis Stochastik Die Stochastik besteht aus zwei Teilgebieten, der Statistik und der Wahrscheinlichkeitsrechnung. Die Statistik beschreibt die Vergangenheit und verwendet Informationen, die (in realen Versuchen)

Mehr

Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME

Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME Fassung vom 12. Januar 2001 121 WAHRSCHEINLICHKEITS-RÄUME Stichproben-Raum. 9.1 9.1 Stichproben-Raum. Die bisher behandelten Beispiele von Naturvorgängen oder Experimenten

Mehr

Technische Universität München SS 2006 Zentrum Mathematik Blatt 7 Prof. Dr. J. Hartl Dr. Hannes Petermeier Dr. Cornelia Eder Dipl.-Ing.

Technische Universität München SS 2006 Zentrum Mathematik Blatt 7 Prof. Dr. J. Hartl Dr. Hannes Petermeier Dr. Cornelia Eder Dipl.-Ing. Technische Universität München SS 2006 Zentrum Mathematik Blatt 7 Prof. Dr. J. Hartl Dr. Hannes Petermeier Dr. Cornelia Eder Dipl.-Ing. Martin Nagel Höhere Mathematik 2 (Weihenstephan) 1. In einer Urne

Mehr

10 Bedingte Wahrscheinlichkeit

10 Bedingte Wahrscheinlichkeit 10 Bedingte Wahrscheinlichkeit Vor allem dann, wenn man es mit mehrstufigen Zufallsexperimenten zu tun hat, kommt dem Begriff der bedingten Wahrscheinlichkeit eine bedeutende Rolle zu. Wir klären dazu

Mehr

A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen:

A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen: 5 Diskrete Verteilungen 1 Kapitel 5: Diskrete Verteilungen A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen: 5 0.6 x 0.4 5 x (i) P x (x)

Mehr

Hypergeometrische Verteilung

Hypergeometrische Verteilung Hypergeometrische Verteilung Aufgaben Aufgabe 1 Eine Firma produziert insgesamt 30 elektronische Bauteile des gleichen Typs. Aus langjähriger Erfahrung weiß man das davon jedes 70te defekt ist. Um die

Mehr

Da die Fragen unabhängig voneinander und zufällig ausgewählt werden, ist die Wahrscheinlichkeit für eine Frage aus dem Gebiet Sport 1/10.

Da die Fragen unabhängig voneinander und zufällig ausgewählt werden, ist die Wahrscheinlichkeit für eine Frage aus dem Gebiet Sport 1/10. htw saar 1 Aufgabe 1 Für ein Fernsehquiz sollen Fragen zufällig und unabhängig voneinander aus zehn Wissensgebieten ausgewählt werden, darunter die Gebiete Sport und Politik. In jedem Gebiet stehen ausreichend

Mehr

Orientierungshilfe zum 8. Hausaufgabenblatt. 25. Januar 2013

Orientierungshilfe zum 8. Hausaufgabenblatt. 25. Januar 2013 Orientierungshilfe zum 8. Hausaufgabenblatt 25. Januar 203 Abbildung : Skizze eines Baumdiagramms zur Veranschaulichung Aufgabe 44 Zunächst ist es von Vorteil sich die Problemstellung anhand eines Baumdiagramms

Mehr

Permutation und Kombination

Permutation und Kombination Permutation und Kombination Aufgaben Aufgabe 1 Wie viele verschiedene Wörter lassen sich durch Umstellen der Buchstaben aus den Wörtern a. Mississippi, b. Larissa, c. Stuttgart, d. Abrakadabra, e. Thorsten,

Mehr

Grundwissen Stochastik Grundkurs 23. Januar 2008

Grundwissen Stochastik Grundkurs 23. Januar 2008 GYMNSIUM MIT SCHÜLERHEIM PEGNITZ math.-technolog. u. sprachl. Gymnasium WILHELM-VON-HUMBOLDT-STRSSE 7 91257 PEGNITZ FERNRUF 09241/48333 FX 09241/2564 Grundwissen Stochastik Grundkurs 23. Januar 2008 1.

Mehr