6 Reelle und komplexe Zahlenfolgen

Größe: px
Ab Seite anzeigen:

Download "6 Reelle und komplexe Zahlenfolgen"

Transkript

1 $Id: folgen.tex,v.7 200//29 :58:57 hk Exp hk $ 6 Reelle und komplexe Zahlenfolgen 6. Folgenkonvergenz In der letzten Sitzung hatten wir den Begriff der Konvergenz einer reellen oder komplexen Folge gegen eine Zahl eingeführt und unter anderem bewiesen, dass eine solche Folge gegen höchstens eine Zahl konvergieren kann. Damit können wir nun auch den Grenzwert einer Folge definieren. Definition 6.5 (Folgengrenzwerte) SeiK {R, C}. Dann heißt eine Folge (a n ) n N in K konvergent wenn es ein a K mit (a n ) n N a gibt. Nach Lemma.(b) ist a K dann eindeutig bestimmt und heißt der Grenzwert der Folge (a n ) n N, geschrieben als a = a n. Eine nicht konvergente Folge heißt divergent. Nach Lemma.(a) ist jede Teilfolge einer konvergenten Folge wieder konvergent und hat denselben Grenzwert wie die Originalfolge. Weiter ist eine komplexe Folge (z n ) n N nach Lemma.(d) genau dann konvergent wenn die Folgen der Real- und der Imaginärteile beide konvergent sind, und in diesem Fall gelten ( ) ( ) Re z n = Re(z n ) und Im z n = Im(z n ). Schließlich besagt Lemma.(e) das es für eine reelle Folge keine Rolle spielt, ob wir sie in K = R oder in K = C betrachten, sowohl die Konvergenz als auch der notwendig reelle Grenzwert stimmen in beiden Fällen überein. Daher kann man, wie schon letztes Mal erwähnt, den komplexen Fall K = C als den allgemeinen Fall behandeln. Lemma 6.2 (Grundeigenschaften konvergenter Folgen) Seien K {R, C} und (a n ) n N eine konvergente Folge in K. Dann gelten: (a) Die Folge (a n ) n N ist beschränkt. (b) Die Folge der Beträge ( a n ) n N ist wieder konvergent und es gilt a n = a n. -

2 Beweis: Sei a K der Grenzwert der Folge (a n ) n N. (a) Wegen (a n ) n N a existiert ein n 0 N mit a n a < für alle n N mit n n 0. Weiter setzen wir c := max{ a +, a 0,..., a n0 } 0. Dann gilt a n c für alle n N. Sei nämlich n N gegeben. Ist dann n < n 0, so haben wir sofort a n c nach Definition von c, und ist n n 0, so ist ebenfalls a n = a + (a n a) a + a n a < a + c. Damit ist die Folge (a n ) n N beschränkt. (b) Sei ɛ > 0. Dann existiert ein n 0 N mit a n a < ɛ für alle n N mit n n 0. Für jedes n N mit n n 0 ist dann nach 5.Lemma 3.(e) auch an a an a < ɛ. Dies zeigt ( a n ) n N a. In der letzten Sitzung hatten wir als Beispiel eines Grenzwerts bereits n = 0 eingesehen. Einige weitere Grenzwerte sind eine unmittelbare Folgerung. Beispielsweise ist n 2 + = 0, einfach da (/(n 2 +)) n N eine Teilfolge von (/n) n N ist. Zwei weitere Beispiele wollen wir jetzt einfach angeben, der Beweis ist eine Übungsaufgabe. Sei q C. Dann gilt und im Konvergenzfall ist (q n ) n N ist konvergent q < oder q = qn = { 0, q <,, q =. Für jedes q C ist dagegen q n n! = 0. Wir kommen jetzt zu einem schon recht komplizierten Beispiel, wir wollen die Folge ( a n = + ) n n auf Konvergenz untersuchen. Wir wissen bereits, dass diese Folge streng monoton steigend und nach oben beschränkt ist, genauer ist a n < 3 für jedes n N. Der folgende -2

3 Satz zeigt, dass diese beiden Eigenschaften bereits die Konvergenz der Folge implizieren. Satz 6.3 (Konvergenz monotoner Folgen) Sei (a n ) n N eine reelle Folge. (a) Ist (a n ) n N monoton steigend und nach oben beschränkt, so ist (a n ) n N auch konvergent mit a n = sup{a n n N}. (b) Ist (a n ) n N monoton fallend und nach unten beschränkt, so ist (a n ) n N auch konvergent mit a n = inf{a n n N}. Beweis: (a) Schreibe s := sup{a n n N}. Sei ɛ > 0. Nach 4.Lemma 2.(a) existiert ein n 0 N mit a n0 > s ɛ. Sei n N mit n n 0. Dann ist Dies zeigt (a n ) n N s. (b) Analog. s ɛ < a n0 a n s, also a n s = s a n < ɛ. Dieser Satz ergibt insbesondere die Existenz des Grenzwerts ( α := + n ( = sup + n) n. n N n) Tatsächlich wird sich später herausstellen das α = e die Euler-Napiere Konstante e = 2, ist. Die ersten Folgenglieder von a n = ( + /n) n sind a = 2, a 2 = 9 4, a 3 = 64 27, a 4 = , a 5 = , a 6 = > 5 2, und da außerdem 3 eine obere Schranke unserer Folge ist, folgt 5 2 < α 3. Für die meisten Zwecke innerhalb der reinen Mathematik ist das schon genau genug. Als nächstes Beispiel wollen wir die Folge ( n n) n behandeln. Wir wissen bereits das diese für n 3 streng monoton fallend ist und außerdem trivialerweise durch nach unten beschränkt ist, also existiert ihr Grenzwert. Wir behaupten das n n = -3

4 gilt. Sei nämlich ɛ > 0 gegeben. Mit der archimedischen Eigenschaft der reellen Zahlen 4.Lemma 4 erhalten wir ein n 0 N mit n 0 > + 2 ɛ 2. Sei nun n N mit n n 0 gegeben, also insbesondere n 2. Mit der allgemeinen binomischen Formel 4.Lemma 5 erhalten wir n = ( n n) n = ( + ( n n )) n = Hieraus folgen weiter n k=0 ( ) n ( n n ) k k ( ) n ( n n ) 2 2 = n(n ) ( n n ) 2. 2 ( n n ) 2 2 n und 0 < n 2 2 n n n 0 < ɛ 2 = ɛ, also schließlich n n = n n < ɛ. Dies beweist ( n n) n wie behauptet. Wir werden zeigen, dass auch für jede positive reelle Zahl c R mit c > 0 stets die Aussage ( n c) n gilt. Dies kann man analog zur eben vorgeführten Berechnung von n n durchführen, es ist sogar etwas einfacher, aber wir wollen hier einen alternativen Zugang wählen, der ohne Rechnung auskommt. In der Tat folgt die Konvergenzaussage direkt aus dem eben bewiesenen n n. Hierzu ist es hilfreich zuvor einige allgemeine Aussagen zu beweisen. Wir beginnen mit dem Begriff einer Nullfolge, der es uns erlauben wird viele Grenzwerte ohne die ɛ n 0 Überlegungen behandeln zu können. Definition 6.6 (Nullfolgen) Sei K {R, C}. Eine Folge (a n ) n N in K heißt eine Nullfolge wenn (a n ) n N 0 gilt. Offenbar ist eine reelle oder komplexe Folge (a n ) n N genau dann eine Nullfolge wenn die reelle Folge ( a n ) n N eine Nullfolge ist. Lemma 6.4 (Grundeigenschaften von Nullfolgen) Sei K {R, C}. Dann gelten: (a) Sind (a n ) n N und (b n ) n N zwei Nullfolgen in K, so ist auch (a n + b n ) n N eine Nullfolge in K. (b) Sind (a n ) n N eine Nullfolge in K und c K, so ist auch (ca n ) n N eine Nullfolge in K. (c) Sind (a n ) n N eine beschränkte Folge in K und (b n ) n N eine Nullfolge in K, so ist auch (a n b n ) n N eine Nullfolge in K. -4

5 (d) Sind (a n ) n N eine Folge in K und a K, so gilt genau dann (a n ) n N a wenn (a n a) n N eine Nullfolge ist. (e) Sind (a n ) n N eine Folge in K und (b n ) n N eine Nullfolge in R mit a n b n für alle n N, so ist auch (a n ) n N eine Nullfolge in K. (f) Sind (a n ) n N eine Nullfolge in R mit a n > 0 für alle n N und α Q mit α > 0, so ist auch (a α n) n N eine Nullfolge. Beweis: (a) Sei ɛ > 0. Dann existieren n, n 2 N mit a n < ɛ/2 für alle n N mit n n und b n < ɛ/2 für alle n N mit n n 2. Setze n 0 := max{n, n 2 }. Für alle n N mit n n 0 ist dann auch a n + b n a n + b n < ɛ 2 + ɛ 2 = ɛ. Damit ist (a n + b n ) n N eine Nullfolge in K. (c) Es gibt eine Konstante c 0 mit a n c für alle n N. Sei ɛ > 0. Dann existiert ein n 0 N mit b n < ɛ/(c + ) für alle n N mit n n 0. Ist n N mit n n 0, so ist damit auch a n b n = a n b n c b n cɛ c + < ɛ. Damit ist (a n b n ) n N eine Nullfolge in K. (b) Klar nach (c). (d,e) Klar. (f) Seien p, q Z mit p, q und α = p/q. Wir zeigen zunächst, dass ( q a n ) n N eine Nullfolge ist. Sei also ɛ > 0 gegeben. Dann existiert ein n 0 N mit a n < ɛ q für alle n N mit n n 0. Für jedes n N mit n n 0 folgt damit auch q a n < q ɛ q = ɛ. Also ist ( q a n ) n N eine Nullfolge. Da konvergente Folgen nach Lemma 2.(a) auch beschränkt sind, ist somit auch (a α n) n N = (( q a n ) p ) n N nach (c) eine Nullfolge. Wir wollen noch ein paar Anmerkungen zum eben bewiesenen Lemma festhalten. Zunächst beachte das konvergente Folgen nach Lemma 2.(a) auch beschränkt sind, Aussage (c) des Lemmas ergibt also insbesondere, dass das Produkt einer konvergenten Folge und einer Nullfolge wieder eine Nullfolge ist. Weiter ist es in Aussage (e) des Lemmas nicht wirklich nötig das a n b n für alle n N gilt, es reicht aus das es einen Startindex n 0 N mit a n b n für alle n N mit n n 0 gibt. Dies ist implizit bereits im Lemma enthalten. Erinnern Sie sich daran, dass wir eingehends gesagt hatten, dass implizit immer auch Folgen mit gemeint sind, die erst ab einem Startindex definiert sind. Weiter ist es für die Konvergenz und den Grenzwert einer Folge offenbar egal ob wir die Folge selbst oder dieselbe Folge ab einem anderen Startindex betrachten. Wenden wir also Aussage (e) des Lemmas auf die Folgen (a n ) n n0 und (b n ) n n0 an, so ergibt sich genaz die genannte stärkere Aussage. Letztendlich haben wir uns in Teil (f) auf den Fall rationaler Exponenten α beschränkt, da wir Potenzrechnung mit beliebigen reellen Exponenten noch gar nicht eingeführt haben. Die Aussage (f) wird auch -5

6 für allgemeine positive Exponenten wahr sein, bedarf dann allerdings eines anderen Beweises, aber dazu werden wir dann später im Semester kommen. Unser Ziel ist noch immer einen ɛ n 0 freien Beweis der Aussage n c für jedes c R mit c > 0 anzugeben. Das eben bewiesene Lemma über Nullfolgen ist ein erster Schritt hierzu, und der zweite Schritt ist das folgende Lemma über reelle Folgen. Lemma 6.5 (Anordnungseigenschaften reeller Grenzwerte) Seien (a n ) n N und (b n ) n N zwei konvergente, reelle Folgen. (a) Gilt a n b n für alle n N, so ist auch a n b n. (b) Gilt a n = b n und ist (u n ) n N eine weitere reelle Folge mit a n u n b n für alle n N, so ist auch die Folge (u n ) n N konvergent mit u n = a n = b n. Beweis: (a) Seien a der Grenzwert von (a n ) n N und b der Grenzwert von (b n ) n N. Angenommen es wäre a > b. Dann ist ɛ := (a b)/2 > 0 und es gibt n, n 2 N mit a n a < ɛ für alle n N mit n n und b n b < ɛ für alle n N mit n n 2. Setze n := max{n, n 2 }. Dann ist a n = b (a a n ) a a n a > b ɛ = a a b = a + b = b + a b = b + ɛ > b + b n b b + b n b = b n, im Widerspruch zu unserer Annahme a n b n. Dies beweist die Behauptung a b. (b) Sei a der gemeinsame Grenzwert der Folgen (a n ) n N und (b n ) n N. Für jedes n N gelten also auch u n a b n a b n a und (u n a) = a u n a a n a n a, u n a max{ a n a, b n a } a n a + b n a. Nach Lemma 4.(a,d,e) ist (u n a) n N eine Nullfolge, d.h. auch die Folge (u n ) n N konvergiert gegen a. Die Aussage (b) des Lemmas wird manchmal auch als das Einschnürungslemma bezeichnet. Beachte das es auch für dieses Lemma reicht die Ungleichungen a n b n beziehungsweise a n u n b n nur für alle n N mit n n 0 für einen Startindex n 0 N zu fordern. Auch dies liegt daran, dass immer auch Folgen mit gemeint sind, -6

7 die erst ab einem gewissen Startindex definiert sind. Zur Illustration der jetzt bewiesenen Lemmata wollen wir uns noch einmal den Beweis der Aussage ( n n) n N anschauen. Wir hatten gezeigt, dass für jedes n N mit n 2 die Ungleichung 0 < n n 2 n gilt. Weiter ist die Folge (/(n )) n N als Teilfolge einer Nullfolge wieder eine Nullfolge und nach Lemma 4.(b,f) ist auch ( 2/(n )) n N eine Nullfolge. Damit ist ( n n ) n N nach dem Einschnürungslemma Lemma 5.(b) eine Nullfolge, d.h. wir haben ( n n) n N. Beachte das wir die Konvergenzaussage diesmal direkt aus der obigen Ungleichung gefolgert haben, ein Argumentieren über die Konvergenzdefinition mit ɛ und n 0 war gar nicht mehr nötig. Diesen Effekt werden wir noch häufiger sehen, der Nullfolgenbegriff und das unterstützende Lemma 4 erlauben es viele, aber nicht alle, ɛ-überlegungen durch einfacheres Schließen zu ersetzen. Als eine weitere Anwendung des Einschnürungslemmas wollen wir jetzt, wie schon angekündigt, n c = für alle c R mit c beweisen. Nach der archimedischen Eigenschaft der reellen Zahlen 4.Lemma 4 gibt es ein n 0 N mit n 0 c. Für alle n N mit n n 0 c ist damit auch n c n n, und da wir bereits ( n n) n N wissen, folgt mit dem Einschnürungslemma Lemma 5.(b) auch ( n c) n N. Der andere Fall für c, also 0 < c < muss etwas anders behandelt werden, wir werden ihn mit Hilfe der Rechenregeln für Grenzwerte auf den Fall c > zurückführen. Satz 6.6 (Rechenregeln für Folgengrenzwerte) Sei K {R, C} und seien (a n ) n N und (b n ) n N zwei konvergente Folgen in K. (a) Die Folge (a n + b n ) n N ist konvergent mit (a n + b n ) = a n + b n. (b) Für jedes c K ist die Folge (ca n ) n N konvergent mit (c) Die Folge (a n b n ) n N ist konvergent mit (ca n) = c a n. ( ) ( ) (a nb n ) = a n b n. -7

8 (d) Ist b n 0 und gilt b n 0 für alle n N, so ist die Folge (a n /b n ) n N konvergent mit a a n n = b n b. n Beweis: Seien a der Grenzwert von (a n ) n N und b der Grenzwert von (b n ) n N. (a) Die Folge ((a n + b n ) (a + b)) n N = ((a n a) + (b n b)) n N ist nach Lemma 4.(a,d) eine Nullfolge. (b) Die Folge (ca n ca) n N = (c(a n a)) n N ist nach Lemma 4.(b,d) eine Nullfolge. (c) Nach Lemma 2.(a) ist die Folge (a n ) n N beschränkt, und damit ist die Folge (a n b n ab) n N = (a n b n a n b + a n b ab) n N = (a n (b n b) + b(a n a)) n N nach Lemma 4.(a,b,c,d) eine Nullfolge. (d) Es gibt ein n 0 N mit b n < b /2 für alle n N mit n n 0. Für jedes n N mit n n 0 folgen damit auch b n = b (b b n ) b b n b > b b 2 = b 2 und = b n < 2 b, d.h. die Folge (/b n ) n N ist beschränkt. Damit ist die Folge ( an a ) ( ) ( ) an b ab n an b ab + ab ab n = = b n b n N b b b n N b b b n N ( = (a n a) a ) b n b n b (b n b) nach Lemma 4.(a,b,c,d) eine Nullfolge. b n n N Die Forderung b n 0 für alle n N in Aussage (d) ist eigentlich nicht nötig. Im Beweis von (d) haben wir ja gesehen, dass es ein n 0 N mit b n > b /2 für alle n N mit n n 0 gibt, und damit ist insbesondere auch b n 0 für alle n N mit n n 0. Betrachten wir also wieder die Folge ab dem Startindex n 0, so ergibt sich (d) auch in diesem Fall, solange wir uns die Folge (a n /b n ) n n0 als ab dem Startindex n 0 definiert denken. Die Voraussetzung b 0 ist dagegen wirklich nötig. Wir wollen jetzt ein paar Beispiele zur Anwendung der Grenzwertregeln behandeln.. Sei eine reelle Zahl c (0, ) gegeben. Dann ist /c > und somit folgt n c = n c = n c =, da wir den Grenzwert im Nenner bereits früher zu berechnet hatten. Insgesamt ist damit ( n c) n N für überhaupt jedes c R mit c > 0 gezeigt. -8

9 2. Wir wollen jetzt den schon recht kompliziert aussehenden Grenzwert 2n 3 2n + 7 n 3 + 3n + behandeln. Erweitern wir Zähler und Nenner mit /n 3 und erinnern uns an den schon bekannten Grenzwert /n 0, so rechnen wir mit den Grenzwertregeln 2n 3 2n + 7 n 3 + 3n + = n 2 n = n 2 n n 2 n = 2. n 2 n 3 Außerdem haben wir dabei die triviale Tatsache verwendet, dass konstante Folgen (c) n N gegen die entsprechende Konstante c konvergieren. 3. Ein ähnliches, scheinbar noch komplizierteres, Beispiel ist der Grenzwert Wir erweitern mit /n 2, und erhalten 2n 2 n cos(n) + 3 sin(n 4 + ). 3n 2 + n + ( ) n 2n 2 n cos(n) + 3 sin(n 4 + ) 3n 2 + n + ( ) n 2 cos n = + 3 sin(n4 +) n n ( )n n n 2. Nun ist (/n) n eine Nullfolge und (cos n) n N eine beschränkte Folge, da der Cosinus ja nur Werte zwischen und annimmt, also ist (cos(n)/n) n nach Lemma 4.(c) eine Nullfolge. Ebenso sind (3 sin(n 4 +)/n 2 ) n und (( ) n /n 2 ) n Nullfolgen, es gilt also 2n 2 n cos(n) + 3 sin(n 4 + ) 3n 2 + n + ( ) n 2 cos n = + 3 sin(n4 +) n n = 2 ( )n 3. n n 2 Als ein weiteres Beispiel zur Anwendung der Grenzwertregeln wollen wir die letzten beiden Beispiele noch etwas ausweiten, und allgemein den Grenzwert von Folgen berechenen die als rationale Ausdrücke in n gegeben sind, also als Quotient von Polynomen in n. Zur Vorbereitung beweisen wir ein kleines Lemma über das Wachstumsverhalten von Polynomen. Lemma 6.7 (Wachstumsverhalten von Polynomen) Seien K {R, C}, n N, ɛ > 0 und a 0,..., a n K mit a n 0 gegeben. Dann existiert eine reelle Zahl r > 0 so, dass für jedes x K mit x r stets ( a n ɛ) x n n < a k x k < ( a n + ɛ) x n gilt. k=0 Dies werden wir in der nächsten Sitzung beweisen, das Lemma ist hier nur schon angegeben, da es für die Präsenzaufgaben in Serie 5 hilfreich ist. -9

4 Reelle und komplexe Zahlenfolgen

4 Reelle und komplexe Zahlenfolgen $Id: folgen.tex,v.2 203//29 2:06:38 hk Exp hk $ 4 Reelle und komplexe Zahlenfolgen 4. Folgenkonvergenz In der letzten Sitzung hatten wir den Begriff der Folgenkonvergenz und die Grenzwerte von Folgen eingeführt.

Mehr

6 Reelle und komplexe Zahlenfolgen

6 Reelle und komplexe Zahlenfolgen Mathematik für Physiker I, WS 200/20 Freitag 0.2 $Id: folgen.tex,v. 200/2/06 :2:5 hk Exp $ $Id: reihen.tex,v. 200/2/0 4:4:40 hk Exp hk $ 6 Reelle und komplexe Zahlenfolgen 6. Cauchyfolgen Wir kommen nun

Mehr

4 Reelle und komplexe Zahlenfolgen

4 Reelle und komplexe Zahlenfolgen $Id: folgen.tex,v 1.23 2013/12/02 12:07:25 hk Exp hk $ 4 Reelle und komplexe Zahlenfolgen 4.1 Folgenkonvergenz In der letzten Sitzung haben wir die Rechenregeln für Folgengrenzwerte hergeleitet. Dies sind

Mehr

$Id: folgen.tex,v /05/31 12:40:06 hk Exp $ an 1 2 n 1 ist gerade, 3a n 1 + 1, a n 1 ist ungerade.

$Id: folgen.tex,v /05/31 12:40:06 hk Exp $ an 1 2 n 1 ist gerade, 3a n 1 + 1, a n 1 ist ungerade. $Id: folgen.tex,v. 202/05/3 2:40:06 hk Exp $ 6 Folgen Am Ende der letzten Sitzung hatten wir Folgen in einer Menge X als Abbildungen a : N X definiert, die dann typischerweise in der Form (a n ) n N, also

Mehr

$Id: folgen.tex,v /06/07 13:16:35 hk Exp $ n qn = 0.

$Id: folgen.tex,v /06/07 13:16:35 hk Exp $ n qn = 0. $Id: folgen.tex,v 1.13 01/06/07 13:16:35 hk Exp $ 6 Folgen 6.4 Folgen reeller Zahlen Wir waren gerade mit der Besprechung diverser Beispiele zur Folgenkonvergenz beschäftigt, und wollen jetzt noch zwei

Mehr

$Id: reihen.tex,v /06/12 10:59:50 hk Exp $ unendliche Summe. a 1 + a 2 + a 3 +.

$Id: reihen.tex,v /06/12 10:59:50 hk Exp $ unendliche Summe. a 1 + a 2 + a 3 +. Mathematik für Informatiker B, SS 202 Dienstag 2.6 $Id: reihen.tex,v.8 202/06/2 0:59:50 hk Exp $ 7 Reihen Eine Reihe ist eine unendliche Summe a + a 2 + a 3 +. Die Summanden a i können dabei reell oder

Mehr

4 Reelle und komplexe Zahlenfolgen

4 Reelle und komplexe Zahlenfolgen $Id: folgen.tex,v.44 206/2/02 2::8 hk Exp $ $Id: reihen.tex,v.2 206/2/05 0:28: hk Exp $ 4 Reelle und komplexe Zahlenfolgen 4.2 Reelle Zahlenfolgen In der letzten Sitzung hatten wir den Limes Superior lim

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 2. Folgen Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies Grundlagen Mathematik

Mehr

$Id: stetig.tex,v /06/26 15:40:18 hk Exp $

$Id: stetig.tex,v /06/26 15:40:18 hk Exp $ $Id: stetig.tex,v 1.11 2012/06/26 15:40:18 hk Exp $ 9 Stetigkeit 9.1 Eigenschaften stetiger Funktionen Am Ende der letzten Sitzung hatten wir eine der Grundeigenschaften stetiger Funktionen nachgewiesen,

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 4. Übungsblatt

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 4. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 0/4 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 4. Übungsblatt Aufgabe

Mehr

2 - Konvergenz und Limes

2 - Konvergenz und Limes Kapitel 2 - Folgen Reihen Seite 1 2 - Konvergenz Limes Definition 2.1 (Folgenkonvergenz) Eine Folge komplexer Zahlen heißt konvergent gegen, wenn es zu jeder positiven Zahl ein gibt, so dass gilt: Die

Mehr

Kapitel V. Folgen und Konvergenz. V.1 Konvergenz von Zahlenfolgen

Kapitel V. Folgen und Konvergenz. V.1 Konvergenz von Zahlenfolgen Kapitel V Folgen und Konvergenz V.1 Konvergenz von Zahlenfolgen Wir erinnern an den Begriff der Folge, den wir schon im Kapitel III verwenden. Eine Folge (a n ) n=1 AN in A ist eine Abbildung a ( ) : N

Mehr

Kapitel V. Folgen und Konvergenz. V.1 Konvergenz von Zahlenfolgen

Kapitel V. Folgen und Konvergenz. V.1 Konvergenz von Zahlenfolgen Kapitel V Folgen und Konvergenz V.1 Konvergenz von Zahlenfolgen Wir erinnern an den Begriff der Folge, den wir schon im Kapitel III verwenden. Eine Folge (a n ) n=1 AN in A ist eine Abbildung a ( ) : N

Mehr

1 Folgen und Stetigkeit

1 Folgen und Stetigkeit 1 Folgen und Stetigkeit 1.1 Folgen Eine Folge ist eine durchnummerierte Zusammenfassung von reellen Zahlen. Sie wird geschrieben als (a 1, a 2, a 3,...) = (a n ) n N. Es ist also a n R. Der Index n gibt

Mehr

a 0, a 1, a 2, a 3,... Dabei stehen die drei Pünktchen für unendlich oft so weiter.

a 0, a 1, a 2, a 3,... Dabei stehen die drei Pünktchen für unendlich oft so weiter. 7 Folgen 30 7 Folgen Wir betrachten nun (unendliche) Folgen von Zahlen a 0, a, a 2, a 3,.... Dabei stehen die drei Pünktchen für unendlich oft so weiter. Bezeichnung Wir bezeichnen mit N die Menge der

Mehr

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5 3 Folgen 3.1 Definition und Beispiele Eine Abbildung a : Æ Ê heißt (reelle) Zahlenfolge. Statt a(n) schreiben wir kürzer a n und bezeichnen die ganze Folge mit (a n ) n Æ oder einfach (a n ), was aber

Mehr

Das Newton Verfahren.

Das Newton Verfahren. Das Newton Verfahren. Ziel: Bestimme eine Nullstelle einer differenzierbaren Funktion f :[a, b] R. Verwende die Newton Iteration: x n+1 := x n f x n) f x n ) für f x n ) 0 mit Startwert x 0. Das Verfahren

Mehr

Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version A)

Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version A) Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, 10.1.009 (Version A) Kennwort: Übungsgruppe: (Sie können ein beliebiges Kennwort wählen, um Ihre Anonymität zu wahren! Da die Probeklausur

Mehr

Vollständigkeit. 1 Konstruktion der reellen Zahlen

Vollständigkeit. 1 Konstruktion der reellen Zahlen Vortrag im Rahmen des Proseminars zur Analysis, 17.03.2006 Albert Zeyer Ziel des Vortrags ist es, die Vollständigkeit auf Basis der Konstruktion von R über die CAUCHY-Folgen zu beweisen und äquivalente

Mehr

Serie 4 2 = 10. ) ist). Dann gilt für alle n n 0

Serie 4 2 = 10. ) ist). Dann gilt für alle n n 0 Serie 4. Aufgabe 336 Punkte) Gegeben seien zwei reelle Zahlenfolgen durch a n : 0 n, n N b n : n n, n N Bestimmen Sie die Grenzwerte a bzw. b der Folgen a n ) n N bzw. b n ) n N. Geben Sie jeweils zu gegebenem

Mehr

Folgen und Reihen. Thomas Blasi

Folgen und Reihen. Thomas Blasi Folgen und Reihen Thomas Blasi 02.03.2009 Inhaltsverzeichnis Folgen und Grenzwerte 2. Definitionen und Bemerkungen............................. 2.2 Konvergenz und Beschränktheit.............................

Mehr

Konstruktion der reellen Zahlen

Konstruktion der reellen Zahlen Konstruktion der reellen Zahlen Zur Wiederholung: Eine Menge K (mit mindestens zwei Elementen) heißt Körper, wenn für beliebige Elemente x, y K eindeutig eine Summe x+y K und ein Produkt x y K definiert

Mehr

Rechenoperationen mit Folgen. Rekursion und Iteration.

Rechenoperationen mit Folgen. Rekursion und Iteration. Rechenoperationen mit Folgen. Die Menge aller Folgen in V bildet einen Vektorraum, V N, für den die Addition und skalare Multiplikation wie folgt definiert sind. (a n ) n N + (b n ) n N := (a n + b n )

Mehr

(b) Man nennt die Menge M beschränkt, wenn sie nach oben und unten beschränkt ist.

(b) Man nennt die Menge M beschränkt, wenn sie nach oben und unten beschränkt ist. 8 Punktmengen Für die Menge M = { 1 n ; n N } ist 1 = max(m), denn 1 M und 1 n 1 für alle n N. Die Menge M besitzt aber kein Minimum, denn zu jeder Zahl x = 1 n M existiert ein y M mit y < x, etwa y =

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 26 1. Folgen R. Steuding (HS-RM)

Mehr

Proseminar Analysis Vollständigkeit der reellen Zahlen

Proseminar Analysis Vollständigkeit der reellen Zahlen Proseminar Analysis Vollständigkeit der reellen Zahlen Axel Wagner 18. Juli 2009 1 Voraussetzungen Zunächst wollen wir festhalten, was wir als bekannt voraussetzen: Es sei (Q, +, ) der Körper der rationalen

Mehr

Folgen und Reihen. 1 Konvergenz

Folgen und Reihen. 1 Konvergenz Folgen und Reihen Man betrachte viele Zahlen hintereinander geschrieben. Solche Folgen von Zahlen können durch nummeriert werden. Es entsteht eine Zuordnung der natürlichen Zahlen zu den Gliedern der Folge.

Mehr

Analysis I - Einige Lösungen und Ergänzungen

Analysis I - Einige Lösungen und Ergänzungen Christian-Albrechts-Universität zu Kiel Mathematisch-Naturwissenschaftliche Fakultät Mathematisches Seminar Analysis I - Einige Lösungen und Ergänzungen von Dipl.-Math. Joscha Prochno Dipl.-Math. Dennis

Mehr

7 KONVERGENTE FOLGEN 35. inf M = Infimum von M. bezeichnet haben. Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt.

7 KONVERGENTE FOLGEN 35. inf M = Infimum von M. bezeichnet haben. Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt. 7 KONVERGENTE FOLGEN 35 und die größe untere Schranke mit bezeichnet haben. inf M = Infimum von M Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt der Limes superior der Folge, und lim

Mehr

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen Definition: Eine Folge ist eine geordnete Menge von Elementen an (den sogenannten Gliedern ), die

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen Definition: Eine Folge ist eine geordnete Menge von Elementen an (den sogenannten Gliedern ), die 3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen Definition: Eine Folge ist eine geordnete Menge von Elementen an (den sogenannten Gliedern ), die eindeutig den natürlichen Zahlen zugeordnet sind ( n N, auch

Mehr

Kap. 10: Folgen und Reihen. Eine Funktion a : N Ñ R

Kap. 10: Folgen und Reihen. Eine Funktion a : N Ñ R Definition: Zahlenfolge Kap. 10: Folgen und Reihen 10.1 Definition: Zahlenfolge Eine Funktion a : N Ñ R poder Cq heißt reelle (oder komplexe) Zahlenfolge. Man nennt a n apnq das n-te Folgenglied und schreibt

Mehr

Zusammenfassung zur Konvergenz von Folgen

Zusammenfassung zur Konvergenz von Folgen Zusammenfassung zur Konvergenz von Folgen. Definition des Konvergenzbegriffs Eine Folge reeller Zahlen a n n heißt konvergent gegen a in Zeichen a n = a, falls gilt > 0 n 0 n n 0 : an a < Hinweise: Bei

Mehr

Reihen. Kapitel 3. Reihen, Potenzreihen und elementare Funktionen. Peter Becker (H-BRS) Analysis Sommersemester / 543

Reihen. Kapitel 3. Reihen, Potenzreihen und elementare Funktionen. Peter Becker (H-BRS) Analysis Sommersemester / 543 Kapitel 3 Reihen, Potenzreihen und elementare Funktionen Peter Becker (H-BRS) Analysis Sommersemester 2016 160 / 543 Inhalt Inhalt 3 Reihen Absolute Konvergenz Potenzreihen Elementare Funktionen Anwendung:

Mehr

Mathematik für Naturwissenschaftler I WS 2009/2010

Mathematik für Naturwissenschaftler I WS 2009/2010 Mathematik für Naturwissenschaftler I WS 2009/2010 Lektion 8 10. November 2009 Kapitel 2. Konvergenz von Folgen und Reihen Definition 27. Eine (reelle bzw. komplexe) Zahlenfolge ist eine R- bzw. C-wertige

Mehr

Mathematik I. Vorlesung 7. Folgen in einem angeordneten Körper

Mathematik I. Vorlesung 7. Folgen in einem angeordneten Körper Prof. Dr. H. Brenner Osnabrück WS 009/010 Mathematik I Vorlesung 7 Folgen in einem angeordneten Körper Wir beginnen mit einem motivierenden Beispiel. Beispiel 7.1. Wir wollen die Quadratwurzel einer natürlichen

Mehr

Humboldt-Universität zu Berlin Institut für Mathematik Prof. A. Griewank Ph.D.; Dr. A. Hoffkamp; Dipl.Math. T.Bosse; Dipl.Math. L. Jansen,T.

Humboldt-Universität zu Berlin Institut für Mathematik Prof. A. Griewank Ph.D.; Dr. A. Hoffkamp; Dipl.Math. T.Bosse; Dipl.Math. L. Jansen,T. Humboldt-Universität zu Berlin Institut für Mathematik Prof. A. Griewank Ph.D.; Dr. A. Hoffkamp; Dipl.Math. T.Bosse; Dipl.Math. L. Jansen,T. Streubel Lösungsalternativen für die Übungsaufgaben zur Vorlesung

Mehr

Alternativ kann man auch die Differenz a n+1 a n betrachten:

Alternativ kann man auch die Differenz a n+1 a n betrachten: Aufgabe 1 Folgen auf Monotonie und Beschränktheit prüfen. a) Beschränktheit? Die Folge ( ) n N mit = n + ( 1) n ist nach unten beschränkt, denn es gilt n + ( 1) n n 1 1 für alle n N. Allerdings ist die

Mehr

= (n 2 ) 1 (Kurzschreibweise: a n = n 2 ) ergibt die Zahlenfolge 1, 4, 9, 16, 25, 36,.

= (n 2 ) 1 (Kurzschreibweise: a n = n 2 ) ergibt die Zahlenfolge 1, 4, 9, 16, 25, 36,. 2 Folgen, Reihen, Grenzwerte 2.1 Zahlenfolgen Definition: Eine Folge ist eine geordnete Menge von Elementen an (den sogenannten Gliedern ), die eindeutig den natürlichen Zahlen zugeordnet sind (n N; auch

Mehr

Thema 3 Folgen, Grenzwerte

Thema 3 Folgen, Grenzwerte Thema 3 Folgen, Grenzwerte Definition Eine Folge von reellen Zahlen ist eine Abbildung von N in R d.h. jedem n N ist eine Zahl a n zugeordnet. Wir schreiben für eine solche Folge. Beispiele. (a n ) n N

Mehr

Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen. Steven Klein

Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen. Steven Klein Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen Steven Klein 04.01.017 1 In dieser Ausarbeitung konstruieren wir die reellen Zahlen aus den rationalen Zahlen. Hierzu denieren wir zunächst

Mehr

KAPITEL 2. Folgen und Reihen

KAPITEL 2. Folgen und Reihen KAPITEL 2 Folgen und Reihen 1. Konvergenz und Divergenz Definition 2.1 (Folgen). Eine Abbildung a : N R (bzw. a : N 0 R) nennt man Folge. Statt a : N R schreibt man meist (a n ) n N und a n statt a(n).

Mehr

10 Aus der Analysis. Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit

10 Aus der Analysis. Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit 10 Aus der Analysis Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit Zahlenfolgen Ein unendliche Folge reeller Zahlen heißt Zahlenfolge. Im Beispiel 2, 3, 2, 2 2, 2

Mehr

Folgen. Kapitel 2. Folgen. Peter Becker (H-BRS) Analysis Sommersemester / 543

Folgen. Kapitel 2. Folgen. Peter Becker (H-BRS) Analysis Sommersemester / 543 Kapitel 2 Folgen Peter Becker (H-BRS) Analysis Sommersemester 2016 89 / 543 Inhalt Inhalt 1 Folgen Definition kriterien in C, R d und C d Peter Becker (H-BRS) Analysis Sommersemester 2016 90 / 543 Definition

Mehr

Vorkurs Mathematik. Übungen Teil IV

Vorkurs Mathematik. Übungen Teil IV Vorkurs Mathematik Herbst 009 M. Carl E. Bönecke Skript und Übungen Teil IV. Folgen und die Konstruktion von R Im vorherigen Kapitel haben wir Z und Q über (formale) Lösungsmengen von Gleichungen der Form

Mehr

Kapitel 4 Folgen und Reihen

Kapitel 4 Folgen und Reihen Kapitel 4 Folgen und Reihen Inhalt 4.1 4.1 Konvergenzkriterien für für Folgen 4.2 4.2 Reihen 4.3 4.3 Achilles und und die die Schildkröte Seite 2 4.1 Konvergenzkriterien für Folgen Wiederholung (vgl. (vgl.

Mehr

Dem Anschein nach werden diese Zahlen kleiner und kleiner und streben gegen Null. Was sollen sie sonst auch tun? Aber der Begriff

Dem Anschein nach werden diese Zahlen kleiner und kleiner und streben gegen Null. Was sollen sie sonst auch tun? Aber der Begriff 47 5 Irrationales 5.1 Folgen, Konvergenz und Vollständigkeit Eine Abbildung a : N R definiert eine Folge von reellen Werten a 1 = a(1), a 2 = a(2), a 3 = a(3),... Solche Zahlenfolgen werden uns dazu dienen,

Mehr

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen Topologische Grundbegriffe I Vortrag zum Proseminar Analysis, 26.04.2010 Nina Neidhardt und Simon Langer Im Folgenden soll gezeigt werden, dass topologische Konzepte, die uns schon für die Reellen Zahlen

Mehr

11 Logarithmus und allgemeine Potenzen

11 Logarithmus und allgemeine Potenzen Logarithmus und allgemeine Potenzen Bevor wir uns mit den Eigenschaften von Umkehrfunktionen, und insbesondere mit der Umkehrfunktion der Eponentialfunktion ep : R R + beschäftigen, erinnern wir an den

Mehr

Ferienkurs Analysis 1, SoSe Unendliche Reihen. Florian Beye August 15, 2008

Ferienkurs Analysis 1, SoSe Unendliche Reihen. Florian Beye August 15, 2008 Ferienkurs Analysis 1, SoSe 2008 Unendliche Reihen Florian Beye August 15, 2008 1 Reihen und deren Konvergenz Definition 1.1. Eine reelle bzw. komplexe Reihe ist eine unendliche Summe über die Glieder

Mehr

Folgen und Reihen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Folgen und Reihen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden Folgen und Reihen Bernhard Ganter Institut für Algebra TU Dresden D-0062 Dresden bernhard.ganter@tu-dresden.de Folgen Eine (unendliche) (Zahlen)folge ist eine Abbildung f : N R. Statt f (n) schreibt man

Mehr

3. Folgen und Reihen. 3.1 Folgen und Grenzwerte. Denition 3.1 (Folge) Kapitelgliederung

3. Folgen und Reihen. 3.1 Folgen und Grenzwerte. Denition 3.1 (Folge) Kapitelgliederung Kapitelgliederung 3. Folgen und Reihen 3.1 Folgen und Grenzwerte 3.2 Rechenregeln für konvergente Folgen 3.3 Monotone Folgen und Teilfolgen 3.4 Ein Algorithmus zur Wurzelberechnung 3.5 Reihen 3.6 Absolut

Mehr

1 Modulare Arithmetik

1 Modulare Arithmetik $Id: modul.tex,v 1.10 2012/04/12 12:24:19 hk Exp $ 1 Modulare Arithmetik 1.2 Euklidischer Algorithmus Am Ende der letzten Sitzung hatten wir den größten gemeinsamen Teiler zweier ganzer Zahlen a und b

Mehr

Die komplexe Exponentialfunktion und die Winkelfunktionen

Die komplexe Exponentialfunktion und die Winkelfunktionen Die komplexe Exponentialfunktion und die Winkelfunktionen In dieser Zusammenfassung werden die für uns wichtigsten Eigenschaften der komplexen und reellen Exponentialfunktion sowie der Winkelfunktionen

Mehr

eine Folge in R, für die man auch hätte schreiben können, wenn wir alle richtig raten, was auf dem Pünktchen stehen sollte.

eine Folge in R, für die man auch hätte schreiben können, wenn wir alle richtig raten, was auf dem Pünktchen stehen sollte. Analysis, Woche 5 Folgen und Konvergenz A 5. Cauchy-Folgen und Konvergenz Eine Folge in R ist eine Abbildung von N nach R und wird meistens dargestellt durch {x n } n=0, {x n} n N oder {x 0, x, x 2,...

Mehr

Kapitel 3. Konvergenz von Folgen und Reihen

Kapitel 3. Konvergenz von Folgen und Reihen Kapitel 3. Konvergenz von Folgen und Reihen 3.1. Normierte Vektorräume Definition: Sei V ein Vektorraum (oder linearer Raum) über (dem Körper) R. Eine Abbildung : V [0, ) heißt Norm auf V, falls die folgenden

Mehr

Folgen und Reihen. Mathematik-Repetitorium

Folgen und Reihen. Mathematik-Repetitorium Folgen und Reihen 1.1 Vollständige Induktion 1.2 Zahlenfolgen 1.3 Eigenschaften konvergenter Zahlenfolgen 1.4 Konvergenzkriterien 1.5 Unendliche Reihen 1.6 Eigenschaften unendlicher Reihen 1.7 Rechnen

Mehr

p 2istirrational Satz 1.15 Beweis. Es gibt keine rationale Zahl x, diediegleichungx 2 =2erfüllt.

p 2istirrational Satz 1.15 Beweis. Es gibt keine rationale Zahl x, diediegleichungx 2 =2erfüllt. p 2istirrational Satz 1.15 Es gibt keine rationale Zahl x, diediegleichungx 2 =2erfüllt. Beweis. Annahme: Es existiert x 2 Q mit x 2 = 2. Wegen x 2 Q folgt x = p q und p und q sind teilerfremde ganze Zahlen.

Mehr

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08)

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) 1 Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) Kapitel 4: Konvergenz und Stetigkeit Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 22. November 2007) Folgen Eine Folge

Mehr

3.3 Konvergenzkriterien für reelle Folgen

3.3 Konvergenzkriterien für reelle Folgen 3.3 Konvergenzkriterien für reelle Folgen Satz: Eine monoton wachsende, nach oben beschränkte reelle Folge a n ) n N ist konvergent mit Grenzwert lim a n = sup{a n n N} Beweis: Sei a n ) n N nach oben

Mehr

n=1 a n mit reellen Zahlen a n einen

n=1 a n mit reellen Zahlen a n einen 4 Unendliche Reihen 4. Definition und Beispiele Ein altes Problem der Analysis ist es, einer Reihe mit reellen Zahlen einen Wert zuzuordnen. Ein typisches Beispiel ist die unendliche Reihe + +..., die

Mehr

Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16)

Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16) 1 Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16) Kapitel 7: Konvergenz und Reihen Prof. Miles Simon Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke Universität Magdeburg.

Mehr

1 Häufungswerte von Folgen

1 Häufungswerte von Folgen KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heio Hoffmann WS 0/..0 Höhere Mathemati I für die Fachrichtung Informati. Saalübung (..0) Häufungswerte von Folgen Oft

Mehr

Lösungen 4.Übungsblatt

Lösungen 4.Übungsblatt Karlsruher Institut für Technology (KIT) WS 2011/2012 Institut für Analysis Priv.-Doz. Dr. Gerd Herzog Dipl.-Math.techn. Rainer Mandel Lösungen 4.Übungsblatt Aufgabe 13 (K) Bestimmen Sie sämtliche Häufungswerte

Mehr

Analysis I. 2. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 2. Übungsstunde. Steven Battilana. battilana.uk/teaching Analysis I. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching March 5, 07 Erinnerung (Euler Formel). e iϕ = cos ϕ + i sin ϕ. Die Polarform von z = x + iy C sei Euler Formel z

Mehr

11. Folgen und Reihen.

11. Folgen und Reihen. - Funktionen Folgen und Reihen Folgen Eine Folge reeller Zahlen ist eine Abbildung a: N R Statt a(n) für n N schreibt man meist a n ; es handelt sich also bei einer Folge um die Angabe der Zahlen a, a

Mehr

11. Übungsblatt zur Mathematik I für Maschinenbau

11. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 200/ 2.0.-28.0. Aufgabe G (Grenzwertberechnung)

Mehr

$Id: integral.tex,v /05/05 14:57:29 hk Exp hk $ ln(1 + t) 2 = ln 2 ln 3 + ln 2 = ln

$Id: integral.tex,v /05/05 14:57:29 hk Exp hk $ ln(1 + t) 2 = ln 2 ln 3 + ln 2 = ln $Id: integral.tex,v.5 2009/05/05 4:57:29 hk Exp hk $ 2 Integralrechnung 2.3 Die Integrationsregeln Wir wollen noch eine letzte kleine Anmerkung zur Substitutionsregel machen. Der letzte Schritt bei der

Mehr

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren Ferienkurs Analysis 1 - Wintersemester 2014/15 Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis

Mehr

Konstruktion reeller Zahlen aus rationalen Zahlen

Konstruktion reeller Zahlen aus rationalen Zahlen Konstruktion reeller Zahlen aus rationalen Zahlen Wir nehmen an, daß der Körper der rationalen Zahlen bekannt ist. Genauer wollen wir annehmen: Gegeben ist eine Menge Q zusammen mit zwei Verknüpfungen

Mehr

Kapitel 5. Die trigonometrischen Funktionen Die komplexen Zahlen Folgen und Reihen in C

Kapitel 5. Die trigonometrischen Funktionen Die komplexen Zahlen Folgen und Reihen in C Kapitel 5. Die trigonometrischen Funktionen 5.1. Die komplexen Zahlen 5.. Folgen und Reihen in C 5.10. Definition. Eine Folge (c n n N komplexer Zahlen heißt konvergent gegen c C, falls zu jedem ε > 0

Mehr

Hilfsmittel aus der Kombinatorik, Vollständige Induktion, Reelle Zahlenfolgen

Hilfsmittel aus der Kombinatorik, Vollständige Induktion, Reelle Zahlenfolgen 7. Vorlesung im Brückenkurs Mathematik 2017 Hilfsmittel aus der Kombinatorik, Vollständige Induktion, Reelle Zahlenfolgen Dr. Markus Herrich Markus Herrich Kombinatorik, Vollständige Induktion, Zahlenfolgen

Mehr

Folgen und Reihen. Wirtschaftswissenschaftliches Zentrum Universität Basel. Mathematik für Ökonomen 1 Dr. Thomas Zehrt

Folgen und Reihen. Wirtschaftswissenschaftliches Zentrum Universität Basel. Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen Dr. Thomas Zehrt Folgen und Reihen Literatur Referenz: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen, Band, 7. Auflage,

Mehr

13 Stetige Funktionen

13 Stetige Funktionen $Id: stetig.tex,v.4 2009/02/06 3:47:42 hk Exp $ 3 Stetige Funktionen 3.2 Stetige Funktionen In anderen Worten bedeutet die Stetigkeit einer Funktion f : I R also f(x n) = f( x n ) n n für jede in I konvergente

Mehr

Folgen und endliche Summen

Folgen und endliche Summen Kapitel 2 Folgen und endliche Summen Folgen und ihre Eigenschaften Endliche arithmetische und geometrische Folgen und Reihen Vollständige Induktion Anwendungen Folgen/endliche Summen Eigenschaften Folgen

Mehr

Nachklausur Analysis 1

Nachklausur Analysis 1 Nachklausur Analysis 1 Die Nachklausur Analysis 1 für Mathematiker, Wirtschaftsmathematiker und Lehrämtler findet als 90-minütige Klausur statt. Für Mathematiker und Wirtschaftsmathematiker ist es eine

Mehr

10 Kriterien für absolute Konvergenz von Reihen

10 Kriterien für absolute Konvergenz von Reihen 10 Kriterien für absolute Konvergenz von Reihen 10.1 Majoranten- und Minorantenkriterium 10.3 Wurzelkriterium 10.4 Quotientenkriterium 10.9 Riemannscher Umordnungssatz 10.10 Äquivalenzen zur absoluten

Mehr

9 Konvergenz und absolute Konvergenz von Reihen

9 Konvergenz und absolute Konvergenz von Reihen 9 Konvergenz und absolute Konvergenz von Reihen 9.2 Konvergenz von Reihen 9.5 Monotoniekriterium für Reihen 9.6 Konvergenzkriterium von Cauchy für Reihen 9.9 Rechenregeln für konvergente Reihen 9.10 Absolute

Mehr

b liegt zwischen a und c.

b liegt zwischen a und c. 2 DIE ANORDNUNGSAXIOME 5 (2.4) a, b, c R : (a < b 0 < c) ac < bc Monotoniegesetz der Multiplikation Bezeichnungen a > b : b < a (> wird gelesen: größer als ) a b : a < b oder a = b a b : a > b oder a =

Mehr

2 Folgen und Reihen. 2.1 Folgen in C Konvergenz von Folgen. := f(n)

2 Folgen und Reihen. 2.1 Folgen in C Konvergenz von Folgen. := f(n) 2 Folgen und Reihen 2.1 Folgen in C 2.1.1 Konvergenz von Folgen Eine Folge komplexer Zahlen ist eine Funktion f : N C. Mit a n schreibt man (a n ) n=1, (a n ) oder auch a 1, a 2,.... := f(n) (a n ) heißt

Mehr

Kapitel 5 Reihen 196

Kapitel 5 Reihen 196 Kapitel 5 Reihen 96 Kapitel 5. Definition und Beispiele 97 Das Material dieses Kapitels können Sie nachlesen in: MICHAEL SPIVAK, Calculus, Kapitel 22 DIRK HACHENBERGER, Mathematik für Informatiker, Kapitel

Mehr

Einführung in die Analysis

Einführung in die Analysis Ergänzungen zur Vorlesung Einführung in die Analysis Christian Schmeiser 1 Vorwort In dieser Vorlesung werden Grundbegriffe der Analysis wie Folgen und Reihen, Konvergenz und Vollständigkeit am Beispiel

Mehr

Musterlösung zum Weihnahchtsübungsblatt. Teil 1 von Martin Fabricius. Aufgabe 1

Musterlösung zum Weihnahchtsübungsblatt. Teil 1 von Martin Fabricius. Aufgabe 1 Musterlösung zum Weihnahchtsübungsblatt Teil von Martin Fabricius Aufgabe a) Diese Aufgabe kann z. B. durch ausmultiplizieren gelöst werden: (433) 7 = 4 7 3 +3 7 + 7 +3 7 0 = 4 343+3 49+ 7+3 = 37+47+4+3

Mehr

Konstruktion der reellen Zahlen. 1 Der Körper der reellen Zahlen

Konstruktion der reellen Zahlen. 1 Der Körper der reellen Zahlen Vortrag zum Proseminar zur Analysis, 24.10.2012 Adrian Hauffe-Waschbüsch In diesem Vortrag werden die reellen Zahlen aus rationalen Cauchy-Folgen konstruiert. Dies dient zur Vorbereitung der späteren Vorträge,

Mehr

Die Topologie von R, C und R n

Die Topologie von R, C und R n Die Topologie von R, C und R n Für R haben wir bereits eine Reihe von Strukturen kennengelernt: eine algebraische Struktur (Körper), eine Ordnungsstruktur und eine metrische Struktur (Absolutbetrag, Abstand).

Mehr

ist streng monoton fallend.

ist streng monoton fallend. Beispiel 3.5 Betrachte die Folgen aus Beispiel 3.1 Die Folgen a und d mit a n = n 2 und d n = 2 n sowie die Fibonacci-Folge sind streng monoton wachsend. Die Folge b mit b n = 1 n ist streng monoton fallend.

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Analysis I für Studierende der Ingenieurwissenschaften Ingenuin Gasser Department Mathematik Universität Hamburg Technische Universität Hamburg Harburg Wintersemester 2008/2009 3.2 Konvergenzkriterien

Mehr

4 Funktionenfolgen und normierte Räume

4 Funktionenfolgen und normierte Räume $Id: norm.tex,v 1.9 2011/06/01 15:13:45 hk Exp $ $Id: jordan.tex,v 1.3 2011/06/01 15:30:12 hk Exp hk $ 4 Funktionenfolgen und normierte Räume 4.5 Normierte Räume In der letzten Sitzung hatten wir den Begriff

Mehr

3.3. KONVERGENZKRITERIEN 67. n+1. a p und a n. beide nicht konvergent, so gilt die Aussage des Satzes 3.2.6

3.3. KONVERGENZKRITERIEN 67. n+1. a p und a n. beide nicht konvergent, so gilt die Aussage des Satzes 3.2.6 3.3. KONVERGENZKRITERIEN 67 und l n+1 wiederum als kleinsten Wert, so dass A 2n+2 = A 2n+1 + l n+1 k=l n < A. Alle diese Indizes existieren und damit ist eine Folge {A k } k N definiert. Diese Folge konvergiert

Mehr

INGENIEURMATHEMATIK. 8. Reihen. Sommersemester Prof. Dr. Gunar Matthies

INGENIEURMATHEMATIK. 8. Reihen. Sommersemester Prof. Dr. Gunar Matthies Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik INGENIEURMATHEMATIK 8. Reihen Prof. Dr. Gunar Matthies Sommersemester 2016 G. Matthies Ingenieurmathematik

Mehr

x k = s k=1 y k = y konvergent. Dann folgt (cx k ) = cx für c K. Partialsummenfolge konvergiert

x k = s k=1 y k = y konvergent. Dann folgt (cx k ) = cx für c K. Partialsummenfolge konvergiert 4 Reihen Im Folgenden sei K R oder K C. 4. Definition. Es sei (x k ) Folge in K. Wir schreiben x k s und sagen, die Reihe x k konvergiere, falls die sogenannte Partialsummen-Folge s n x k n, 2,... in K

Mehr

Lösungsvorschlag zu den Präsenzaufgaben der 1. Übung

Lösungsvorschlag zu den Präsenzaufgaben der 1. Übung Michael Winkler Johannes Lankeit 8.4.2014 Lösungsvorschlag zu den Präsenzaufgaben der 1. Übung Präsenzaufgabe 1: Rufe dir die folgenden Definitionen wieder in Erinnerung: C = {(x, y); x R, y R} bildet

Mehr

Stetigkeit. Kapitel 4. Stetigkeit. Peter Becker (H-BRS) Analysis Sommersemester / 543

Stetigkeit. Kapitel 4. Stetigkeit. Peter Becker (H-BRS) Analysis Sommersemester / 543 Kapitel 4 Stetigkeit Peter Becker (H-BRS) Analysis Sommersemester 2016 254 / 543 Inhalt Inhalt 4 Stetigkeit Eigenschaften stetiger Funktionen Funktionenfolgen und gleichmäßige Konvergenz Umkehrfunktionen

Mehr

1 Reihen von Zahlen. Inhalt:

1 Reihen von Zahlen. Inhalt: 5 Kapitel 3 Reihen Reihen von Zahlen Inhalt: Konvergenz und Divergenz von Reihen reeller oder komplexer Zahlen, geometrische Reihe, harmonische Reihe, alternierende Reihen. Cauchy-Kriterium, absolute Konvergenz,

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Oliver Matte Max Lein Zentralübung Mathematik für Physiker 2 Analysis ) Wintersemester 200/20 Lösungsblatt 5 2..200) 32. Häufungspunkte Sei a

Mehr

Kapitel 4. Folgen Körper der reellen Zahlen. Wir kennen schon den Körper Q der rationalen Zahlen: : a, b Z, b 0}. Q = { a b

Kapitel 4. Folgen Körper der reellen Zahlen. Wir kennen schon den Körper Q der rationalen Zahlen: : a, b Z, b 0}. Q = { a b Kapitel 4. Folgen 4.1. Körper der reellen Zahlen Wir kennen schon den Körper Q der rationalen Zahlen: Q = { a b : a, b Z, b 0}. Die natürliche Ordnung auf Q ist eine totale Ordnung. Überdies gilt folgendes

Mehr

1 Umkehrfunktionen und implizite Funktionen

1 Umkehrfunktionen und implizite Funktionen Mathematik für Physiker III WS 2012/2013 Freitag 211 $Id: implizittexv 18 2012/11/01 20:18:36 hk Exp $ $Id: lagrangetexv 13 2012/11/01 1:24:3 hk Exp hk $ 1 Umkehrfunktionen und implizite Funktionen 13

Mehr

Kapitel 6. Exponentialfunktion

Kapitel 6. Exponentialfunktion Kapitel 6. Exponentialfunktion 6.1. Potenzreihen In Kap. 4 haben wir Reihen ν=0 a ν studiert, wo die Glieder feste Zahlen sind. Die Summe solcher Reihen ist wieder eine Zahl, z.b. die Eulersche Zahl e.

Mehr

$Id: korper.tex,v /05/10 12:25:27 hk Exp $

$Id: korper.tex,v /05/10 12:25:27 hk Exp $ $Id: korper.tex,v 1.17 2012/05/10 12:25:27 hk Exp $ 4 Körper In der letzten Sitzung hatten wir den Körperbegriff eingeführt und einige seiner elementaren Eigenschaften vorgeführt. Insbesondere hatten wir

Mehr

$Id: reell.tex,v /11/15 13:12:24 hk Exp $

$Id: reell.tex,v /11/15 13:12:24 hk Exp $ $Id: reell.tex,v.8 200//5 3:2:24 h Exp $ 4 Die reellen Zahlen 4.3 Das Vollständigeitsaxiom Wir hatten das Supremum einer Menge M R als die leinste obere Schrane von M definiert, sofern eine solche überhaupt

Mehr