Vortragsthema: Die Unschärferelationen Ort/Impuls Energie/Zeit. An einigen Beispielen erläutern

Größe: px
Ab Seite anzeigen:

Download "Vortragsthema: Die Unschärferelationen Ort/Impuls Energie/Zeit. An einigen Beispielen erläutern"

Transkript

1 Vortragsthema: Die Unschärferelationen Ort/Impuls Energie/Zeit An einigen Beispielen erläutern

2 5. Das Photon: Welle und Teilchen 5.4. Die Plancksche Strahlungsformel Wichtige Punkte: u( ν, T ) = 8πh c 3 ν 3 k T e h ν B 1 1) Form des Spektrums, Temperaturabhängigkeit 2) Ableitung durch die Annahme das die Oszilatoren in den Wänden quantisierte Energien haben E= nh ν

3 5. Das Photon: Welle und Teilchen Wellenbild ergibt Blaue Linie: Wahrscheinlichkeitsverteilung der Photonen Einzelne Photonen Verbindung von Wellen und Teilchenbeschreibung: Photonen: Photonendichte = Intensität/ (c h ν) Ebene Welle: Elektrische Feldstärke cos(ν/2π t) Intensität E 2 Wahrscheinlichkeit für ein Photon zu finden Quadrat der Amplitude

4 6. Teilchen als Wellen 1. Einführung 1.1. Quantenmechanik versus klassische Theorien 1.2. Historischer Rückblick 2. Kann man Atome sehen? Größe des Atoms 3. Weitere Eigenschaften von Atomen: Masse, Isotopie 4. Atomkern und Hülle: das Rutherfordexperiment 5. Das Photon: Welle und Teilchen 5.1. Welle vs. Teilchen vor 1900 De Broglie Wellenlänge eines Teilchens mit Masse m 0 : 5.2. Der Photoelektrische Effekt - Beobachtungen - Einsteins Interpretation - Impuls und Energieerhaltung 5.3. Der Comptoneffekt 5.4. Die Plancksche Strahlungformel 5.5. Licht als Welle und Teilchen 6. Teilchen als Welle (de Broglie) 6.1. Die debroglie Wellenlänge 6.2. Experimente 1: Elektronen als Welle Davisson Germer Experiment 6.3 Möllenstedt-Düker Experiment 6.4. Experimente 2: Atome/Moleküle als Welle λ = h/p = h/ 2m 0 E kin

5 6. Teilchen als Wellen 6.3. Experimente 2: Möllenstedt/Düker Experiment (1956) Elektronenquelle Faden mm! - - Film Extrem vibrationsarmer Aufbau Sehr lokalisierte Elektronenquelle

6 6. Teilchen als Wellen 6.3. Experimente 2: Möllenstedt/Düker Experiment (1956) Zeit

7 Heisenbergsche Unschärferelation Δx Δp x ħ Ort und Impuls eines Teilchens können nicht genauer bestimmt werden P= h ν / c Gute Ortsauflösung= kurze Wellenlänge= hoher Impuls Die Messung des Ortes erfordert Streuung von Licht, Es gibt keine Wechselwirkungfreie Beobachtung dadurch ist der Impuls nach der Messung geändert

8 Heisenbergsche Unschärferelation Δx Δp x ħ Ort und Impuls eines Teilchens können nicht genauer bestimmt werden Der Meßprozeß ändert den Zustand des zu messenden Objektes! Die Wechselwirkung kann nicht beliebig klein sein! (gequantelt!) Theorie die nicht Aussage über die Welt an sich macht, sondern nur über mögliche Meßgrössen

9 Ort x Δx Δp x ħ Ort x Δx Δp x ħ Impuls p x Impuls p x Präzise Impulsmessung Präzise Ortsmessung benötigt grossen Impulstransfer! Objekt in unbekanntem Zustand Ort unbekannt, Impuls unbekannt Objekt wieder unbekanntem Impulszustand Ort bekannt

10 Heisenbergsche Unschärferelation Δx Δp x ħ Ort und Impuls eines Teilchens können nicht genauer bestimmt werden Ort x Δx Δp x ħ Impuls p x Wie passt die Unschärferelation zum Wellenbild?

11 Wellenfunktion: De Broglie Welleneigenschaften der Materie: Materie: Welle: Energie E = hν = ħ ω Frequenz Impuls p = h/λ = ħ k Wellenlänge Impuls Ebene Welle Energie Wellenvektor k=2π/ λ A(x,t) = A 0 cos(kx - ωt)

12 Wellenfunktion: Ebene Welle ist ein Extremfall: Extremfall: scharfer Impuls p = ħ k Ebene Welle beschreibt ein völlig delokalisiertes (unendlich ausgedehntes) Teilchen Ort x Δx Δp x ħ Impuls p x Impuls Ebene Welle Energie A(x,t) = A 0 cos(kx - ωt)

13 Wellenfunktion: Ebene Welle: A(x,t) = A 0 cos(kx - ωt) Wellenpaket: Überlagerung aus Ebenen Wellen verschiedenen k Fourieranalyse: Aufbau aus harmonischen Schwingungen Sehr schöne Webpage:

14 Aufbau eines Wellenpaketes Ψ(x) = e ikx d.h. die Phasengeschwindigkeit ist Energieabhängig -> Dispersion 03_02b.mov Real und Imaginaer

15 Beispiel: Schiefer Wurf λ = h/p = h/ 2m 0 E kin Klassiche Bahn Quantemechanische Teilchen Δx Δp x ħ Wellenpaket Ort x Δx Δp x ħ Ortsunschärfe Impuls p x Impulsunschärfe: verschiedene Wellenlängen

16 Beispiel: Schiefer Wurf λ = h/p = h/ 2m 0 E kin Wellenlänge länger (langsamer am Scheitelpunkt) Ausgedehnter: auseinandergelaufen

17 Beispiel: Doppelspalt mit Wellenpaket Die stationäre Darstellung des Doppelspaltes mit ebener Welle vor und Kugelwellen nach dem Spalt ist der Extremfall der Unschärferelations mit völlig scharfem Impuls (d.h. fester Wellenlänge) Alternative: Beschreibe Teilchen durch Wellenpaket mit Δx und Δ p x anstatt ebener Welle Δ y Δ x

18 Beispiel: Doppelspalt mit Wellenpaket Höhe: Wahrscheinlichkeit ein Teilchen dort zu finden Alternative: Beschreibe Teilchen durch Wellenpaket mit Δx und Δ p x anstatt ebener Welle Δ y ORT: dargestellt Δ x Impuls/Wellenlänge: nicht zu sehen Gausssche Wellenpaket Gaussverteilung im Ort Impuls

19 Beispiel: Doppelspalt mit Wellenpaket QM-Doppelspalt-mit-phase.mov ORT: dargestellt Impuls: in der Wellenlänge Amplitude:Farbsättigung

20 Die Nullpunktsenergie: Eine Folge der Unschärferelations bei Anwesenheit eines Potentials Δx Δp x ħ ħ = kg m 2 /sec Kugel 10g auf 1μm m/sec Potentielle Energie Δx Δp x x

21 Die Nullpunktsenergie: Eine Folge der Unschärferelations bei Anwesenheit eines Potentials Δx Δp x ħ ħ = kg m 2 /sec Elektronen im Atom: Radius: m Elektronenimpuls>10-24 kg m/sec m e = kg -> m/sec

22 Ort / Impuls Δx Δp x ħ Energie/Zeit Δt ΔE ħ Folgen: Monochromatisches Licht kann nicht sehr kurz sein Ein kurzlebiger Zustand hat keine scharfe Energie Nur stabile Zustände (Bohrmodel) haben scharfe Energie Energieerhaltung? kann kurzzeitig verletzt sein! Gilt streng im Einzelprozess, aber nicht in beliebig kurzen Zeitintervallen.

23 Beispiel 1: Δt ΔE ħ

24 Beispiel 1: Δt ΔE ħ Klassische Mechanik Quantenmechanik hier weite Energieerhaltung gilt für jeden Zwischenschritt Energieerhaltung gilt für Zwischenschritte nur innerhalb Δt ΔE ħ

25 Beispiel 2: Δt ΔE ħ Kurze Lichtpulse sind breitbandig: Δt ΔE ħ = 6.58*10-16 evs E photon = h ν langer sinus: scharfe Energie Kurzer Laserpuls Überlagerung von ebenen Wellen Bsp: 5*10-15 sec (femto) 0.1 ev (von z.b. 1,5 ev)

26 Wichtige Punkte: Teilchen durch Wellen beschrieben (de Broglie) Die Wellen interferieren Amplitudenquadrat ist Wahrscheinlichkeit Unschärfe von Ort & Impuls, Energie & Zeit Ebene Wellen: Impuls aber kein Ort Teilchenanschauung: Wellenpaket

1.4. Die Wahrscheinlichkeitsinterpretation

1.4. Die Wahrscheinlichkeitsinterpretation 1.4. Die Wahrscheinlichkeitsinterpretation 1.4.1. Die Heisenbergsche Unschärferelation Wie kann der Welle-Teilchen-Dualismus in der Quantenmechanik interpretiert werden? gibt die Wahrscheinlichkeit an,

Mehr

Übungen Quantenphysik

Übungen Quantenphysik Ue QP 1 Übungen Quantenphysik Kernphysik Historische Entwicklung der Atommodelle Klassische Wellengleichung 5 Schrödinger Gleichung 6 Kastenpotential (Teilchen in einer Box) 8 Teilchen im Potentialtopf

Mehr

Einführung in die Quantentheorie der Atome und Photonen

Einführung in die Quantentheorie der Atome und Photonen Einführung in die Quantentheorie der Atome und Photonen 23.04.2005 Jörg Evers Max-Planck-Institut für Kernphysik, Heidelberg Quantenmechanik Was ist das eigentlich? Physikalische Theorie Hauptsächlich

Mehr

14 Teilchen und Wellen

14 Teilchen und Wellen 14 Teilchen und Wellen 14.1 Teilchencharakter von elektromagnetischen Wellen 1411 14.1.1 Strahlung schwarzer Körper 14.1.2 Der Photoeffekt 14.1.3 Technische Anwendungen 14.2 Wellencharakter von Teilchen

Mehr

VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik

VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik VL7 VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik VL7. Elemente der Quantenmechanik II 7.1. Wellenpakete als Lösungen

Mehr

8 Das Bohrsche Atommodell. 8. Das Bohrsche Atommodell

8 Das Bohrsche Atommodell. 8. Das Bohrsche Atommodell 1. Einführung 1.1. Quantenmechanik versus klassische Theorien 1.2. Historischer Rückblick 2. Kann man Atome sehen? Größe des Atoms 3. Weitere Eigenschaften von Atomen: Masse, Isotopie 4. Atomkern und Hülle:

Mehr

Vorlesung 21: Roter Faden: Das Elektron als Welle Heisenbergsche Unsicherheitsrelation. Versuch: Gasentladung

Vorlesung 21: Roter Faden: Das Elektron als Welle Heisenbergsche Unsicherheitsrelation. Versuch: Gasentladung Vorlesung 21: Roter Faden: Das Elektron als Welle Heisenbergsche Unsicherheitsrelation Versuch: Gasentladung Juli 7, 2006 Ausgewählte Kapitel der Physik, Prof. W. de Boer 1 Erste Experimente mit Elektronen

Mehr

22. Wärmestrahlung. rmestrahlung, Quantenmechanik

22. Wärmestrahlung. rmestrahlung, Quantenmechanik 22. Wärmestrahlung rmestrahlung, Quantenmechanik Plancksches Strahlungsgesetz: Planck (1904): der Austausch von Energie zwischen dem strahlenden System und dem Strahlungsfeld kann nur in Einheiten von

Mehr

27. Wärmestrahlung. rmestrahlung, Quantenmechanik

27. Wärmestrahlung. rmestrahlung, Quantenmechanik 24. Vorlesung EP 27. Wärmestrahlung rmestrahlung, Quantenmechanik V. STRAHLUNG, ATOME, KERNE 27. Wärmestrahlung, Quantenmechanik Photometrie Plancksches Strahlungsgesetz Welle/Teilchen Dualismus für Strahlung

Mehr

Der Welle-Teilchen-Dualismus

Der Welle-Teilchen-Dualismus Quantenphysik Der Welle-Teilchen-Dualismus Welle-Teilchen-Dualismus http://bluesky.blogg.de/2005/05/03/fachbegriffe-der-modernen-physik-ix/ Welle-Teilchen-Dualismus Alles ist gleichzeitig Welle und Teilchen.

Mehr

Quantenobjekte Welle? Teilchen?

Quantenobjekte Welle? Teilchen? 1 Quantenobjekte Welle? Teilchen? Bezug zu den Schwerpunkten / RRL Fragestellung(en) Experiment(e) Hintergrund Benutze die Links, um zu den einzelnen Kategorien zu gelangen! Simulationen Übungen / Aufgaben

Mehr

Bohrsches Atommodell / Linienspektren. Experimentalphysik für Biologen und Chemiker, O. Benson & A. Peters, Humboldt-Universität zu Berlin

Bohrsches Atommodell / Linienspektren. Experimentalphysik für Biologen und Chemiker, O. Benson & A. Peters, Humboldt-Universität zu Berlin Bohrsches Atommodell / Linienspektren Quantenstruktur der Atome: Atomspektren Emissionslinienspektren von Wasserstoffatomen im sichtbaren Bereich Balmer Serie (1885): 1 / λ = K (1/4-1/n 2 ) 656.28 486.13

Mehr

Die Wellenfunktion ψ(r,t) ist eine komplexe skalare Größe, da keine Polarisation wie bei elektromagnetischen Wellen beobachtet wurde.

Die Wellenfunktion ψ(r,t) ist eine komplexe skalare Größe, da keine Polarisation wie bei elektromagnetischen Wellen beobachtet wurde. 2. Materiewellen und Wellengleichung für freie Teilchen 2.1 Begriff Wellenfunktion Auf Grund des Wellencharakters der Materie können wir den Zustand eines physikalischen Systemes durch eine Wellenfunktion

Mehr

Vorlesung 6: Roter Faden: Schrödingergleichung als Wellengleichung der Materie. Messungen in der Quantenmechanik

Vorlesung 6: Roter Faden: Schrödingergleichung als Wellengleichung der Materie. Messungen in der Quantenmechanik Vorlesung 6: Roter Faden: Schrödingergleichung als Wellengleichung der Materie Messungen in der Quantenmechanik Folien auf dem Web: http://www-ekp.physik.uni-karlsruhe.de/~deboer/ Wim de Boer, Karlsruhe

Mehr

= 6,63 10 J s 8. (die Plancksche Konstante):

= 6,63 10 J s 8. (die Plancksche Konstante): 35 Photonen und Materiefelder 35.1 Das Photon: Teilchen des Lichts Die Quantenphysik: viele Größen treten nur in ganzzahligen Vielfachen von bestimmten kleinsten Beträgen (elementaren Einheiten) auf: diese

Mehr

Vorlesung 5: (Elektron: griechisch für Bernstein, das durch Reibung elektrostatisch aufgeladen wurde)

Vorlesung 5: (Elektron: griechisch für Bernstein, das durch Reibung elektrostatisch aufgeladen wurde) Vorlesung 5: Roter Faden: Elektron als Welle Heisenbergsche Unsicherheitsrelation (Elektron: griechisch für Bernstein, das durch Reibung elektrostatisch aufgeladen wurde) Folien auf dem Web: http://www-ekp.physik.uni-karlsruhe.de/~deboer/

Mehr

Der photoelektrische Effekt

Der photoelektrische Effekt Der photoelektrische Effekt h ν I ph Abnahme der negativen Ladung auf einer Platte bei Beleuchtung mit UV-Strahlung. Lichtinduzierte Elektronenemission (Lenard, 1902). Erklärung durch A. Einstein (1905)

Mehr

10 Teilchen und Wellen. 10.1 Strahlung schwarzer Körper

10 Teilchen und Wellen. 10.1 Strahlung schwarzer Körper 10 Teilchen und Wellen Teilchen: m, V, p, r, E, lokalisierbar Wellen: l, f, p, E, unendlich ausgedehnt (harmonische Welle) Unterscheidung: Wellen interferieren 10.1 Strahlung schwarzer Körper JEDER Körper

Mehr

Martinovsky Nicole. Schwarzmann Tobias. Thaler Michael

Martinovsky Nicole. Schwarzmann Tobias. Thaler Michael Themen: Unbestimmtheitsrelationen, Materiewellen, Materieteilchen als Welle, Wellenfunktion, Dispersionsrelation, Wellenpaket, Wahrscheinlichkeitsinterpretation, Materie-Quanteninterferenz Martinovsky

Mehr

VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik

VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik VL7 VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik VL7. Elemente der Quantenmechanik II 7.1. Wellenpakete als Lösungen

Mehr

Ein Unterrichtsprojekt zur Quantenmechanik am Begabungsstützpunkt

Ein Unterrichtsprojekt zur Quantenmechanik am Begabungsstützpunkt Ein Unterrichtsprojekt zur Quantenmechanik am Begabungsstützpunkt Andreas Kellerer (BSG Memmingen) Prof. Dr. Reinhold Rückl (Universität Würzburg) Die Rahmenbedingungen: Unterrichtsprojekt für den Kurs

Mehr

Quantenmechanik. Eine Kurzvorstellung für Nicht-Physiker

Quantenmechanik. Eine Kurzvorstellung für Nicht-Physiker Quantenmechanik Eine Kurzvorstellung für Nicht-Physiker Die Quantenvorstellung Der Ursprung: Hohlraumstrahlung Das Verhalten eines Von Interesse: idealen Absorbers Energiedichte in Abhängigkeit zur Wellenlänge

Mehr

8 Das Bohrsche Atommodell

8 Das Bohrsche Atommodell 8 Das Bohrsche Atommodell 1. Einführung 1.1. Quantenmechanik versus klassische Theorien 1.2. Historischer Rückblick 2. Kann man Atome sehen? Größe des Atoms 3. Weitere Eigenschaften von Atomen: Masse,

Mehr

Für Geowissenschaftler. EP WS 2009/10 Dünnweber/Faessler

Für Geowissenschaftler. EP WS 2009/10 Dünnweber/Faessler Für Geowissenschaftler Termin Nachholklausur Vorschlag Mittwoch 14.4.10 25. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Wärmestrahlung und Quantenmechanik Photometrie Plancksches Strahlungsgesetze, Welle/Teilchen

Mehr

Einführung in die Quantenphysik

Einführung in die Quantenphysik Einführung in die Quantenphysik Klassische Optik Der lichtelektrische Effekt Effekte elektromagnetischer Strahlung Kopenhagen-Interpretation Elektronen Quantenphysik und klassische Physik Atomphysik Klassische

Mehr

1.2 Grenzen der klassischen Physik Michael Buballa 1

1.2 Grenzen der klassischen Physik Michael Buballa 1 1.2 Grenzen der klassischen Physik 23.04.2013 Michael Buballa 1 1.2 Grenzen der klassischen Physik Die Konzepte klassischer Teilchen und Wellen haben ihren Ursprung in unserer Alltagserfahrung, z.b. Teilchen:

Mehr

1.4. Das freie quantenmechanische Elektron

1.4. Das freie quantenmechanische Elektron 1.4. Das freie quantenmechanische Elektron 1.4.3. Dispersionsrelation Damit ist die Basis gelegt, um sich mit den grundlegenden Eigenschaften eines quantenmechanischen Teilchens vertraut zu machen. Die

Mehr

Grundlagen der Quantentheorie

Grundlagen der Quantentheorie Grundlagen der Quantentheorie Ein Schwarzer Körper (Schwarzer Strahler, planckscher Strahler, idealer schwarzer Körper) ist eine idealisierte thermische Strahlungsquelle: Alle auftreffende elektromagnetische

Mehr

Vorlesung 23: Roter Faden: Die Schrödingergleichung. (Bedeuting in der Quantenmechanik wie F=ma in der klassischen Mechanik)

Vorlesung 23: Roter Faden: Die Schrödingergleichung. (Bedeuting in der Quantenmechanik wie F=ma in der klassischen Mechanik) Vorlesung 23: Roter Faden: Die Schrödingergleichung (Bedeuting in der Quantenmechanik wie F=ma in der klassischen Mechanik) Juli 12, 2006 Ausgewählte Kapitel der Physik, Prof. W. de Boer 1 Welle Teilchen

Mehr

Quantenmechanik I Sommersemester QM Web Page teaching/ss13/qm1.d.html

Quantenmechanik I Sommersemester QM Web Page  teaching/ss13/qm1.d.html Quantenmechanik I Sommersemester 2013 QM Web Page http://einrichtungen.physik.tu-muenchen.de/t30e/ teaching/ss13/qm1.d.html Hinweise Zusätzliche Übung: Aufgrund des großen Andrangs bieten wir eine zusätzliche

Mehr

Welle-Teilchen- Dualismus. Miguel Muñoz Rojo Seminar zur Quantenphysik

Welle-Teilchen- Dualismus. Miguel Muñoz Rojo Seminar zur Quantenphysik Welle-Teilchen- Dualismus Miguel Muñoz Rojo Seminar zur Quantenphysik I. Korpuskelcharakter von Wellen Gesetz von Planck Lichtelektrische Effekt Compton Effekt Gesetz von Planck Die Energie von einem Oszillator

Mehr

Lichtteilchen, Quantensprünge und Materiewellen

Lichtteilchen, Quantensprünge und Materiewellen Lichtteilchen, Quantensprünge und Materiewellen - eine experimentelle Reise in die Quantenwelt - Prof. Dr. Lutz Feld 1. Physikalisches Institut, RWTH Aachen Novembervorlesung am 24. 11. 2007 1 Worum geht

Mehr

Experimentelle Betrachtung Theoretische Betrachtung. Photoeffekt. 9. April 2012

Experimentelle Betrachtung Theoretische Betrachtung. Photoeffekt. 9. April 2012 9. April 2012 Inhalt Experimentelle Betrachtung 1 Experimentelle Betrachtung 2 Einleitung Experimentelle Betrachtung Photoelektrischer Effekt beschreibt drei verschiedene Arten von Wechselwirkung von Photonen

Mehr

Grundbausteine des Mikrokosmos (7) Wellen? Teilchen? Beides?

Grundbausteine des Mikrokosmos (7) Wellen? Teilchen? Beides? Grundbausteine des Mikrokosmos (7) Wellen? Teilchen? Beides? Experimentelle Überprüfung der Energieniveaus im Bohr schen Atommodell Absorbierte und emittierte Photonen hν = E m E n Stationäre Elektronenbahnen

Mehr

Thema heute: Aufbau der Materie: Das Bohr sche Atommodell

Thema heute: Aufbau der Materie: Das Bohr sche Atommodell Wiederholung der letzten Vorlesungsstunde: Erste Atommodelle, Dalton Thomson, Rutherford, Atombau, Coulomb-Gesetz, Proton, Elektron, Neutron, weitere Elementarteilchen, atomare Masseneinheit u, 118 bekannte

Mehr

ν und λ ausgedrückt in Energie E und Impuls p

ν und λ ausgedrückt in Energie E und Impuls p phys4.011 Page 1 8.3 Die Schrödinger-Gleichung die grundlegende Gleichung der Quantenmechanik (in den bis jetzt diskutierten Fällen) eine Wellengleichung für Materiewellen (gilt aber auch allgemeiner)

Mehr

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator VL 9 VL8. VL9. Das Wasserstoffatom in der Klass. Mechanik 8.1. Emissions- und Absorptionsspektren der Atome 8.2. Quantelung der Energie (Frank-Hertz Versuch) 8.3. Bohrsches Atommodell 8.4. Spektren des

Mehr

Schulinternes Curriculum für das Unterrichtsfach Physik

Schulinternes Curriculum für das Unterrichtsfach Physik Schulinternes Curriculum für das Unterrichtsfach Physik Übersicht (Stand: Mai 2017) Klasse Themen Handlungsfeld / Inhalt Methoden / Materialien Fachspezifische Inhalte Übergeordnetes Thema S1/S2: Feldkonzept

Mehr

Modell der Quantenphysik

Modell der Quantenphysik Modell der Quantenphysik Übersicht 1 Einführung 1 2 Der Zufall in der Quantenphysik 1 3 Mach-Zehnder-Interferometer 2 4 Unterschiedliche Darstellung von Quantenobjekten 4 5 Nichtlokalität 5 6 Verhalten

Mehr

5. Kapitel Die De-Broglie-Wellenlänge

5. Kapitel Die De-Broglie-Wellenlänge 5. Kapitel Die De-Broglie-Wellenlänge 5.1 Lernziele Sie können die De-Broglie-Wellenlänge nachvollziehen und anwenden. Sie kennen den experimentellen Nachweis einer Materiewelle. Sie wissen, dass das Experiment

Mehr

Die Geschichte der Quantenmechanik

Die Geschichte der Quantenmechanik Die Geschichte der Quantenmechanik Kurt Bräuer Institut für Theoretische Physik 5.04.006 www.kbraeuer.de 1 'Urväter' 5.04.006 www.kbraeuer.de Strahlung schwarzer Körper: Max Plank 1900 Plank'sches Strahlungsgesetz:

Mehr

Die Schrödingergleichung

Die Schrödingergleichung Die Schrödingergleichung Wir werden in dieser Woche die grundlegende Gleichung der Quantenmechanik kennenlernen, die Schrödingergleichung. Sie beschreibt das dynamische Verhalten von Systemen in der Natur.

Mehr

Physik IV Einführung in die Atomistik und die Struktur der Materie

Physik IV Einführung in die Atomistik und die Struktur der Materie Physik IV Einführung in die Atomistik und die Struktur der Materie Sommersemester 011 Vorlesung 04 1.04.011 Physik IV - Einführung in die Atomistik Vorlesung 4 Prof. Thorsten Kröll 1.04.011 1 Versuch OH

Mehr

Theoretische Physik mit Maple, WS 2010/ Übungsblatt (Besprechung am ) R( ) ( ( ( ) ( ))) ( ) u ( x)

Theoretische Physik mit Maple, WS 2010/ Übungsblatt (Besprechung am ) R( ) ( ( ( ) ( ))) ( ) u ( x) Theoretische Physik mit Maple, WS 2010/2011 9. Übungsblatt (Besprechung am 24.1.2011) Quantenmechanische Streuung am Kastenpotential Wir betrachten die zeitunabhängige Schrödinger-Gleichung (ZuSG) und

Mehr

23. Vorlesung EP. IV Optik 26. Beugung (Wellenoptik) V Strahlung, Atome, Kerne 27. Wärmestrahlung und Quantenmechanik

23. Vorlesung EP. IV Optik 26. Beugung (Wellenoptik) V Strahlung, Atome, Kerne 27. Wärmestrahlung und Quantenmechanik 23. Vorlesung EP IV Optik 26. Beugung (Wellenoptik) V Strahlung, Atome, Kerne 27. Wärmestrahlung und Quantenmechanik Strahlung: Stoff der Optik, Wärme-, Elektrizitätslehre u. Quantenphysik Photometrie

Mehr

1 Physikalische Hintergrunde: Teilchen oder Welle?

1 Physikalische Hintergrunde: Teilchen oder Welle? Skript zur 1. Vorlesung Quantenmechanik, Montag den 11. April, 2011. 1 Physikalische Hintergrunde: Teilchen oder Welle? 1.1 Geschichtliches: Warum Quantenmechanik? Bis 1900: klassische Physik Newtonsche

Mehr

Unschärfen in der Heisenbergschen Unschärferelation

Unschärfen in der Heisenbergschen Unschärferelation Unschärfen in der Heisenbergschen Unschärferelation Johannes Kofler Max-Planck-Institut für Quantenoptik (MPQ), Garching, Deutschland Die Heisenbergsche Unschärferelation ist seit mehr als 80 Jahren von

Mehr

Grundbausteine des Mikrokosmos (6) Vom Planetenmodell der Atome zum Bohrschen Atommodell

Grundbausteine des Mikrokosmos (6) Vom Planetenmodell der Atome zum Bohrschen Atommodell Grundbausteine des Mikrokosmos (6) Vom Planetenmodell der Atome zum Bohrschen Atommodell 1900: Entdeckung einer neuen Naturkonstanten: Plancksches Wirkungsquantum Was sind Naturkonstanten und welche Bedeutung

Mehr

7. Klausur am

7. Klausur am Name: Punkte: Note: Ø: Profilkurs Physik Abzüge für Darstellung: Rundung: 7. Klausur am 8.. 0 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: h = 6,66 0-34

Mehr

FK Experimentalphysik 3, Lösung 4

FK Experimentalphysik 3, Lösung 4 1 Sterne als schwarze Strahler FK Experimentalphysik 3, 4 1 Sterne als schwarze Strahler Betrachten sie folgende Sterne: 1. Einen roten Stern mit einer Oberflächentemperatur von 3000 K 2. einen gelben

Mehr

Physik auf grundlegendem Niveau. Kurs Ph

Physik auf grundlegendem Niveau. Kurs Ph Physik auf grundlegendem Niveau Kurs Ph2 2013-2015 Kurze Erinnerung Operatorenliste zu finden unter: http://www.nibis.de/nli1/gohrgs/operatoren/operatoren_ab_2012/op09_10n W.pdf Kerncurriculum zu finden

Mehr

Physik-Abitur 2006 Aufgabe III d. Offizielle Lösungshinweise. Operatorendefinitionen aus den EPA

Physik-Abitur 2006 Aufgabe III d. Offizielle Lösungshinweise. Operatorendefinitionen aus den EPA Physik-Abitur 2006 Aufgabe III d Albert Einstein schreibt im Jahre 1905: Die [... Wellen]theorie des Lichtes hat sich zur Darstellung der rein optischen Phänomene vortrefflich bewährt und wird wohl nie

Mehr

Wiederholung der letzten Vorlesungsstunde:

Wiederholung der letzten Vorlesungsstunde: Wiederholung der letzten Vorlesungsstunde: Das (wellen-) quantenchemische Atommodell Orbitalmodell Beschreibung atomarer Teilchen (Elektronen) durch Wellenfunktionen, Wellen, Wellenlänge, Frequenz, Amplitude,

Mehr

1 Zusammenfassung der Stunde: Lokalisierung und Delokalisierung

1 Zusammenfassung der Stunde: Lokalisierung und Delokalisierung 1 Zusammenfassung der Stunde: Lokalisierung und Delokalisierung 1.1 Vollständige Delokalisierung Ausschlag Intensität Frequenz Vollständige Delokalisierung (unendliche Ortsunschärfe) wird mathematisch

Mehr

7. Materiewellen und Energiequantisierung

7. Materiewellen und Energiequantisierung 7.1 7. Materiewellen und Energiequantisierung 7.1 Energiequantisierung in Atomen Weisses Licht: kontinuierliches Spektrum, d.h. enthält alle Wellenlängen des sichtbaren Bereichs Anregung von Atomen in

Mehr

Grundlagen der Quantenmechanik wie sie in der Spektroskopie benötigt werden. Jürgen Stohner ZHW Winter 2007/8

Grundlagen der Quantenmechanik wie sie in der Spektroskopie benötigt werden. Jürgen Stohner ZHW Winter 2007/8 Grundlagen der Quantenmechanik wie sie in der Spektroskopie benötigt werden Jürgen Stohner ZHW Winter 2007/8 Inhaltsübersicht Kap. 1 von Welle und Teilchen Einleitung Welleneigenschaften von Licht: Beugung

Mehr

Klassische Mechanik. Elektrodynamik. Thermodynamik. Der Stand der Physik am Beginn des 20. Jahrhunderts. Relativitätstheorie?

Klassische Mechanik. Elektrodynamik. Thermodynamik. Der Stand der Physik am Beginn des 20. Jahrhunderts. Relativitätstheorie? Der Stand der Physik am Beginn des 20. Jahrhunderts Klassische Mechanik Newton-Axiome Relativitätstheorie? Maxwell-Gleichungen ok Elektrodynamik Thermodynamik Hauptsätze der Therm. Quantentheorie S.Alexandrova

Mehr

Die Macht und Ohnmacht der Quantenwelt

Die Macht und Ohnmacht der Quantenwelt Die Macht und Ohnmacht der Quantenwelt Prof. Dr. Sebastian Eggert Tag der Physik, TU Kaiserslautern, 5. Dezember 2015 Quantenmechanik heute Quanteninformatik Ultrakalte Quantengase Supraleitung und Vielteilchenphysik

Mehr

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator VL 8 VL8. VL9. VL10. Das Wasserstoffatom in der klass. Mechanik 8.1. Emissions- und Absorptionsspektren der Atome 8.2. Quantelung der Energie (Frank-Hertz Versuch) 8.3. Bohrsches Atommodell 8.4. Spektren

Mehr

Entwicklung der Atommodelle

Entwicklung der Atommodelle Entwicklung der Atommodelle Entwicklung der Atommodelle Demokrit 460 v Chr. Nur scheinbar hat ein Ding eine Farbe, nur scheinbar ist es süß oder bitter; in Wirklichkeit gibt es nur Atome im leeren Raum.

Mehr

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator VL 9 VL8. VL9. Das Wasserstoffatom in der Klass. Mechanik 8.1. Emissions- und Absorptionsspektren der Atome 8.2. Quantelung der Energie (Frank-Hertz Versuch) 8.3. Bohrsches Atommodell 8.4. Spektren des

Mehr

X. Quantisierung des elektromagnetischen Feldes

X. Quantisierung des elektromagnetischen Feldes Hamiltonian des freien em. Feldes 1 X. Quantisierung des elektromagnetischen Feldes 1. Hamiltonian des freien elektromagnetischen Feldes Elektromagnetische Feldenergie (klassisch): Modenentwicklung (Moden

Mehr

verwenden. Ausdrücke für v

verwenden. Ausdrücke für v UNIVERSITÄT KONSTANZ Fachbereich Physik Prof. Dr. Georg Maret (Experimentalphysik) Raum P 1009, Tel. (07531)88-4151 E-mail: Georg.Maret@uni-konstanz.de Prof. Dr. Matthias Fuchs (Theoretische Physik) Raum

Mehr

Fazit: Wellen haben Teilchencharakter

Fazit: Wellen haben Teilchencharakter Die Vorgeschichte Maxwell 1865 sagt elektromagnetische Wellen vorher Hertz 1886 beobachtet verstärkten Funkenüberschlag unter Lichteinstrahlung Hallwachs 1888 studiert den photoelektrischen Effekt systematisch

Mehr

Atomphysik und Einführung in die Ideen der Quantentheorie

Atomphysik und Einführung in die Ideen der Quantentheorie Atomphysik und Einführung in die Ideen der Quantentheorie Marc Eyer 8. Januar 01 1 Bohrsches Atommodell Gegen Ende des 19. Jahrhunderts gab es eine Fülle von Experimente und Daten zu Lichtspektren verschiedener

Mehr

Doppelspalt. Abbildung 1: Experimenteller Aufbau zur Beugung am Doppelspalt

Doppelspalt. Abbildung 1: Experimenteller Aufbau zur Beugung am Doppelspalt 5.10.802 ****** 1 Motivation Beugung am Doppelspalt: Wellen breiten sich nach dem Huygensschen Prinzip aus; ihre Amplituden werden superponiert (überlagert). Der Unterschied der Intensitätsverteilungen

Mehr

Beugung am Gitter mit Laser ******

Beugung am Gitter mit Laser ****** 5.10.301 ****** 1 Motiation Beugung am Gitter: Wellen breiten sich nach dem Huygensschen Prinzip aus; ihre Amplituden werden superponiert (überlagert). Die Beugung am Gitter erzeugt ein schönes Beugungsbild

Mehr

Festkörperelektronik 2008 Übungsblatt 1

Festkörperelektronik 2008 Übungsblatt 1 Lichttechnisches Institut Universität Karlsruhe (TH) Prof. Dr. rer. nat. Uli Lemmer Dipl.-Phys. Alexander Colsmann Engesserstraße 13 76131 Karlsruhe Festkörperelektronik 1. Übungsblatt 17. April 2008 Dozent:

Mehr

7. Das Bohrsche Modell des Wasserstoff-Atoms. 7.1 Stabile Elektronbahnen im Atom

7. Das Bohrsche Modell des Wasserstoff-Atoms. 7.1 Stabile Elektronbahnen im Atom phys4.08 Page 1 7. Das Bohrsche Modell des Wasserstoff-Atoms 7.1 Stabile Elektronbahnen im Atom Atommodell: positiv geladene Protonen (p + ) und Neutronen (n) im Kern negative geladene Elektronen (e -

Mehr

WAHRSCHEINLICHKEITSRECHNUNG

WAHRSCHEINLICHKEITSRECHNUNG WAHRSCHEINLICHKEITSRECHNUNG Mathematischer Teil In der Wahrscheinlichkeitsrechnung haben wir es mit Zufallsexperimenten zu tun, d.h. Ausgang nicht vorhersagbar. Grundbegriffe Zufallsexperiment und Ergebnisse

Mehr

LERNSTATION IV: WELLE-TEILCHEN-DUALISMUS 2

LERNSTATION IV: WELLE-TEILCHEN-DUALISMUS 2 LERNSTATION IV: WELLE-TEILCHEN-DUALISMUS 2 3 Wellen Teilchen Dualität: fundamental für Licht und Materie 2 4 Quantentheorie von Licht und Materie 3 4.c Elektromagnetische Wellen und ihre Energiequanten:

Mehr

mit n =1, 2, 3,... (27) Die gesuchten Wellenfunktionen sind Sinuswellen, deren Wellenlänge λ die Bedingung L = n λ 2

mit n =1, 2, 3,... (27) Die gesuchten Wellenfunktionen sind Sinuswellen, deren Wellenlänge λ die Bedingung L = n λ 2 3FREIETEICHEN TEICHEN IM KASTEN 17 Somit kann man z. B. a = 2/ setzen. (Man könnte auch a = e iϕ 2/ wählen, mit beliebigem ϕ.) Damit sind die Energie- Eigenzustände des Teilchens im Kasten gegeben durch

Mehr

Atome - Moleküle - Kerne

Atome - Moleküle - Kerne Atome - Moleküle - Kerne Band I Atomphysik Von Univ.-Professor Dr. Gerd Otter und Akad.-Direktor Dr. Raimund Honecker III. Physikalisches Institut der Rheinisch-Westfälischen Technischen Hochschule Aachen

Mehr

Anmerkungen zur Heisenbergschen Unschärferelation anlässlich der von A. Zeilinger vorgestellten Beugungsexperimente mit Fullerenen

Anmerkungen zur Heisenbergschen Unschärferelation anlässlich der von A. Zeilinger vorgestellten Beugungsexperimente mit Fullerenen Quanten.de Newsletter Juli/August 2001, ISSN 1618-3770 Anmerkungen zur Heisenbergschen Unschärferelation anlässlich der von A. Zeilinger vorgestellten Beugungsexperimente mit Fullerenen Günter Sturm, ScienceUp

Mehr

Das Versagen der klassischen Physik Die Entwicklung der Quantenphysik. Quantenmechanische Lösung

Das Versagen der klassischen Physik Die Entwicklung der Quantenphysik. Quantenmechanische Lösung Das Versagen der klassischen Physik Die Entwicklung der Quantenphysik Problem Thermisches Strahlungsspektrum Photoelektrischer Effekt, Compton Effekt Quantenmechanische Lösung Planck sche Strahlungsformel:

Mehr

Heute: Wellen, Überlagerung von Wellen, Dispersion, Fourier-Synthese, Huygenssche Prinzip, Kohärenz, Interferenz

Heute: Wellen, Überlagerung von Wellen, Dispersion, Fourier-Synthese, Huygenssche Prinzip, Kohärenz, Interferenz Roter Faden: Vorlesung 12+13+14: Heute: Wellen, Überlagerung von Wellen, Dispersion, Fourier-Synthese, Huygenssche Prinzip, Kohärenz, Interferenz Versuche: Huygens sche Prinzip, Schwebungen zweier Schwinggabel,

Mehr

2. Elementare Stöchiometrie I Definition und Gesetze, Molbegriff, Konzentrationseinheiten

2. Elementare Stöchiometrie I Definition und Gesetze, Molbegriff, Konzentrationseinheiten Inhalt: 1. Regeln und Normen Modul: Allgemeine Chemie 2. Elementare Stöchiometrie I Definition und Gesetze, Molbegriff, Konzentrationseinheiten 3.Bausteine der Materie Atomkern: Elementarteilchen, Kernkräfte,

Mehr

0.1.1 Exzerpt von B. S. 414: Unendlich hoher Potenzialtopf

0.1.1 Exzerpt von B. S. 414: Unendlich hoher Potenzialtopf 1 15.11.006 0.1 119. Hausaufgabe 0.1.1 Exzerpt von B. S. 414: Unendlich hoher Potenzialtopf (Siehe 118. Hausaufgabe.) 0.1. Exzerpt von B. S. 414: Wellenlängen der Wellenfunktion im Fall stehender Wellen

Mehr

Wellenfunktion und Schrödinger Gleichung

Wellenfunktion und Schrödinger Gleichung Kapitel 2 Wellenfunktion und Schrödinger Gleichung Das Ziel ist es, die Begriffe Wellenfunktion, Schrödinger Gleichung und Hamilton Operator anhand von Beispielen einzuführen. 2.1 Wellenfunktion eines

Mehr

Durch welchen Schlitz ist das Teilchen geflogen? Beobachtung

Durch welchen Schlitz ist das Teilchen geflogen? Beobachtung ) Grundlagen der Quantenmechanik Welle-Teilchen-Dualismus: das Doppelspaltexperiment Teilchen Welle Durch welchen Schlitz ist das Teilchen geflogen? Beobachtung Welle-Teilchen-Dualismus: 1) P =... Wahrscheinlichkeitsamplitude

Mehr

1 Die Schrödinger Gleichung

1 Die Schrödinger Gleichung 1 Die Schrödinger Gleichung 1.1 Die Wellenfunktion und ihre Wahrscheinlichkeitsinterpretation Aus den Versuchen der Elektronenbeugung, hat ein Elektron auch Welleneigenschaften. Für freie Elektronen mit

Mehr

Vorwort Wie benutze ich... dieses Buch? I Klassische Mechanik

Vorwort Wie benutze ich... dieses Buch? I Klassische Mechanik Inhaltsverzeichnis Vorwort Wie benutze ich... dieses Buch? I Klassische Mechanik v xv l 1 Grundlagen 3 1.1 Einheiten, Größenordnungen, Zahlenwerte 4 1.2 Impuls 7 1.3 Kraft und die Newton'schen Gesetze

Mehr

Die Welt der Teilchen

Die Welt der Teilchen Die Welt der Teilchen Prof. André Schöning Physikalisches Institut Universität Heidelberg 1 Blick in die Tiefe des Universums 2 Blick in die Tiefe des Universums RAUM 3 Blick in die Tiefe des Universums

Mehr

6. Unschärferelation & Doppelspalt

6. Unschärferelation & Doppelspalt phys4-filipp Page 1 6. Unschärferelation & Doppelspalt Eine der zentralen Eigenschaften der Quantenmechanik ist die Unschärfe in der Bestimmung von konjugierten Variablen: x - p (Ort - Impuls) Lx -Ly(Komponenten

Mehr

Materiewellen und Welle-Teilchen-Dualismus

Materiewellen und Welle-Teilchen-Dualismus Materiewellen und Welle-Teilchen-Dualismus Vortrag zur Vorlesung Nanostrukturphysik Saarbrücken, den Vortragender: Tobias Baur > Welle-Teilchen-Dualismus Quantenobjekte sind gleichzeitig Wellen und Teilchen

Mehr

12. Vorlesung. I Mechanik

12. Vorlesung. I Mechanik 12. Vorlesung I Mechanik 7. Schwingungen 8. Wellen transversale und longitudinale Wellen, Phasengeschwindigkeit, Dopplereffekt Superposition von Wellen 9. Schallwellen, Akustik Versuche: Wellenwanne: ebene

Mehr

Periodensystem, elektromagnetische Spektren, Atombau, Orbitale

Periodensystem, elektromagnetische Spektren, Atombau, Orbitale Periodensystem, elektromagnetische Spektren, Atombau, Orbitale Als Mendelejew sein Periodensystem aufstellte waren die Edelgase sowie einige andere Elemente noch nicht entdeck (gelb unterlegt). Trotzdem

Mehr

Physik für Naturwissenschaften. Dr. Andreas Reichert

Physik für Naturwissenschaften. Dr. Andreas Reichert Physik für Naturwissenschaften Dr. Andreas Reichert Modulhandbuch Modulhandbuch Modulhandbuch Modulhandbuch Modulhandbuch Modulhandbuch Modulhandbuch Modulhandbuch Termine Klausur: 5. Februar?, 12-14 Uhr,

Mehr

Sonne. Sonne. Δ t A 1. Δ t. Heliozentrisches Weltbild. Die Keplerschen Gesetze

Sonne. Sonne. Δ t A 1. Δ t. Heliozentrisches Weltbild. Die Keplerschen Gesetze Seite 1 von 6 Astronomische Weltbilder und Keplersche Gesetze Heliozentrisches Weltbild Die Sonne steht im Mittelpunkt unseres Sonnensystems, die Planeten umkreisen sie. Viele Planeten werden von Monden

Mehr

4. Klausur ( )

4. Klausur ( ) EI PH J2 2011-12 PHYSIK 4. Klausur (10.05.2012) Telle oder Weilchen? Eure letzte Physik-Klausur in der Schule! Du kannst deinen GTR verwenden. Achte auf eine übersichtliche Darstellung! (Bearbeitungszeit:

Mehr

Anhang C: Wellen. vorhergesagt 1916 (Albert Einstein) Entdeckung 2016 (LIGO-Kollaboration) Albert Einstein Christian Schwanenberger -

Anhang C: Wellen. vorhergesagt 1916 (Albert Einstein) Entdeckung 2016 (LIGO-Kollaboration) Albert Einstein Christian Schwanenberger - Anhang C: Wellen Computersimulation der von zwei sich umkreisenden Schwarzen Löchern ausgelösten Gravitationswellen in der Raum-Zeit (Illu.) Albert Einstein 1879-19 Physik-II vorhergesagt 1916 (Albert

Mehr

Thema heute: Das Bohr sche Atommodell

Thema heute: Das Bohr sche Atommodell Wiederholung der letzten Vorlesungsstunde: Radioaktive Zerfallsgeschwindigkeit, Altersbestimmungen, Ionisationszähler (Geiger-Müller-Zähler), Szintillationszähler, natürliche radioaktive Zerfallsreihen,

Mehr

De Broglie und Dirac komplementäre Zugänge zur Quantenmechanik

De Broglie und Dirac komplementäre Zugänge zur Quantenmechanik Physikalisches Institut Albert- Ludwigs- Universität Freiburg De Broglie und Dirac komplementäre Zugänge zur Quantenmechanik Thomas Filk Physikalisches Institut, Universität Freiburg Parmenides Center

Mehr

Schulinternes Curriculum ARG

Schulinternes Curriculum ARG Physik Schulinternes Curriculum ARG Unterrichtsvorhaben Fachliche Kompetenzen Inhalte Methoden / Material UMGANG MIT DACHWISSEN verwenden Entropie als Wärmeäquivalent. S1 1 THERMODYNAMIK ea ERKENNTNISGEWINNUNG

Mehr

Das Bohrsche Atommodell

Das Bohrsche Atommodell Das Bohrsche Atommodell Auf ein Elektron, welches im elektrischen Feld eines Atomkerns kreist wirkt ein magnetisches Feld. Der Abstand zum Atomkern ist das Ergebnis, der elektrostatischen Coulomb-Anziehung

Mehr

Inhaltsverzeichnis. Einleitung 1

Inhaltsverzeichnis. Einleitung 1 Inhaltsverzeichnis Einleitung 1 1 Licht und Materie 7 Was ist eigentlich Licht? 8 Aber was schwingt da wie? 9 Was sind Frequenz und Wellenlänge des Lichts? 11 Was ist eigentlich Materie? 12 Woraus besteht

Mehr

RELATIVITÄT und QUANTEN

RELATIVITÄT und QUANTEN FAKULTÄT FÜR PHYSIK PHYSIK AM SAMSTAG RELATIVITÄT und QUANTEN Konzepte der Teilchenphysik J. H. KÜHN http://www-ttp.physik.uni-karlsruhe.de/slides PHYSIK Reduktion der Beobachtungen auf einfache Naturgesetze

Mehr

P2... Auftreffwahrscheinlichkeit von Kugeln durch Spalt 2. P12.. Auftreffwahrscheinlichkeit von Kugel entweder durch Spalt 1 oder Spalt 2

P2... Auftreffwahrscheinlichkeit von Kugeln durch Spalt 2. P12.. Auftreffwahrscheinlichkeit von Kugel entweder durch Spalt 1 oder Spalt 2 05. Interfrenz und Unschaerfe Page 1 5. Interferenz und Unschärfe 5.1 Young Doppelspalt - Welle-Teilchen Dualismus "We choose to examine a phenomenon which is impossible, absolutely impossible, to explain

Mehr

Rätsel in der Welt der Quanten. Leipziger Gespräche zur Mathematik Sächsische Akademie der Wissenschaften

Rätsel in der Welt der Quanten. Leipziger Gespräche zur Mathematik Sächsische Akademie der Wissenschaften Rätsel in der Welt der Quanten Leipziger Gespräche zur Mathematik Sächsische Akademie der Wissenschaften 1. Februar 2012 Die Klassische Physik Bewegung von Objekten Lichtwellen Bewegung von Objekten Newtonsche

Mehr