2.12 Dreieckskonstruktionen

Größe: px
Ab Seite anzeigen:

Download "2.12 Dreieckskonstruktionen"

Transkript

1 .1 Deieckskonstuktionen 53.1 Deieckskonstuktionen.1.1 B aus a, b und c. Keis um mit Radius b 3. Keis um B mit Radius a 4. Schnittpunkt de Keise ist Bemekung: Es entstehen zwei konguente B..1. B aus α, c und β. Winkel α an B in 3. Winkel β an B in B 4. Schnittpunkt de Keise ist (es entstehen zwei konguente B) Bemekung: Es entstehen zwei konguente B..1.3 B aus a, β und c 1. Winkel β mit Scheitel B. Stecke B de Länge c abtagen 3. Stecke B de Länge a abtagen.1.4 B aus a, b und α 1. Stecke de Länge b. Winkel α an in 3. Keis um mit Radius b 4. Schnittpunkt des Keises mit zweitem Schenkel von α ist B Bemekung: Es entsteht ein B wenn a > b, sonst zwei nichtkonguente B..1.5 B aus b, c und h. Paallele zu B im bstand h 3. Keis um mit Radius b 4. Schnittpunkt des Keises mit de Paallelen ist Bemekung: Es entstehen zwei nichtkonguente B, wenn b > h, sonst ist eine Konstuktion unmöglich..1.6 B aus c, γ und h. Paallele zu B im bstand h 3. Keis übe B mit Peipheiewinkel γ 4. Schnittpunkt des Keises mit de Paallelen ist Bemekung: Es entstehen zwei konguente B.

2 54 DS DREEK.1.7 B aus b, s c und c. Keis um M c mit Radius s c 3. Keis um mit Radius b 4. Schnittpunkt de Keise ist Bemekung: Es entstehen zwei konguente B..1.8 B aus s a, s c und c. Keis um M c mit Radius 1 3 s c 3. Keis um mit Radius 3 s a 4. Schnittpunkt de Keise ist G 5. Velängeung von M c G übe G hinaus 6. Keis um G mit Radius M c G 7. Schnittpunkt des Keises mit Stahl M c G ist Bemekung: Es entsteht ein B, wenn c/, s c /3 und s a /3 Deiecksungleichung efüllen, sonst ist eine Konstuktion unmöglich..1.9 B aus s a, s b und s c Siehe das Bild auf Seite BG G aus 3 s a, 3 s b und 3 s c konstuieen. Paallele zu BG duch G 3. Paallele zu BG duch G 4. Schnittpunkt de Paallelen ist 5. Keis um G mit Radius 1 3 s c 6. Schnittpunkt des Keises mit Stahl G ist M c 7. Vedopplung von M c B übe M c, Schnittpunkt ist Bemekung: Es entsteht ein B, wenn s a, s b und s c Deiecksungleichung efüllen, sonst ist eine Konstuktion unmöglich B aus α, β und p 1. Lösungsweg: Man konstuiet ein B nach wsw aus α, B = a+b+c und β. Vom Punkt aus tägt man an den Winkel α und an B den Winkel β an. Es entstehen zwei Schnittpunkte mit de Stecke B. Das seien und B. Das B ist das gesuchte. Begündung: Die Deiecke und BB sind nach Konstuktion gleichschenklig (gleiche Basiswinkel). Dahe ist = und B = B und damit de Umfang von B gleich + B + B = B = a + b + c. ußedem ist B = + = α und B = BB + B B = β.. Lösungsweg: Das gesuchte B ist zu jedem B mit den gleichen Winkeln α und β ähnlich. Dann haben alle entspechenden Stecken das gleiche Vehältnis zueinande. Man kann das Deieck also folgendemaßen konstuieen: Man wählt eine beliebige Stecke B = c und konstuiet ein B aus α, β und c. De Umfang von B vehält sich zu dem von B wie c zu c. Hieaus kann man c konstuieen.

3 .1 Deieckskonstuktionen B aus a, h und h B 1. Stecke B de Länge a. Thaleskeis übe B 3. Keis um B mit Radius h B 4. Schnittpunkt de Keise egibt Höhenfußpunkt H B 5. Paallele zu B im bstand h 6. Schnittpunkt de Paallele mit Velängeung von H B ist Bemekung: Es entsteht ein B wenn h B < a, sonst ist eine Konstuktion unmöglich..1.1 B aus m c, R und h B 1. uf Geade g wid M c festgelegt, woduch sich mit M c O = m c de Punkt O egibt. Keis k duch O mit Radius R schneidet g in zwei Punkte, B 3. Keis um M c mit Radius c und Keis um B mit Radius h B 4. Schnittpunkt ist Punkt H B 5. Schnittpunkt de Velängeung de Geaden H B mit Keis k ist Bemekung: Es entstehen zwei ähnliche Deiecke B wenn R < m c, sonst ist Konstuktion nicht mglich B aus S, c und γ Hie sei de Flächeninhalt duch ein Quadat mit Flächeninhalt S gegeben! S ist als S = xx gegeben. Fü das gesuchte Deieck ist S = ch, woduch sich h mithilfe des Stahlensatzes aus x c = h beechnen lässt. lso soll nun ein Deieck B aus h, c und γ x konstuiet weden. 1. Stecke c und Paallele g im bstand h. an und B zwei Stahle mit dem Winkel 90 γ = γ abtagen 3. um diesen Schnittpunkt Keis duch und B 4. Schnittpunkt vom Keis mit g ist de Punkt Bemekung: Es entstehen zwei ähnliche Deiecke B B aus h, s a und α 1. Stecke B de Länge a. Thaleskeis übe B 3. Keis um B mit Radius h B 4. Schnittpunkt de Keise egibt Höhenfußpunkt H B 5. Paallele zu B im bstand h B 6. Schnittpunkt de Paallele mit Velängeung von H B ist Bemekung: Es entsteht ein B wenn h < a, sonst ist eine Konstuktion unmöglich.

4 56 DS DREEK.1.15 B aus h, s c und γ Diese Konstuktion ähnelt de Konstuktion aus zwei Winkeln und eine ditten Göße (siehe z.b. Konstuktion aus (α, β, c)). Nu daß es sich beim zweiten Winkel nicht um β ode γ handelt. Wi konstuieen uns als estes einen Hilfswinkel ϕ und daaus zusammen mit γ ein ähnliches Deieck. h s c ϕ 1. Rechtwinkliges aus h und s c. Das egibt den Winkel ϕ.. Vogabe eine beliebigen Stecke c 3. Konstuktion des B aus (γ, ϕ, c ): (a) Gleichschenkliges Deieck B O aus γ und c. O ist de Umkeismitelpunkt. (b) Umkeis von B O (c) m Punkt M c (Halbieunspunkt von c) den Winkel ϕ abtagen. (d) De Schnittpunkt mit dem Umkeis ist. 4. Diese Konstuktion egibt die Stecke s c = M c. 5. Emittlung von c aus de Popotion c s c = c s c 6. Konstuktion des B aus (γ, h, c) ode (γ, s c, c) wiede übe den Umkeis B aus α β, h und R.1.17 B aus a, b und c Fü die Konstuktion eines Deiecks aus h, h B und h wude die Popotionalität a h = b h B = c h zu Emittlung eines ähnlichen Deiecks benutzt. Suche in diesem Fall eine ähnliche Popotionalität. Es gilt S = a p = b p B = c p. Es sei x beliebig vogegeben. us de Gleichung a x = b y = c z lassen sich dann y und z konstuieen. Es sei a = y+z, b = x+z, c = x+y und p = 1 (a +b +c ). Dann ist p a = x, p b = y und p c = z. Das Deieck mit den Seitenlängen a, b und c ist dem gesuchten Deieck ähnlich. Konstuiet man a, kann man nach de Gleichung a = a a a die Stecke a (und analog b und c) konstuieen.

5 .1 Deieckskonstuktionen B aus h, h B und h Die Höhen sind umgekeht popotional zu den Seitenlängen. Wenn wi S kennen wüden, könnten wi die Seitenlängen aus S = ah = bh B = ch konstuieen. Wi geben uns ein beliebiges S (z.b. indem wi uns a vogeben) vo und konstuieen die entspechenden a, b, c. Das gesuchte Deieck ist dann zu dem mit diesen Seitenlängen ähnlich. bf lte Heleitung: Es gilt die Deiecksungleichung a + b > c. usgehend von ah a = bh b = ch c = F folgt hieaus 1 h a + 1 h b > 1 h c Diese Ungleichung hat die Dimension 1 und ist somit keine Deiecksungleichung. us ih folgt L abe h a + h b > h a h b h c was die Dimension L hat und als Deiecksungleichung intepetiet weden kann. Das Deieck B mit den Seiten a = h b, b = h a und c = ha h b h c ist dem gesuchten Deieck B ähnlich, denn es gilt a c = h b h a h b h c = h c h a = a c (und analoge Beziehungen). Die Konstuktion geht also so: 1. Konstuktion de Länge d = ha h b h c aus h a, h b, h c (z.b. mit Stahlensatz).. Konstuktion Deiecks B nach sss aus den Seiten h b, h a, d. Damit liegt de Punkt = fest. 3. Konstuktion de Seite B als Paallele zu Seite B im bstand h c von. Bemekung: Wählt man h c als kleinste Höhe, ist die Veschiebung de Seite B am kleinsten, z.b. ist beeits d = c falls B echtwinklig ist B aus, α und h 1. Punkt und Stahl B. Paallele zu B im bstand h 3. Winkel α in abtagen, egibt 4. Paallele zu B im bstand h 5. Winkel α/ in abtagen, egibt α 6. Keis um mi Radius α 7. Tangente duch an nkeis egibt B. B Bemekung: Es entsteht ein B wenn < h.

6 58 DS DREEK.1.0 B aus R, α und h 1. Gleichschenkliges Deieck aus α und R. Das egibt die Punkte O, B und.. Umkeis um O mit Radius R. 3. Keis um mit Radius h. 4. Tangente an diesen Keis aus B schneidet den Umkeis in. O h R α α Bemekung: Es entstehen zwei nichtkonguente Deiecke B und B falls h < B = R sin α. B.1.1 B aus h B, a und R 1. Gleichschenkliges OB aus R und a. Umkeis 3. Keis um B mit Radius h B 4. Thaleskeis übe a 5. Schnittpunkt beide Keise ist de Fußpunkt H B de Höhe h B 6. Geade duch und H B schneidet Umkeis in H B O R h B a B.1. B aus, R und c 1. Gleichschenkliges BO aus R und c.. (Zwei) Paallele g zu B im bstand. 3. d = R(R ) konstuieen (z.b. mit Kathetensatz) 4. Keis k um O mit Radius d. 5. Schnittpunkt von g mit k ist. 6. nkeis um 7. Tangente an nkeis aus egibt (Schnittpunkt mit Umkeis) d O d B Bemekung: Es entstehen zwei nichtkonguente B und B Bemekung: Fü diese Konstuktion wid die Eulefomel d = R(R ) benötigt, die den bstand d = O angibt, de fü gegebene und R festgelegt ist.

7 .1 Deieckskonstuktionen B aus p, a und b 1. Rechtwinkliges Deieck mit Katheten p und a egibt Winkel α/.. Von aus Winkel α abtagen. 3. Von aus Stecke b abtagen, egibt. 4. Von aus Tangentte an nkeis. Bemekung: Es entsteht ein B,.1.4 B aus α, p und 1. Rechtwinkliges Deieck mit Kathete und Winkel α/.. Rechtwinkliges Deieck mit Kathete p und Winkel α/ in Ähnlichkeitslage. 3. Von aus Winkel α abtagen. 4. nkeis und nkeis zeichnen. 5. Gemeins. Tangente an beide Keise schneidet Schenkel von α in den Punkten B und. Bemekung: Es entstehen zwei B aus zwei gemeinsamen Tangenten an die Keise..1.5 B aus α, p und a 1. Rechtwinkliges Deieck mit Kathete p und Winkel α/.. Vom Eckpunkt a abtagen. m bstand p von Senkechte egibt Länge. 3. nkeis und nkeis zeichnen. 4. Gemeins. Tangente an beide Keise schneidet Schenkel von α in zwei Punkten B und. Bemekung: Es entsteht ein B,.1.6 B aus R, p und a us R und a konstuieen wi den Winkel α. Dann ist das Poblem auf die Konstuktion aus (α, p, a) zuückgefüht..1.7 B aus R, p und c 1. Gleichschenkliges BO aus c und R.. Umkeis um O mit Radius R. 3. Mittelsenkechte auf B. X sei Schnittpunkt mit Umkeis. 4. Senkechte g auf B im bstand c = p vom Punkt. 5. Keis k um X mit Radius XB. 6. Schnittpunkt von k und g ist nkeismittelpunkt. 7. nkeis um mit Radius c. 8. Tangenten aus und B an nkeis. 9. Schnittpunkt de Tangenten mit Umkeis ist. p O c X c R B

8 60 DS DREEK.1.8 B aus R, p und c Diese Konstuktion geht ähnlich de Konstuktion aus (R, p, c), nu daß anstelle des nkeises de nkeis betachtet weden muß. 1. Gleichschenkliges BO aus c und R.. Umkeis um O mit Radius R. 3. Mittelsenkechte auf B. X sei Schnittpunkt mit Umkeis. x 4. Senkechte g auf Geade B im bstand B = p X a vom Punkt. 5. Keis k um X mit Radius XB. 6. Schnittpunkte von k und g sind Mittelpunkte de nkeise und. O x 7. nkeise mit Radien B und B. R 8. Tangenten von und B an nkeise egeben m a c und c. Es entstehen zwei konguente Deiecke. B p c B

Aufgaben zur Bestimmung des Tangentenwinkels von Spiralen

Aufgaben zur Bestimmung des Tangentenwinkels von Spiralen Aufgabenblatt-Spialen Tangentenwinkel.doc 1 Aufgaben zu Bestimmung des Tangentenwinkels von Spialen Gegeben ist die Spiale mit de Gleichung = 0,5 φ, φ im Bogenmaß. (a) Geben Sie die Gleichung fü Winkel

Mehr

Landeswettbewerb Mathematik Bayern

Landeswettbewerb Mathematik Bayern Landeswettbeweb Mathematik Bayen ufgaben und Lösungsbeispiele. Runde 007/008 ufgabe In de nebenstehenden Gleichung steht jede Buchstabe fü eine de Ziffen bis 9, wobei keine Ziffen mehfach vokommt. Zeige,

Mehr

Aufgabe 1 Zeige: Wenn die Summe von 1996 Quadratzahlen durch 8 teilbar ist, dann sind mindestens vier dieser Quadratzahlen gerade.

Aufgabe 1 Zeige: Wenn die Summe von 1996 Quadratzahlen durch 8 teilbar ist, dann sind mindestens vier dieser Quadratzahlen gerade. Landeswettbeweb athematik aden-wüttembeg 996 Runde ufgabe Zeige: Wenn die Summe von 996 Quadatzahlen duch 8 teilba ist, dann sind mindestens vie diese Quadatzahlen geade. Vobemekung Eine Quadatzahl ist

Mehr

Übungsaufgaben zum Prüfungsteil 1 Lineare Algebra /Analytische Geometrie

Übungsaufgaben zum Prüfungsteil 1 Lineare Algebra /Analytische Geometrie Übungsaufgaben zum Püfungsteil Lineae Algeba /Analytische Geometie Aufgabe Von de Ebene E ist folgende Paametefom gegeben: 3 E: x= 4 + 0 + s 3 ;,s 0 3 4 a) Duch geeignete Wahl de Paamete und s ehält man

Mehr

Aufgabe S 1 (4 Punkte)

Aufgabe S 1 (4 Punkte) Aufgabe S 1 (4 Punkte) In ein gleichschenklig-echtwinkliges Deieck mit Kathetenlänge 2 weden zwei Quadate so einbeschieben, dass a) beim esten Quadat eine Seite auf de Hypotenuse liegt und b) beim zweiten

Mehr

2. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 9 Saison 1962/1963 Aufgaben und Lösungen

2. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 9 Saison 1962/1963 Aufgaben und Lösungen 2. Mathematik Olympiade 2. Stufe (Keisolympiade) Klasse 9 Saison 1962/1963 Aufgaben und Lösungen 1 OJM 2. Mathematik-Olympiade 2. Stufe (Keisolympiade) Klasse 9 Aufgaben Hinweis: De Lösungsweg mit Begündungen

Mehr

Gleichseitige Dreiecke im Kreis. aus der Sicht eines Punktes. Eckart Schmidt

Gleichseitige Dreiecke im Kreis. aus der Sicht eines Punktes. Eckart Schmidt Gleichseitige Deiecke im Keis aus de Sicht eines Punktes Eckat Schmidt Zu einem Punkt und einem gleichseitigen Deieck in seinem Umkeis lassen sich zwei weitee Deiecke bilden: das Lotfußpunktdeieck und

Mehr

Lösungen zu delta 9 neu

Lösungen zu delta 9 neu Lösungen zu delta 9 neu Kann ich das noch? Lösungen zu den Seiten 7 und 8. a) L = { 0} b) L = {6} c) L = {} d) L = { } e) L = { } f) L = g) L = {} h) L = {}. a) Fuchtjoghut b) Eckenanzahl Anzahl de c)

Mehr

2 Zeichne in ein Koordinatensystem die Graphen folgender Geraden: Klassenarbeit 1 Klasse 8l Mathematik. Lösung. a) b)

2 Zeichne in ein Koordinatensystem die Graphen folgender Geraden: Klassenarbeit 1 Klasse 8l Mathematik. Lösung. a) b) 09.10.200 Klassenabeit 1 Klasse 8l Mathematik Lösung 1 b) a) d) Bestimme die Gleichungen de Geaden a) bis d) a) : y= 4 x 4 b) : y= x : y= 1 2 x d) : y= 1 6 x 1 2 Zeichne in ein Koodinatensystem die Gaphen

Mehr

Grundwissen Mathematik Jahrgangsstufe 9. Bisher bekannte Zahlenmengen: a b = a b. Die üblichen Rechengesetze gelten unverändert.

Grundwissen Mathematik Jahrgangsstufe 9. Bisher bekannte Zahlenmengen: a b = a b. Die üblichen Rechengesetze gelten unverändert. Gundwissen Mathematik Jahgangsstufe I. Reelle Zahlen Eweiteung des Zahlenbeeichs Bishe bekannte Zahlenmengen: Jedes Element a aus N, Z, Q Q ist dastellba duch a= p q mit p Z und q N. Zahlen, die nicht

Mehr

Parametergleichung der Geraden durch den Punkt A mit dem Richtungsvektor u r t R heisst Parameter

Parametergleichung der Geraden durch den Punkt A mit dem Richtungsvektor u r t R heisst Parameter 8 3. Dastellung de Geaden im Raum 3.1. Paametegleichung de Geaden Die naheliegende Vemutung, dass eine Geade des Raumes duch eine Gleichung de Fom ax + by + cz +d 0 beschieben weden kann ist falsch (siehe

Mehr

Flächeninhalt ohne Höhen die Dreieckformel von Heron (oder Archimedes?)

Flächeninhalt ohne Höhen die Dreieckformel von Heron (oder Archimedes?) Aufgabe 1: Zeichne in dein Heft einen Keis mit beliebigem Radius (abe bitte nicht zu klein), und konstuiee ein umbeschiebenes Deieck. Deine Zeichnung könnte etwa so aussehen wie die nebenstehende kizze.

Mehr

Vom Strahlensatz zum Pythagoras

Vom Strahlensatz zum Pythagoras Vom Stahlensatz zum Pythagoas Maio Spengle 28.05.2008 Zusammenfassung Eine mögliche Unteichtseihe, um die Satzguppe des Pythagoas unte Umgehung de Ähnlichkeitsabbildungen diekt aus den Stahlensätzen hezuleiten.

Mehr

2.8. Prüfungsaufgaben zum Satz des Pythagoras

2.8. Prüfungsaufgaben zum Satz des Pythagoras .8. üfungsaufgaben zum Satz des ythagoas Aufgabe : Rechtwinkliges Deieck Ein echtwinkliges Deieck mit de Kathete a = 0, m hat die Fläche A = 000 cm. Beechne die estlichen Seitenlängen dieses Deiecks. 000

Mehr

GMFH - Gesellschaft für Mathematik an Schweizer Fachhochschulen SMHES - Société pour les Mathématiques dans les Hautes Ecoles Spécialisées suisses

GMFH - Gesellschaft für Mathematik an Schweizer Fachhochschulen SMHES - Société pour les Mathématiques dans les Hautes Ecoles Spécialisées suisses GMFH - Gesellschaft fü Mathematik an Schweize Fachhochschulen SMHES - Société pou les Mathématiques dans les Hautes Ecoles Spécialisées suisses Mathematik-Refeenzaufgaben zum Rahmenlehplan fü die Beufsmatuität

Mehr

Mathematische Hilfsmittel der Physik Rechen-Test I. Markieren Sie die richtige(n) Lösung(en):

Mathematische Hilfsmittel der Physik Rechen-Test I. Markieren Sie die richtige(n) Lösung(en): Technische Betiebswitschaft Gundlagen de Physik D. Banget Mat.-N.: Mathematische Hilfsmittel de Physik Rechen-Test I Makieen Sie die ichtige(n) Lösung(en):. Geben Sie jeweils den Wahheitswet (w fü wah;

Mehr

Ouvertüre: Kreise in gotischem Maßwerk

Ouvertüre: Kreise in gotischem Maßwerk Ouvetüe: Keise in gotischem Maßwek 1 Wi beginnen unseen Spaziegang duch die Keisgeometie mit de Konstuktion einige inteessante und in de Kunst vielfach auftetende Figuen, die sich aus Keisbögen zusammensetzen.

Mehr

Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag

Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 017 Blatt 7 1.06.017 Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag 5. a) Um ein rechtwinkliges Dreieck in seiner

Mehr

Projekt : Geometrie gotischer Kirchenfenster Jgst. 10

Projekt : Geometrie gotischer Kirchenfenster Jgst. 10 Pojekt : Geometie gotische Kichenfenste Jgst. 0 Begiffsekläung : Das Wot Gotik wude im 5. Jahhundet von italienischen Humanisten fü eine nichtantike, im Noden entstandene babaische (gotische) Kunst gebaucht.

Mehr

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE 7 Tigonometie Wi beschäftigen uns hie mit de ebenen Tigonometie, dabei geht es hauptsächlich um die geometische Untesuchung von Deiecken in de Ebene. Ein wichtiges Hilfsmittel dafü sind die Winkelfunktionen

Mehr

Lösung - Schnellübung 4

Lösung - Schnellübung 4 D-MAVT/D-MATL Analysis I HS 2016 D Andeas Steige Lösung - Schnellübung 1 Ein Keis vom Radius ollt im Innen eines Keises vom Radius R ab Die Kuve t, die dabei ein feste Punkt P auf dem Rand des kleinen

Mehr

Versiera der Agnesi INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. FRIEDRICH W. BUCKEL. Text Nr Stand

Versiera der Agnesi INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.  FRIEDRICH W. BUCKEL. Text Nr Stand Vesie de Agnesi Tet N. 5455 Stnd 5.. FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mthe-cd.de 5455 Vesie de Agnesi Vowot Die Vesie de Agnesi ist eine lgebische Kuve. Gdes, die mn uf eine

Mehr

Landeswettbewerb Mathematik Baden-Württemberg. Runde 2

Landeswettbewerb Mathematik Baden-Württemberg. Runde 2 990 Runde Aufgabe Ein Rehtek mit den Seitenlängen n m und m m wid in n m uadate de Seitenlänge m zelegt. In dieses Rehtek wid eine Diagonale eingezeihnet. a) Duh wie viele innee Gittepunkte geht diese

Mehr

Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag

Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 01 Blatt 7 0.06.01 Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag 5. a Um ein rechtwinkliges Dreieck in seiner Gestalt

Mehr

HYPOZYKLOIDEN EINES DREIECKS. 1. Vorbemerkung

HYPOZYKLOIDEN EINES DREIECKS. 1. Vorbemerkung HYPOYKLOIDEN EINES DREIECKS Vobemekung Die hie angespochenen Hypozykloiden eines Deiecks sind an sich Otslinien eines mekwüdigen Vieeckpunktes Geht man von einem Deieck ABC aus, so ehält man ein seh spezielles

Mehr

Kardioiden INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. FRIEDRICH W. BUCKEL. Text Nr Stand 11. Mai 2016

Kardioiden INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.  FRIEDRICH W. BUCKEL. Text Nr Stand 11. Mai 2016 Kadioiden Text N. 5 Stand. Mai 6 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 5 Kadioiden Vowot Die Kadioide ist aus meheen Günden beühmt. Da gibt es zuest die physikalische Escheinung de

Mehr

Teilbereich 5: Exponential Funktionen 1. Grundkursniveau. Hier eine Musteraufgabe mit Lösung Auf CD alles komplett. Datei Nr

Teilbereich 5: Exponential Funktionen 1. Grundkursniveau. Hier eine Musteraufgabe mit Lösung Auf CD alles komplett. Datei Nr Püfungsaufgaben Mündliches Abitu Analysis Teilbeeich 5: Eponential Funktionen Gundkusniveau Hie eine Musteaufgabe mit Lösung Auf CD alles komplett Datei N. 495 Fiedich Buckel Oktobe 003 INTERNETBIBLIOTHEK

Mehr

Berufsmaturitätsprüfung 2005 Mathematik

Berufsmaturitätsprüfung 2005 Mathematik GIBB Geweblich-Industielle Beufsschule Ben Beufsmatuitätsschule Beufsmatuitätspüfung 005 Mathematik Zeit: 180 Minuten Hilfsmittel: Fomel- und Tabellensammlung ohne gelöste Beispiele, Taschenechne Hinweise:

Mehr

Grundwissen. 9. Jahrgangsstufe. Mathematik

Grundwissen. 9. Jahrgangsstufe. Mathematik Gundwissen 9. Jahgangsstufe Mathematik Seite Reelle Zahlen. Rechnen mit Quadatwuzeln a ist diejenige nicht negative Zahl, die zum Quadat a egibt. d.h.: ist keine Wuzel aus. Eine Wuzel kann nicht negativ

Mehr

Aufgabe 1: LKW. Aufgabe 2: Drachenviereck

Aufgabe 1: LKW. Aufgabe 2: Drachenviereck Aufgabe 1: LKW Ein LKW soll duch einen Tunnel mit halbkeisfömigem Queschnitt fahen. Die zweispuige Fahbahn ist insgesamt 6 m beit; auf beiden Seiten befindet sich ein Randsteifen von je 2 m Beite. Wie

Mehr

ghjklzxcvbnmqwertyuiopasdfghjklzxcvb lzxcvbnmqwertyuiopasdfghjklzxcvbnmq wertyuiofghj

ghjklzxcvbnmqwertyuiopasdfghjklzxcvb lzxcvbnmqwertyuiopasdfghjklzxcvbnmq wertyuiofghj qwetyuiopasdfghjklzxcvbnmqwetyuiop asdfghjklzxcvbnmqwetyuiopasdfghjklzx cvbnmqwetyuiopasdfghjklzxcvbnmqwe tyuiopasdfghjklzxcvbnmqwetyuiopasdf Aufgaben M-Beispielen ghjklzxcvbnmqwetyuiopasdfghjklzxcvb Vobeeitung

Mehr

Zentrale Klausur 2015 Aufbau der Prüfungsaufgaben

Zentrale Klausur 2015 Aufbau der Prüfungsaufgaben Zentale Klausu 2015 Aufbau de Püfungsaufgaben Die Zentale Klausu 2015 wid umfassen: hilfsmittelfeie Aufgaben zu Analysis und Stochastik eine Analysisaufgabe mit einem außemathematischen Kontextbezug eine

Mehr

Kantonsschule Reussbühl Maturitätsprüfung 2000, Typus AB Be/Es/Ko Mathematik Lösungen Sw / x 1+

Kantonsschule Reussbühl Maturitätsprüfung 2000, Typus AB Be/Es/Ko Mathematik Lösungen Sw / x 1+ Kantonsschule Reussbühl Matuitätspüfung 000, Typus AB Be/Es/Ko Mathematik Lösungen Sw / 00 Lösung de Aufgabe a ( + a) + a a + a) f () ; f () a fü a - ( + ) b) f() ( ) ( + ) + + + Nullstellen f() 0 fü 0,

Mehr

Abb. 1: Tangentenviereck. 2 Tangentenviereck Ein Viereck mit den Seiten a, b, c, d ist genau dann ein Tangentenviereck, wenn gilt: a + c = b + d (1)

Abb. 1: Tangentenviereck. 2 Tangentenviereck Ein Viereck mit den Seiten a, b, c, d ist genau dann ein Tangentenviereck, wenn gilt: a + c = b + d (1) Hans Walse, [20150830] Tangentenvieeck als Gelenkmodell Anegung: W. G., B und Ch. K., B. 1 Das Gelenkmodell Die Abbildung 1 zeigt zwei Positionen eines Gelenkmodells fü ein Tangentenvieeck. Die jeweiligen

Mehr

Tag der Mathematik 2019

Tag der Mathematik 2019 Guppenwettbeweb Einzelwettbeweb Mathematische Hüden Aufgaben mit en Aufgabe G mit Aufgabe G a) Fü eine Konsevendose mit einem Lite Inhalt soll möglichst wenig Mateial benötigt weden, d.h. gesucht ist ein

Mehr

Grundwissen. 9. Jahrgangsstufe. Mathematik

Grundwissen. 9. Jahrgangsstufe. Mathematik Gundwissen 9. Jahgangsstufe Mathematik Seite 1 1 Reelle Zahlen 1.1 Rechnen mit Quadatwuzeln a ist diejenige nicht negative Zahl, die zum Quadat a egibt. d.h.: ist keine Wuzel aus 4. Eine Wuzel kann nicht

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 DER KREIS

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 DER KREIS ARBEITSBLATT 15 DER KREIS Zunächst einmal wollen wi uns übelegen, was man mathematisch unte einem Keis vesteht. Definition: Ein Keis ist die Menge alle Punkte, die von einem gegebenen Punkt ( Keismittelpunkt)

Mehr

Lösungen II.1. Lösungen II.2. c r d r. u r. 156/18 c) Assoziativgesetz

Lösungen II.1. Lösungen II.2. c r d r. u r. 156/18 c) Assoziativgesetz Lösungen II. / selbe Länge:,, 7;,, ;,, ;, ;, 9 selbe Tanslation:, ;, ;,, ;, Lösungen II. / a b a b c c d d s u v s u v b) ein Pfeil de Länge /7 a b ; y b a b) Kommutativgesetz / u a b ; v b c b) w u c

Mehr

Examen Kurzfragen (sortiert) VI. Dreiecke. 24. Juni 2014

Examen Kurzfragen (sortiert) VI. Dreiecke. 24. Juni 2014 Examen Kurzfragen (sortiert) VI. Dreiecke 24. Juni 2014 VI. Dreiecke Frage 1 Wie werden im rechtwinkligen Dreieck die beiden Seiten genannt, die dem rechten Winkel anliegen? VI. Dreiecke Frage 1 Wie werden

Mehr

Lösungen. Mathematik ISME Matura Gegeben ist die Funktionsschar f a (x) = ax e a2 x 2, wobei x R und a > 0 ist. 12 Punkte Vorerst sei a = 2.

Lösungen. Mathematik ISME Matura Gegeben ist die Funktionsschar f a (x) = ax e a2 x 2, wobei x R und a > 0 ist. 12 Punkte Vorerst sei a = 2. Mathematik ISME Matua 5. Gegeen ist die Funktionsscha f a ( = a e a, woei R und a > ist. Punkte Voest sei a =. (a Beechnen Sie i. die Nullstelle ii. die Gleichung de Asymptote fü iii. die Etema iv. die

Mehr

7 Trigonometrie. 7.1 Defintion am Einheitskreis. Workshops zur Aufarbeitung des Schulsto s Wintersemester 2014/15 7 TRIGONOMETRIE

7 Trigonometrie. 7.1 Defintion am Einheitskreis. Workshops zur Aufarbeitung des Schulsto s Wintersemester 2014/15 7 TRIGONOMETRIE 7 Tigonometie Wi beschäftigen uns hie mit de ebenen Tigonometie, dabei geht es hauptsächlich um die geometische Untesuchung von Deiecken in de Ebene. Ein wichtiges Hilfsmittel dafü sind die Winkelfunktionen

Mehr

Abstandsbestimmungen

Abstandsbestimmungen Abstandsbestimmungen A) Vektoechnungsmethoden (mit Skalapodukt): ) Abstand eines Punktes P von eine Ebene IE im Raum (eine Geade g in de Ebene ): Anmekung: fü Geaden im Raum funktioniet diese Vektomethode

Mehr

Tangentenfünfeck 1 Worum geht es? 2 Vorbereitung Abb. 1: Beliebiges Fünfeck mit vorgegebenen Seiten

Tangentenfünfeck 1 Worum geht es? 2 Vorbereitung Abb. 1: Beliebiges Fünfeck mit vorgegebenen Seiten Hans Walse, [20150837] Tangentenfünfeck 1 Woum geht es? Zu fünf gegebenen Stecken gibt es im Pinzip genau ein passendes Tangentenfünfeck. Ein Gelenkmodell aus fünf vogegebenen Stecken hat also im Pinzip

Mehr

Analytische Geometrie Übungsaufgaben 2 Gesamtes Stoffgebiet

Analytische Geometrie Übungsaufgaben 2 Gesamtes Stoffgebiet Analytische Geometie Übungsaufgaben Gesamtes Stoffgebiet Pflichtteil (ohne Fomelsammlung und ohne GTR): P: a) Püfe, ob das Deieck ABC gleichschenklig ist: A(/7/), B(-//), C(//) b) Püfe, ob das Deieck ABC

Mehr

Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008

Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008 Übungsblatt 4 zu Physik II Von Patik Hlobil (38654), Leonhad Doeflinge (496) Übungen zu Kusvolesung Physik II (Elektodynamik) Sommesemeste8 Übungsblatt N. 4 Aufgabe 3: Feldstäke im Innen eines Ladungsinges

Mehr

(a) Entscheide, ob aus der angegebenen Stellung Spieler A gewinnen kann. (Der Index gibt jeweils die Zugnummer an.)

(a) Entscheide, ob aus der angegebenen Stellung Spieler A gewinnen kann. (Der Index gibt jeweils die Zugnummer an.) Detment Mthemtik Tg de Mthemtik 31. Oktobe 2009 Klssenstufen 9, 10 Aufgbe 1 (6+7+7 Punkte). Zwei Siele A und B sielen uf einem 2 9- Kästchen-Sielfeld. Sie ziehen bwechselnd, Siele A beginnt. Ein Zug besteht

Mehr

2.2C. Das allgemeine Dreieck

2.2C. Das allgemeine Dreieck .C. Das allgemeine Dreieck Jedes Dreieck läßt sich nach geeigneter Drehung und Verschiebung in ein Dreieck mit den Eckpunkten A = ( x, 0 ), B = ( y, 0 ), C = ( 0, z ) (x, y, z > 0) transformieren. Die

Mehr

Lösungen IV ) β = 54,8 ; γ = 70,4 106) a) 65 b) 65 (115?) d) 57,5

Lösungen IV ) β = 54,8 ; γ = 70,4 106) a) 65 b) 65 (115?) d) 57,5 (Stark 7 S. 6ff) Lösungen IV. a) gleichschenklig 0) a) () α = β = 6,7 () β = 7,8 ; γ = 4,4 () α = 4 ; γ = (4) α = β = (80 γ)/ b) 79,6 und 0,8 oder 0, und 0, c) α = β = 64 ; γ = d) gleichschenklig; zwei

Mehr

Landeswettbewerb Mathematik Bayern Lösungsbeispiele 1. Runde 2007

Landeswettbewerb Mathematik Bayern Lösungsbeispiele 1. Runde 2007 Laneswettbeweb Mathematik Baen Lösungsbeispiele Rune 007 Aufgabe Hans bastelt Wüfel Jee Seitenfläche fäbt e entwee weiß e blau Wie viele Wüfel, ie sich allein uch ihe Fäbung untescheien, kann Hans hestellen?

Mehr

Klausur 2 Kurs Ph11 Physik Lk

Klausur 2 Kurs Ph11 Physik Lk 26.11.2004 Klausu 2 Kus Ph11 Physik Lk Lösung 1 1 2 3 4 5 - + Eine echteckige Spule wid von Stom duchflossen. Sie hängt an einem Kaftmesse und befindet sich entwede außehalb ode teilweise innehalb eine

Mehr

Tutorium zur Vorlesung Grundlagen der Mathematik II Bearbeitungsvorschlag

Tutorium zur Vorlesung Grundlagen der Mathematik II Bearbeitungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 017 Bltt 8 0.06.017 Tutorium zur Vorlesung Grundlgen der Mthemtik II Berbeitungsvorschlg 9. Zu betrchten ist ein gleichseitiges Dreieck

Mehr

Kapitel 4: Dreieckslehre. 4.1 Bedeutung der Dreiecke

Kapitel 4: Dreieckslehre. 4.1 Bedeutung der Dreiecke Kapitel 4: Dreieckslehre 4.1 edeutung der Dreiecke Durch Triangulation lassen sich Vielecke in Dreiecke zerlegen ( n Eck in n- Dreiecke) eweis von Sätzen mittels Sätzen über Dreiecke (z.. Winkelsumme,

Mehr

Drei Kreise. Fahrrad r = = = 3 = 3. r r r. n = = = Der Flächeninhalt beträgt 6,34 cm 2.

Drei Kreise. Fahrrad r = = = 3 = 3. r r r. n = = = Der Flächeninhalt beträgt 6,34 cm 2. Dei Keise Bestimmt den Flächeninhalt de schaffieten Fläche. Die schaffiete Figu besteht aus einem gleichseitigen Deieck ( cm) und dei Keisabschnitten (gau gezeichnet). Damit beechnet sich die Gesamtfläche:

Mehr

Grundwissen JS 7: Geometrie 17. Juli (a) Wann heißt eine Figur achsensymmetrisch? Welche Bedeutung hat die Symmetrieachse anschaulich

Grundwissen JS 7: Geometrie 17. Juli (a) Wann heißt eine Figur achsensymmetrisch? Welche Bedeutung hat die Symmetrieachse anschaulich GYMNASIUM MIT SCHÜLERHEIM EGNITZ math-technolog u sprachl Gymnasium WILHELM-VON-HUMBOLDT-STRASSE 7 91257 EGNITZ FERNRUF 09241/48333 FAX 09241/2564 Grundwissen JS 7: Geometrie 17 Juli 2007 1(a) Wann heißt

Mehr

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m)

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m) Grundwissen Mathematik 7. Klasse 1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: Ttm (, ) = ( t 5+ 6) 20+ m (ausgesprochen: T von t und m) Ein Term besteht aus

Mehr

Konstruktionen am Dreieck

Konstruktionen am Dreieck Winkelhalbierende Die Winkelhalbierende halbiert den jeweiligen Innenwinkel des Dreiecks. Sie agieren als Symmetrieachse. Dadurch ist jeder Punkt der Winkelhalbierenden gleich weit von den beiden Schenkeln

Mehr

Kapitel 5: Dreieckslehre. 5.1 Bedeutung der Dreiecke

Kapitel 5: Dreieckslehre. 5.1 Bedeutung der Dreiecke edeutung+winkelsumme 1 Kapitel 5: Dreieckslehre 5.1 edeutung der Dreiecke Durch Triangulation lassen sich Vielecke in Dreiecke zerlegen ( n Eck in n- Dreiecke) eweis von Sätzen mittels Sätzen über Dreiecke

Mehr

1. Dreiecksungleichungen Es seien a, b, c > 0 die Seiten eines Dreiecks. Dann gelten die Dreiecksungleichungen:

1. Dreiecksungleichungen Es seien a, b, c > 0 die Seiten eines Dreiecks. Dann gelten die Dreiecksungleichungen: 1 Mariazell 009 Czakler Geometrische Ungleichungen Ungleichungen im Dreieck 1. Dreiecksungleichungen Es seien a, b, c > 0 die Seiten eines Dreiecks. Dann gelten die Dreiecksungleichungen:. Die x-y-z-transformation

Mehr

6 Die Gesetze von Kepler

6 Die Gesetze von Kepler 6 DIE GESETE VON KEPER 1 6 Die Gesetze von Kele Wi nehmen an, dass de entalköe (Sonne) eine seh viel gössee Masse M besitzt als de Planet mit de Masse m, so dass de Schweunkt in gute Näheung im entum de

Mehr

Mathematikaufgaben > Vektorrechnung > Kugeln

Mathematikaufgaben > Vektorrechnung > Kugeln Michael Buhlmann Mathematikaufgaben > Vektoechnung > Kugeln Aufgabe: Gegeben ist eine Kugel K im deidimensionalen katesischen x 1 -x -x 3 -Koodinatensystem mit dem Uspung als Mittelpunkt und dem Radius

Mehr

Mathematik für Ingenieure 2

Mathematik für Ingenieure 2 Mathematik fü Ingenieue Doppelintegale THE SERVICES Mathematik PROVIDER fü Ingenieue DIE - Doppelintegale Anschauung des Integals ingenieusmäßige Intepetation des bestimmten Integals Das bestimmte Integal

Mehr

KIT WS 2011/12 Theo A 1. 2 = b c ist dann doppelt so lang, wie â, also. c = 2 6

KIT WS 2011/12 Theo A 1. 2 = b c ist dann doppelt so lang, wie â, also. c = 2 6 KIT WS / Theo A Aufgabe : Vetoen [3 + 3 = 6] Gegeben sind die Vetoen a = (, 7, und b = (,,. (a Bestimmen Sie einen Veto c de Länge c = in de a b Ebene mit c b. (b Bestimmen Sie den paametisieten Weg (ϕ

Mehr

Theoretische Physik 1 (Mechanik) Lösung Aufgabenblatt 1

Theoretische Physik 1 (Mechanik) Lösung Aufgabenblatt 1 Technische Univesität München Fakultät fü Physik Feienkus Theoetische Physik 1 (Mechanik) SS 018 Aufgabenblatt 1 Daniel Sick Maximilian Ries 1 Aufgabe 1: Diffeenzieen Sie die folgenden Funktionen und entwickeln

Mehr

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher Seminavotag Diffeentialgeometie: Rotationsflächen konstante Gaußsche Kümmung Paul Ebeman, Jens Köne, Mata Vitalis 1. Juni 22 Inhaltsvezeichnis Vobemekung 2 1 Einfühung 2 2 Este Fundamentalfom 2 3 Vetägliche

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematik - Sommer 2016 Prof. Dr. Matthias Lesch, Regula Krapf Lösungen Übungsblatt 9 ufgabe 31 (6 Punkte). Konstruieren Sie mit Zirkel und Lineal alle Dreiecke mit folgenden ngaben: (a)

Mehr

Grundwissen Mathematik 7II-III/1

Grundwissen Mathematik 7II-III/1 Gundwissen athematik 7II-III/ ultiplikation und iision in QI Rechenegeln a c ac a c ad : b d bd b d bc Vozeichenegeln + ++ + + + + : ++ : + : + + : Potenzgesetze. Potenzgesetz n m n m a a a + eispiel:

Mehr

1. Schularbeit Mathematik 6B 97/

1. Schularbeit Mathematik 6B 97/ . Schulabeit Mathematik 6B 97/98.0.997. Beechne die fehlenden Fomen de Geaden Vektoielle Fom Koodinatenfom x y t. Auf de Geaden g[a( /6), B(/ )] ist von A aus in Richtung B eine Stecke von d abzutagen.

Mehr

Bildentstehung, Spiegel und Linsen Bildentstehung bei brechenden sphärischen Oberflächen

Bildentstehung, Spiegel und Linsen Bildentstehung bei brechenden sphärischen Oberflächen Aufaben 6 Bildentstehun, Spieel und Linsen Bildentstehun bei bechenden sphäischen Obeflächen Lenziele - sich aus dem Studium eines schiftlichen Dokumentes neue Kenntnisse und Fähikeiten eabeiten können.

Mehr

Mathematik Grundlagen Teil 2

Mathematik Grundlagen Teil 2 BBZ Biel-Bienne Eine Institution des Kantons Ben CFP Biel-Bienne Une institution du canton de Bene Beufsmatuität Matuité pofessionnelle Beufsbildungszentum Mediamatike Médiamaticiens Cente de fomation

Mehr

Fläche und Umfang des Kreises

Fläche und Umfang des Kreises Fläche und Umfang des Keises Mai 015 Ano Fehinge, Gymnasiallehe fü Mathematik und Physik Appoximation de Keisfläche duch einbeschiebene und umbeschiebene eguläe Vielecke duch sukzessive Eckenvedopplung

Mehr

Dr. Arnulf Schönlieb, Übungsbeispiele zu Potenzen, Wurzeln und Vektoren, 6. Klasse (10. Schulstufe)

Dr. Arnulf Schönlieb, Übungsbeispiele zu Potenzen, Wurzeln und Vektoren, 6. Klasse (10. Schulstufe) D. Anulf Schönlieb, Übungsbeispiele zu Potenzen, Wuzeln und Vektoen,. Klasse (10. Schulstufe) Übungsbeispiele zu Potenzen und Wuzeln sowie zu Vektoechnung,. Klasse (10. Schulstufe) 1)a) b) c) ) a) b) uv

Mehr

Abiturprüfung Physik 2016 (Nordrhein-Westfalen) Leistungskurs Aufgabe 1: Induktion bei der Torlinientechnik

Abiturprüfung Physik 2016 (Nordrhein-Westfalen) Leistungskurs Aufgabe 1: Induktion bei der Torlinientechnik Abitupüfung Physik 2016 (Nodhein-Westfalen) Leistungskus Aufgabe 1: Induktion bei de Tolinientechnik Im Fußball sogen egelmäßig umstittene Entscheidungen übe zu Unecht gegebene bzw. nicht gegebene Toe

Mehr

Extremwertaufgaben

Extremwertaufgaben 7.4.. Extemwetaufgaben Bei Extemwetaufgaben geht es daum, dass bei einem gestellten Sachvehalt (Textaufgabe) igendetwas zu maximieen bzw. zu minimieen ist. Dabei geht man nach einem festen, vogegebenen

Mehr

Archimedische Spirale 4

Archimedische Spirale 4 Aufgbenbltt-Achimedische Spile +Lösungen.doc Achimedische Spile Aufgbe An einem Holzpflock mit qudtischem Queschnitt (Seitenlänge z.. cm) ist im unkt eine Schnu befestigt, die von nch S eicht. Die Schnu

Mehr

Aufgaben zu Kreisen und Kreisteilen

Aufgaben zu Kreisen und Kreisteilen www.mthe-ufgben.com ufgben zu Keisen und Keisteilen Keisfläche: ( Rdius des Keises) Keisumfng: U Keisingfläche: ( ußen innen ) Keisusschnitt / Keissekto: Öffnungswinkel, b Keisbogen α bzw. b 60 α α b 60

Mehr

c+ f + i= b + e+ h = a+ d+ g=

c+ f + i= b + e+ h = a+ d+ g= 1988 Runde 1 ufgabe 1 ie neun Ziffern 1,, 3,..., 9 werden jeweils auf eine Karte geschrieben. us diesen neun Karten wird ein 3x3 Quadrat gelegt. adurch entsteht in jeder Zeile und in jeder Spalte eine

Mehr

Definitionen des Flächeninhaltsbegriffs werden immer mehr verfeinert, durch den Messprozess festgelegt.

Definitionen des Flächeninhaltsbegriffs werden immer mehr verfeinert, durch den Messprozess festgelegt. Flächeninhalt 1 Kapitel : De Flächeninhalt Flächeninhalt eine Figu soll etwas übe deen Göße aussagen Flächeninhaltsbegiff intuitiv igendwie kla, ab de Gundschule duch Auslegen von Figuen mit Plättchen

Mehr

Aufgabe 1 Es werden n gewöhnliche Spielwürfel nebeneinander auf den Tisch gelegt (siehe Bild).

Aufgabe 1 Es werden n gewöhnliche Spielwürfel nebeneinander auf den Tisch gelegt (siehe Bild). Landeswettbeweb Mathemati aden-wüttembeg 1991 Runde ufgabe 1 Es weden n gewöhnliche Spielwüfel nebeneinande auf den Tisch gelegt (siehe ild). Man addiet alle ugenzahlen, die nicht duch den Tisch ode duch

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Geometrie Skript für die Vorlesung: , G, Geometrie, 86-3, Ausgabe 2002

Geometrie Skript für die Vorlesung: , G, Geometrie, 86-3, Ausgabe 2002 Reseach Collection Educational Mateial Geometie Skipt fü die Volesung: 91-157, G, Geometie, 86-3, Ausgabe 2002 Autho(s): Walse, Hans Publication Date: 2002 Pemanent Link: https://doi.og/10.3929/ethz-a-004377954

Mehr

Raumgeometrie - schiefe Pyramide

Raumgeometrie - schiefe Pyramide 1.0 Die Raute ABCD mit den Diagonalen AC = e und BD = f ist die Grundfläche einer schiefen Pyramide ABCDS. Die Spitze S liegt senkrecht über dem Punkt D der Grundfläche. Es gilt: e = 14 cm; f = 10 cm;

Mehr

Musteraufgaben zum Mathematikwettbewerb der Einführungsphase 2014 am

Musteraufgaben zum Mathematikwettbewerb der Einführungsphase 2014 am MW-E Mathematikwettbeweb de Einfühungphae 9. Febua 04 Muteaufgaben zum Mathematikwettbeweb de Einfühungphae 04 am 9.0.04 Hinwei: eim Mathematikwettbeweb MW-E de Eingangtufe weden ufgaben zu uwahl angeboten,

Mehr

Musterlösung Serie 4

Musterlösung Serie 4 D-MATH Lineae Algeba I HS 218 Pof Richad Pin Mustelösung Seie 4 Summen Podute und Matizen 1 Beweisen Sie: (a Fü jede ganze Zahl n gilt n ( n 2 n (b Fü alle ganzen Zahlen n gilt ( ( n n n (c Fü alle ganzen

Mehr

Jgst. 11/I 2.Klausur

Jgst. 11/I 2.Klausur Jgst. 11/I 2.Klausur 10.12.2010 A1. Gegeben sind die vier Punkte A(2/2), B(3/6), C(7/5) und D(6/1). Berechne die Gleichung des größten Kreises, den man in das Viereck, das aus diesen Punkten gebildet wird,

Mehr

5 Gravitationstheorie

5 Gravitationstheorie 5 Gavitationstheoie Ausgeabeitet von G. Knaup und H. Walitzki 5.1 Gavitationskaft - Gavitationsfeld Die Gundidee zu Gavitationstheoie stammt von Newton (1643-1727): Die Kaft, die einen Apfel fallen lässt,

Mehr

Aufgabe 1: a) Die Effektivverzinsung einer Nullkuponanleihe lässt sich anhand der folgenden Gleichung ermitteln: F =

Aufgabe 1: a) Die Effektivverzinsung einer Nullkuponanleihe lässt sich anhand der folgenden Gleichung ermitteln: F = Aufgabe : a Die Effektivvezinsung eine Nullkuponanleihe lässt sich anhand de folgenden Gleichung emitteln: Hie gilt P( c( aktuelle Maktpeis de Anleihe Nennwet de Anleihe 4 und folglich i P( / c( c( i c(

Mehr

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November Seie 3 29. Oktobe 2012 Vozuechnen bis zum 9. Novembe Aufgabe 1: Zwei Schwimme spingen nacheinande vom Zehn-Mete-Tum ins Becken. De este Schwimme lässt sich vom Rand des Spungbetts senkecht heuntefallen,

Mehr

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Wissen und Können 1. Terme Terme sind sinnvolle Rechenausdrücke mit Zahlen, Variablen und Rechenzeichen. Berechnung von Termwerten

Mehr

1993 III Aufgabe. In einem kartesischen Koordinatensystem sind die Gerade

1993 III Aufgabe. In einem kartesischen Koordinatensystem sind die Gerade 993 III Aufgabe In einem kartesischen Koordinatensystem sind die Gerade = g : X mit R sowie die beiden Punkte A( -) und C(- 2 ) gegeben. A und C bestimmen die Gerade h..a) Begründen Sie, dass der Mittelpunkt

Mehr

Stellwiderstände. Praktikum. Grundlagen der Elektrotechnik. Versuch: Versuchsanleitung. 0. Allgemeines

Stellwiderstände. Praktikum. Grundlagen der Elektrotechnik. Versuch: Versuchsanleitung. 0. Allgemeines HOCHSCHLE FÜ TECHNK ND WTSCHFT DESDEN (FH) nivesity of pplied Sciences Fachbeeich Elektotechnik Paktikum Gundlagen de Elektotechnik Vesuch: Stellwidestände Vesuchsanleitung 0. llgemeines Eine sinnvolle

Mehr

F B. Abbildung 2.1: Dreieck mit Transversalen

F B. Abbildung 2.1: Dreieck mit Transversalen 2 DS DREIECK 16 2 Das Dreieck 2.1 Ein einheitliches Beweisprinzip Def. Eine Gerade, die jede Trägergerade der Seiten eines Dreiecks (in genau einem Punkt) schneidet, heißt Transversale des Dreiecks. Eine

Mehr

I. Symmetrie. II. Grundkonstruktionen

I. Symmetrie. II. Grundkonstruktionen I. Symmetrie Achsensymmetrie Zwei Figuren, die bezüglich einer Achse symmetrisch zueinander sind, nennt man achsensymmetrisch. Punktsymmetrie Zwei Figuren, die bei einer Halbdrehung um einen Punkt ineinander

Mehr

1 Einleitung. 2 Sinus. Trigonometrie

1 Einleitung. 2 Sinus. Trigonometrie 1 Einleitung Die Trigonometrie (trigonon - griechisch für Dreieck) und die trigonometrischen Funktionen sind wichtige mathematische Werkzeuge zur Beschreibung der Natur. In der Physik werden trigonometrische

Mehr

1.(a) Wie ist a definiert? (b) Was ist a 2? (c) Nenne Beispiele für Zahlen, die keine Quadratwurzel in Q besitzen.

1.(a) Wie ist a definiert? (b) Was ist a 2? (c) Nenne Beispiele für Zahlen, die keine Quadratwurzel in Q besitzen. GYMNASIUM MIT SCHÜLERHEIM PEGNITZ math-technolog u spachl Gymnasium WILHELM-VON-HUMBOLDT-STRASSE 7 927 PEGNITZ FERNRUF 0924/48 FAX 0924/264 Gundwissen JS 9 Die eellen Zahlen 2 Septembe 2008 (a) Wie ist

Mehr

1 Umkehrfunktionen und implizite Funktionen

1 Umkehrfunktionen und implizite Funktionen $Id: impliit.tex,v 1.6 2012/10/30 14:00:59 hk Exp $ 1 Umkehfunktionen und impliite Funktionen 1.1 De Umkehsat Am Ende de letten Situng hatten wi alle Vobeeitungen um Beweis des Umkehsates abgeschlossen,

Mehr

1 Zahlen und Funktionen

1 Zahlen und Funktionen 1 Zahlen und Funktionen 1.1 Variablen Variablen sind Platzhalter für Zahlen aus einer vorgegebenen Grundmenge. Bsp.: a IN, b Z oder x QI Betrag einer Variablen a falls a 0 a = Bsp.: 7 = 7; -5 = -(-5) =

Mehr

Stochastik: Nutzung sozialer Netzwerke

Stochastik: Nutzung sozialer Netzwerke Stochastik: Nutzung soziale Netzweke Die Nutzung von sozialen Netzweken wid imme beliebte. Dabei nutzen imme meh Jugendliche veschiedene soziale Netzweke. Es wid davon ausgegangen, dass 30 % alle Jugendlichen

Mehr

Zusammenstellung aus ehemaligen DDR Prüfungsaufgaben (Aufgabe 6)

Zusammenstellung aus ehemaligen DDR Prüfungsaufgaben (Aufgabe 6) (Aufgabe 6) 0. Klasse Abschlussprüfungen Jahrgänge 970 99 Fach Mathematik Material für Fachberater, gedacht als Beispiele für die Aufgabe der neuen brandenburger Prüfungsaufgaben 970 6 a) Ermitteln Sie

Mehr