Kapitel 2 Experiment: Messwert & Messgenauigkeit

Größe: px
Ab Seite anzeigen:

Download "Kapitel 2 Experiment: Messwert & Messgenauigkeit"

Transkript

1 Kapitel 2 Experiment: Messwert & Messgenauigkeit Die Reproduzierbarkeit von Experimenten ist ein zentrales Thema in allen Naturwissenschaften. In diesem Kapitel erarbeiten wir Verfahren, mit denen wir die Genauigkeit experimenteller Resultate quantitativ erfassen. Damit erhalten wir einerseits ein Maß für die Reproduzierbarkeit des Experiments und können andererseits die Kompatibilität entsprechender theoretischer Rechnungen mit den Messungen überprüfen. Beispiel: Fall-Experiment: Theorie Ortsfunktion, Geschwindigkeit und Beschleunigung sind in Abhängigkeit von der Zeit: x (t) v (t) =ẋ a (t) = v (t) =ẍ (t) Bei einer gleichmäßig beschleunigten Bewegung ist a = const. = a v (t) = a t + v x (t) = 1 2 a t 2 + v t + x. In einem Kugel-Fall-Experiment mit v = 0 können wir durch Messen von x = x x und t = t t mit x = 1 2 g t2 (2.1) die Erdbeschleunigung a = g bestimmen und gleichzeitig einen quantitativen Test des Fall-Gesetzes durchführen. M. Erdmann, Experimentalphysik 1, Springer-Lehrbuch, DOI / _2, C Springer-Verlag Berlin Heidelberg

2 20 2 Experiment: Messwert & Messgenauigkeit 2.1 Grundgrößen Messen bedeutet einen Vergleich mit Standards. In diesem Abschnitt werden wir die drei in der Mechanik relevanten Grundgrößen nach dem internationalen Standard SI (Système International d unités) dafür einführen. Aktuelle Entwicklungen zu den Grundgrößen kann man über die Webseite des Bureau International des Poids et Mesures (BIPM) einsehen Längeneinheit: Meter m Nach einer Messung des Erdmeridianquadranten (Entfernung vom Pol zum Äquator) durch die Astronomen Jean-Baptiste Delambre und Pierre Méchain wurde 1799 die Entfernung eines 10-Millionstels dieses Quadranten auf einem Platinstab markiert und als 1m Länge deklariert. Auch mit verbesserten Varianten des Stabs liegt die Reproduzierbarkeit dieser Länge im µm Bereich (10 6 m) wurde beschlossen, die Längenmessung auf eine Zeitmessung zurückzuführen. 1 m ist definiert als die Strecke, die Licht im Vakuum während der Zeit s zurücklegt. Die Lichtgeschwindigkeit im Vakuum wird demnach exakt auf c = m/s festgelegt Zeiteinheit: Sekunde s Ursprünglich war die Sekunde als der te Teil eines Sonnentages definiert (1 s = 1Tag ). Bei dieser Definition unterliegt die Sekunde jedoch jahreszeitlichen Schwankungen. Heute ist die Sekunde die Zeitdauer von Schwingungsperioden der elektromagnetischen Strahlung, die dem Übergang zwischen zwei bestimmten Elektronenzuständen im Caesium 133 Atom entspricht (Hyperfeinaufspaltung des Grundzustands). Die experimentelle Reproduzierbarkeit der so definierten Sekunde gelang 2009 mit einer relativen Genauigkeit von fast 1/ Masseneinheit: Kilogramm kg Das Kilogramm (1 kg) ist definiert als die Masse, die ein in Paris aufbewahrter Platin-Iridium-Zylinder hat. Siehe hierzu auch Abschn. 3.2.

3 2.2 Genauigkeit von Messwerten 21 Experiment: Fall-Experiment In unserem Experiment wird die Fallstrecke x einer Stahlkugel und ihre Fallzeit t gemessen. Die Kugel wird anfangs von einem Elektromagneten gehalten. Die Fallstrecke wird mit einem Maßband gemessen. Die Fallzeit wird mit einer elektronischen Stoppuhr bestimmt. Beim Start wird der Elektromagnet abgeschaltet und gleichzeitig die Uhr gestartet. Die Kugel fällt durch eine Lichtschranke, über die die Uhr gestoppt wird. Wir wiederholen die Messung mehrfach und messen bei der Fallstrecke x = 2 m folgende Werte für die Fallzeit t: 634 ms, 630 ms, 629 ms, 631 ms, 655 ms, 633 ms, 631 ms 2.2 Genauigkeit von Messwerten Die begrenzte Genauigkeit der Apparatur verhindert, dass bei jeder Messung der identische Messwert gefunden wird. Bei den hierdurch verursachten Messunsicherheiten unterscheidet man zwei Arten von Fehlern: Systematische Fehler: Fehler, die auch bei Wiederholung des Experiments den Messwert immer in dieselbe Richtung verschieben (größere oder kleinere Messwerte). Statistische Fehler: Zufällig auftretende Fehler. Sie streuen um den wahren Wert. Beispiel: Fall-Experiment: Ursachen für Fehler In unserem Fallversuch sind Beispiele für mögliche Ursachen von Messfehlern: Systematische Fehler: Luftreibung, fehlerhafte Eichung der Stoppuhr bzw. des Maßbandes, Auslösemechanismus der Kugel. Statistische Fehler: Ungenauigkeiten beim Starten und Stoppen des Uhrwerks, Instabilitäten der Uhr-Elektronik bei der Zeitmessung, geschätzte Ablesegenauigkeit des Maßbands.

4 22 2 Experiment: Messwert & Messgenauigkeit Die Angabe der Messgröße inklusive ihrer Unsicherheiten wird üblicherweise in folgender Weise notiert: Messwert ± statistische Fehler ± systematische Fehler (2.2) 2.3 Verteilung von Messwerten Die Frage, die wir im Folgenden beantworten wollen, ist: Mit welcher Wahrscheinlichkeit messe ich einen Wert nahe des wahren Wertes? Mathematischer Einschub: Wahrscheinlichkeit Tritt ein Ereignis auf n verschiedene aber gleichwahrscheinliche Arten ein, wobei k dieser Arten die Eigenschaft A haben, dann ist die Wahrscheinlichkeit P für das Auftreten von A: P (A) = k n (2.3) Beispiel: Würfel Das Ereignis A sei eine 5 zu würfeln. Nur eine Seite des Würfels hat die 5, deswegen ist k = 1. Der Würfel hat n = 6 Seiten. Die Wahrscheinlichkeit eine 5 zu würfeln beträgt somit P(A) = 1 6. Eine Zufallsvariable kann aufgrund statistisch unkontrollierbarer Einflüsse verschiedene Werte annehmen. Diskrete Zufallsvariable z.b. Würfel Kontinuierliche Zufallsvariable z.b. Temperaturmessung

5 2.3 Verteilung von Messwerten Diskrete Verteilung Bei einer diskreten Zufallsvariablen r i mit i = 1,...,b Z ist die Wahrscheinlichkeit P (r i ), dass bei einer Messung der Wert r i auftritt, immer innerhalb des Intervalls Die Wahrscheinlichkeit aller möglichen Fälle ist 0 P (r i ) 1. (2.4) b P (r i ) = 1. (2.5) Der Mittelwert der diskreten Zufallsvariable r ist gegeben durch i=1 r = b r i P (r i ). (2.6) i=1 Diskrete Wahrscheinlichkeitsverteilung Kontinuierliche Verteilung Bei einer kontinuierlichen Zufallsvariablen x R ist die Wahrscheinlichkeit, dass bei einer Messung der Wert x zwischen a und b liegt P (a x b) = b a f (x) dx, (2.7) wobei f (x) die Wahrscheinlichkeitsdichteverteilung der Variablen x ist. Wahrscheinlichkeitsdichteverteilung f (x)

6 24 2 Experiment: Messwert & Messgenauigkeit Für die Wahrscheinlichkeitsdichte gilt f (x) 0 und f (x) dx = 1. (2.8) Das Integral über die Wahrscheinlichkeitsdichte nennt man Wahrscheinlichkeitsdichte-Funktion F (x ). Sie gibt an, mit welcher Wahrscheinlichkeit ein Wert x mit x x auftritt: F (x ) = x f (x) dx mit F ( ) = 0 und F ( ) = 1 (2.9) Der Mittelwert für eine kontinuierliche Zufallsvariable ist x = x f (x) dx. (2.10) Als Maß für die Breite einer Verteilung wird die Varianz V = σ 2 verwendet: V = σ 2 (x x ) 2 f (x) dx (2.11) Hierbei ist σ die Standardabweichung. Sie ist ein Maß für die Größe der statistischen Schwankungen der Zufallsvariable x um ihren Mittelwert x. Physiker nennen diese Größe Messunsicherheit oder einfach Fehler Gauß-Verteilung Eine der wichtigsten Wahrscheinlichkeitsdichteverteilungen ist die Gauß-Verteilung (Normalverteilung). Sie ist folgendermaßen definiert: f (x) = ( ) 1 1 x μ 2 2πσ 2 e 2 σ (2.12)

7 2.4 Interpretation von Messwerten 25 Sie hat als Mittelwert μ x = Varianz V = x f(x) dx, (2.13) (x μ) 2 f (x) dx, (2.14) Standardabweichung σ = V. (2.15) Die Gauß-Verteilung fällt in der Entfernung x μ = σ auf den 1/ e-ten Teil ihres Maximalwerts ab: e (x μ)2 2σ 2 = e 1 2 (2.16) = 1 e (2.17) Die Wahrscheinlichkeit, x imintervall μ σ x μ + σ (2.18) zu finden, erhalten wir durch Integration über die Gauß-Verteilung in den entsprechenden Grenzen: 1 μ+σ 2πσ μ σ e (x μ)2 2σ 2 dx = 68.26% (2.19) D.h. in einem Drittel aller Fälle (Messungen) liegt x außerhalb des ±1σ Bereichs. Messwert innerhalb des Intervalls Wahrscheinlichkeit x μ < 1σ 68.26% x μ < 2σ 95.45% x μ < 3σ 99.73% 2.4 Interpretation von Messwerten Mathematischer Einschub: Zentraler Grenzwertsatz Die Mathematik hilft uns mit dem zentralen Grenzwertsatz, zufällige Fehler zu erfassen: Die Überlagerung von zufällig verteilten Fehlerquellen führt zur Gauß- Funktion als Wahrscheinlichkeitsdichteverteilung im Fall von vielen Messungen.

8 26 2 Experiment: Messwert & Messgenauigkeit Jede einzelne Messung wird von vielen Fehlerquellen beeinflusst, die den wahren Wert zum Zeitpunkt der Messung verändern. Viele Fehlerquellen, die unabhängig voneinander sind und zufällig den Messwert in die eine oder andere Richtung ziehen, folgen gemeinsam einer Gauß-Wahrscheinlichkeitsdichte f (x). Messdaten x 1, x 2,...,x n können als Zufallsvariable aufgefasst werden, die f (x) entnommen wurden ( Stichprobe ). Beispiel: Zentraler Grenzwertsatz Die Überlagerung mehrerer Gleichverteilungen ergibt eine Gauß-Verteilung. Im linken Bild ist eine gleichverteilte Zufallsverteilung gezeigt. Im mittleren Bild wurden 2 gleichverteilte Zufallszahlen addiert und in das Histogramm eingetragen. Im rechten Bild wurden 10 Zufallszahlen addiert und dann eingetragen. Die Gauß-Verteilung ist hier schon gut zu erkennen. Der Fit an die Gauß-Form funktioniert sehr gut und liefert die erwarteten Parameter. Auch bei einer zweidimensionalen Verteilung lässt sich der Effekt beeindruckend zeigen: Die Paare von Zufallszahlen sind im linken Bild aus dem Bereich des Elefanten gezogen. Rechts ist die dreifache Überlagerung von Paaren der Zufallsvariablen aus der Elefanten-Verteilung gezeigt. Vom Elefanten ist nichts mehr zu erkennen, die Entwicklung der Verteilung in Richtung einer Gauß-Verteilung kann man erahnen. Quelle: Prof. Dr. G. Quast, Universität Karlsruhe, Prof. Dr. C. Zeitnitz, Universität Wuppertal.

9 2.4 Interpretation von Messwerten 27 Folded Elefant h2fele Entries Mean x Mean y RMS x RMS y Verteilung für n = 1 Verteilung für n = 3 Aufgabe 2.1: Zentraler Grenzwertsatz Erklären sie die Addition zweier Zufallsvariablen: (1 Punkt) Lösung zu Aufgabe 2.1: Zentraler Grenzwertsatz

10 28 2 Experiment: Messwert & Messgenauigkeit 2.5 Auswertung eines Experiments Mittelwert Am Beispiel des Fallversuchs mit der Kugel führen wir jetzt eine Datenanalyse durch. Zunächst geht es darum, einen geeigneten Schätzwert t für die Fallzeit t zu finden. Nach Gl. (2.6) erhalten wir unter der Annahme, dass alle Werte gleichwahrscheinlich auftreten, den Stichproben-Mittelwert: t = 1 n n t i (2.20) i=1 Beispiel: Fall-Experiment: Mittelwert Bei einer wiederholten Messung wurden bei einer Fallstrecke von 2 m für t die folgenden Werte gemessen: 634 ms, 630 ms, 629 ms, 631 ms, 655 ms, 633 ms, 631 ms Für t ergibt sich also t = 1 n n t i i=1 = 1 (634 ms ms ms ms ms ms ms) ms. Stellt man die Ergebnisse graphisch dar,

11 2.5 Auswertung eines Experiments 29 so stellt man eine Häufung der Messwerte um 631 ms fest. Der Mittelwert wird jedoch durch den Messwert bei 655 ms vom offensichtlichen Häufungspunkt auf 635 ms verschoben. Als Test für die Stabilität des Mittelwerts wird der getrimmte Mittelwert berechnet. Dabei vernachlässigt man den größten und kleinsten Wert bei der Bestimmung des Mittelwerts. Als getrimmter Mittelwert ergibt sich t = 631.8ms. Nun stellt sich die Frage: Wie wahrscheinlich ist es, dass der Messwert bei 655 ms zufällig zustande kam? Eine Anpassung der Gaußfunktion an das Histogramm liefert den Mittelwert ms und die Standardabweichung σ 2ms. Die Distanz zwischen Mittelwert und Messwert beträgt also 23 ms 12 σ. Die logarithmische Darstellung der Häufigkeiten zeigt in eindrucksvoller Weise die geringe Wahrscheinlichkeit, dass der Messwert 655 ms aus üblichen statistischen Schwankungen der Messung resultiert. Solche Messungen außerhalb des erwarteten Wertebereichs sind für Suchen nach neuen physikalischen Phänomenen besonders interessant.

12 30 2 Experiment: Messwert & Messgenauigkeit In unserem Experiment handelt es sich bei dem Messwert vermutlich um ein Apparaturproblem bei der Einzelmessung. Diese Vermutung könnten wir durch Wiederholungsmessungen absichern. In der folgenden Auswertung wird dieser Messwert nicht weiter berücksichtigt. Beispiel: Fall-Experiment: Korrigierter Mittelwert Der Mittelwert im Häufungsbereich der Messungen beträgt t = 1 (634 ms ms ms ms ms ms) ms Statistische Fehler Da alle Messgrößen fehlerbehaftet sind, müssen wir auch für unseren gemessenen Mittelwert einen Fehler angeben. Dazu berechnen wir als erstes die Stichproben- Varianz σ 2 = V = 1 n (x i x) 2. (2.21) n 1 Die Varianz ist ein Maß für die Streuung der Einzelmessung. Da es sich bei dem Mittelwert x nicht um den wahren Wert, sondern um einen Schätzwert handelt, reduziert sich die Zahl der Freiheitsgrade (hier die Anzahl der Messungen bzw. der genommenen Stichproben) um 1, so dass nur durch (n 1) dividiert wird. Die Standardabweichung der Einzelmessung ist also i=1 σ = 1 n (x i x) 2. (2.22) n 1 i=1

13 2.5 Auswertung eines Experiments 31 Die Streuung gibt uns Auskunft über die Reproduzierbarkeit der Messung. Wir erwarten, dass der nächste neue Messwert mit einer Wahrscheinlichkeit von 68% im Intervall [ ] t σ ; t + σ (2.23) liegt. Beispiel: Fall-Experiment: Streuung der Messwerte Mit den Zahlenwerten aus dem Beispiel ergibt sich 1 ( σ = ) ms 2 2ms Bei einer wiederholten Einzelmessung würden wir also mit 68%-iger Wahrscheinlichkeit einen Wert von t = (631 ± 2) ms erwarten. Die Schätzung des Mittelwerts t und der Varianz σ 2 sind selbst Zufallsvariablen und damit Gauß-verteilt. Für die Standardabweichung des Mittelwerts ergibt sich als Konsequenz aus dem zentralen Grenzwertsatz: σ t = V t = σ n (2.24) Beispiel: Fall-Experiment: Fehler des Mittelwerts Für die Zeitmessung in unserem Versuch können wir nun den Mittelwert, die Standardabweichung und den Fehler auf den Mittelwert angeben: t = 631 ms σ = 2ms σ t = 2ms 1ms 6 Die Fallzeit der Kugel ergibt sich zu t ± σ t = (631 ± 1) ms.

14 32 2 Experiment: Messwert & Messgenauigkeit Aufgabe 2.2: Tennisballmaschine Gegeben sind 4 Messungen der Wurfweite x w = 21 m, 18 m, 16 m, 25 m. Gesucht sind 1. Mittlere Weite x w, 2. Standardabweichung σ, 3. Genauigkeit der mittleren Wurfweite σ xw. (2 Punkte) Lösung zu Aufgabe 2.2: Tennisballmaschine Unser eigentliches Ziel ist, die Erdbeschleunigung aus der Zeitmessung und der Fallstrecke über g = 2 x t 2 zu bestimmen (2.1). Um g und seinen Fehler berechnen zu können, muss auch die Längenmessung untersucht werden. Wie bei der Zeitmessung ist auch die Längenmessung fehlerbehaftet. Liest man die Strecke x auf dem Bandmaß ab, so muss man zwei Punkte x 1 und x 2 bestimmen, aus denen sich aus der Differenzbildung die Fallstrecke x = x 2 x 1

15 2.5 Auswertung eines Experiments 33 ergibt. Bei jeder der Messungen x 1 und x 2 kann man annehmen, dass der abgelesene Wert um σ x1 = σ x2 schwankt. Wie diese beiden Fehler zum Fehler auf x kombiniert werden, wird über das folgende Gesetz der Fehlerfortpflanzung erklärt Fehlerfortpflanzung Das Fehlerfortpflanzungsgesetz beschreibt, wie sich ein Fehler σ xk der Messgröße x k auf eine aus x k abgeleitete Messgröße y i auswirkt. Ist y i lediglich von x k abhängig, z.b. y i = 2x k, wird der Fehler σ yi durch die Ableitung von y i (x k ) an der Stelle x k und die Multiplikation mit σ xk bestimmt: σ yi = y i x k σ xk (2.25) In unserem einfachen Beispiel y i = 2x k ist dann σ yi = 2σ xk. Wird eine Messgröße y i aus n voneinander unabhängigen Messgrößen x k zusammengesetzt, wird die quadratische Summe der Einzelbeiträge gebildet: σ 2 y i = n ( yi k=1 x k ) 2 σ 2 x k (2.26) Beispiel: Fall-Experiment: Fehler der Längenmessung Die Längenmessung x = x 1 x 2 in unserem Beispiel hat mit σ x1 = σ x2 = ±0, 3 mm den Fehler ( ) x 2 ( ) x 2 σ x 2 = σx 2 x 1 + σx 2 1 x 2 2 (2.27) = (1) 2 σx ( 1) 2 σx 2 2 (2.28)

16 34 2 Experiment: Messwert & Messgenauigkeit Damit ist σ x = = 2 σ 2 x 1 = 2 σ 2 x 2. (2.29) 2 σ 2 x 2 = 2σ x2 0, 4 mm und x = (2, 0 ± 0, 0004) m. Beispiel: Fall-Experiment: Fehler der Erdbeschleunigung Ebenso können wir mit dem Fehlerfortpflanzungsgesetz den Fehler auf die Erdbeschleunigung g = 2 x/ t 2 berechnen: ( g σg 2 = t = = ( 2 x 2 ( 2 x t 2 = g 2 ) 2 ( ) g 2 σ 2 t + σ x 2 (2.30) x t 3 σ t ) [ 2 ( 2 σ t t [ ( 2 σ ) 2 t + t ) 2 ( ) t 2 σ x (2.31) ) ] 2 ( σ x ) 2 + (2.32) ( σ x x ) 2 ] x (2.33) Wir unterscheiden zwischen dem absoluten Fehler und dem relativen Fehler σ g = g ( 2 σ ) 2 t + t ( σ x x ) 2 (2.34) σ g g = ( 2 σ ) 2 t + t ( σ x x ) 2. (2.35) Wir erkennen aus dem Beispiel der Längenmessung die wichtige Regel, dass bei Differenzen (und Summen) die absoluten Fehler quadratisch addiert werden.

17 2.5 Auswertung eines Experiments 35 Im Beispiel der Erbeschleunigung sehen wir, dass bei Quotienten (und Produkten) die relativen Fehler quadratisch addiert werden. Potenzen wie in diesem Fall t 2 werden dabei als Faktoren berücksichtigt. Beispiel: Fall-Experiment Resultat mit statistischem Fehler Im Versuch ergibt sich mit den berechneten Mittelwerten der Fehler auf die Erdbeschleunigung g: ( g = 10 m s ) ( 0, ) 2 3 m 100 s 2 Als Ergebnis erhalten wir mit unserem Versuch den Messwert für die Erdbeschleunigung g = (10, 05 ± 0, 03) m s 2. Damit haben wir bislang den statistischen Fehler unserer Messung von g berechnet Systematische Fehler Für eine vollständige Auswertung unseres Experiments wären auch die systematischen Fehler zu bestimmen. In unserem Fall würden wir z.b. die Eichgenauigkeit des Uhrwerks und des Längenmaßbands im Vergleich mit anderen, genaueren Apparaturen vermessen. Zusätzlich müssten wir die Effekte durch die Luftreibung an der Kugel bestimmen. Bei Messgrößen, die aus Einzelvariablen x i zusammengesetzt sind, können wir jeden Messwert um den systematischen Fehler jeweils einer Einzelvariablen verschieben und die Auswirkung auf das Endergebnis bestimmen. Die Änderung des Endergebnisses ist für jede Messgröße deren systematischer Fehler σ i auf die gesamte Messgröße. Bei statistischer Unabhängigkeit der systematischen Einzelfehler können wir sie durch quadratisches Summieren zusammenfassen: σ sys = m σi 2. (2.36) i=1

18

1 Messfehler. 1.1 Systematischer Fehler. 1.2 Statistische Fehler

1 Messfehler. 1.1 Systematischer Fehler. 1.2 Statistische Fehler 1 Messfehler Jede Messung ist ungenau, hat einen Fehler. Wenn Sie zum Beispiel die Schwingungsdauer eines Pendels messen, werden Sie - trotz gleicher experimenteller Anordnungen - unterschiedliche Messwerte

Mehr

Experimentalphysik E1!

Experimentalphysik E1! Experimentalphysik E1! Prof. Joachim Rädler! Paul Koza (Vorlesungsbetreuung)! Alle Informationen zur Vorlesung unter :! http://www.physik.lmu.de/lehre/vorlesungen/index.html! Fehlerrechnung! Der freie

Mehr

Versuch 11 Einführungsversuch

Versuch 11 Einführungsversuch Versuch 11 Einführungsversuch I Vorbemerkung Ziel der Einführungsveranstaltung ist es Sie mit grundlegenden Techniken des Experimentierens und der Auswertung der Messdaten vertraut zu machen. Diese Grundkenntnisse

Mehr

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp Datenanalyse (PHY231) Herbstsemester 2015 Olaf Steinkamp 36-J-22 olafs@physik.uzh.ch 044 63 55763 Vorlesungsprogramm Einführung, Messunsicherheiten, Darstellung von Messdaten Grundbegriffe der Wahrscheinlichkeitsrechnung

Mehr

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp Datenanalyse (PHY23) Herbstsemester 207 Olaf Steinkamp 36-J-05 olafs@physik.uzh.ch 044 63 55763 Vorlesungsprogramm Einführung, Messunsicherheiten, Darstellung von Messdaten Grundbegriffe der Wahrscheinlichkeitsrechnung

Mehr

Praktikum zur Vorlesung Einführung in die Geophysik

Praktikum zur Vorlesung Einführung in die Geophysik Praktikum zur Vorlesung Einführung in die Geophysik Hinweise zum Praktikum: Messunsicherheit und Fehlerrechnung Stefan Wenk, Prof. Thomas Bohlen TU Bergakademie Freiberg Institut für Geophysik www.geophysik.tufreiberg.de/pages/studenten/praktika/nebenfaechlerpraktikum.htm

Mehr

Maurizio Musso, Universität Salzburg, ver Physikalische Grundlagen der Meßtechnik. Teil 2

Maurizio Musso, Universität Salzburg, ver Physikalische Grundlagen der Meßtechnik. Teil 2 Teil 2 Auswertung von Messungen, zufällige oder statistische Abweichungen Auswertung direkter Messungen Häufigkeitsverteilung, Häufigkeitsfunktion Mittelwert, Standardabweichung der Einzelwerte Standardabweichung

Mehr

Einführung in die Theorie der Messfehler

Einführung in die Theorie der Messfehler Einführung in die Theorie der Messfehler Ziel der Vorlesung: Die Studentinnen/Studenten sollen die Grundlagen der Theorie der Messfehler sowie den Unterschied zwischen Ausgleichsrechnung und statistischer

Mehr

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab Enrico Mank. Praktikumsbericht: Galton-Brett

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab Enrico Mank. Praktikumsbericht: Galton-Brett Anfänger-Praktikum I WS 11/12 Michael Seidling Timo Raab Enrico Mank Praktikumsbericht: Galton-Brett Inhaltsverzeichnis Inhaltsverzeichnis I. Theoretische Grundlagen 2 1. Zentraler Grenzwertsatz 2 2. Binomialverteilung

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Propädeutikum 4: Messfehler und Vektoren Dr. Daniel Bick 25. Oktober 2013 Daniel Bick Physik für Biologen und Zahnmediziner 25. Oktober 2013 1 / 41 Organisatorisches

Mehr

Einführungsseminar S1 Elemente der Fehlerrechnung. Physikalisches Praktikum der Fakultät für Physik und Astronomie Ruhr-Universität Bochum

Einführungsseminar S1 Elemente der Fehlerrechnung. Physikalisches Praktikum der Fakultät für Physik und Astronomie Ruhr-Universität Bochum Einführungsseminar S1 Elemente der Fehlerrechnung Physikalisches Praktikum der Fakultät für Physik und Astronomie Ruhr-Universität Bochum Literatur Wolfgang Kamke Der Umgang mit experimentellen Daten,

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet

Mehr

Messtechnische Grundlagen und Fehlerbetrachtung. (inkl. Fehlerrechnung)

Messtechnische Grundlagen und Fehlerbetrachtung. (inkl. Fehlerrechnung) Messtechnische Grundlagen und Fehlerbetrachtung (inkl. Fehlerrechnung) Länge Masse Zeit Elektrische Stromstärke Thermodynamische Temperatur Lichtstärke Stoffmenge Basisgrößen des SI-Systems Meter (m) Kilogramm

Mehr

Einführung in die Fehlerrechnung und Messdatenauswertung

Einführung in die Fehlerrechnung und Messdatenauswertung Grundpraktikum der Physik Einführung in die Fehlerrechnung und Messdatenauswertung Wolfgang Limmer Institut für Halbleiterphysik 1 Fehlerrechnung 1.1 Motivation Bei einem Experiment soll der Wert einer

Mehr

Begleitmaterial zur Vorlesung. Fehlerrechnung und Fehlerabschätzung bei physikalischen Messungen

Begleitmaterial zur Vorlesung. Fehlerrechnung und Fehlerabschätzung bei physikalischen Messungen Institut für Technische Thermodynamik und Kältetechnik Leiter: Prof. Dr.-Ing. K. Schaber Begleitmaterial zur Vorlesung Fehlerrechnung und Fehlerabschätzung bei physikalischen Messungen Verfasst von Dr.

Mehr

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp Datenanalyse (PHY31) Herbstsemester 015 Olaf Steinkamp 36-J- olafs@physik.uzh.ch 044 63 55763 Einführung, Messunsicherheiten, Darstellung von Messdaten Grundbegriffe der Wahrscheinlichkeitsrechnung und

Mehr

Physikalische Übungen für Pharmazeuten

Physikalische Übungen für Pharmazeuten Helmholtz-Institut für Strahlen- und Kernphysik Seminar Physikalische Übungen für Pharmazeuten Ch. Wendel Max Becker Karsten Koop Dr. Christoph Wendel Übersicht Inhalt des Seminars Praktikum - Vorbereitung

Mehr

5. Meßfehler. Zufällige Messfehler machen das Ergebnis unsicher - ihre Abschätzung ist nur unter Verwendung statistischer Methoden durchführbar

5. Meßfehler. Zufällige Messfehler machen das Ergebnis unsicher - ihre Abschätzung ist nur unter Verwendung statistischer Methoden durchführbar 5. Meßfehler Man unterscheidet... zufällige Meßfehler systematische Meßfehler Zufällige Messfehler machen das Ergebnis unsicher - ihre Abschätzung ist nur unter Verwendung statistischer Methoden durchführbar

Mehr

Protokoll Grundpraktikum: F0: Auswertung und Präsentation von Messdaten

Protokoll Grundpraktikum: F0: Auswertung und Präsentation von Messdaten Protokoll Grundpraktikum: F0: Auswertung und Präsentation von Messdaten Sebastian Pfitzner 19. Februar 013 Durchführung: Sebastian Pfitzner (553983), Jannis Schürmer (5589) Betreuer: N. Haug Versuchsdatum:

Mehr

Einführung. Fehlerarten

Einführung. Fehlerarten Einführung Jede Messung ist mit einer Messunsicherheit behaftet. Die Unsicherheit bezieht sich dabei nicht auf eine falsche Durchführung der Messung, sondern auf die Tatsache, dass jede von einem Menschen

Mehr

Erwartungswert, Umgebungswahrscheinlichkeiten und die Normalverteilung

Erwartungswert, Umgebungswahrscheinlichkeiten und die Normalverteilung R. Brinkmann http://brinkmann-du.de Seite 5.05.0 Erwartungswert, Umgebungswahrscheinlichkeiten und die Normalverteilung Erwartungswert binomialverteilter Zufallsgrößen Wird ein Bernoulli- Versuch, bei

Mehr

Protokoll Grundpraktikum I: M9 - Reversionspendel

Protokoll Grundpraktikum I: M9 - Reversionspendel Protokoll Grundpraktikum I: M9 - Reversionspendel Sebastian Pfitzner. Juni 013 Durchführung: Sebastian Pfitzner (553983), Anna Andrle (55077) Arbeitsplatz: Platz Betreuer: Peter Schäfer Versuchsdatum:

Mehr

Teil VIII. Zentraler Grenzwertsatz und Vertrauensintervalle. Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle. Lernziele. Typische Situation

Teil VIII. Zentraler Grenzwertsatz und Vertrauensintervalle. Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle. Lernziele. Typische Situation Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle Patric Müller ETHZ Teil VIII Zentraler Grenzwertsatz und Vertrauensintervalle WBL 17/19, 29.05.2017 Wahrscheinlichkeit

Mehr

Fehlerfortpflanzung. M. Schlup. 27. Mai 2011

Fehlerfortpflanzung. M. Schlup. 27. Mai 2011 Fehlerfortpflanzung M. Schlup 7. Mai 0 Wird eine nicht direkt messbare physikalische Grösse durch das Messen anderer Grössen ermittelt, so stellt sich die Frage, wie die Unsicherheitsschranke dieser nicht-messbaren

Mehr

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Mainz, 4. Mai 2017 Dr. Michael O. Distler

Mehr

Numerische Methoden und Algorithmen in der Physik

Numerische Methoden und Algorithmen in der Physik Numerische Methoden und Algorithmen in der Physik Hartmut Stadie, Christian Autermann 15.01.2009 Numerische Methoden und Algorithmen in der Physik Christian Autermann 1/ 47 Methode der kleinsten Quadrate

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Statistik K urs SS 2004

Statistik K urs SS 2004 Statistik K urs SS 2004 3.Tag Grundlegende statistische Maße Mittelwert (mean) Durchschnitt aller Werte Varianz (variance) s 2 Durchschnittliche quadrierte Abweichung aller Werte vom Mittelwert >> Die

Mehr

Einführung Fehlerrechnung

Einführung Fehlerrechnung Einführung Fehlerrechnung Bei jeder Messung, ob Einzelmessung oder Messreihe, muss eine Aussage über die Güte ( Wie groß ist der Fehler? ) des Messergebnisses gemacht werden. Mögliche Fehlerarten 1. Systematische

Mehr

Auswertung und Lösung

Auswertung und Lösung Dieses Quiz soll Ihnen helfen, Kapitel 4.6 und 4.7 besser zu verstehen. Auswertung und Lösung Abgaben: 59 / 265 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: 0 Durchschnitt: 4.78 1 Frage

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Prof. Joachim Rädler & Dr. Bert Nickel Paul Koza (Vorlesungsbetreuung) Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html Heute: Fehlerrechnung

Mehr

Grundlagen der Statistik und Fehlerrechnung

Grundlagen der Statistik und Fehlerrechnung Physikalisches Grundpraktikum Teil 1 WS 2010/2011 Grundlagen der Statistik und Fehlerrechnung Stefan Diehl 28.02.2011 12.30 13.30 HS I 01.03.2011 12.30 13.30 CHEG18 Inhalt Grundbegriffe der Statistik Wahrscheinlichkeitsverteilungen

Mehr

Experimentalphysik 1 Wintersemester 2009/10. B.v.Issendorff Fakultät für Mathematik und Physik Albert-Ludwigs-Universität Freiburg

Experimentalphysik 1 Wintersemester 2009/10. B.v.Issendorff Fakultät für Mathematik und Physik Albert-Ludwigs-Universität Freiburg Experimentalphysik Wintersemester 2009/0 B.v.Issendorff Fakultät für Mathematik und Physik Albert-Ludwigs-Universität Freiburg Übersicht über die Vorlesung Einführung, Maßsysteme Kinematik: Bewegungen

Mehr

Einführung in die Fehlerrechnung

Einführung in die Fehlerrechnung 1 Einführung in die Fehlerrechnung liederung 1. Motivation. Fehlerarten 1. robe Fehler. Systematische Fehler 3. Zufällige Fehler 3. Rechnerische Erfassung der Messabweichungen 1. Fehlerabschätzung einmaliges

Mehr

Statistik für Ingenieure Vorlesung 3

Statistik für Ingenieure Vorlesung 3 Statistik für Ingenieure Vorlesung 3 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 14. November 2017 3. Zufallsgrößen 3.1 Zufallsgrößen und ihre Verteilung Häufig sind

Mehr

Statistik I für Betriebswirte Vorlesung 4

Statistik I für Betriebswirte Vorlesung 4 Statistik I für Betriebswirte Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 25. April 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

IF0. Modul Fehlerrechnung. Fehleranalyse

IF0. Modul Fehlerrechnung. Fehleranalyse IF0 Modul Fehlerrechnung Fehleranalyse In diesem einführenden Versuch wird mittels eines Pendels die sinnvolle Durchführung und Auswertung eines wissenschaftlichen Experimentes veranschaulicht. Des Weiteren

Mehr

Integrierter Kurs P1a im WiSe 2009/10. Skript Experimentalphysik. Prof. Dr. Oliver Benson

Integrierter Kurs P1a im WiSe 2009/10. Skript Experimentalphysik. Prof. Dr. Oliver Benson Integrierter Kurs P1a im WiSe 2009/10 Skript Experimentalphysik Prof. Dr. Oliver Benson I. Einleitung 1. Das physikalische Weltbild Die Physik beschäftigt sich mit den Grundbausteinen der wahrnehmbaren

Mehr

70 Wichtige kontinuierliche Verteilungen

70 Wichtige kontinuierliche Verteilungen 70 Wichtige kontinuierliche Verteilungen 70. Motivation Zufallsvariablen sind nicht immer diskret, sie können oft auch jede beliebige reelle Zahl in einem Intervall [c, d] einnehmen. Beispiele für solche

Mehr

Fehler- und Ausgleichsrechnung

Fehler- und Ausgleichsrechnung Fehler- und Ausgleichsrechnung Daniel Gerth Daniel Gerth (JKU) Fehler- und Ausgleichsrechnung 1 / 12 Überblick Fehler- und Ausgleichsrechnung Dieses Kapitel erklärt: Wie man Ausgleichsrechnung betreibt

Mehr

Vermessungskunde für Bauingenieure und Geodäten

Vermessungskunde für Bauingenieure und Geodäten Vermessungskunde für Bauingenieure und Geodäten Übung 5: statistische Auswertung gleichgenauer Messungen Milo Hirsch Hendrik Hellmers Florian Schill Institut für Geodäsie Fachbereich 3 Inhaltsverzeichnis

Mehr

Physik Fehlerrechnung

Physik Fehlerrechnung Physik Fehlerrechnung 1. Abschätzung des wahren Messwertes 1.1. Systematische/zufällige Fehler 1.. Mittelwert, Varianz 3 1.3. Gaußverteilung 5 1.4. Vertrauensbereich 6 1.5. Vergleich von Messwerten 8 1.6.

Mehr

Chi-Quadrat-Verteilung

Chi-Quadrat-Verteilung Chi-Quadrat-Verteilung Wikipedia http://de.wikipedia.org/wiki/chi-quadrat-verteilung 1 von 7 6/18/2009 6:13 PM Chi-Quadrat-Verteilung aus Wikipedia, der freien Enzyklopädie Die Chi-Quadrat-Verteilung ist

Mehr

1 Einführung Ziel der Vorlesung:

1 Einführung Ziel der Vorlesung: Interdisziplinäre Kenntnisse werden immer wichtiger um die komplexen Zusammenhänge in den verschiedenen wissenschaftlichen Teilbereichen zu erfassen. Die Physik, als eine der Grundlagenwissenschaften reicht

Mehr

Statistik, Datenanalyse und Simulation

Statistik, Datenanalyse und Simulation Dr. Michael O. Distler distler@kph.uni-mainz.de Mainz, 24. Mai 2011 3. Schätzung von Parametern Problemstellung: Aus fehlerbehafteten Messungen möglichst genaue Ergebnisse erarbeiten zusammen mit Aussagen

Mehr

Fehlerrechnung. Einführung. Jede Messung ist fehlerbehaftet! Ursachen:

Fehlerrechnung. Einführung. Jede Messung ist fehlerbehaftet! Ursachen: Fehlerrechnung Einführung Jede Messung ist fehlerbehaftet! Ursachen: Ablesefehler (Parallaxe, Reaktionszeit) begrenzte Genauigkeit der Messgeräte falsche Kalibrierung/Eichung der Messgeräte Digitalisierungs-Fehler

Mehr

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Mainz, 8. Juni 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Dr. Michael O. Distler

Mehr

Klassische Experimentalphysik I Übungsblatt 3 WS 2014/2015

Klassische Experimentalphysik I Übungsblatt 3 WS 2014/2015 Klassische Experimentalphysik I Übungsblatt 3 WS 2014/2015 Abgabe bis Besprechung Fr, 07. November, 13:15 Uhr im Erdgeschoss von Geb. 30.23 (Physikhochhaus) Mi, 12. November 1. Ein einfacher Versuch (3

Mehr

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp Datenanalyse PHY31 Herbstsemester 016 Olaf Steinkamp 36-J- olafs@physik.uzh.ch 044 63 55763 Vorlesungsprogramm Einführung, Messunsicherheiten, Darstellung von Messdaten Grundbegriffe der Wahrscheinlichkeitsrechnung

Mehr

Messunsicherheit und Fehlerrechnung

Messunsicherheit und Fehlerrechnung Messunsicherheit und Fehlerrechnung p. 1/25 Messunsicherheit und Fehlerrechnung Kurzeinführung Peter Riegler p.riegler@fh-wolfenbuettel.de Fachhochschule Braunschweig/Wolfenbüttel Messunsicherheit und

Mehr

Computer in der Wissenschaft

Computer in der Wissenschaft Dr. Michael O. Distler distler@uni-mainz.de Mainz, 8. Januar 2014 Methode der kleinsten Quadrate Geschichte: Von Legendre, Gauß und Laplace zu Beginn des 19. Jahrhunderts eingeführt. Die Methode der kleinsten

Mehr

Numerische Methoden und Algorithmen in der Physik

Numerische Methoden und Algorithmen in der Physik Numerische Methoden und Algorithmen in der Physik Hartmut Stadie, Christian Autermann 08.01.2009 Numerische Methoden und Algorithmen in der Physik Hartmut Stadie 1/ 32 Einführung Wahrscheinlichkeit Verteilungen

Mehr

6. Kontinuierliche Zufallsgrößen. Beispiel 1: Die Exponentialverteilungen Sei λ > 0. Setzen

6. Kontinuierliche Zufallsgrößen. Beispiel 1: Die Exponentialverteilungen Sei λ > 0. Setzen 6. Kontinuierliche Zufallsgrößen Definition: Eine Z. G. ξ ist absolut stetig mit (Wahrscheinlichkeits-) Dichte f : R R, wenn gilt: P ( a ξ < b ) = b a f(x) dx (a < b) allgem. Eigenschaften einer Dichte

Mehr

Übungen mit dem Applet Zentraler Grenzwertsatz

Übungen mit dem Applet Zentraler Grenzwertsatz Zentraler Grenzwertsatz 1 Übungen mit dem Applet Zentraler Grenzwertsatz 1 Statistischer Hintergrund... 1.1 Zentraler Grenzwertsatz... 1. Beispiel Würfeln... 1.3 Wahrscheinlichkeit und relative Häufigkeit...3

Mehr

Auswertung von Messungen Teil II

Auswertung von Messungen Teil II Auswertung von Messungen Teil II 1. Grundgesamtheit und Stichprobe. Modellverteilungen.1 Normalverteilung. Binominalverteilung.3 Poissonverteilung.4 Näherungen von Binominal- und Poissonverteilung 3. Zentraler

Mehr

Inhaltsverzeichnis. 1 Einführung Versuchsbeschreibung und Motivation Physikalische Grundlagen... 3

Inhaltsverzeichnis. 1 Einführung Versuchsbeschreibung und Motivation Physikalische Grundlagen... 3 Inhaltsverzeichnis 1 Einführung 3 1.1 Versuchsbeschreibung und Motivation............................... 3 1.2 Physikalische Grundlagen...................................... 3 2 Messwerte und Auswertung

Mehr

Wintersemester 2012/13

Wintersemester 2012/13 Wintersemester 202/3 Einführung in die Physik mit Experimenten für NaturwissenschaftlerInnen und UmweltwissenschaftlerInnen B.v.Issendorff Fakultät für Mathematik und Physik Albert-Ludwigs-Universität

Mehr

Klassifikation von Daten Einleitung

Klassifikation von Daten Einleitung Klassifikation von Daten Einleitung Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl Informatik 8) Klassifikation von Daten Einleitung

Mehr

Übungen mit dem Applet Wahrscheinlichkeitsnetz

Übungen mit dem Applet Wahrscheinlichkeitsnetz Wahrscheinlichkeitsnetz 1 Übungen mit dem Applet Wahrscheinlichkeitsnetz 1 Statistischer Hintergrund... 1.1 Verteilungen... 1. Darstellung von Daten im Wahrscheinlichkeitsnetz...4 1.3 Kurzbeschreibung

Mehr

1. Einführung in die induktive Statistik

1. Einführung in die induktive Statistik Wichtige Begriffe 1. Einführung in die induktive Statistik Grundgesamtheit: Statistische Masse, die zu untersuchen ist, bzw. über die Aussagen getroffen werden soll Stichprobe: Teil einer statistischen

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Wintersemester 2014/15

Wintersemester 2014/15 Wintersemester 0/ Einführung in die Physik mit Experimenten für Natur- und UmweltwissenschaftlerInnen B.v.Issendorff Fakultät für Mathematik und Physik Albert-Ludwigs-Universität Freiburg Organisatorisches

Mehr

Vorlesung Gesamtbanksteuerung Mathematische Grundlagen II Dr. Klaus Lukas Carsten Neundorf. Vorlesung 04 Mathematische Grundlagen II,

Vorlesung Gesamtbanksteuerung Mathematische Grundlagen II Dr. Klaus Lukas Carsten Neundorf. Vorlesung 04 Mathematische Grundlagen II, Vorlesung Gesamtbanksteuerung Mathematische Grundlagen II Dr. Klaus Lukas Carsten Neundorf 1 Was sollen Sie heute lernen? 2 Agenda Wiederholung stetige Renditen deskriptive Statistik Verteilungsparameter

Mehr

F-Praktickm. Einführung in die Statistik. Universität Hamburg, Institut für Experimentalphysik. Erika Garutti

F-Praktickm. Einführung in die Statistik. Universität Hamburg, Institut für Experimentalphysik. Erika Garutti F-Praktickm Einführung in die Statistik Erika Garutti (Erika.Garutti@desy.de) Universität Hamburg, Institut für Experimentalphysik disclaimer please do not distribute these slides electronically without

Mehr

4.1 Stichproben, Verteilungen und Schätzwerte. N(t) = N 0 e λt, (4.1)

4.1 Stichproben, Verteilungen und Schätzwerte. N(t) = N 0 e λt, (4.1) Kapitel 4 Stichproben und Schätzungen 4.1 Stichproben, Verteilungen und Schätzwerte Eine physikalische Messung ist eine endliche Stichprobe aus einer Grundgesamtheit, die endlich oder unendlich sein kann.

Mehr

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

Physikprotokoll: Fehlerrechnung. Martin Henning / Torben Zech / Abdurrahman Namdar / Juni 2006

Physikprotokoll: Fehlerrechnung. Martin Henning / Torben Zech / Abdurrahman Namdar / Juni 2006 Physikprotokoll: Fehlerrechnung Martin Henning / 736150 Torben Zech / 7388450 Abdurrahman Namdar / 739068 1. Juni 2006 1 Inhaltsverzeichnis 1 Einleitung 3 2 Vorbereitungen 3 3 Messungen und Auswertungen

Mehr

Anleitung zur Fehlerrechnung und Fehlerabschätzung

Anleitung zur Fehlerrechnung und Fehlerabschätzung Anleitung zur Fehlerrechnung und Fehlerabschätzung Dr. Angela Fösel & Dipl. Phys. Tom Michler Revision: 1.08.018 Es ist grundsätzlich nicht möglich, fehlerfrei zu messen. Die Abweichungen der Messwerte

Mehr

Statistik - Fehlerrechnung - Auswertung von Messungen

Statistik - Fehlerrechnung - Auswertung von Messungen Statistik - Fehlerrechnung - Auswertung von Messungen TEIL II Vorbereitungskurs F-Praktikum B (Physik), RWTH Aachen Thomas Hebbeker Eindimensionaler Fall: Parameterbestimmung - Beispiele [Übung] Mehrdimensionaler

Mehr

Grundlegende Eigenschaften von Punktschätzern

Grundlegende Eigenschaften von Punktschätzern Grundlegende Eigenschaften von Punktschätzern Worum geht es in diesem Modul? Schätzer als Zufallsvariablen Vorbereitung einer Simulation Verteilung von P-Dach Empirische Lage- und Streuungsparameter zur

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften t-test Varianzanalyse (ANOVA) Übersicht Vergleich von Mittelwerten 2 Gruppen: t-test einfaktorielle ANOVA > 2 Gruppen: einfaktorielle ANOVA Seeigel und

Mehr

Die Varianz (Streuung) Definition

Die Varianz (Streuung) Definition Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ

Mehr

M0 BIO - Reaktionszeit

M0 BIO - Reaktionszeit M0 BIO - Reaktionszeit 1 Ziel des Versuches In diesem Versuch haben Sie die Möglichkeit, sich mit Messunsicherheiten vertraut zu machen. Die Analyse von Messunsicherheiten erfolgt hierbei an zwei Beispielen.

Mehr

SozialwissenschaftlerInnen II

SozialwissenschaftlerInnen II Statistik für SozialwissenschaftlerInnen II Henning Best best@wiso.uni-koeln.de Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Wahrscheinlichkeitsfunktionen

Mehr

Was ist Physik? Modell der Natur universell es war schon immer so

Was ist Physik? Modell der Natur universell es war schon immer so Was ist Physik? Modell der Natur universell es war schon immer so Kultur Aus was sind wir gemacht? Ursprung und Aufbau der Materie Von wo/was kommen wir? Ursprung und Aufbau von Raum und Zeit Wirtschaft

Mehr

Statistik I für Betriebswirte Vorlesung 3

Statistik I für Betriebswirte Vorlesung 3 Statistik I für Betriebswirte Vorlesung 3 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 15. April 2019 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 3 Version: 1. April

Mehr

Anpassungsrechnungen mit kleinsten Quadraten und Maximum Likelihood

Anpassungsrechnungen mit kleinsten Quadraten und Maximum Likelihood Anpassungsrechnungen mit kleinsten Quadraten und Maximum Likelihood KARLSRUHER INSTITUT FÜR TECHNOLOGIE (KIT) 0 KIT 06.01.2012 Universität des Fabian Landes Hoffmann Baden-Württemberg und nationales Forschungszentrum

Mehr

Biostatistik, WS 2017/18 Der Standardfehler

Biostatistik, WS 2017/18 Der Standardfehler 1/70 Biostatistik, WS 2017/18 Matthias Birkner http://www.staff.uni-mainz.de/birkner/biostatistik1718/ 24.11.2017 3/70 Ein Versuch Hirse Bild: Panicum miliaceum 4/70 Ein Versuch Ein Versuch Versuchsaufbau:

Mehr

Wie liest man Konfidenzintervalle? Teil I. Premiu m

Wie liest man Konfidenzintervalle? Teil I. Premiu m Wie liest man Konfidenzintervalle? Teil I Premiu m Was sind Konfidenzintervalle? Ein Konfidenzintervall (KI) ist ein Maß für die Unsicherheit bezüglich einer Schätzung eines Effekts. Es ist ein Intervall

Mehr

Zufallsvariablen. Erwartungswert. Median. Perzentilen

Zufallsvariablen. Erwartungswert. Median. Perzentilen Zufallsvariablen. Erwartungswert. Median. Perzentilen Jörn Loviscach Versionsstand: 22. Januar 2010, 10:46 1 Zufallsvariablen Wenn ein Zufallsexperiment eine Zahl als Ergebnis liefert, nennt man diese

Mehr

Notgepäck Genauigkeit

Notgepäck Genauigkeit Notgepäck Genauigkeit Beat Hulliger Dienst Statistische Methoden, Bundesamt für Statistik 20.4.2006 1 Was ist Genauigkeit genau? Um zu beschreiben, was Genauigkeit in der Statistik ist, müssen wir untersuchen,

Mehr

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal Beispiel 37 Wir werfen eine Münze so lange, bis zum ersten Mal Kopf erscheint. Dies geschehe in jedem Wurf unabhängig mit Wahrscheinlichkeit p. Wir definieren dazu die Zufallsvariable X := Anzahl der Würfe.

Mehr

Umgang mit und Analyse von Messwerten

Umgang mit und Analyse von Messwerten In diesem ersten Praktikumsversuch erarbeiten Sie sich das Handwerkszeug, was zum erfolgreichen absolvieren des Physikpraktikums nötig ist. Im Fokus dieses Versuchs stehen die Themen: Signifikante Stellen

Mehr

Anpassungsrechnungen mit kleinsten Quadraten und Maximum Likelihood

Anpassungsrechnungen mit kleinsten Quadraten und Maximum Likelihood Anpassungsrechnungen mit kleinsten Quadraten und Maximum Likelihood Hauptseminar - Methoden der experimentellen Teilchenphysik WS 2011/2012 Fabian Hoffmann 2. Dezember 2011 Inhaltsverzeichnis 1 Einleitung

Mehr

1 Grundlagen der Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsräume. Ein erster mathematischer Blick auf Zufallsexperimente...

1 Grundlagen der Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsräume. Ein erster mathematischer Blick auf Zufallsexperimente... Inhaltsverzeichnis 1 Grundlagen der Wahrscheinlichkeitsrechnung 1 1.1 Wahrscheinlichkeitsräume Ein erster mathematischer Blick auf Zufallsexperimente.......... 1 1.1.1 Wahrscheinlichkeit, Ergebnisraum,

Mehr

Woche 2: Zufallsvariablen

Woche 2: Zufallsvariablen Woche 2: Zufallsvariablen Patric Müller ETHZ WBL 19/21, 29.04.2019 Wahrscheinlichkeit und Statistik Patric Müller WBL 2019 Teil III Zufallsvariablen Wahrscheinlichkeit

Mehr

Statistik für NichtStatistiker

Statistik für NichtStatistiker Statistik für NichtStatistiker Zufall und Wahrscheinlichkeit von Prof. Dr. Karl Bosch 5., verbesserte Auflage R. Oldenbourg Verlag München Wien Inhaltsverzeichnis 1. ZufalLsexperimente und zufällige Ereignisse

Mehr

Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007

Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007 Mathematik IV für Maschinenbau und Informatik Stochastik Universität Rostock, Institut für Mathematik Sommersemester 007 Prof. Dr. F. Liese Dipl.-Math. M. Helwich Serie Termin: 9. Juni 007 Aufgabe 3 Punkte

Mehr

Messunsicherheiten. Messung physikalischer Größen

Messunsicherheiten. Messung physikalischer Größen Messunsicherheiten Messung physikalischer Größen Angabe physikalischer Größen Physikalische Größen werden quantitativ als Vielfache bestimmter Einheiten erfasst. Eine gemessene Länge wird beispielsweise

Mehr

Einfaktorielle Varianzanalyse

Einfaktorielle Varianzanalyse Kapitel 16 Einfaktorielle Varianzanalyse Im Zweistichprobenproblem vergleichen wir zwei Verfahren miteinander. Nun wollen wir mehr als zwei Verfahren betrachten, wobei wir unverbunden vorgehen. Beispiel

Mehr

Das Histogramm ist glockenförmig. Es würde bei mehr als vier Fehlerquellen sich der Glockenform noch besser annähern.

Das Histogramm ist glockenförmig. Es würde bei mehr als vier Fehlerquellen sich der Glockenform noch besser annähern. 10. Stetige Zufallsvariable, Normalverteilung 55 Die in den folgenden Beispielen dargestellten Verteilungen haben ungefähr Glockenform. Sie können durch die sogenannte Normalverteilung oder Gaussverteilung

Mehr

Grundlagen der Wahrscheinlichkeitstheorie

Grundlagen der Wahrscheinlichkeitstheorie Priv.-Doz. Dr. H. Steinacker Wintersemester 2013/2014 Grundlagen der Wahrscheinlichkeitstheorie betrachte Wiederholungen eines Experimentes, gleicher Vorbereitung (z.b. Würfeln, Dart werfen, Doppelspaltexperiment,...)

Mehr

Fit for Abi & Study Stochastik

Fit for Abi & Study Stochastik Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen

Mehr

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung Programm Wiederholung Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung Binomialverteilung Hypergeometrische Verteilung Wiederholung verschiedene Mittelwerte für verschiedene Skalenniveaus

Mehr

Biostatistik, Sommer 2017

Biostatistik, Sommer 2017 1/51 Biostatistik, Sommer 2017 Wahrscheinlichkeitstheorie: Verteilungen, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 8. Vorlesung: 09.06.2017 2/51 Inhalt 1 Verteilungen Normalverteilung Normalapproximation

Mehr