4. Induktives Definieren - Themenübersicht

Größe: px
Ab Seite anzeigen:

Download "4. Induktives Definieren - Themenübersicht"

Transkript

1 Induktives Definieren 4. Induktives Definieren - Themenübersicht Induktives Definieren Natürliche Zahlen Operationen auf natürlichen Zahlen Induktive Algorithmen Induktiv definierte Mengen Binärbäume Boolesche Terme Syntaktische Substitution Prof. Dr. Bernhard Steffen Mathematik für Informatiker / 140

2 Induktives Definieren 4.1 Natürliche Zahlen Natürliche Zahlen Definition 4.1 (Peano-Axiome) (4.1) P1 0 ist eine natürliche Zahl: 0 N. P2 Jede natürliche Zahl n besitzt eine eindeutig bestimmte natürliche Zahl s(n) als Nachfolger: n N. m N. m = s(n) P3 0 ist nicht Nachfolger einer natürlichen Zahl: n N. 0 = s(n) P4 Verschiedene natürliche Zahlen haben verschiedene Nachfolger: m, n N. n m s(n) s(m) P5 Induktionsaxiom: Ist M N mit 0 M und der Eigenschaft, dass aus n M auch s(n) M folgt, so muss M = N gelten. ( ) ( ) Prof. Dr. Bernhard Steffen Mathematik für Informatiker / 140

3 Induktives Definieren 4.1 Natürliche Zahlen Existenz und Eindeutigkeit des Vorgängers Lemma 4.1 Jede von 0 verschiedene natürliche Zahl n ist Nachfolger einer eindeutig bestimmten anderen natürlichen Zahl. Diese wird auch als Vorgänger von n bezeichnet. Beweis Sei n N von 0 verschieden. Zunächst zeigen wir, dass n Nachfolger einer natürlichen Zahl m N ist bzw. in der Menge M liegt, die definiert ist durch: M = df {s(m) m N}. Sei weiter M df M {0}. Wegen (P2) impliziert m M auch s(m) M. Damit liegen die Voraussetzungen des Induktionsaktioms (P5) vor und es folgt M = N. Wegen (P3) gilt außerdem M = N\{0}. Somit gilt n M. Die Eindeutigkeit des Vorgängers folgt direkt aus Axiom (P4). Prof. Dr. Bernhard Steffen Mathematik für Informatiker / 140

4 Induktives Definieren 4.1 Natürliche Zahlen Operationen auf natürlichen Zahlen Definition 4.2 (Addition natürlicher Zahlen) (4.2) Die Addition zweier Zahlen aus N ist induktiv definiert durch 0 + m = df m s(n) + m = df s(n + m) Definition 4.3 (Multiplikation natürlicher Zahlen) (4.2) Die Multiplikation zweier Zahlen aus N ist induktiv definiert durch 0 m = df 0 s(n) m = df m + (n m) Prof. Dr. Bernhard Steffen Mathematik für Informatiker / 140

5 Induktives Definieren 4.1 Natürliche Zahlen Beispiele Addition von 2 und 1 s(s(0)) + s(0) (b) = s(s(0) + s(0)) (b) = s(s(0 + s(0))) (a) = s(s(s(0))) Multiplikation von 2 und 3 s(s(0)) s(s(s(0))) (d) = s(s(s(0))) + (s(0) s(s(s(0)))) (d) = s(s(s(0))) + (s(s(s(0))) + (0 s(s(s(0))))) (c) = s(s(s(0))) + (s(s(s(0))) + 0). (a) = s(s(s(s(s(s(0)))))) Prof. Dr. Bernhard Steffen Mathematik für Informatiker / 140

6 Induktives Definieren 4.1 Natürliche Zahlen Operationen auf natürlichen Zahlen Definition (Induktiv fortgesetzte Summen und Produkte) k i=1 k i=1 n i n i = df = df 0 falls k = 0 ( k 1 n i ) + n k sonst i=1 1 falls k = 0 ( k 1 n i ) n k sonst i=1 Prof. Dr. Bernhard Steffen Mathematik für Informatiker / 140

7 Induktives Definieren 4.1 Natürliche Zahlen Operationen auf natürlichen Zahlen Definition 4.1 (Fakultät und Potenzen) (Beispiel 4.1) n n! = df i = (... (1 2)...) n) i=1 n m n = df m = (... (m m)...) m). i=1 }{{} n mal Prof. Dr. Bernhard Steffen Mathematik für Informatiker / 140

8 Induktives Definieren 4.1 Natürliche Zahlen Operationen auf natürlichen Zahlen Lemma 4.2 Für alle n N gilt: n + 1 = s(n). Beweis (1/2) Wir definieren die zu der obigen Gleichheit gehörige Menge M durch: Offensichtlich gilt 0 M, denn: M = df {n N n + 1 = s(n)} = 0 + s(0) (Def. 4.2.a) = s(0). Prof. Dr. Bernhard Steffen Mathematik für Informatiker / 140

9 Induktives Definieren 4.1 Natürliche Zahlen Operationen auf natürlichen Zahlen Lemma 4.2 Für alle n N gilt: n + 1 = s(n). Beweis (2/2) Für n M folgt weiter auch s(n) M, denn: s(n) + 1 (Def. 4.2.b) = s(n + 1) (n M) = s(s(n)). Also folgt M = N mit dem Induktionsaxiom (P5), womit die Aussage bewiesen ist. Prof. Dr. Bernhard Steffen Mathematik für Informatiker / 140

10 Induktives Definieren 4.1 Natürliche Zahlen Türme von Hanoi Für n = 0 ist nichts zu tun. Für n > 0 Verschiebe n 1 Scheiben von Stapel A nach B, wobei C als Hilfsstapel dient. Verschiebe die n-te Scheibe von Stapel A nach C. Verschiebe n 1 Scheiben von Stapel B nach C, wobei A als Hilfsstapel dient. Prof. Dr. Bernhard Steffen Mathematik für Informatiker / 140

11 Induktives Definieren 4.1 Natürliche Zahlen Induktiv strukturierte Mengen Definition 4.4 (4.4) Sei 1 A eine Menge elementarer oder atomarer Bausteine und 2 O eine Menge von Operatoren (oder Konstruktoren) mit zugehörigen Stelligkeiten k 1, die es erlauben, kleinere Bausteine zu grösseren Einheiten zusammenzusetzen. Die durch A und O induktiv beschriebene Menge M ist die kleinste Menge, für die gilt: 1 A M und 2 Ist o ein Operator der Stelligkeit k und sind m 1,..., m k M, so ist auch o(m 1,..., m k ) M. Prof. Dr. Bernhard Steffen Mathematik für Informatiker / 140

12 Induktives Definieren 4.2 Induktiv strukturierte Mengen Induktiv strukturierte Mengen: Binäre Bäume Beispiel 4.5 (4.2) Binäre Bäume sind die kleinste Menge mit 1 Der leere Binärbaum ist ein atomarer Binärbaum und 2 Falls T 1 und T 2 Binärbaume sind, so ist auch [T 1, T 2 ] ein Binärbaum. T 1 ist linker und T 2 rechter Teilbaum von diesem. [[[, ], [[, ], ]], [, ]] Prof. Dr. Bernhard Steffen Mathematik für Informatiker / 140

13 Induktives Definieren 4.2 Induktiv strukturierte Mengen Induktiv strukturierte Mengen: Boolesche Terme Definition 4.6 (4.5) Sei V eine Menge von Booleschen Variablen, z.b. V = {X, Y, Z,...}. Die Menge BT aller Booleschen Terme über V ist die kleinste Menge mit: 1 T, F und Boolesche Variable aus V sind atomare Boolesche Terme. 2 Sind t 1 und t 2 Boolesche Terme, so sind auch t 1, die Negation von t 1, ( t 1 t 2 ), die Konjunktion von t 1 und t 2 und ( t 1 t 2 ), die Disjunktion von t 1 und t 2 Boolesche Terme. Prof. Dr. Bernhard Steffen Mathematik für Informatiker / 140

14 Induktives Definieren 4.2 Induktiv strukturierte Mengen Syntaktische Substitution Definition 4.7 (4.6) Die Substitution ist eine dreistellige Abbildung [ / ] : BT BT V BT. t 1 [t 2 /X ] intuitiv: Der Term, der entsteht, wenn in t 1 die Variable X an allen Stellen durch den Term t 2 ersetzt wird. Prof. Dr. Bernhard Steffen Mathematik für Informatiker / 140

15 Induktives Definieren 4.2 Induktiv strukturierte Mengen Syntaktische Substitution Definition 4.7 Die Substitution ist eine dreistellige Abbildung [ / ] : BT BT V BT. t 1 [t 2 /X ] formal: Induktiv über den Aufbau von t 1 T[t/X ] = df F[t/X ] = df T F { t falls Y = X Y [t/x] = df Y sonst ( t 1 )[t/x] = df (t 1 [t/x]) (t 1 t 2 )[t/x] = df (t 1 [t/x] t 2 [t/x]) (t 1 t 2 )[t/x] = df (t 1 [t/x] t 2 [t/x]) Prof. Dr. Bernhard Steffen Mathematik für Informatiker / 140

16 Induktives Definieren 4.2 Induktiv strukturierte Mengen Syntaktische Substitution Beispiel 4.8 (4.3) (Y X )[t/x ] = ((Y X )[t/x ]) = (Y [t/x ] X [t/x ]) = (Y X [t/x ]) = (Y t) Prof. Dr. Bernhard Steffen Mathematik für Informatiker / 140

17 5. Darstellung und deren Bedeutung - Übersicht Darstellung und deren Bedeutung Zeichreihen Semantikschemata Backus-Naur-Form Induktive Semantikschemata Prof. Dr. Bernhard Steffen Mathematik für Informatiker / 140

18 Repräsentation Repräsentanten der natürlichen Zahl vier : Dezimal: 4 Binär: 100 Unär: Römisch: IV Umgekehrt: Unterschiedliche Interpretation der Repräsentation IV : Römische Zahl Akronym (Individualverkehr, Intravenös,..) Prof. Dr. Bernhard Steffen Mathematik für Informatiker / 140

19 5.1 Zeichenreihen Zeichenreihen Definition 5.1 (4.7) Sei A eine endliche Menge von Zeichen (auch Alphabet genannt). Eine Zeichenreihe (auch Wort) w der Länge n N über A ist eine Funktion w : {1,..., n} A. Für n = 0 ist {1,..., n} leer. Man bezeichnet die Zeichenreihe als das leere Wort ɛ. Die Menge aller Zeichenreihen über A mit Länge n wird mit A n bezeichnet (A 0 = {ɛ}). Kleenesche Hülle A von A: A = df A n. n N Prof. Dr. Bernhard Steffen Mathematik für Informatiker / 140

20 5.1 Zeichenreihen Zeichenreihen Definition 5.2 (4.8) Seien w 1 und w 2 Zeichenreihen der Länge n und m über A. Dann ist die Konkatenation von w 1 und w 2 definiert durch: w 1 w 2 : {1,. {.., n + m} A w1 (i) falls 1 i n w 1 w 2 (i) = w 2 (i n) falls n + 1 i n + m Prof. Dr. Bernhard Steffen Mathematik für Informatiker / 140

21 5.2 Semantikschemata Semantikschemata Definition 5.3 (4.9) Ein Semantikschema ist ein Tripel (R, I, [[ ]]) mit R: Menge der Repräsentationen, I: Menge der Informationen, [[ ]] R I: Semantikrelation oder Interpretation. Statt [[ ]](r) schreibt man [[ r ]]. Prof. Dr. Bernhard Steffen Mathematik für Informatiker / 140

22 5.2 Semantikschemata Unärdarstellung natürlicher Zahlen Beispiel 5.4 (4.4) R u = df { } + = {,,,...}, I u = df N + = {1, 2,... }, [[ ]] u ist definiert durch [[... ]] }{{} u = df n. n Prof. Dr. Bernhard Steffen Mathematik für Informatiker / 140

23 5.2 Semantikschemata Dezimaldarstellung natürlicher Zahlen Beispiel 5.5 (4.5) R d = df {0,..., 9} +, I d = df N = df {0, 1, 2,...}, [[ ]] d ist definiert durch n [[ w ]] d = df 10 n i [[ w(i) ]] z i=1 Dabei bezeichnet [[ ]] z den Wert einer Dezimalziffer, also [[ 0 ]] z = df 0,..., [[ 9 ]] z = df 9. Prof. Dr. Bernhard Steffen Mathematik für Informatiker / 140

24 5.2 Semantikschemata Binärdarstellung natürlicher Zahlen Beispiel 5.6 (4.6) R b = df {0} {1 w w {0, 1} } I b = df N [[ ]] b ist definiert durch n [[ w ]] b = df 2 n i [[ w(i) ]] bz i=1 Dabei bezeichnet [[ ]] bz den Wert einer Binärziffer, also [[ 0 ]] bz = df 0 und [[ 1 ]] bz = df 1. Prof. Dr. Bernhard Steffen Mathematik für Informatiker / 140

25 5.2 Semantikschemata Binärdarstellung endl. Mengen natürlicher Zahlen Beispiel 5.7 (4.7) R bs = df {0, 1} +, I bs = df P(N) und [[ ]] bs ist definiert durch [[ w ]] bs = { w i i {1,..., w } w(i) = 1}. Prof. Dr. Bernhard Steffen Mathematik für Informatiker / 140

26 5.3 Backus-Naur-Form Backus-Naur-Form Definition (BNF) BNF besteht aus endlich vielen Regeln der Form <N> ::= w. Linke Regelseite: Nichtterminalsymbol Rechte Regelseite: Zeichenreihe (ggf. auch leer), die sowohl Nichtteminalsymbole als auch Terminalsymbole enthalten kann. Notation: Statt <N> ::= w 1... <N> ::= w n schreibt man kurz <N> ::= w 1... w n Prof. Dr. Bernhard Steffen Mathematik für Informatiker / 140

27 5.3 Backus-Naur-Form Beispiel zur Backus-Naur-Form Beispiel 5.8 (BNF für natürliche Zahlen) Die natürlichen Zahlen sind durch die folgende BNF definiert: <Nat> ::= 0 s(<nat>) Prof. Dr. Bernhard Steffen Mathematik für Informatiker / 140

28 5.3 Backus-Naur-Form BNF als Generator Definition (Ableitungsrelation) Seien T die Terminalzeichen, N die Nichtterminalzeichen und R die Regeln einer BNF, so ist die Ableitungsrelation (N T) (N T) wie folgt definiert: w w df w 1, w 2 (N T), A ::= w R. w = w 1 A w 2 w = w 1 w w 2 k : Ableitungsfolge in k Schritten (k N) = df k : Beliebige Ableitungsfolge k N Von Nichtterminal A erzeugte Sprache: L(A) = df {w T A w}. Prof. Dr. Bernhard Steffen Mathematik für Informatiker / 140

29 5.3 Backus-Naur-Form BNF als Generator Beispiel (Ableitungsfolge) <Nat> s(<nat>) s(s(<nat>)) s(s(s(<nat>))) s(s(s(0))) Prof. Dr. Bernhard Steffen Mathematik für Informatiker / 140

30 5.3 Backus-Naur-Form Beispiele zur Backus-Naur-Form Beispiel 5.9 (BNF für Dezimalzahlen) (4.9) <DezimalZahl> ::= <DezimalZahl><Ziffer> <Ziffer> <Ziffer> ::= Beispiel 5.10 (BNF für Boolesche Terme) (4.10) <BT>::= T F <V> <BT> ( <BT> <BT> ) ( <BT> <BT> ) <V>::= X 0 X 1... Prof. Dr. Bernhard Steffen Mathematik für Informatiker / 140

31 5.4 Induktive Semantikschemata Dezimaldarstellung natürlicher Zahlen Beispiel 5.11 (4.11) R d = df {0,..., 9} +, I d = df N = df {0, 1, 2,...}: Natürliche Zahlen (als Informationen, nicht als ihre Notation im Dezimalsystem!) und [[ ]] d ist induktiv definiert durch [[ z ]] d = df [[ z ]] z [[ w z ]] d = df 10 [[ w ]] d + [[ z ]] d Prof. Dr. Bernhard Steffen Mathematik für Informatiker / 140

32 5.4 Induktive Semantikschemata Induktive Semantikschemata Definition 5.12 (Semantikfunktion (1/2)) (4.10) Die Semantikfunktion für Boolesche Terme ist eine Funktion [[ ]] : BT (B V {w, f }), die einem Booleschen Term unter Zuhilfenahme einer Belegung einen Wahrheitswert zuordnet. Sie ist wie folgt induktiv definiert: [[ T ]] B (β) = df w [[ F ]] B (β) = df f [[ X ]] B (β) = df β(x ) für alle X V [[ ( t 1 ) ]] B (β) = df ([[ t 1 ]] B (β)) [[ (t 1 t 2 ) ]] B (β) = df ([[ t 1 ]] B (β) [[ t 2 ]] B (β)) [[ (t 1 t 2 ) ]] B (β) = df ([[ t 1 ]] B (β) [[ t 2 ]] B (β)) Prof. Dr. Bernhard Steffen Mathematik für Informatiker / 140

33 5.4 Induktive Semantikschemata Induktive Semantikschemata Definition 5.12 (Semantikfunktion (2/2)) (4.10) Dabei sind,, semantische Operationen auf den Wahrheitswerten {w, f }, die durch folgende Wahrheitstafel beschrieben sind: b 1 b 2 b 1 b 1 b 2 b 1 b 2 f f w f f f w w w f w f f w f w w f w w Prof. Dr. Bernhard Steffen Mathematik für Informatiker / 140

MafI 1 Repetitorium Übungen

MafI 1 Repetitorium Übungen MafI 1 Repetitorium Übungen M. Sc. Dawid Kopetzki KW 18 (29.04.2015) M. Sc. Dawid Kopetzki MafI 1 Repetitorium Übungen 1 / 13 Intro Info zur ersten Abgabe Erinnerung: Am 06.05. zwischen 1416 Uhr ist Fachschaftsvollversammlung

Mehr

Abschnitt 4: Daten und Algorithmen

Abschnitt 4: Daten und Algorithmen Abschnitt 4: Daten und Algorithmen 4. Daten und Algorithmen 4.1 4.2 Syntaxdefinitionen 4.3 Eigenschaften von Algorithmen 4.4 Paradigmen der Algorithmenentwicklung Peer Kröger (LMU München) Einführung in

Mehr

Einführung Grundbegriffe

Einführung Grundbegriffe Einführung Grundbegriffe 1.1 Der Modellbegriff Broy: Informatik 1, Springer 1998 (2) Die Modellbildung der Informatik zielt auf die Darstellung der unter dem Gesichtspunkt einer gegebenen Aufgabenstellung

Mehr

Syntax von Programmiersprachen

Syntax von Programmiersprachen "Grammatik, die sogar Könige zu kontrollieren weiß... aus Molière, Les Femmes Savantes (1672), 2. Akt Syntax von Programmiersprachen Prof. Dr. Christian Böhm in Zusammenarbeit mit Gefei Zhang WS 07/08

Mehr

Dezimaldarstellung ganzer Zahlen (Division mit Rest) 1 Division mit Rest in der Hochschule

Dezimaldarstellung ganzer Zahlen (Division mit Rest) 1 Division mit Rest in der Hochschule Berufsfeldbezogenes Fachseminar - Zahlentheorie Lisa Laudan Prof. Dr. Jürg Kramer Wintersemester 2014/2015 Dezimaldarstellung ganzer Zahlen (Division mit Rest) 1 Division mit Rest in der Hochschule 1.1

Mehr

6. Induktives Beweisen - Themenübersicht

6. Induktives Beweisen - Themenübersicht 6. Induktives Beweisen - Themenübersicht Ordnungsrelationen Partielle Ordnungen Quasiordnungen Totale Ordnungen Striktordnungen Ordnungen und Teilstrukturen Noethersche Induktion Anwendung: Terminierungsbeweise

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 19. Oktober 2017 1/27 Zu der Vorlesung gibt es ein Skript, welches auf meiner Homepage

Mehr

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Formale Methoden 2 Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Teil 3: Kodierung 1 Motivation 2 Exkurs Grundlagen formaler Sprachen 3 Grundlagen 4 Beispielkodierungen FM2 (WS 2014/15,

Mehr

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 3

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 3 Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 3 Die Lösungshinweise dienen

Mehr

Kapitel 1. Aussagenlogik

Kapitel 1. Aussagenlogik Kapitel 1 Aussagenlogik Einführung Mathematische Logik (WS 2012/13) Kapitel 1: Aussagenlogik 1/17 Übersicht Teil I: Syntax und Semantik der Aussagenlogik (1.0) Junktoren und Wahrheitsfunktionen (1.1) Syntax

Mehr

Kapitel IV Formale Sprachen und Grammatiken

Kapitel IV Formale Sprachen und Grammatiken Kapitel IV Formale Sprachen und Grammatiken 1. Begriffe und Notationen Sei Σ ein (endliches) Alphabet. Dann Definition 42 1 ist Σ das Monoid über Σ, d.h. die Menge aller endlichen Wörter über Σ; 2 ist

Mehr

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 4

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 4 Prof. Dr. Bernhard Steffen Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt

Mehr

Kapitel III. Aufbau des Zahlensystems

Kapitel III. Aufbau des Zahlensystems Kapitel III. Aufbau des Zahlensystems 1 Addition und Multiplikation natürlicher Zahlen Wir wollen erklären, wie man natürliche Zahlen addiert und multipliziert und dabei nur den Begriff das Zählens verwenden.

Mehr

Beweistechnik: Beweise in Bezug auf Mengen. Formale Methoden 2 LVA , Beweistechnik: Widerspruchsbeweise. Satz R (S T ) = (R S) (R T )

Beweistechnik: Beweise in Bezug auf Mengen. Formale Methoden 2 LVA , Beweistechnik: Widerspruchsbeweise. Satz R (S T ) = (R S) (R T ) Formale Methoden 2 LVA 703019, 703020 (http://clinformatik.uibk.ac.at/teaching/ss06/fmii/) Georg Moser (VO) 1 Martin Korp (UE) 2 Friedrich Neurauter (UE) 3 Christian Vogt (UE) 4 1 georg.moser@uibk.ac.at

Mehr

Darstellung ganzer Zahlen als Bitvektoren

Darstellung ganzer Zahlen als Bitvektoren Darstellung ganzer Zahlen als Bitvektoren Jan Peleska Jan Bredereke Universität Bremen, Fachbereich Informatik Vers. 1.2 1 Darstellung natürlicher Zahlen z N 0 und Addition 1.1 Dualzahlen dargestellt durch

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 15. Oktober 2015 Zu der Vorlesung gibt es ein Skript, welches auf meiner Homepage veröffentlicht

Mehr

Definition 4 (Operationen auf Sprachen) Beispiel 5. Seien A, B Σ zwei (formale) Sprachen. Konkatenation: AB = {uv ; u A, v B} A + = n 1 An

Definition 4 (Operationen auf Sprachen) Beispiel 5. Seien A, B Σ zwei (formale) Sprachen. Konkatenation: AB = {uv ; u A, v B} A + = n 1 An Definition 4 (Operationen auf Sprachen) Seien A, B Σ zwei (formale) Sprachen. Konkatenation: AB = {uv ; u A, v B} A 0 = {ɛ}, A n+1 = AA n A = n 0 An A + = n 1 An Beispiel 5 {ab, b}{a, bb} = {aba, abbb,

Mehr

Logische Grundlagen der Mathematik, WS 2014/15

Logische Grundlagen der Mathematik, WS 2014/15 Logische Grundlagen der Mathematik, WS 2014/15 Thomas Timmermann 12. November 2014 Darstellung natürlicher Zahlen durch Mengen 1. Wie können wir natürliche Zahlen durch Mengen darstellen? Idee 0 = und

Mehr

Alphabet, formale Sprache

Alphabet, formale Sprache n Alphabet Alphabet, formale Sprache l nichtleere endliche Menge von Zeichen ( Buchstaben, Symbole) n Wort über einem Alphabet l endliche Folge von Buchstaben, die auch leer sein kann ( ε leere Wort) l

Mehr

Die Prädikatenlogik erster Stufe: Syntax und Semantik

Die Prädikatenlogik erster Stufe: Syntax und Semantik Die Prädikatenlogik erster Stufe: Syntax und Semantik 1 Mathematische Strukturen und deren Typen Definition 1.1 Eine Struktur A ist ein 4-Tupel A = (A; (R A i i I); (f A j j J); (c A k k K)) wobei I, J,

Mehr

Vollständige Induktion

Vollständige Induktion 30. September 008 Gliederung 1 3 4 Die Peano Axiome für die Menge der Natürlichen Zahlen N I. 0 ist eine natürliche Zahl, d.h. 0 N. II. Jede natürliche Zahl hat genau einen Nachfolger d.h. n : (n N! n

Mehr

Abschnitt 2: Daten und Algorithmen

Abschnitt 2: Daten und Algorithmen Abschnitt 2: Daten und Algorithmen 2. Daten und Algorithmen 2.1 Zeichenreihen 2.2 Datendarstellung durch Zeichenreihen 2.3 Syntaxdefinitionen 2.4 Algorithmen 2 Daten und Algorithmen Einf. Progr. (WS 08/09)

Mehr

Vollständige Induktion

Vollständige Induktion 30. September 008 Gliederung 1 3 4 Gliederung 1 3 4 Gliederung 1 3 4 Gliederung 1 3 4 Die Peano Axiome für die Menge der Natürlichen Zahlen N I. 0 ist eine natürliche Zahl, d.h. 0 N. II. Jede natürliche

Mehr

Vorlesung Diskrete Strukturen Rechnen mit 0 und 1

Vorlesung Diskrete Strukturen Rechnen mit 0 und 1 Vorlesung Diskrete Strukturen Rechnen mit 0 und 1 Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2009/10 1 Bernhard Ganter, TU Dresden Modul Einführung

Mehr

Syntax. 1 Jedes A AS AL ist eine (atomare) Formel. 2 Ist F eine Formel, so ist auch F eine Formel. 3 Sind F und G Formeln, so sind auch

Syntax. 1 Jedes A AS AL ist eine (atomare) Formel. 2 Ist F eine Formel, so ist auch F eine Formel. 3 Sind F und G Formeln, so sind auch Formale der Informatik 1 Kapitel 15 Folgerbarkeit, Äquivalenzen und Normalformen Frank Heitmann heitmann@informatik.uni-hamburg.de 8. Juni 2015 Syntax Definition (Syntax der Aussagenlogik) Mit AS AL sei

Mehr

Einführung in die Logik

Einführung in die Logik Einführung in die Logik Klaus Madlener und Roland Meyer 24. April 2013 Inhaltsverzeichnis 1 Aussagenlogik 1 1.1 Syntax................................. 1 1.2 Semantik............................... 3 1.3

Mehr

Einführung in die Theoretische Informatik. Inhalte der Lehrveranstaltung. Definition (Boolesche Algebra) Einführung in die Logik

Einführung in die Theoretische Informatik. Inhalte der Lehrveranstaltung. Definition (Boolesche Algebra) Einführung in die Logik Zusammenfassung Einführung in die Theoretische Informatik Woche 5 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Zusammenfassung der letzten LV Jede binäre Operation hat maximal ein

Mehr

Denition 1 (Die Peanoschen Axiome). Es gibt eine Menge N und eine sogenannte Nachfolgefunktion S mit folgenden Eigenschaften.

Denition 1 (Die Peanoschen Axiome). Es gibt eine Menge N und eine sogenannte Nachfolgefunktion S mit folgenden Eigenschaften. In dieser Ausarbeitung handelt es sich es um die Menge der natürlichen Zahlen und deren Eigenschaften. In der Analysis werden häug zunächst die reellen Zahlen als vollständig geordneter Körper betrachtet

Mehr

Grundlagen der theoretischen Informatik

Grundlagen der theoretischen Informatik Grundlagen der theoretischen Informatik Kurt Sieber Fakultät IV, Department ETI Universität Siegen SS 2013 Vorlesung vom 09.04.2013 Inhalt der Vorlesung Teil I: Automaten und formale Sprachen (Kurt Sieber)

Mehr

Grammatiken. Grammatiken sind regelbasierte Kalküle zur Konstruktion von Systemen und Sprachen Überprüfung von Systemen und Sprachen

Grammatiken. Grammatiken sind regelbasierte Kalküle zur Konstruktion von Systemen und Sprachen Überprüfung von Systemen und Sprachen Grammatiken Grammatiken sind regelbasierte Kalküle zur Konstruktion von Systemen und Sprachen Überprüfung von Systemen und Sprachen Grammatiken eignen sich besonders zur Modellierung beliebig tief geschachtelter,

Mehr

Kapitel 1.1. Aussagenlogik: Syntax. Mathematische Logik (WS 2011/12) Kapitel 1.1: Aussagenlogik: Syntax 1/ 1

Kapitel 1.1. Aussagenlogik: Syntax. Mathematische Logik (WS 2011/12) Kapitel 1.1: Aussagenlogik: Syntax 1/ 1 Kapitel 1.1 Aussagenlogik: Syntax Mathematische Logik (WS 2011/12) Kapitel 1.1: Aussagenlogik: Syntax 1/ 1 Übersicht 1.1.1 Die Sprache der Aussagenlogik 1.1.2 Explizite vs. implizite Definitionen 1.1.3

Mehr

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 6

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 6 Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 6 Die Lösungshinweise dienen

Mehr

Binary Decision Diagrams

Binary Decision Diagrams Hauptseminar Model Checking Binary Decision Diagrams Kristofer Treutwein 23.4.22 Grundlagen Normalformen Als kanonische Darstellungsform für boolesche Terme gibt es verschiedene Normalformen, u.a. die

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 1 Logik,, Doris Bohnet Universität Hamburg - Department Mathematik Mo 6.10.2008 Zeitplan Tagesablauf: 9:15-11:45 Vorlesung Audimax I 13:00-14:30 Übung Übungsräume

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück SS 2014 Einführung in die mathematische Logik Vorlesung 7 Sprachen erster Sufe Die in der letzten Vorlesung erwähnten Konstruktionsmöglichkeiten für Aussagen sind im Wesentlichen

Mehr

Diskrete Strukturen 5.9 Permutationsgruppen 168/558 c Ernst W. Mayr

Diskrete Strukturen 5.9 Permutationsgruppen 168/558 c Ernst W. Mayr Bemerkung: Der folgende Abschnitt Boolesche Algebren ist (im WS 2010/11) nicht Teil des Prüfungsstoffs, soweit nicht Teile daraus in der Übung behandelt werden! Diskrete Strukturen 5.9 Permutationsgruppen

Mehr

Logik I. Symbole, Terme, Formeln

Logik I. Symbole, Terme, Formeln Logik I Symbole, Terme, Formeln Wie jede geschriebene Sprache basiert die Prädikatenlogik erster Stufe auf einem Alphabet, welches aus den folgenden Symbolen besteht: (a) Variabeln wie zum Beispiel v 0,v

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 18: Logik Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/35 Überblick Formeln in Prädikatenlogik erster Stufe Theorien und

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück SS 2016 Einführung in die mathematische Logik Vorlesung 12 Wir haben bisher nur von Axiomensystemen im Sinne einer beliebigen Ausdrucksmenge Γ L S gesprochen, die im Allgemeinen

Mehr

Grundlagen der Rechnerarchitektur. Binäre Logik und Arithmetik

Grundlagen der Rechnerarchitektur. Binäre Logik und Arithmetik Grundlagen der Rechnerarchitektur Binäre Logik und Arithmetik Übersicht Logische Operationen Addition, Subtraktion und negative Zahlen Logische Bausteine Darstellung von Algorithmen Multiplikation Division

Mehr

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Saskia Klaus 07.10.016 1 Motivation In den ersten beiden Vorträgen des Vorkurses haben wir gesehen, wie man aus schon bekannten Wahrheiten

Mehr

GTI. Hannes Diener. 18. Juni. ENC B-0123,

GTI. Hannes Diener. 18. Juni. ENC B-0123, GTI Hannes Diener ENC B-0123, diener@math.uni-siegen.de 18. Juni 1 / 32 Als Literatur zu diesem Thema empfiehlt sich das Buch Theoretische Informatik kurzgefasst von Uwe Schöning (mittlerweile in der 5.

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Technische Informatik - Eine Einführung Boolesche Funktionen - Grundlagen

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 4: Wörter (und vollständige Induktion) Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Oktober 2008 1/29 Überblick Wörter Wörter Das leere Wort Mehr zu

Mehr

Theorie der Informatik. Theorie der Informatik. 6.1 Einführung. 6.2 Alphabete und formale Sprachen. 6.3 Grammatiken. 6.4 Chomsky-Hierarchie

Theorie der Informatik. Theorie der Informatik. 6.1 Einführung. 6.2 Alphabete und formale Sprachen. 6.3 Grammatiken. 6.4 Chomsky-Hierarchie Theorie der Informatik 17. März 2014 6. Formale Sprachen und Grammatiken Theorie der Informatik 6. Formale Sprachen und Grammatiken Malte Helmert Gabriele Röger Universität Basel 17. März 2014 6.1 Einführung

Mehr

II. Grundlagen der Programmierung

II. Grundlagen der Programmierung II. Grundlagen der Programmierung II.1. Zahlenssteme und elementare Logik 1.1. Zahlenssteme 1.1.1. Ganze Zahlen Ganze Zahlen werden im Dezimalsstem als Folge von Ziffern 0, 1,..., 9 dargestellt, z.b. 123

Mehr

Einführung in die Informatik. Programming Languages

Einführung in die Informatik. Programming Languages Einführung in die Informatik Programming Languages Beschreibung von Programmiersprachen Wolfram Burgard Motivation und Einleitung Wir haben in den vorangehenden Kapiteln meistens vollständige Java- Programme

Mehr

Logic in a Nutshell. Christian Liguda

Logic in a Nutshell. Christian Liguda Logic in a Nutshell Christian Liguda Quelle: Kastens, Uwe und Büning, Hans K., Modellierung: Grundlagen und formale Methoden, 2009, Carl Hanser Verlag Übersicht Logik - Allgemein Aussagenlogik Modellierung

Mehr

Formale Sprachen, reguläre und kontextfreie Grammatiken

Formale Sprachen, reguläre und kontextfreie Grammatiken Formale Sprachen, reguläre und kontextfreie Grammatiken Alphabet A: endliche Menge von Zeichen Wort über A: endliche Folge von Zeichen aus A A : volle Sprache über A: Menge der A-Worte formale Sprache

Mehr

Grammatiken. Eine Grammatik G mit Alphabet Σ besteht aus: Variablen V. Startsymbol S V. Kurzschreibweise G = (V, Σ, P, S)

Grammatiken. Eine Grammatik G mit Alphabet Σ besteht aus: Variablen V. Startsymbol S V. Kurzschreibweise G = (V, Σ, P, S) Grammatiken Eine Grammatik G mit Alphabet Σ besteht aus: Variablen V Startsymbol S V Produktionen P ( (V Σ) \ Σ ) (V Σ) Kurzschreibweise G = (V, Σ, P, S) Schreibweise für Produktion (α, β) P: α β 67 /

Mehr

Analysis für Informatiker

Analysis für Informatiker Analysis für Informatiker Wintersemester 2017/2018 Carsten.Schneider@risc.jku.at 1 Bemerkung: Dies ist kein Skript, welches den gesamten Inhalt der Vorlesung abdeckt. Es soll den Studierenden aber während

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza)

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza) WS 2013/14 Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2013ws/ds/uebung/ 30. Oktober 2013 ZÜ DS ZÜ

Mehr

Mathematik für Informatiker I

Mathematik für Informatiker I Mathematik für Informatiker I Mitschrift zur Vorlesung vom 19.10.2004 In diesem Kurs geht es um Mathematik und um Informatik. Es gibt sehr verschiedene Definitionen, aber für mich ist Mathematik die Wissenschaft

Mehr

Was ist Logik? Was ist Logik? Aussagenlogik. Wahrheitstabellen. Geschichte der Logik eng verknüpft mit Philosophie

Was ist Logik? Was ist Logik? Aussagenlogik. Wahrheitstabellen. Geschichte der Logik eng verknüpft mit Philosophie Was ist Logik? Geschichte der Logik eng verknüpft mit Philosophie Begriff Logik wird im Alltag vielseitig verwendet Logik untersucht, wie man aus Aussagen andere Aussagen ableiten kann Beschränkung auf

Mehr

1 Modulare Arithmetik

1 Modulare Arithmetik $Id: modul.tex,v 1.10 2012/04/12 12:24:19 hk Exp $ 1 Modulare Arithmetik 1.2 Euklidischer Algorithmus Am Ende der letzten Sitzung hatten wir den größten gemeinsamen Teiler zweier ganzer Zahlen a und b

Mehr

Mathematische Grundlagen der Computerlinguistik

Mathematische Grundlagen der Computerlinguistik kartesische Produkte und und Funktionen (Teil I) Centrum für Informations- und Sprachverarbeitung (CIS) 2. Juni 2014 Table of Contents kartesische Produkte und 1 kartesische Produkte und 2 Darstellung

Mehr

Vorlesung Diskrete Strukturen Die natürlichen Zahlen

Vorlesung Diskrete Strukturen Die natürlichen Zahlen Vorlesung Diskrete Strukturen Die natürlichen Zahlen Bernhard Ganter WS 2009/10 Alles ist Zahl? Wenn in der modernen Mathematik alles auf Mengen aufgebaut ist, woher kommen dann die Zahlen? Sind Zahlen

Mehr

1 Formale Sprachen, reguläre und kontextfreie Grammatiken

1 Formale Sprachen, reguläre und kontextfreie Grammatiken Praktische Informatik 1, WS 2001/02, reguläre Ausdrücke und kontextfreie Grammatiken 1 1 Formale Sprachen, reguläre und kontextfreie Grammatiken Ein Alphabet A ist eine endliche Menge von Zeichen. Die

Mehr

Mehrdeutige Grammatiken

Mehrdeutige Grammatiken Mehrdeutige Grammatiken Wir haben gesehen, dass es auch mehr als eine Linksableitung, d.h. mehr als einen Syntaxbaum geben kann, um das selbe Terminalwort zu erzeugen. Eine Grammatik, die für mindestens

Mehr

Mathematische Grundlagen I Logik und Algebra

Mathematische Grundlagen I Logik und Algebra Logik und Algebra Dr. Tim Haga 21. Oktober 2016 1 Aussagenlogik Erste Begriffe Logische Operatoren Disjunktive und Konjunktive Normalformen Logisches Schließen Dr. Tim Haga 1 / 21 Präliminarien Letzte

Mehr

2.1 Allgemeines. Was ist eine Sprache? Beispiele:

2.1 Allgemeines. Was ist eine Sprache? Beispiele: Was ist eine Sprache? Beispiele: (a) Deutsch, Japanisch, Latein, Esperanto,...: Natürliche Sprachen (b) Pascal, C, Java, Aussagenlogik,...: Formale Sprachen Wie beschreibt man eine Sprache? (i) Syntax

Mehr

Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt (Probeklausur) 9

Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt (Probeklausur) 9 Prof. Dr. Bernhard Steffen Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt

Mehr

7. Syntax: Grammatiken, EBNF

7. Syntax: Grammatiken, EBNF 7. Syntax: Grammatiken, EBNF Teil 1 Sehr schönes Beispiel für Notwendigkeit der Theoretischen Informatik für Belange der Praktischen Informatik Vertiefung in: Einführung in die Theoretische Informatik

Mehr

1 Körper. Wir definieren nun, was wir unter einem Körper verstehen, und sehen dann, dass es noch andere, ganz kleine Körper gibt:

1 Körper. Wir definieren nun, was wir unter einem Körper verstehen, und sehen dann, dass es noch andere, ganz kleine Körper gibt: 1 Körper Sie kennen bereits 2 Beispiele von Zahlkörpern: (Q, +, ) (R, +, ) die rationalen Zahlen mit ihrer Addition und Multiplikation die reellen Zahlen mit ihrer Addition und Multiplikation Vielleicht

Mehr

Kapitel 5: Syntaxdiagramme und Grammatikregeln

Kapitel 5: Syntaxdiagramme und Grammatikregeln 5. Syntaxdiagramme und Grammatikregeln 5-1 Objektorientierte Programmierung (Winter 2010/2011) Kapitel 5: Syntaxdiagramme und Grammatikregeln Syntaxdiagramme Grammatikregeln (kontextfrei) Beispiele: Lexikalische

Mehr

Formale Sprachen und endliche Automaten

Formale Sprachen und endliche Automaten Formale Sprachen und endliche Automaten Formale Sprachen Definition: 1 (Alphabet) Ein Alphabet Σ ist eine endliche, nichtleere Menge von Zeichen oder Symbolen. Ein Wort über dem Alphabet Σ ist eine endliche

Mehr

3 Vollständige Induktion

3 Vollständige Induktion 3.1 Natürliche Zahlen In den vorherigen Kapiteln haben wir die Menge der natürlichen Zahlen schon mehrfach als Beispiel benutzt. Das Konzept der natürlichen Zahlen erscheint uns einfach, da wir es schon

Mehr

Tutorium: Diskrete Mathematik

Tutorium: Diskrete Mathematik Tutorium: Diskrete Mathematik Vorbereitung der Bonusklausur am 24.11.2016 (Teil 2) 23. November 2016 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler 23. November 2016

Mehr

Prädikatenlogiken. Mathematische Logik. Vorlesung 6. Alexander Bors. 30. März & 6. April A. Bors Logik

Prädikatenlogiken. Mathematische Logik. Vorlesung 6. Alexander Bors. 30. März & 6. April A. Bors Logik Mathematische Logik Vorlesung 6 Alexander Bors 30. März & 6. April 2017 1 Überblick 1 Formale Prädikatenlogiken erster Stufe (Quelle: Ziegler, pp. 3 24) 2 Erinnerung Letztes Mal haben wir begonnen, ein

Mehr

Elemente der Mathematik - Sommer 2017

Elemente der Mathematik - Sommer 2017 Elemente der Mathematik - Sommer 2017 Prof. Dr. Peter Koepke, Thomas Poguntke Lösung 1 Aufgabe 54 (4+2 Punkte). In der Vorlesung wurde die Multiplikation auf den ganzen Zahlen definiert durch (a, b) (a,

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 3: Alphabete, Abbildungen, Aussagenlogik Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2010/2011 1/32 Überblick Alphabete

Mehr

Zusammenfassung. Beispiel. 1 Wir betrachten die folgende Signatur F = {,, +, 0, 1} sodass. 3 Wir betrachten die Identitäten E. 4 Dann gilt E 1 + x = 1

Zusammenfassung. Beispiel. 1 Wir betrachten die folgende Signatur F = {,, +, 0, 1} sodass. 3 Wir betrachten die Identitäten E. 4 Dann gilt E 1 + x = 1 Zusammenfassung Zusammenfassung der letzten LVA Einführung in die Theoretische Informatik Christina Kohl Alexander Maringele eorg Moser Michael Schaper Institut für Informatik @ UIBK Wintersemester 2016

Mehr

Tilman Bauer. 4. September 2007

Tilman Bauer. 4. September 2007 Universität Münster 4. September 2007 und Sätze nlogik von Organisatorisches Meine Koordinaten: Sprechstunden: Di 13:30-14:30 Do 9:00-10:00 tbauer@uni-muenster.de Zimmer 504, Einsteinstr. 62 (Hochhaus)

Mehr

Der Hilbert-Kalkül für die Aussagenlogik (Notizen zur Vorlesung Logik im Wintersemester 2003/04 an der Universität Stuttgart)

Der Hilbert-Kalkül für die Aussagenlogik (Notizen zur Vorlesung Logik im Wintersemester 2003/04 an der Universität Stuttgart) Der Hilbert-Kalkül für die Aussagenlogik (Notizen zur Vorlesung Logik im Wintersemester 2003/04 an der Universität Stuttgart) Javier Esparza und Barbara König 4. Dezember 2003 Für eine gegebene aussagenlogische

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück SS 2014 Einführung in die mathematische Logik Vorlesung 3 Tautologien In der letzten Vorlesung haben wir erklärt, wie man ausgehend von einer Wahrheitsbelegung λ der Aussagevariablen

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 5. Aussagenlogik Normalformen Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Normalformen Definition: Literal Atom (aussagenlogische

Mehr

Vollständigkeit. 1 Konstruktion der reellen Zahlen

Vollständigkeit. 1 Konstruktion der reellen Zahlen Vortrag im Rahmen des Proseminars zur Analysis, 17.03.2006 Albert Zeyer Ziel des Vortrags ist es, die Vollständigkeit auf Basis der Konstruktion von R über die CAUCHY-Folgen zu beweisen und äquivalente

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kapitel 3: Beweisverfahren

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kapitel 3: Beweisverfahren FH Wedel Prof. Dr. Sebastian Iwanowski DM3 Folie 1 Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kapitel 3: Beweisverfahren Meinel 3, 6, 7 Lang 4.1 (nur bis S. 43), 2.2

Mehr

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt (Probeklausur) 9

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt (Probeklausur) 9 Prof. Dr. Bernhard Steffen Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt

Mehr

1.1 Motivation. Theorie der Informatik. Theorie der Informatik. 1.1 Motivation. 1.2 Syntax. 1.3 Semantik. 1.4 Formeleigenschaften. 1.

1.1 Motivation. Theorie der Informatik. Theorie der Informatik. 1.1 Motivation. 1.2 Syntax. 1.3 Semantik. 1.4 Formeleigenschaften. 1. Theorie der Informatik 19. Februar 2014 1. Aussagenlogik I Theorie der Informatik 1. Aussagenlogik I Malte Helmert Gabriele Röger Universität Basel 19. Februar 2014 1.1 Motivation 1.2 Syntax 1.3 Semantik

Mehr

Informatik A. Prof. Dr. Norbert Fuhr auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser

Informatik A. Prof. Dr. Norbert Fuhr auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser Informatik A Prof. Dr. Norbert Fuhr fuhr@uni-duisburg.de auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser 1 Teil I Logik 2 Geschichte R. Descartes (17. Jhdt): klassische

Mehr

Grundbegriffe für dreiwertige Logik

Grundbegriffe für dreiwertige Logik Grundbegriffe für dreiwertige Logik Hans Kleine Büning Universität Paderborn 1.11.2011 1 Syntax und Semantik Die klassische Aussagenlogik mit den Wahrheitswerten falsch und wahr bezeichnen wir im weiteren

Mehr

TU7 Aussagenlogik II und Prädikatenlogik

TU7 Aussagenlogik II und Prädikatenlogik TU7 Aussagenlogik II und Prädikatenlogik Daniela Andrade daniela.andrade@tum.de 5.12.2016 1 / 32 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds

Mehr

Sprachen/Grammatiken eine Wiederholung

Sprachen/Grammatiken eine Wiederholung Sprachen/Grammatiken eine Wiederholung Was sind reguläre Sprachen? Eigenschaften regulärer Sprachen Sprachen Begriffe Symbol: unzerlegbare Grundzeichen Alphabet: endliche Menge von Symbolen Zeichenreihe:

Mehr

Resolutionskalkül. wird t als eine Menge K t von Klauseln geschrieben, welche die einzelnen Maxterme repräsentieren:

Resolutionskalkül. wird t als eine Menge K t von Klauseln geschrieben, welche die einzelnen Maxterme repräsentieren: Resolutionskalkül Ein Kalkül ist eine Kollektion von syntaktischen Umformungsregeln, die unter gegebenen Voraussetzungen aus bereits vorhandenen Formeln neue Formeln erzeugen. Der Resolutionskalkül besteht

Mehr

Allgemeine Algebren. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Allgemeine Algebren. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden Allgemeine Algebren Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Operationen Eine Operation auf einer Menge A ist eine Abbildung f : A n A. A n ist dabei

Mehr

Kapitel 1 Die natürlichen und die ganze Zahlen

Kapitel 1 Die natürlichen und die ganze Zahlen Kapitel 1 Die natürlichen und die ganze Zahlen Inhalt 1.1 1.1 Vollständige Induktion z.b. z.b. 1+ 1+ 2 + 3 +...... + n = n(n+1)/2 1.2 1.2 Die Die Peano-Axiome Ein Ein Axiomensystem für für die die natürlichen

Mehr

Da diese Zahlenmenge nicht unter Subtraktion abgeschlossen ist, erweitert man sie zur Menge der ganzen Zahlen

Da diese Zahlenmenge nicht unter Subtraktion abgeschlossen ist, erweitert man sie zur Menge der ganzen Zahlen Kapitel 2 Die reellen Zahlen Die reellen Zahlen werden zunächst und vorübergehend als Dezimalzahlen eingeführt. Die wichtigsten Eigenschaften werden aus dieser Darstellung hergeleitet, mit denen dann die

Mehr

Handout zu Gödel: Die Unvollständigkeitssätze

Handout zu Gödel: Die Unvollständigkeitssätze Handout zu Gödel: Die Unvollständigkeitssätze Juanfernando Angel-Ramelli, Christine Schär, Katja Wolff December 4, 2014 Contents 1 Einleitung 1 1.1 Gödels Theoreme (1931)..............................

Mehr

Logik (Teschl/Teschl 1.1 und 1.3)

Logik (Teschl/Teschl 1.1 und 1.3) Logik (Teschl/Teschl 1.1 und 1.3) Eine Aussage ist ein Satz, von dem man eindeutig entscheiden kann, ob er wahr (true, = 1) oder falsch (false, = 0) ist. Beispiele a: 1 + 1 = 2 b: Darmstadt liegt in Bayern.

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informatik Woche 4 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Zusammenfassung Zusammenfassung der letzten LV Modus Ponens A B B A MP Axiome für

Mehr

Grundbegriffe der Informatik Tutorium 2

Grundbegriffe der Informatik Tutorium 2 Grundbegriffe der Informatik Tutorium 2 Tutorium Nr. 16 Philipp Oppermann 9. November 2014 KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Elemente der Algebra und Zahlentheorie Musterlösung, Serie 3, Wintersemester vom 15. Januar 2006

Elemente der Algebra und Zahlentheorie Musterlösung, Serie 3, Wintersemester vom 15. Januar 2006 Prof. E.-W. Zink Institut für Mathematik Humboldt-Universität zu Berlin Elemente der Algebra und Zahlentheorie Musterlösung, Serie 3, Wintersemester 2005-06 vom 15. Januar 2006 2te, korrigierte und erweiterte

Mehr

Boolesche Terme und Boolesche Funktionen

Boolesche Terme und Boolesche Funktionen Boolesche Terme und Boolesche Funktionen Aussagen Mit dem Begriff der Aussage und der logischen Verknüpfung von Aussagen beschäftigte man sich schon im alten Griechenland. Die Charakterisierung einer Aussage

Mehr

Das Pumping-Lemma Formulierung

Das Pumping-Lemma Formulierung Das Pumping-Lemma Formulierung Sei L reguläre Sprache. Dann gibt es ein n N mit: jedes Wort w L mit w n kann zerlegt werden in w = xyz, so dass gilt: 1. xy n 2. y 1 3. für alle k 0 ist xy k z L. 59 / 162

Mehr

Kapitel 1.0. Aussagenlogik: Einführung. Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1

Kapitel 1.0. Aussagenlogik: Einführung. Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1 Kapitel 1.0 Aussagenlogik: Einführung Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1 Ziele der Aussagenlogik In der Aussagenlogik analysiert man die Wahrheitswerte zusammengesetzter

Mehr

Kontextfreie Sprachen Kontextfreie Sprachen und Grammatiken. Satzformen sind die Wörter aus (N T ). Notation: Wir verwenden oft

Kontextfreie Sprachen Kontextfreie Sprachen und Grammatiken. Satzformen sind die Wörter aus (N T ). Notation: Wir verwenden oft und Grammatiken (Folie 119, eite 202 im kript) atzformen sind die Wörter aus (N T ). Notation: Wir verwenden oft a, b, c,... für Terminalsymbole A, B, C,... für Nonterminale u, v, w,... für Terminalwörter

Mehr

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9 Chr.Nelius: Zahlentheorie (SS 2007) 9 4. ggt und kgv (4.1) DEF: Eine ganze Zahl g heißt größter gemeinsamer Teiler (ggt) zweier ganzer Zahlen a und b, wenn gilt: GGT 0 ) g 0 GGT 1 ) g a und g b GGT 2 )

Mehr

Theoretische Informatik Mitschrift

Theoretische Informatik Mitschrift Theoretische Informatik Mitschrift 2. Grammatiken und die Chomsky-Hierarchie Beispiel: Syntaxdefinition in BNF :=

Mehr