Frege löst diese Probleme, indem er zusätzlich zum Bezug (Bedeutung) sprachlicher Ausdrücke den Sinn einführt.

Größe: px
Ab Seite anzeigen:

Download "Frege löst diese Probleme, indem er zusätzlich zum Bezug (Bedeutung) sprachlicher Ausdrücke den Sinn einführt."

Transkript

1 1 Vorlesung: Denken und Sprechen. Einführung in die Sprachphilosophie handout zum Verteilen am (bei der sechsten Vorlesung) Inhalt: die in der 5. Vorlesung verwendeten Transparente mit Ergänzungen Thema: Bertrand Russells Kennzeichnungstheorie, Kritik an Russell durch Peter Strawson Martine Nida-Rümelin (A) Zusammenhang zu den früheren Vorlesungen: Eine Reihe von Paradoxien ergab sich aus der Annahme, dass Namen nur den Bezug herstellen und sonst keinen Beitrag leisten zur Bedeutung des Satzes, in dem sie vorkommen. Frege löst diese Probleme, indem er zusätzlich zum Bezug (Bedeutung) sprachlicher Ausdrücke den Sinn einführt. Russell schlägt eine radikale Lösung vor: - Namen sind nur Abkürzungen von Kennzeichnungen. - Kennzeichnungen sind überhaupt keine bezugnehmenden Ausdrücke. Sie dienen nur dazu allgemeine Aussagen zu machen, in denen nicht von bestimmten Einzeldingen die Rede ist. - Zur Begründung dieser zweiten These entwickelt er eine Theorie der logischen Struktur von Sätzen, in denen Kennzeichnungen vorkommen. (B) Zu Russells Theorie der logischen Struktur von Sätzen, in denen Kennzeichnungen vorkommen Beispiel 1: (B1) Der gegenwärtige König von Frankreich ist kahlköpfig. Es scheint, dass (B1) ein Gegenbeispiel ist gegen den Satz vom ausgeschlossenen Dritten. Argument für diese These: Terminologische Vorbemerkung: Ein sprachlicher Ausdruck sei als Individuenausdruck bezeichnet, wenn er dazu dient, auf ein Individuum Bezug zu nehmen. (Manche Individuenausdrücke haben de facto keinen Bezug!) Normalerweise nimmt man an, dass Namen und Kennzeichnungen Individuenausdrücke sind in diesem Sinne. Russell leugnet beides. (1) Voraussetzung (welche Russell leugnen wird!): "Der König von Frankreich" ist ein Individuenausdruck. (2) Ist "A" ein Individuenausdruck, dann ist ein Satz der Struktur "A hat die Eigenschaft F" genau dann wahr, wenn A unter den Dingen ist, die F haben. (3) Ist "A" ein Individuenausdruck, dann ist ein Satz der Struktur "A hat die Eigenschaft F" genau dann falsch, wenn A unter den Dingen ist, die F nicht haben. (4) Der König von Frankreich ist nicht unter den Kahlköpfigen. 1

2 2 (5) Der König von Frankreich ist nicht unter denen, die nicht kahlköpfig sind. Also gilt: (6) Der Satz B1 ist nicht wahr. (wegen (1), (2) und (4)) (7) Der Satz B1 ist nicht falsch. (wegen (1), (3) und (5)) im Widerspruch zum Prinzip des ausgeschlossenen Dritten, nach dem jeder sinnvolle Satz entweder wahr oder falsch ist. Russells Lösung: Kennzeichnungen im Allgemeinen (und also auch "der König von Frankreich") sind keine Individuenterme. Russells Analyse von B1: (B1) Der gegenwärtige König von Frankreich ist kahlköpfig. (B1') Es gibt ein x, sodass gilt: x ist gegenwärtig König von Frankreich und x ist kahlköpfig und jeder der gegenwärtig König von Frankreich ist, ist mit x identisch. In formallogischer Notation: Verwendete Abkürzungen: Kö (x): x ist gegenwärtig König von Frankreich Ka (x): x ist kahlköpfig : und : oder p q : wenn p dann q (materiale Implikation, vgl. Logik-Einführung) x Φ[x] : es gibt ein x sodass Φ[x] zum Beispiel: x (F(x) G(x)) : es gibt ein x sodass gilt: x hat die Eigenschaft F und x hat die Eigenschaft G. x Φ[x] : für alle x Φ[x] Formulierung von B1' in dieser Notation: x (Kö(x) Ka(x) y(kö(y) y=x)) Das oben formulierte Problem löst sich auf durch Ablehnung der Prämisse 1. Beispiel B2: (B2) Der Morgenstern ist identisch mit dem Abendstern. (B2') Es gibt ein x, für das gilt: x ist am Morgenhimmel besser sichtbar als alle anderen Himmelskörper und x ist am Abendhimmel besser sichtbar als alle anderen Himmelskörper und jedes Objekt, das die erste Eigenschaft hat, ist mit x identisch und jedes Objekt, das die zweite Eigenschaft hat, ist mit x identisch. 2

3 3 In formallogischer Notation: M(x): x ist am Morgenhimmel besser sichtbar als alle anderen Himmelskörper A(x): x ist am Abendhimmel besser sichtbar als alle anderen Himmelskörper x (M(x) A(x) y (M(y) y=x) y (A(y) y=x)) Diese Analyse löst Freges Problem der informativen Identitätsaussagen. Der Unterschied zwischen (1) Der Morgenstern ist identisch mit dem Abendstern. und (2) Der Morgenstern ist identisch mit dem Morgenstern. wird erklärt. (2) in formallogischer Notation (man ersetzt "A" in obiger Formulierung durch "M" und lässt Überflüssiges weg): x (M(x) y (M(y) y=x)) Diese Behauptung hat weniger empirischen Gehalt als die Übersetzung von (1), - wie gewünscht. Aber: (2) ist in dieser Übersetzung nicht logisch trivial. Dies ist ein Problem dieser Analyse (vgl. die Kritik von Strawson an Russell). Diese Lösung ist verschieden von Frege's Lösung. Ein wichtiger Unterschied: nach Frege nehmen wir Bezug auf die Venus, wenn wir den Ausdruck "Abendstern" oder "Morgenstern" verwenden, nach Russell dagegen sind diese Ausdrücke nicht bezugnehmend (sie sind keine Individuenausdrücke im erklärten Sinn). Beispiel B3 (B3) Das runde Viereck ist rund. B3 ist nach Meinong wahr. (Das runde Viereck subsistiert und hat die Eigenschaft rund zu sein.) Russells Analyse: (B3') Es gibt ein x, für das gilt: x ist rund und viereckig und x ist rund und jedes Ding, das rund und viereckig ist, ist mit x identisch. V(x): x ist viereckig; R(x) : x ist rund x (R(x) V(x) V(x) y ((R(y) V(y)) y=x)) B3 ist nach dieser Analyse falsch (es gibt nichts, das zugleich rund und viereckig ist). Der Vorzug dieser Analyse gegenüber Meinongs Vorschlag: ontologische Sparsamkeit (d.h. es werden nicht mehr Objekte postuliert als nötig) 3

4 4 Beispiel B4 (B4) Das runde Viereck existiert nicht. Russells Analyse: (B4') Es gibt kein x für das gilt: x ist rund und viereckig und x ist das einzige Ding mit dieser Eigenschaft. x (R(x) V(x) y ((R(y) V(y)) y=x)) [Exkurs (motiviert durch in der Vorlesung von einer Studentin gestellte Frage) : Nach Russell ist Existenz kein Prädikat. Das heisst "A existiert" ist nicht zu formalisieren als "Ex(A)" ("A hat die Eigenschaft zu existieren"), sondern als " x x=a" ("Es gibt etwas, das mit A identisch ist.") Wer ein Existenzprädikat akzeptiert könnte den obigen Satz in einem ersten Schritt so analysieren: x (R(x) V(x) y ((R(y) V(y) x=y) Ex(x)) Für einen Philosophen, der akzeptiert, dass es Dinge gibt, die nicht existieren (d.h. dass x ( Ex(x)) wahr ist), wäre diese Analyse annehmbar. Russell dagegen müsste das letzte Konjunktionsglied ersetzen durch " y y=x" und erhielte damit eine Aussage, die auch ohne Beachtung der vorderen Konjunktionsglieder trivial falsch ist. (" x ( y y=x)" ist trivial falsch, weil jedes x mit sich selbst identisch ist.) Diese Übersetzung ist deshalb als Übersetzung von B4 nicht überzeugend.] Durch diese Analyse ist das Problem der negativen Existenzsätze gelöst. - Das Problem bestand darin, dass man auf die Sache, die nicht existiert, nicht Bezug nehmen kann, um dann von ihr zu behaupten, dass sie nicht existiert. - Nach Russell wird aber in negierten Existenzsätzen ohnehin auf nichts Bezug genommen. Man behauptet nicht von einer Sache, dass sie nicht existiert. Vielmehr behauptet man nur, dass es nichts gibt mit bestimmten Eigenschaften. Beispiel B5 (B5a) Anna glaubt, dass der Morgenstern von der Sonne beleuchtet ist. (B5b) Anna glaubt, dass der Abendstern von der Sonne beleuchtet ist. Russells Analyse von B5a: (B5a') Anna glaubt, dass es ein x gibt, für das gilt: x ist am Morgenhimmel besser sichtbar als alle anderen Himmelsobjekte und x ist von der Sonne beleuchtet und es gibt nur ein x, das am Morgenhimmel besser sichtbar ist als alle anderen Objekte. (B5b') Anna glaubt, dass es ein x gibt, für das gilt: x ist am Abendhimmel besser sichtbar als alle anderen Himmelsobjekte und x ist von der Sonne beleuchtet und es gibt nur ein x, das am Abendhimmel besser sichtbar ist als alle anderen Objekte. 4

5 5 Diese Analyse löst das Problem der intensionalen Kontexte. (1) Rätselhaft war, dass ein ursprünglich wahrer Satz durch Ersetzung eines Ausdrucks durch einen koreferentiellen Ausdruck falsch werden kann. Nach Russell kann man aber B5b nicht aus B5a gewinnen, indem man einen Ausdruck durch einen korefentiellen Ausdruck ersetzt. Der Grund: "der Abendstern" und "der Morgenstern" sind keine bezugnehmenden Ausdrücke (können damit auch nicht korefentiell sein) und kommen in einer angemessenen Analyse gar nicht mehr vor. (2) Positive Lösung: bei dieser Analyse ist klar, worin der Unterschied im Inhalt des Glaubens von Anna gemäss (B5a) und gemäss (B5b) besteht. (C) Eine kurze Darstellung der Kritik von Strawson an der Theorie von Russell Russells Grundfehler nach Strawson: Er sucht nach einem Wahrheitswert für den Satz B1, sollte aber nach den Wahrheitswerten von konkreten Behauptungen fragen, die man mittels eines gegebenen Satzes unter verschiedenen Umständen machen kann. Strawson verbindet diesen Einwand mit einer grundsätzlichen Kritik an Russells Methode. - Primäre Träger von Wahrheitswerten sind nicht Sätze, sondern konkrete Behauptungen, die jemand mithilfe eines Satzes macht. - Sätze haben nur in einem abgleiteten Sinne einen Wahrheitswert. - Ein Satz ist bei einer bestimmten Gelegenheit wahr genau dann, wenn die behauptende Äusserung des Satzes bei dieser Gelegenheit eine wahre Behauptung ist. - Nur die sogenannten ewigen Sätze haben unabhängig von der Äusserungssituation einen Wahrheitswert. - Ein Satz kann auch dann sinnvoll sein (eine Bedeutung haben), wenn er in einer gegebenen Situation nicht dazu verwendet werden kann, eine Behauptung zu machen. Beispiel dafür ist das obige Beispiel B1 ("Der gegenwärtige König von Frankreich ist kahlköpfig") - B1 ist ein sinnvoller Satz, weil klar ist unter welchen Bedingungen er dazu verwendet werden könnte, eine Behauptung zu machen (nämlich wenn Frankreich gegenwärtig eine Monarchie wäre). 2 Formulierungen des Prinzips des ausgeschlossenen Dritten (AD1) Jeder Behauptungssatz ist entweder wahr oder falsch. (AD2) Jede gelungene Behauptung ist entweder wahr oder falsch. Nach Strawson ist AD1 nicht akzeptabel: 5

6 6 Sätze haben keinen Wahrheitswert unabhängig von ihrem konkreten Gebrauch. Also muss man (AD1) umformulieren in: (AD1') Jede behauptende Äusserung eines sinnvollen Satzes ist entweder wahr oder falsch.. Aber dieses Prinzip AD1' ist falsch. Gegenbeispiel: Die behauptende Äusserung von B1 heute. Wer heute B1 behauptend äussert, dem ist es nach Strawson nicht gelungen eine Behauptung zu machen. Daher hat er nichts Wahrheitswertfähiges gesagt.. (AD2) ist annehmbar. Aber (B1) ist für dieses Prinzip kein Problem. Dass Frankreich heute eine Monarchie ist, ist nach Strawson eine Präsupposition jeder behauptenden Äusserung von B1, gehört aber nicht zum Inhalt einer solchen behauptenden Äusserung. Dabei hat Strawson den folgenden Präsuppositionsbegriff im Sinn: Die Behauptung B präsupponiert, dass q genau dann wenn gilt: B hat genau dann einen Wahrheitswert, wenn q. 6

Mills These: Eigennamen haben einzig die Funktion der Bezugnahme (kein weiterer Beitrag zur Bedeutung des gesamten Satzes).

Mills These: Eigennamen haben einzig die Funktion der Bezugnahme (kein weiterer Beitrag zur Bedeutung des gesamten Satzes). 1 Einführung in die Sprachphilosophie Martine Nida-Rümelin 2002 7. Vorlesung und 8. Vorlesung Montag, 22.4.2002, Dienstag, 23.4.2002 NAMEN UND KENNZEICHNUNGEN 1. Bertrand Russells Theorie der Eigennamen

Mehr

4. Das Problem der möglichen und unmöglichen Gegenstände

4. Das Problem der möglichen und unmöglichen Gegenstände 4. Das Problem der möglichen und unmöglichen Gegenstände Betrachten wir folgende Sätze: (1) Der goldene Berg ist golden. (2) Das runde Viereck ist rund. (3) Das Perpetuum mobile ist identisch mit dem Perpetuum

Mehr

1 Zur Erinnerung: Freges referenzielle Semantik. Christian Nimtz // 2 Das Argument vom Erkenntniswert

1 Zur Erinnerung: Freges referenzielle Semantik. Christian Nimtz  // 2 Das Argument vom Erkenntniswert Programm Christian Nimtz www.nimtz.net // lehre@nimtz.net Klassische Fragen der Sprachphilosophie Kapitel 4: Frege über Sinn und Bedeutung[ F] 1 Zur Erinnerung: Freges referenzielle Semantik 2 Das Argument

Mehr

Was es gibt und wie es ist

Was es gibt und wie es ist Was es gibt und wie es ist Dritte Sitzung Existenzfragen 0. Zur Erinnerung Benjamin Schnieder Philosophisches Seminar der Universität Hamburg 0 1 Was ist die Ontologie? Platons Bart Eine Standard-Antwort

Mehr

Was kann PL? Klassische Analyse Prädikat Qualitätsanzeiger (am Prädikat) Der Weihnachtsmann existiert nicht.

Was kann PL? Klassische Analyse Prädikat Qualitätsanzeiger (am Prädikat) Der Weihnachtsmann existiert nicht. 1 Philosophisches Problem: Gibt es den Weihnachtsmann? 2 Was kann PL? 1. Die Formulierung von Thesen präzisieren, z.b. (Ü 11): Zwischen zwei Zeitpunkten liegt immer noch ein dritter wird zu x [ y [F x

Mehr

Identität. Dr. Uwe Scheffler. Januar [Technische Universität Dresden]

Identität. Dr. Uwe Scheffler. Januar [Technische Universität Dresden] Identität Dr. Uwe Scheffler [Technische Universität Dresden] Januar 2012 Freges Problem 1. Der Morgenstern ist der Morgenstern. 2. Der Morgenstern ist der Abendstern. 1. ist tautologisch. 2. ist nur in

Mehr

Universität Heidelberg 12. April 2018 Institut für Informatik Klaus Ambos-Spies Nadine Losert. 2. Klausur zur Vorlesung Mathematische Logik

Universität Heidelberg 12. April 2018 Institut für Informatik Klaus Ambos-Spies Nadine Losert. 2. Klausur zur Vorlesung Mathematische Logik Universität Heidelberg 12. April 2018 Institut für Informatik Klaus Ambos-Spies Nadine Losert 2. Klausur zur Vorlesung Mathematische Logik Es können maximal 48 Punkte erworben werden. Die Klausur ist bestanden,

Mehr

Literatur. Prof. Dr. Christian Nimtz //

Literatur. Prof. Dr. Christian Nimtz  // Literatur Prof. Dr. Christian Nimtz www.nimtz.net // lehre@nimtz.net Philosophie des Geistes Kapitel 5: Einwände gegen die Identitätstheorie I: Smarts klassische Einwände J.J.C. Smart: Sensations and Brain

Mehr

Mathem.Grundlagen der Computerlinguistik I, WS 2004/05, H. Leiß 1

Mathem.Grundlagen der Computerlinguistik I, WS 2004/05, H. Leiß 1 Mathem.Grundlagen der Computerlinguistik I, WS 2004/05, H. Leiß 1 1 Vorbemerkungen Mathematische Begriffe und Argumentationsweisen sind in vielen Fällen nötig, wo man über abstrakte Objekte sprechen und

Mehr

Präsuppositionen. Vorlesung: Linguistische Pragmatik Prof. Dr. M. Krifka und PD Dr. U. Sauerland

Präsuppositionen. Vorlesung: Linguistische Pragmatik Prof. Dr. M. Krifka und PD Dr. U. Sauerland Präsuppositionen Vorlesung: Linguistische Pragmatik Prof. Dr. M. Krifka und PD Dr. U. Sauerland U. Sauerland (ZAS Berlin) Presup 1 Ling. Pragmatik 1 / 23 Einführung Ein Beispiel (1) Das Baby hat vor einer

Mehr

Vorlesung. Logik und Beweise

Vorlesung. Logik und Beweise Vorlesung Logik und Beweise Der folgende Abschnitt dient nur zur Wiederholung des Stoffes der ersten Vorlesung und sollte nur genannt bzw. teilweise schon vor der Vorlesung angeschrieben werden. Wiederholung

Mehr

Vorlesung. Beweise und Logisches Schließen

Vorlesung. Beweise und Logisches Schließen Vorlesung Beweise und Logisches Schließen Der folgende Abschnitt dient nur zur Wiederholung des Stoffes der ersten Vorlesung und sollten nur genannt bzw. Teilweise schon vor der Vorlesung angeschrieben

Mehr

Vorkurs Mathematik - SoSe 2017

Vorkurs Mathematik - SoSe 2017 3 Vorkurs Mathematik - SoSe 2017 Regula Krapf Lösungen Übungsblatt 2 Aufgabe 1. Zeigen Sie, dass die beiden Aussagen ( x : P(x)) ( x : Q(x)) und x : (P(x) Q(x)). nicht dasselbe ausdrücken. Wie sieht es

Mehr

Argument gegen DN1a: Das modale Argument von Kripke (vgl. 1. Einwand auf dem handout vom ; Nixon-Beispiel)

Argument gegen DN1a: Das modale Argument von Kripke (vgl. 1. Einwand auf dem handout vom ; Nixon-Beispiel) 1 Vorlesung am 6.1.04 Denken und Sprechen Einführung in die Sprachphilosophie Martine Nida-Rümellin Wintersemester 03/04 Themen der nächsten Vorlesung: Namen natürlicher Arten; vgl. Lycan (2000), 66-69;

Mehr

Anselm von Canterbury

Anselm von Canterbury Anselm von Canterbury *1034 in Aosta/Piemont Ab 1060 Novize, dann Mönch der Benediktinerabtei Bec ab 1078: Abt des Klosters von Bec 1093: Erzbischof von Canterbury *1109 in Canterbury 1076 Monologion (

Mehr

Logik und modelltheoretische Semantik. Was ist Bedeutung?

Logik und modelltheoretische Semantik. Was ist Bedeutung? Logik und modelltheoretische Semantik Was ist Bedeutung? Robert Zangenfeind Centrum für Informations- und Sprachverarbeitung, LMU München 30.5.2017 Zangenfeind: Was ist Bedeutung? 1 / 19 Zunächst: der

Mehr

Einführung in die moderne Logik

Einführung in die moderne Logik Sitzung 1 1 Einführung in die moderne Logik Einführungskurs Mainz Wintersemester 2011/12 Ralf Busse Sitzung 1 1.1 Beginn: Was heißt Einführung in die moderne Logik? Titel der Veranstaltung: Einführung

Mehr

2.2.4 Logische Äquivalenz

2.2.4 Logische Äquivalenz 2.2.4 Logische Äquivalenz (I) Penélope raucht nicht und sie trinkt nicht. (II) Es ist nicht der Fall, dass Penélope raucht oder trinkt. Offenbar behaupten beide Aussagen denselben Sachverhalt, sie unterscheiden

Mehr

Vorkurs Mathematik Logik und Beweismethoden 1

Vorkurs Mathematik Logik und Beweismethoden 1 Vorkurs Mathematik Logik und Beweismethoden 1 Saskia Klaus 05. Oktober 2016 Dieser Vortrag wird schon seit vielen Jahren im Vorkurs gehalten und basiert auf der Arbeit vieler verschiedener Menschen, deren

Mehr

Elemente der Mathematik - Winter 2016/2017

Elemente der Mathematik - Winter 2016/2017 4 Elemente der Mathematik - Winter 2016/2017 Prof. Dr. Peter Koepke, Regula Krapf Lösungen Übungsblatt 2 Aufgabe 6 (4 Punkte). Bestimmen Sie mit Hilfe von Wahrheitstafeln, welche der folgenden aussagenlogischen

Mehr

Einführung in die theoretische Philosophie

Einführung in die theoretische Philosophie Einführung in die theoretische Philosophie Prof. Dr. Martin Kusch 1 Erkenntnistheorie (1) Wissen (2) Skeptizismus Wissenschaftsphilosophie (3) Kritik und Dogma (4) Realismus

Mehr

Materialistische (physikalistische, naturalistische) Theorieansätze zum ontologischen Status von Bewusstsein

Materialistische (physikalistische, naturalistische) Theorieansätze zum ontologischen Status von Bewusstsein 2 Materialistische (physikalistische, naturalistische) Theorieansätze zum ontologischen Status von Bewusstsein 1. Der logische Behaviourismus Hauptvertreter: Gilbert Ryle, Carl Gustav Hempel Blütezeit:

Mehr

Ende und Schluß. Dr. Uwe Scheffler. Januar [Technische Universität Dresden]

Ende und Schluß. Dr. Uwe Scheffler. Januar [Technische Universität Dresden] Ende und Schluß Dr. Uwe Scheffler [Technische Universität Dresden] Januar 2011 Bestimmte Kennzeichnungen 1. Dasjenige, über welches hinaus nichts größeres gedacht werden kann, ist Gott. 2. Die erste Ursache

Mehr

Erläuterung zum Satz vom ausgeschlossenen Widerspruch

Erläuterung zum Satz vom ausgeschlossenen Widerspruch TU Dortmund, Wintersemester 2010/11 Institut für Philosophie und Politikwissenschaft C. Beisbart Aristoteles, Metaphysik Der Satz vom ausgeschlossenen Widerspruch (Buch 4/Γ; Woche 4: 8. 9.11.2010) I. Der

Mehr

Zweite und dritte Sitzung

Zweite und dritte Sitzung Zweite und dritte Sitzung Mengenlehre und Prinzipien logischer Analyse Menge Eine Menge M ist eine Zusammenfassung von wohlbestimmten und wohlunterschiedenen Objekten unserer Anschauung und unseres Denkens

Mehr

1.9 Beweis durch Kontraposition

1.9 Beweis durch Kontraposition 1.9 Beweis durch Kontraposition 1.9 Beweis durch Kontraposition Ein Beweis durch Kontraposition ist ein Spezialfall des indirekten Beweises. Wir betrachten zwei Aussagen A und B und wollen A B zeigen,

Mehr

Wenn alle Bären pelzig sind und Ned ein Bär ist, dann ist Ned pelzig.

Wenn alle Bären pelzig sind und Ned ein Bär ist, dann ist Ned pelzig. 2.2 Logische Gesetze 19 auch, was für Sätze logisch wahr sein sollen. Technisch gesehen besteht zwar zwischen einem Schluss und einem Satz selbst dann ein deutlicher Unterschied, wenn der Satz Wenn...dann

Mehr

Logische Grundlagen des Mathematikunterrichts

Logische Grundlagen des Mathematikunterrichts Logische Grundlagen des Mathematikunterrichts Referat zum Hauptseminar Mathematik und Unterricht 10.11.2010 Robert Blenk Holger Götzky Einleitende Fragen Was muss man beweisen? Woraus besteht ein Beweis?

Mehr

Raffiniertes Lügen. Dr. Helge Rückert Lehrstuhl Philosophie II Universität Mannheim.

Raffiniertes Lügen. Dr. Helge Rückert Lehrstuhl Philosophie II Universität Mannheim. Raffiniertes Lügen Dr. Helge Rückert Lehrstuhl Philosophie II Universität Mannheim rueckert@rumms.uni-mannheim.de http://www.phil.uni-mannheim.de/fakul/phil2/rueckert/index.html Universität Mannheim Oberseminar/Institutskolloquium

Mehr

Prof. Christian Nimtz // erlangen.de. Sprachphilosophie Grundfragen und Grundprobleme

Prof. Christian Nimtz  // erlangen.de. Sprachphilosophie Grundfragen und Grundprobleme Programm des Kapitel 1 Prof. Christian Nimtz www.nimtz.net // christian.nimtz@phil.uni erlangen.de Theoretische Philosophie der Gegenwart Teil II: Sprachphilosophie 1. Sprachphilosophie Grundfragen und

Mehr

3 Prädikatenlogik der 1. Stufe (PL1) Teil I

3 Prädikatenlogik der 1. Stufe (PL1) Teil I 3 Prädikatenlogik der 1. Stufe (PL1) Teil I 3.1 Die Grenzen von AL Schluss AL-Schema (1) Alle Logiker sind Pedanten. φ Max ist Linguist oder Logiker. ψ ψ 1 2 Max ist nicht Linguist. ψ1 Max ist Pedant.

Mehr

2.1.3 Interpretation von aussagenlogischen Formeln. 1) Intensionale Interpretation

2.1.3 Interpretation von aussagenlogischen Formeln. 1) Intensionale Interpretation 2.1.3 Interpretation von aussagenlogischen Formeln 1) Intensionale Interpretation Definition 11: Eine intensionale Interpretation einer aussagenlogischen Formel besteht aus der Zuordnung von Aussagen zu

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik FH Wedel Prof. Dr. Sebastian Iwanowski GTI22 Folie 1 Grundlagen der Theoretischen Informatik Sebastian Iwanowski FH Wedel Kap. 2: Logik, Teil 2.2: Prädikatenlogik FH Wedel Prof. Dr. Sebastian Iwanowski

Mehr

/26

/26 7 8 3 3 7 2 8 2 8. /2 Sudoku 2 2 3 3 7 7 8 8 8 Füllen Sie die leeren Felder so aus, dass in jeder Zeile, in jeder Spalte und in jedem 3x3 Kästchen alle Zahlen von bis stehen.. 2/2 Warum? 7 8 3 3 7 2 8

Mehr

Thomas von Aquin. Einer der wichtigsten Philosophen der Scholastik; verbindet Philosophie des Aristoteles mit christlicher Theologie

Thomas von Aquin. Einer der wichtigsten Philosophen der Scholastik; verbindet Philosophie des Aristoteles mit christlicher Theologie Thomas von Aquin *1224 (1225?) bei Aquino ab ca. 1230 Schüler des Benediktinerklosters auf dem Monte Cassino Studium in Neapel 1243: Eintritt in den Dominikanerorden ab 1244 Studien in Bologna, Paris und

Mehr

Russell. Provenzano Philipp, Ehre Maximilian und Lang Lukas. 5. November 2014

Russell. Provenzano Philipp, Ehre Maximilian und Lang Lukas. 5. November 2014 Russell Provenzano Philipp, Ehre Maximilian und Lang Lukas 5. November 2014 1 Syntax 1.1 Notationen Propositionen: p, q (1.1.1) Behauptungssymbol: (1.1.2) Gleichheit: = (1.1.3) Funktionen: φ, ψ (1.1.4)

Mehr

EDITH SCHMID UND EMIL KRAUCH FREGE II SINN UND BEDEUTUNG

EDITH SCHMID UND EMIL KRAUCH FREGE II SINN UND BEDEUTUNG EDITH SCHMID UND EMIL KRAUCH FREGE II SINN UND BEDEUTUNG AUFBAU Einführung Ausgangslage Problemstellung Sinn und Bedeutung Freges Argument vom Erkenntniswert Exkurs: Semiotik Sätze Zusammenfassung Reflexion

Mehr

Die Anfänge der Logik

Die Anfänge der Logik Die Anfänge der Logik Die Entwicklung des logischen Denkens vor Aristoteles Holger Arnold Universität Potsdam, Institut für Informatik arnold@cs.uni-potsdam.de Grundfragen Was ist Logik? Logik untersucht

Mehr

Epistemische Logik Epistemische Prädikate

Epistemische Logik Epistemische Prädikate Epistemische Logik Epistemische Prädikate Dr. Uwe Scheffler [Technische Universität Dresden] Januar 2011 Zukommen und Zuordnen Aussagen und Sätze: 1. Anna mag Ben. 2. Ben wird von Anna gemocht. 3. Anna

Mehr

Elemente der Algebra und Zahlentheorie Musterlösung, Serie 5, Wintersemester vom 21. Januar 2006

Elemente der Algebra und Zahlentheorie Musterlösung, Serie 5, Wintersemester vom 21. Januar 2006 Prof. E.-W. Zink Institut für Mathematik Humboldt-Universität zu Berlin Elemente der Algebra und Zahlentheorie Musterlösung, Serie 5, Wintersemester 2005-06 vom 21. Januar 2006 1. Sei (N, v) Peano-Menge

Mehr

Tutorium: Diskrete Mathematik

Tutorium: Diskrete Mathematik Tutorium: Diskrete Mathematik Vorbereitung der Bonusklausur am 01.12.2017 (Teil 1) 22. November 2017 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2017 Steven Köhler 22. November 2017

Mehr

Einführung in die Logik

Einführung in die Logik Einführung in die Logik Prof. Dr. Ansgar Beckermann Wintersemester 2001/2 Allgemeines vorab Wie es abläuft Vorlesung (Grundlage: Ansgar Beckermann. Einführung in die Logik. (Sammlung Göschen Bd. 2243)

Mehr

7 Intensionale Semantik

7 Intensionale Semantik 7 Intensionale Semantik 7.1 Intension und Extension Bisher wurde eine extensionale Semantik verfolgt. D.h. als Denotationen von Sätzen wurden Wahrheitswerte, als Denotationen von Individuenausdrücken Individuen

Mehr

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier Diskrete Strukturen und Logik WiSe 2007/08 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Diskrete Strukturen und Logik Gesamtübersicht Organisatorisches Einführung Logik & Mengenlehre

Mehr

Grundbegriffe der Mathematik - Blatt 1, bis zum

Grundbegriffe der Mathematik - Blatt 1, bis zum Grundbegriffe der Mathematik - Blatt 1 bis zum 9.3.01 1. I.) Formalisieren Sie die folgenden Aussagen a) bis c) wie im folgenden Beispiel: Sei K ein Teilmenge der reellen Zahlen. Aussage: K ist genau dann

Mehr

Diskrete Strukturen. Sebastian Thomas RWTH Aachen https://www2.math.rwth-aachen.de/ds17/ Mathematische Logik

Diskrete Strukturen. Sebastian Thomas RWTH Aachen https://www2.math.rwth-aachen.de/ds17/ Mathematische Logik Diskrete Strukturen Sebastian Thomas RWTH Aachen https://www2.math.rwth-aachen.de/ds17/ Mathematische Logik Aussagen Begriff Aussage: Ausdruck, welcher entweder wahr oder falsch ist e Die RWTH Aachen hat

Mehr

Slingshot I. Donald Davidson ( )

Slingshot I. Donald Davidson ( ) Donald Davidson (06.03.1917 30.08.2003) Bedeutungstheorien Worin besteht die Bedeutung sprachlicher Ausdrücke? Intention (Davidson): 1) Beschreibung einer sprachlichen Kompetenz 2) Explikation semantischer

Mehr

Thema: Logik: 2. Teil. Übersicht logische Operationen Name in der Logik. Negation (Verneinung) Nicht

Thema: Logik: 2. Teil. Übersicht logische Operationen Name in der Logik. Negation (Verneinung) Nicht Thema: Logik: 2. Teil Übersicht logische Operationen Name in der Logik Symbol Umgangssprachlicher Name Negation (Verneinung) Nicht Konjunktion ^ Und Disjunktion v Oder Subjunktion (Implikation) Bijunktion

Mehr

b. Lehre des vernünftigen Schlussfolgerns (1. System von Regeln von Aristoteles ( v. Chr.); sprachliche Argumente

b. Lehre des vernünftigen Schlussfolgerns (1. System von Regeln von Aristoteles ( v. Chr.); sprachliche Argumente II. Zur Logik 1. Bemerkungen zur Logik a. Logisches Gebäude der Mathematik: wenige Axiome (sich nicht widersprechende Aussagen) bilden die Grundlage; darauf aufbauend Lehrsätze unter Berücksichtigung der

Mehr

Elementare Beweismethoden

Elementare Beweismethoden Elementare Beweismethoden Christian Hensel 404015 Inhaltsverzeichnis Vortrag zum Thema Elementare Beweismethoden im Rahmen des Proseminars Mathematisches Problemlösen 1 Einführung und wichtige Begriffe

Mehr

Logik (Prof. Dr. Wagner FB AI)

Logik (Prof. Dr. Wagner FB AI) Logik (Prof. Dr. Wagner FB AI) LERNZIELE: Über die Kenntnis und das Verständnis der gegebenen Definitionen hinaus verfolgt dieser Teil der Lehrveranstaltung die folgenden Lernziele: Bei gegebenen sprachlichen

Mehr

Anwendungen der Logik, SS 2008, Martin Goldstern

Anwendungen der Logik, SS 2008, Martin Goldstern Anwendungen der Logik, SS 2008, Martin Goldstern Total geordnete Körper Ein total geordneter Körper ist ein Körper (K, +,, 0, 1, ) mit einer totalen (=linearen) Ordnung, die mit den Operationen verträglich

Mehr

Aussagenverknüpfungen in der Sprache (1)

Aussagenverknüpfungen in der Sprache (1) Aussagenverknüpfungen in der Sprache (1) Betrachten Sie die Aussage S := «Thomas und Sara gehen in den Park.» Wir definieren die beiden Aussagen P := «Thomas geht in den Park.» und Q := «Sara geht in den

Mehr

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom Prof. Dr. M. Kaßmann Fakultät für Mathematik Wintersemester 2011/2012 Universität Bielefeld Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom 27.10.2011 Aufgabe III.1 (4 Punkte) Sei Ω R

Mehr

Sudoku. Warum 6? Warum 6?

Sudoku. Warum 6? Warum 6? . / Sudoku Füllen Sie die leeren Felder so aus, dass in jeder Zeile, in jeder Spalte und in jedem x Kästchen alle Zahlen von bis stehen.. / Warum?. / Warum?. / Geschichte der Logik Syllogismen (I) Beginn

Mehr

Tilman Bauer. 4. September 2007

Tilman Bauer. 4. September 2007 Universität Münster 4. September 2007 und Sätze nlogik von Organisatorisches Meine Koordinaten: Sprechstunden: Di 13:30-14:30 Do 9:00-10:00 tbauer@uni-muenster.de Zimmer 504, Einsteinstr. 62 (Hochhaus)

Mehr

Lösungen 1 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren

Lösungen 1 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren Lösungen 1 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren µfsr, TU Dresden Version vom 11. Oktober 2016, Fehler, Ideen, Anmerkungen und Verbesserungsvorschläge bitte an benedikt.bartsch@myfsr.de

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Beweistechniken 1.1 Prädikatenlogik..................................... 1. Direkter Beweis.................................... 3 1.3 Indirekter Beweis....................................

Mehr

Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik

Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik Lineare Algebra Analytische Geometrie I* Übungsaufgaben, Blatt Musterlösungen Aufgabe. Es seien A, B, C Teilmengen einer Menge X. Zeige: i A B C =

Mehr

Mathematische Grundlagen I Logik und Algebra

Mathematische Grundlagen I Logik und Algebra Logik und Algebra Dr. Tim Haga 21. Oktober 2016 1 Aussagenlogik Erste Begriffe Logische Operatoren Disjunktive und Konjunktive Normalformen Logisches Schließen Dr. Tim Haga 1 / 21 Präliminarien Letzte

Mehr

2 Die Körper-Axiome. I. Axiome der Addition (A.1) Assoziativgesetz. Für alle x, y, z R gilt (x + y)+z = x +(y + z).

2 Die Körper-Axiome. I. Axiome der Addition (A.1) Assoziativgesetz. Für alle x, y, z R gilt (x + y)+z = x +(y + z). 17 Wir setzen in diesem Buch die reellen Zahlen als gegeben voraus. Um auf sicherem Boden zu stehen, werden wir in diesem und den folgenden Paragraphen einige Axiome formulieren, aus denen sich alle Eigenschaften

Mehr

Mathematik für Informatiker I Mitschrift zur Vorlesung vom

Mathematik für Informatiker I Mitschrift zur Vorlesung vom Mathematik für Informatiker I Mitschrift zur Vorlesung vom 18.11.2004 Zur Wiederholung: Das Kartesische Produkt dient dem Ordnen von Mengen. A B = {(a, b) : a A, b B)} Spezialfall A = Äquivalenzrelation

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 015/016 30.10.015 Höhere Mathematik für die Fachrichtung Physik Lösungsvorschläge zum 1. Übungsblatt

Mehr

Die traditionelle Analyse des Wissensbegriffs:

Die traditionelle Analyse des Wissensbegriffs: 1 (A) ZUR ANALYSE DES WISSENSBEGRIFFS Die traditionelle Analyse des Wissensbegriffs: S weiss, dass p genau dann wenn gilt: (B1) S glaubt, dass p (B2) p ist wahr. (B3) S ist gerechtfertigt zu glauben, dass

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Analysis I für Studierende der Ingenieurwissenschaften Jens Struckmeier Fachbereich Mathematik Universität Hamburg Technische Universität Hamburg Harburg Wintersemester 2010/11 Jens Struckmeier (Mathematik,

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

Einführung in die formale Logik. Prof. Dr. Andreas Hüttemann

Einführung in die formale Logik. Prof. Dr. Andreas Hüttemann Einführung in die formale Logik Prof. Dr. Andreas Hüttemann Textgrundlage: Paul Hoyningen-Huene: Formale Logik, Stuttgart 1998 1. Einführung 1.1 Logische Folgerung und logische Form 1.1.1 Logische Folgerung

Mehr

1. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12)

1. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12) Technische Universität München Zentrum Mathematik PD Dr. Christian Karpfinger http://www.ma.tum.de/mathematik/g8vorkurs 1. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12) Aufgabe 1.1: Gehen Sie die Inhalte

Mehr

Kapitel 1: Grundbegriffe

Kapitel 1: Grundbegriffe Kapitel 1: Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika (KO) 1 / 20 Gliederung 1 Logik Ein ganz kurzer Ausflug in die Kombinatorik Stefan Ruzika (KO) 2

Mehr

Was bisher geschah. Pragmatik III. Klassifikation illokutionärer Akte

Was bisher geschah. Pragmatik III. Klassifikation illokutionärer Akte Was bisher geschah Pragmatik III Präsuppositionen Pragmatik (Deixis und Anapher; Sprechakttheorie) Implikatur heute: Präsuppositionen Gerrit Kentner 5. Juni 2013 1 / 29 1 / 29 Lektüre Klassifikation illokutionärer

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Universität Hamburg Winter 2016/17 Fachbereich Mathematik Janko Latschev Grundlagen der Mathematik Lösungsskizzen 2 Präsenzaufgaben (P2) Wir betrachten drei Teilmengen der natürlichen Zahlen: - A = {n

Mehr

Logik I. Symbole, Terme, Formeln

Logik I. Symbole, Terme, Formeln Logik I Symbole, Terme, Formeln Wie jede geschriebene Sprache basiert die Prädikatenlogik erster Stufe auf einem Alphabet, welches aus den folgenden Symbolen besteht: (a) Variabeln wie zum Beispiel v 0,v

Mehr

Boolesche Algebra. Hans Joachim Oberle. Vorlesung an der TUHH im Wintersemester 2006/07 Montags, 9:45-11:15 Uhr, 14täglich TUHH, DE 22, Audimax 2

Boolesche Algebra. Hans Joachim Oberle. Vorlesung an der TUHH im Wintersemester 2006/07 Montags, 9:45-11:15 Uhr, 14täglich TUHH, DE 22, Audimax 2 Universität Hamburg Department Mathematik Boolesche Algebra Hans Joachim Oberle Vorlesung an der TUHH im Wintersemester 2006/07 Montags, 9:45-11:15 Uhr, 14täglich TUHH, DE 22, Audimax 2 http://www.math.uni-hamburg.de/home/oberle/vorlesungen.html

Mehr

Summen- und Produktzeichen

Summen- und Produktzeichen Summen- und Produktzeichen Ein großer Vorteil der sehr formalen mathematischen Sprache ist es, komplizierte Zusammenhänge einfach und klar ausdrücken zu können. Gerade auch diese Eigenschaft der Mathematik

Mehr

Vorsemesterkurs Informatik

Vorsemesterkurs Informatik Vorsemesterkurs Informatik Vorsemesterkurs Informatik Mario Holldack WS2015/16 30. September 2015 Vorsemesterkurs Informatik 1 Einleitung 2 Aussagenlogik 3 Mengen Vorsemesterkurs Informatik > Einleitung

Mehr

23. DIFFERENTIALRECHNUNG VON FUNKTIONEN VON MEHREREN VARIABLEN

23. DIFFERENTIALRECHNUNG VON FUNKTIONEN VON MEHREREN VARIABLEN 204 Dieses Skript ist ein Auszug mit Lücken aus Einführung in die mathematische Behandlung der Naturwissenschaften I von Hans Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie das Buch auch

Mehr

Logik und Beweismethoden I

Logik und Beweismethoden I Logik und Beweismethoden I Anita Ullrich WS2017/18 Inhaltsverzeichnis 1 Klassische Aussagenlogik 2 1.1 Aussagen und Wahrheitswerte.................................... 2 1.2 Operatoren..............................................

Mehr

ÜBUNG ZUM GRUNDKURS LOGIK WS 2015/16 GÜNTHER EDER

ÜBUNG ZUM GRUNDKURS LOGIK WS 2015/16 GÜNTHER EDER ÜBUNG ZUM GRUNDKURS LOGIK WS 2015/16 GÜNTHER EDER WOZU PRÄDIKATENLOGIK (PL)? Aussagenlogik (AL) betrachtet Sätze / Argumente immer nur bezüglich ihrer aussagenlogischen Struktur. Ein Satz wie (1) Jaime

Mehr

1. [Aufgabe] Welche der folgenden Aussagen sind gültige Einwände gegen das Sprichwort Alles verstehen heisst alles verzeihen?

1. [Aufgabe] Welche der folgenden Aussagen sind gültige Einwände gegen das Sprichwort Alles verstehen heisst alles verzeihen? Lineare Algebra D-MATH, HS 2014 Prof. Richard Pink Lösung 1 1. [Aufgabe] Welche der folgenden Aussagen sind gültige Einwände gegen das Sprichwort Alles verstehen heisst alles verzeihen? a Niemand versteht

Mehr

Peter Prechtl. Sprachphilosophie. Lehrbuch Philosophie. Verlag J.B. Metzier Stuttgart Weimar

Peter Prechtl. Sprachphilosophie. Lehrbuch Philosophie. Verlag J.B. Metzier Stuttgart Weimar Peter Prechtl Sprachphilosophie Lehrbuch Philosophie Verlag J.B. Metzier Stuttgart Weimar INHALT Einleitung 1 I. Problemgeschichtliche Stadien der Sprachphilosophie 1. Naturgemäße Richtigkeit oder Konventionalität:

Mehr

mathe plus Aussagenlogik Seite 1

mathe plus Aussagenlogik Seite 1 mathe plus Aussagenlogik Seite 1 1 Aussagenlogik 1.1 Grundbegriffe Def 1 Aussage Eine Aussage ist ein beschriebener Sachverhalt, dem eindeutig einer der Wahrheitswerte entweder wahr oder falsch zugeordnet

Mehr

Ben-Alexander Bohnke

Ben-Alexander Bohnke Ben-Alexander Bohnke 03.04.2012 INTEGRALE LOGIK - die wichtigsten Themen und Theorien Ich habe ein vollständiges eigenes Logik-System die Integrale Logik entworfen, dadurch habe ich natürlich an sehr vielen

Mehr

1. Übungsblatt zur Analysis I. Gruppenübungen

1. Übungsblatt zur Analysis I. Gruppenübungen Prof. Dr. Helge Glöckner Wintersemester 2013/2014 17.10.2013 1. Übungsblatt zur Analysis I Gruppenübungen Aufgabe G1 (Aussagenlogik, Wahrheitstabellen) Es seien p und q Aussagen. (a) Geben Sie die Wahrheitstabelle

Mehr

1. Grundlagen. Gliederung 1.1 Was ist Analysis? 1.2 Aussagen und Mengen 1.3 Natürliche Zahlen 1.4 Ganze Zahlen, rationale Zahlen

1. Grundlagen. Gliederung 1.1 Was ist Analysis? 1.2 Aussagen und Mengen 1.3 Natürliche Zahlen 1.4 Ganze Zahlen, rationale Zahlen 1. Grundlagen Gliederung 1.1 Was ist Analysis? 1.2 Aussagen und Mengen 1.3 Natürliche Zahlen 1.4 Ganze Zahlen, rationale Zahlen Peter Buchholz 2016 MafI 2 Grundlagen 7 1.1 Was ist Analysis? Analysis ist

Mehr

1. Grundlagen. 1.1 Was ist Analysis? 1.2 Aussagen und Mengen

1. Grundlagen. 1.1 Was ist Analysis? 1.2 Aussagen und Mengen . Grundlagen Gliederung. Was ist Analysis?.2 Aussagen und Mengen.3 Natürliche Zahlen.4 Ganze Zahlen, rationale Zahlen. Was ist Analysis? Analysis ist neben der linearen Algebra ein Grundpfeiler der Mathematik!

Mehr

y(p F x) gebunden und in den Formeln F xy

y(p F x) gebunden und in den Formeln F xy Wirkungsbereich (Skopus) eines Quantors i bzw. i nennen wir die unmittelbar auf i bzw. i folgende Formel. Wir sagen, eine IV i kommt in einer Formel A gebunden vor, wenn sie unmittelbar auf oder folgt

Mehr

Mathematische Grundlagen der Computerlinguistik

Mathematische Grundlagen der Computerlinguistik Mengen und Mengenoperationen (Teil I) Centrum für Informations- und Sprachverarbeitung (CIS) 2. Juni 2014 Table of Contents Mengen und ihre Darstellung Darstellung endlicher Mengen Darstellung unendlicher

Mehr

11. Beschreiben Sie die disjunktive und die konjunktive Normalform eines logischen Ausdrucks!

11. Beschreiben Sie die disjunktive und die konjunktive Normalform eines logischen Ausdrucks! Kapitel 3 Logik Verständnisfragen Sachfragen 1. Was ist eine logische Aussage? 2. Wie ist die Konjunktion und die Disjunktion definiert? 3. Beschreiben Sie das Exklusive Oder, die Implikation und die Äquivalenz!

Mehr

Syntax und Semantik von PL1

Syntax und Semantik von PL1 Bromand Logik II 44 Syntax und Semantik von PL1 ç Q ist eine Wff, v eine Variable von PL1 und P ist eine der Formeln @v Q oder %v Q. Ein Satz ist eine Wff in der keine Variablen frei vorkommen. 1. Die

Mehr

2.3 Basis und Dimension

2.3 Basis und Dimension Lineare Algebra I WS 205/6 c Rudolf Scharlau 65 2.3 Basis und Dimension In diesem zentralen Abschnitt werden einige für die gesamte Lineare Algebra fundamentale Grundbegriffe eingeführt: Lineare Abhängigkeit

Mehr

Vorsemesterkurs Informatik

Vorsemesterkurs Informatik Vorsemesterkurs Informatik Sommersemester 2018 Ronja Düffel 14. März 2018 Theoretische Informatik Wieso, weshalb, warum??!? 1 Modellieren und Formalisieren von Problemen und Lösungen 2 Verifikation (Beweis

Mehr

Hans-Ulrich Hoche Werner Strube

Hans-Ulrich Hoche Werner Strube Hans-Ulrich Hoche Werner Strube Analytische Philosophie Verlag Karl Alber Freiburg/München /oj - Inhalt Vorwort 13 Teil A (von Hans-Ulrich Hoche): Grundzüge und Möglichkeiten der analytischen Philosophie

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 1 Logik,, Doris Bohnet Universität Hamburg - Department Mathematik Mo 6.10.2008 Zeitplan Tagesablauf: 9:15-11:45 Vorlesung Audimax I 13:00-14:30 Übung Übungsräume

Mehr

f(1, 1) = 1, f(x, y) = 0 sonst üblicherweise Konjunktion, manchmal auch

f(1, 1) = 1, f(x, y) = 0 sonst üblicherweise Konjunktion, manchmal auch Belegungen, Wahrheitsfunktionen 1. Wie viele binäre Funktionen gibt es auf der Menge {0, 1} (d.h., Funktionen von {0, 1} 2 nach {0, 1})? Geben Sie alle diese Funktionen an, und finden Sie sinnvolle Namen

Mehr

19 Übersetzung umgangssprachlicher Sätze in die Sprache PL

19 Übersetzung umgangssprachlicher Sätze in die Sprache PL 19 Übersetzung umgangssprachlicher Sätze in die Sprache PL Erinnerung Man kann die logischen Eigenschaften der Sätze einer Sprache L, deren Logik wir gut verstehen, zur Beurteilung der logischen Eigenschaften

Mehr

Kapitel 02. Quantoren. Überblick. Grundlage: Inhetveen, Logik - Eine dialog-orientierte Einführung, Kapitel 2. "Logikbaum"

Kapitel 02. Quantoren. Überblick. Grundlage: Inhetveen, Logik - Eine dialog-orientierte Einführung, Kapitel 2. Logikbaum : Quantoren Grundlage: Inhetveen, Logik - Eine dialog-orientierte Einführung, Kapitel 2 Friedrich-Alexander-Universität Erlangen-Nürnberg Department Informatik 1 Überblick "Logikbaum" Dialogische Begründung

Mehr

Wissenschaftstheorie und Ethik

Wissenschaftstheorie und Ethik Wissenschaftstheorie und Ethik Kritischer Rationalismus (KR) Doz. Dr. Georg Quaas: Vorlesung zur Wissenschaftstheorie und Ethik 1 Wissenschaftstheorie - Vorlesung 2 und 3 [Vorlesung 1: 1. Einführung 2.

Mehr

Formale Grundlagen (Nachträge)

Formale Grundlagen (Nachträge) Inhaltsverzeichnis 1 Aussagenlogik: Funktionale Vollständigkeit................... 1 Bit-Arithmetik mit logischen Operationen.................... 3 Prädikatenlogik: Eine ganz kurze Einführung..................

Mehr

Formale Logik - SoSe 2012

Formale Logik - SoSe 2012 2.44 % Formale Logik - SoSe 2012 Versuch einer Zusammenfassung Malvin Gattinger http://xkcd.com/435/ 4.88 % Gliederung Einleitung Was ist Logik? Begriffsklärungen Sätze und Wahrheit Argumente und Gültigkeit

Mehr