Musterlösung zu Übungsblatt 1

Größe: px
Ab Seite anzeigen:

Download "Musterlösung zu Übungsblatt 1"

Transkript

1 Prof. R. Pandaripande J. Scmitt, C. Scießl Funktionenteorie 23. September 16 HS 2016 Musterlösung zu Übungsblatt 1 Aufgabe 1. Sei F ein Körper, der R als einen Unterkörper entält. Das eisst R ist eine Teilmenge von F, die abgesclossen unter Addition und Multiplikation ist und so dass die Einscränkung dieser Operationen auf R gerade die üblice Addition und Multiplikation von R ist. Zeige: F ist in natürlicer Weise ein R-Vektorraum. Ist dim R F = 2, dann existiert ein R-Vektorraumisomorpismus ϕ : F C so dass ϕ(1) = 1 und ϕ(ab) = ϕ(a)ϕ(b) für a, b F. Lösung. Per Definition ist (F, +, 0) eine abelsce Gruppe. Als Skalarmultiplikation des R-Vektorraums F nemen wir die Einscränkung der Multiplikation von F auf R F F. Die Kompatibilität der Skalarmultiplikation mit dem Produkt in R folgt aus dem Assoziativgesetz von F. Analog folgen Distributivität und die Neutralität der 1 bezüglic der Skalarmultiplikation aus den entsprecenden Axiomen des Körpers F. Sei nun dim R F = 2, dann bilden für x F R die Elemente 1, x eine R-Basis von F. Aus der Distributivität in F folgt, dass die Multiplikation in F eindeutig bestimmt ist durc das Produkt x x = r + sx für r, s R. Tatsäclic gilt für zwei Elemente v = a + bx, w = c + dx F mit a, b, c, d R: v w = (a + bx) (c + dx) = ac + (ad + bc)x + bdx 2, und die Produkte zwiscen den Elementen a, b, c, d können in R berecnet werden. Es reict zu zeigen, dass wir ein anderes Element x = a + bx F R finden können, so dass x 2 = 1. Dann at die Abbildung ϕ : F C, ϕ(λ + µ x) = λ + µi die gesucten Eigenscaften. Unter Verwendung von x x = r + sx und dem Ansatz x = a + bx berecnen wir x 2 = a 2 + 2abx + b 2 (r + sx) = (a 2 + b 2 r) + (2ab + b 2 s)x! = x. Wir eralten die Gleicungen a 2 + b 2 r = 1 und 2ab + b 2 s = 0. Da x = a + bx / R muss b 0 gelten, also folgt 2a = bs. Setzen wir a = bs/2 in die erste Gleicung ein, eralten wir b 2 s 2 ( ) s 4 + b2 r = b r = 1. Diese Gleicung at genau dann eine reelle Lösung b falls s2 4 + r < 0. Doc s2 4 + r ist gerade die Diskriminante der quadratiscen Gleicung X 2 sx r = 0. Wäre diese nictnegativ, ätte diese Gleicung neben den (voneinander versciedenen) Lösungen x und s x auc eine Lösung in R. Dies ist ein Widerspruc, da ein Polynom zweiten Grades über F nur maximal zwei versciedene Nullstellen in F aben kann.

2 Aufgabe 2. Bestimme sowol mit den Caucy-Riemann-Gleicungen als auc direkt mit der Definition, an welcen Stellen folgende Funktionen komplex differenzierbar sind und berecne gegebenenfalls die Ableitung: (i) f(z) = zre(z) (ii) f(x + iy) = ax + iby (für a, b C) Lösung. Für die Prüfung der Differenzierbarkeit in z 0 = x + yi über die Definition lassen wir z z 0 = gegen 0 konvergieren. (i) Für z 0 C gilt: zre(z) z 0 Re(z 0 ) = (z 0 + )Re(z 0 + ) z 0 Re(z 0 ) z z 0 = z 0Re(z 0 ) + z 0 Re() z 0 Re(z 0 ) + Re(z 0 + ) Re() = z 0 + Re(z 0 + ). Der Term Re(z 0 + ) at als Grenzwert für 0 gerade Re(z 0 ). Der Ausdruck Re()/ at keinen Grenzwert für 0 in C. Tatsäclic ist für R der Ausdruck konstant 1 und für Ri konstant 0. Also gibt es insgesamt keinen Grenzwert, falls z 0 0. Für z 0 = 0 existiert die Ableitung und ist gerade gleic 0 + Re(z 0 ) = 0. Für die Caucy-Riemann Gleicungen stellen wir fest, dass u(x, y) = Re(f(x+yi)) = x 2 und v(x, y) = Im(f(x + yi)) = xy. Damit ist f bei z 0 = x + yi differenzierbar, falls gilt: = 2x = x =, = 0 = y =. Dies ist genau für x = 0, y = 0 erfüllt und die Ableitung ist 2x + yi = 0. (ii) Beacte, dass f eine R-lineare Funktion ist. Für z 0 C gilt: f(z) f(z 0 ) = f(z 0 + ) f(z 0 ) z z 0 = f(z 0) + f() f(z 0 ) = f(). Setzt man nun = x + yi ein und verwendet 1 = (x iy)/(x 2 + y 2 ) ergibt sic f() (ax + byi)(x yi) = x 2 + y 2 = (ax2 + by 2 ) + (b a)xyi x 2 + y 2. Diese Funktion ist konstant gleic a für y = 0 und konstant b für x = 0. Damit ist eine notwendige Bedingung für die Differenzierbarkeit, dass a = b. Ist dies erfüllt, ist der Grenzwert genau gleic a und damit die Funktion überall differenzierbar. Für die Caucy-Riemann Gleicungen berecnen wir u(x, y) = Re(f(x + yi)) = Re(a)x Im(b)y und v(x, y) = Im(f(x + yi)) = Im(a)x + Re(b)y. Damit ist f bei z 0 = x + yi differenzierbar, falls gilt: = Re(a) = Re(b) =, = Im(b) = Im(a) =. 2

3 Wir eralten das gleice Ergebnis wie oben, die Ableitung ist Re(a) + Im(a)i = a. Aufgabe 3. Sei D C offen und f : D C eine stetig differenzierbare Funktion, die in z 0 D komplex differenzierbar ist. Sei D = {z : z D}. Zeige, dass dann auc g : D C mit g(z) = f(z) in z 0 komplex differenzierbar ist. Was ist die Ableitung? Lösung. Beacte, dass g gerade die Komposition D z z D f C z z C ist. Da sowol die komplexe Konjugation als auc f stetig differenzierbar sind, ist auc g stetig differenzierbar auf der offenen Menge D. Wenn wir f(x + iy) = u(x, y) + iv(x, y) screiben, dann gilt für g, dass g(x + iy) = u(x, y) + iv(x, y) = u(x, y) iv(x, y). Mit ũ(x, y) = u(x, y) und ṽ(x, y) = v(x, y) können wir also die Caucy-Riemann Gleicungen an der Stelle z 0 überprüfen: ũ ũ (x, y) = (x, y) = (x, y) = (x, y) = ṽ (x, y) = (x, y), (x, y) = ṽ (x, y). Hier aben wir verwendet, dass u, v die Caucy-Riemann Gleicungen erfüllen. Also ist g an der Stelle z 0 komplex differenzierbar und g (x + iy) = ũ also g (z 0 ) = f (z 0 ). (x, y) + i ṽ (x, y) = (x, y) i (x, y) = f (x iy), Aufgabe 4. (i) Wir betracten die folgenden Matrizen: I = ( ) i 0 0 i J = ( 0 ) K = ( ) 0 i i 0 Zeige, dass H = {a Id + bi + cj + dk a, b, c, d R} ein Unterring von M 2 (C) mit den Relationen I 2 = J 2 = K 2 = 1 und IJ = K ist. (ii) Für q = a + bi + cj + dk nennen wir q = a bi cj dk die Konjugierte und N(q) = qq die Norm von q. Zeige: N(q) = (a 2 + b 2 + c 2 + d 2 )Id q 1 q 2 = q 2 q 1 N(q 1 q 2 ) = N(q 1 )N(q 2 ) (iii) Zeige, dass H ein Sciefkörper ist (das eisst jedes Element 0 ist invertierbar), aber nict kommutativ ist. (iv) Zeige, dass die Gleicung x 2 = 1 unendlic viele Lösungen x H at. 3

4 (v) Die quaternionisce Norm wird benutzt, um zu zeigen, dass jede natürlice Zal als Summe von 4 Quadraten gescrieben werden kann (der berümte 4 Quadrate-Satz von Lagrange), zum Beispiel 42 = Suce und studiere einen Beweis, der Quaternionen benutzt! Lösung. (i) Um zu zeigen, dass H einen Unterring darstellt, muss man zeigen, dass H abgesclossen unter Multiplikation ist. Da das Distributivgesetz in M 2 (C) gilt, reict es, dies für Produkte zwiscen den Erzeugern Id, I, J, K von H zu prüfen. Alle Produkte, die Id entalten sind offensictlic wieder in H. Für die anderen Paarungen ergibt sic: I 2 = J 2 = K 2 = Id, IJ = JI = K, IK = KI = J, JK = KJ = I. (ii) Screibt man das Produkt N(q) = (a + bi + cj + dk)(a bi cj dk) vollständig aus, ergeben sic 16 Terme. Die entsceidenden vier Terme sind gerade a a + (bi) ( bi) + (cj) ( cj) + (dk) ( dk). Da I 2 = J 2 = K 2 = Id, ergeben diese genau die finale Formel. Wir müssen nur zeigen, dass alle anderen, gemiscten Terme sic gegenseitig aufeben. Dies folgt leict aus IJ = JI, IK = KI, JK = KJ. Für q 1 q 2 = q 2 q 1 beobacten wir, dass q q eine R-lineare Abbildung ist. Desalb genügt es die Formel für q 1, q 2 {Id, I, J, K} zu zeigen. Ist eines der q i = Id ist die Formel klar, für alle Paarungen zwiscen I, J, K folgt sie leict aus den Produkten, die oben berecnet wurden. Scliesslic gilt N(q 1 q 2 ) = q 1 q 2 q 1 q 2 = q 1 q 2 q 2 }{{} q 1 = N(q 2 ) q 1 q 1, }{{} =N(q 2 ) RId =N(q 1 ) da Elemente von RId mit anderen Matrizen kommutieren. (iii) Mit N(q) = (a 2 + b 2 + c 2 + d 2 )Id siet man q = 0 genau dann wenn N(q) = 0. Ist also q 0 dann folgt durc Multiplizieren der Gleicung N(q) = qq von rects mit N(q) 1, dass Id = q(qn(q) 1 ), also ist q invertierbar in H (da q H und N(q) eine skalare Matrix). Für die Nictkommutativität aben wir oben geseen: IJ = JI = K 0. (iv) Für x = bi + cj + dk siet man leict x = x und damit x 2 = xx = N(x) = ( b 2 c 2 d 2 )Id. Also ist x 2 = 1 falls b, c, d so gewält werden, dass b 2 + c 2 + d 2 = 1. Hierfür gibt es unendlic viele Walmöglickeiten. Beacte, dass ein Polynom f über einem Körper nur maximal deg(f) viele Nullstellen aben kann. Dieser Satz ist über Sciefkörpern offenbar nict mer erfüllt! (v) See for example ttps://en.wikipedia.org/wiki/lagrange s_four-square_teorem#proof_using_ te_hurwitz_integers. 4

5 Aufgabe 5. Mit den komplexen Zalen und den Quaternionen aben wir Sciefkörper auf 2- und auf 4-dimensionalen Vektorräumen über R konstruiert. Können wir ein solces Produkt auc auf R 3 konstruieren? Präziser: Gibt es ein R-bilineares Produkt : R 3 R 3 R 3, sodass die Verknüpfung assoziativ ist, es ein neutrales Element 1 R 3 gibt und jedes Element 0 bezüglic invertierbar ist? Lösung. Sei a R 3 R 1 und betracte die Abbildung m a : R 3 R 3, x a x. Da bilinear ist, ist dies ein linearer Endomorpismus von R 3. Sein carakteristisces Polynom at Grad 3 und muss nac dem Zwiscenwertsatz eine Nullstelle aben. Also existiert ein reeller Eigenwert λ mit Eigenvektor x λ 0. Jetzt multipliziere die Gleicung a x λ = λx λ mit x 1 λ von rects. Dann folgt a = a x λ x 1 λ Dies ist ein Widerspruc zu a R 3 R 1. = λx λ x 1 λ = λ1. 5

1 Differentiation im Komplexen

1 Differentiation im Komplexen 1 Differentiation im Komplexen 1.1 Definition und einface Eigenscaften Die folgende Definition der komplexen Differenzierbarkeit mittels der komplexen Division ist eine folgenreice Verscärfung der Differentiation

Mehr

Funktionentheorie A. K. Hulek

Funktionentheorie A. K. Hulek Funktionenteorie A K. Hulek 1 Holomorpe Funktionen Die wictigsten Objekte dieser Vorlesung sind die olomorpen Funktionen. Es sei U C offen, f : U C eine Abbildung und z 0 U ein Punkt. Definition (i Die

Mehr

Geometrisch ergibt sich deren Graph als Schnitt von G mit der senkrechten Ebene y = b bzw. x = a:

Geometrisch ergibt sich deren Graph als Schnitt von G mit der senkrechten Ebene y = b bzw. x = a: Fläcen im Raum Grap und Scnittkurven Im ganzen Artikel bezeicnet D eine Teilmenge des R 2 und eine skalarwertige Funktion in zwei Veränderlicen. Der Grap f : D R 2 R : (x, y) z = f(x, y) G = { (x, y, z)

Mehr

Vorkurs Mathematik Herbst Skript Teil VI

Vorkurs Mathematik Herbst Skript Teil VI Vorkurs Matematik Herbst 2009 M. Carl E. Bönecke Skript Teil VI. Stetigkeit Definition. Eine Funktion f : R R eißt stetig im Punkt p, wenn für alle konvergente Folgen x : N R, n x n mit gleicen Grenzwert

Mehr

5. Übungsblatt zur Analysis II

5. Übungsblatt zur Analysis II Facbereic Matematik Prof. Dr. R. Farwig C. Komo J. Prasiswa R. Sculz SS 009 8.05.009 5. Übungsblatt zur Analysis II Gruppenübung Aufgabe G (Differenzierbarkeit Gegeben sei die Funktion f : R R mit f(x,

Mehr

Teil II: Nichtkommutative Algebra

Teil II: Nichtkommutative Algebra Teil II: Nichtkommutative Algebra Alle Ringe in diesem Kapitel sind assoziativ und mit 1 0. 9 Grundlagen und Beispiele Sei R ein Ring. Zur Erinnerung: I R ist ein Linksideal (bzw. Rechtsideal) falls I,

Mehr

TU Dresden Fakultät Mathematik Institut für Numerische Mathematik 1

TU Dresden Fakultät Mathematik Institut für Numerische Mathematik 1 TU Dresden Fakultät Matematik Institut für Numerisce Matematik Lösung zur Aufgabe 4 (a) des 9. Übungsblattes größtmöglicer Definitionsbereic: Die Funktion ist überall definiert, außer an der Stelle = 3

Mehr

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Lösung - Serie 5

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Lösung - Serie 5 D-MAVT/D-MATL Analysis I HS 08 Dr. Anreas Steiger Lösung - Serie 5 MC-Aufgaben (Online-Abgabe). Es sei f : [a, b] R eine Funktion. Welce er folgenen Aussagen ist rictig? (a) (b) f ist stetig f ist ifferenzierbar.

Mehr

Repetitorium Analysis I für Physiker

Repetitorium Analysis I für Physiker Micael Scrapp Ubungsblatt 3 Lösungen Tecnisce Universität Müncen Repetitorium Analysis I für Pysiker Analysis I Aufgabe Wir definieren zunäcst die Funktion g(t) = 2 0 f(t)t 2 dt Die Menge B = g (], 5[)ist

Mehr

VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA

VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA Mittwoc: Ableiten, Kurvendiskussionen, Optimieren, Folgen und Reien Betracte auf einem Hügel einen Weg, dessen Seitenansict

Mehr

Das Matrizenexponential

Das Matrizenexponential Das Matrizenexponential Tobias Fleckenstein 18 Mai 215 Das Matrizenexponential Seminar im Sommersemester 215 HCM Bonn Einleitung Bei der Untersucung von Differentialgleicung kommt man ser scnell in die

Mehr

Übungsaufgaben zur Kursarbeit

Übungsaufgaben zur Kursarbeit Übungsaufgaben zur Kursarbeit I) Tema Funktionen. Gib jeweils die maximale Definitionsmenge der Funktion an f(x) = (x ) D f = R (x) = x D = {x R /x } g(x) = (x ) D = {x R /x } g k(x) = x D = {x R /x >

Mehr

8. Differentiation. f(x) f(x 0 ) =: f,x0 (x) lim

8. Differentiation. f(x) f(x 0 ) =: f,x0 (x) lim 8. Differentiation Sei I R ein Intervall. Eine Funktion f : I R eißt in x 0 I differenzierbar (Steno: diffbar), wenn der für x I, x x 0 erklärte Differenzenquotient f(x) f(x 0 ) =: f,x0 (x) nac x 0 stetig

Mehr

5.2. ABLEITUNGEN BEKANNTER FUNKTIONEN 105. f(x) = O(g(x)) für x x 0, f(x) < M g(x). f(x) g(x)

5.2. ABLEITUNGEN BEKANNTER FUNKTIONEN 105. f(x) = O(g(x)) für x x 0, f(x) < M g(x). f(x) g(x) 5.2. ABLEITUNGEN BEKANNTER FUNKTIONEN 105 Definition 5.2.4 (Landau Symbole (Fortsetzung)) Wir sagen f(x) = O(g(x)) für x falls es ein K > a ein M R + gibt, so dass für alle x > K gilt f(x) < M g(x), f(x)

Mehr

Übungsblatt 2 Musterlösung

Übungsblatt 2 Musterlösung MSE SoSe Übungsblatt Musterlösung Lösung 4 Einfluß von Randbedingungen) a) Durc Integration erälten wir: u x) = ux) = x x fy)dy +c = x π sinπz)+c b) Seien nun u) = u) = Daraus folgt: cosπy)dy +c = π sinπx)+c.

Mehr

Analysis I. Vorlesung 18. Differenzierbare Funktionen. f: D K

Analysis I. Vorlesung 18. Differenzierbare Funktionen. f: D K Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analysis I Vorlesung 18 Differenzierbare Funktionen In dieser Vorlesung betracten wir Funktionen, wobei D K eine offene Menge in K ist. Das ist eine Menge derart,

Mehr

Differenzierbarkeit. Wir betrachten zuerst die Differenzierbarkeit reellwertiger Funktionen.

Differenzierbarkeit. Wir betrachten zuerst die Differenzierbarkeit reellwertiger Funktionen. Differenzierbarkeit Wir betracten zuerst die Differenzierbarkeit reellwertiger Funktionen. Definition. Sei f : R n R und x 0 D(f) ein innerer Punkt. Dann eißt f differenzierbar an x 0, wenn es einen Vektor

Mehr

3.2 Polarkoordinaten und exponentielle Darstellung

3.2 Polarkoordinaten und exponentielle Darstellung 42 3.2 Polarkoordinaten und exponentielle Darstellung Ein Punkt z = a + bi der Gaußscen Zalenebene ist durc seine kartesiscen Koordinaten a und b eindeutig festgelegt. Man kann jedoc auc zwei andere Grössen

Mehr

Lösungsvorschlag zu den Hausaufgaben der 3. Übung

Lösungsvorschlag zu den Hausaufgaben der 3. Übung Michael Winkler Johannes Lankeit 22.4.204 Lösungsvorschlag zu den Hausaufgaben der 3. Übung Hausaufgabe : 2 Punkte Bei welchen der folgenden Funktionen u: G R kann es sich um den Realteil einer in G holomorphen

Mehr

Unterlagen zu endlichen Körpern. Erhard Aichinger

Unterlagen zu endlichen Körpern. Erhard Aichinger Unterlagen zu endlicen Körpern Erard Aicinger Linz, im November 2005 Alle Recte vorbealten 1 KAPITEL 1 Endlice Körper 1 Definition endlicer Körper DEFINITION 11 Ein Ring mit Eins R R,,,, 0, 1 ist ein

Mehr

0.1. Lösung der Aufgabe 1. Nehme an, wir ( hätten ) die Aufgabe, n Personen aus 2n

0.1. Lösung der Aufgabe 1. Nehme an, wir ( hätten ) die Aufgabe, n Personen aus 2n .. Lösung der Aufgabe. Neme an, wir ätten die Aufgabe, n Personen aus n n Personen auszuwälen. Dafür gibt es natürlic Möglickeiten. Wir können aber n auc wie folgt verfaren. Teilen wir die n Personen auf

Mehr

122 KAPITEL 7. POTENZREIHEN

122 KAPITEL 7. POTENZREIHEN Kapitel 7 Potenzreien 7.1 Der Konvergenzradius Definition 7.1: (Komplexe Potenzreien) Eine Potenzreie um den Punt z 0 C ist eine Reie der Form a (z z 0 ), a, z, z 0 C. Dort, wo die Reie onvergiert, definiert

Mehr

Die Ableitung einer Funktion

Die Ableitung einer Funktion Die Ableitung einer Funktion I. Definition der Ableitung Definition. Sei I R ein Intervall und f : I R. 1) f eißt differenzierbar an x 0 I, wenn der Grenzwert f(x) f(x 0 ) lim = f (x 0 ) x x 0 x x 0 existiert.

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Wintersemester 2014/15 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax

Mehr

Komplexe Analysis D-ITET. Serie 3

Komplexe Analysis D-ITET. Serie 3 Dr. T. Bühler M. Wellershoff Frühlingssemester 206 Komplexe Analysis D-ITET Serie 3 ETH Zürich D-MATH Aufgabe 3. Die reellen Cauchy-Riemann Gleichungen Die Cauchy-Riemann Gleichung i f(x + iy = f(x + iy

Mehr

Lineare Algebra I - Prüfung Winter 2019

Lineare Algebra I - Prüfung Winter 2019 Lineare Algebra I - Prüfung Winter 209. (20 Punkte) Kreuzen Sie auf dem Abgabeblatt ihre Antwort an. Pro Teilaufgabe ist genau eine der vier Antwortmöglichkeiten richtig. Für jede richtig beantwortete

Mehr

Mathematik für Chemiker I

Mathematik für Chemiker I Universität D U I S B U R G E S S E N Campus Essen, Matematik PD Dr. L. Strüngmann WS 007/08 Übungsmaterial sowie andere Informationen zur Veranstaltung unter: ttp://www.uni-due.de/algebra-logic/struengmann.stml

Mehr

G. Dobner/H.-J. Dobner: Lineare Algebra Elsevier Spektrum Akademischer Verlag

G. Dobner/H.-J. Dobner: Lineare Algebra Elsevier Spektrum Akademischer Verlag G. Dobner/H.-J. Dobner: Lineare Algebra Elsevier Spektrum Akademischer Verlag Beantwortung der Fragen und Lösungen der Aufgaben zu Kapitel Version V vom 3.. 28 2 Beantwortung der Fragen zu Kapitel TESTFRAGEN

Mehr

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0. Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ

Mehr

5 Differenzialrechnung für Funktionen einer Variablen

5 Differenzialrechnung für Funktionen einer Variablen 5 Differenzialrecnung für Funktionen einer Variablen Ist f eine ökonomisce Funktion, so ist oft wictig zu wissen, wie sic die Funktion bei kleinen Änderungen verält. Bescreibt etwa f einen Wacstumsprozess,

Mehr

Kapitel II. Vektoren und Matrizen

Kapitel II. Vektoren und Matrizen Kapitel II. Vektoren und Matrizen Vektorräume A Körper Auf der Menge R der reellen Zahlen hat man zwei Verknüpfungen: Addition: R R R(a, b) a + b Multiplikation: R R R(a, b) a b (Der Malpunkt wird oft

Mehr

5 Vektorräume. (V1) für alle x, y V : x + y = y + x; (V2) für alle x, y, z V : (x + y) + z = x + (y + z);

5 Vektorräume. (V1) für alle x, y V : x + y = y + x; (V2) für alle x, y, z V : (x + y) + z = x + (y + z); 5 Vektorräume Was wir in den vorangegangenen Kapiteln an Matrizen und Vektoren gesehen haben, wollen wir nun mathematisch abstrahieren. Das führt auf den Begriff des Vektorraumes, den zentralen Begriff

Mehr

1 Holomorphe Funktionen

1 Holomorphe Funktionen $Id: olo.tex,v 1.2 2013/04/09 17:01:23 k Exp k $ 1 Holomorpe Funktionen In den ersten Kapiteln dieser Vorlesung werden wir uns mit der sogenannten Funktionenteorie bescäftigen, dies ist die Teorie der

Mehr

A = ( a 1,..., a n ) ii) Zwei Matrizen sind gleich, wenn die Einträge an den gleichen Positionen übereinstimmen. so heißt die n n Matrix

A = ( a 1,..., a n ) ii) Zwei Matrizen sind gleich, wenn die Einträge an den gleichen Positionen übereinstimmen. so heißt die n n Matrix Matrizen Definition: i Eine m n Matrix A ist ein rechteckiges Schema aus Zahlen, mit m Zeilen und n Spalten: a a 2 a n a 2 a 22 a 2n a m a m2 a mn Die Spaltenvektoren dieser Matrix seien mit a,, a n bezeichnet

Mehr

11. Vorlesung. Lineare Algebra und Sphärische Geometrie.

11. Vorlesung. Lineare Algebra und Sphärische Geometrie. 11. Vorlesung. Lineare Algebra und Sphärische Geometrie. In dieser Vorlesung behandeln wir eine geometrische Anwendung der linearen Algebra. Insbesondere betrachten wir orthogonale Abbildungen. 1. Orthogonale

Mehr

5 Lineare Algebra (Teil 3): Skalarprodukt

5 Lineare Algebra (Teil 3): Skalarprodukt 5 Lineare Algebra (Teil 3): Skalarprodukt Der Begriff der linearen Abhängigkeit ermöglicht die Definition, wann zwei Vektoren parallel sind und wann drei Vektoren in einer Ebene liegen. Daß aber reale

Mehr

Analysis 1. Torsten Wedhorn. f(x) f( x) x x. (2) Die Funktion f heißt auf D differenzierbar, falls f in jedem Punkt x D differenzierbar ist.

Analysis 1. Torsten Wedhorn. f(x) f( x) x x. (2) Die Funktion f heißt auf D differenzierbar, falls f in jedem Punkt x D differenzierbar ist. Analysis Torsten Wedorn 8 Differentiation (A) Differenzierbare Funktionen (B) Recenregeln für die Ableitung (C) Lokale Extrema und Mittelwertsatz (D) Ableitung und Monotonie (E) Der Satz von l Hospital

Mehr

Anwendungen der Potenzreihenentwicklung: Approximation, Grenzwerte; Wachstum

Anwendungen der Potenzreihenentwicklung: Approximation, Grenzwerte; Wachstum Anwendungen der Potenzreienentwicklung: Approximation, Grenzwerte; Wacstum Lokale Näerung einer Funktion durc ganzrationale Funktionen Ganzrationale Funktionen aben viele angeneme Eigenscaften. Man weiß

Mehr

$Id: matrix.tex,v /12/02 21:08:55 hk Exp $ $Id: vektor.tex,v /12/05 11:27:45 hk Exp hk $

$Id: matrix.tex,v /12/02 21:08:55 hk Exp $ $Id: vektor.tex,v /12/05 11:27:45 hk Exp hk $ $Id: matrixtex,v 14 2008/12/02 21:08:55 hk Exp $ $Id: vektortex,v 12 2008/12/05 11:27:45 hk Exp hk $ II Lineare Algebra 6 Die Matrixmultiplikation 63 Inverse Matrizen und reguläre lineare Gleichungssysteme

Mehr

r 11 r 12 r 13 0 r 22 r r 33 l ik r kj die Gleichungen: k= (II) 2 (I) = 3 2 1

r 11 r 12 r 13 0 r 22 r r 33 l ik r kj die Gleichungen: k= (II) 2 (I) = 3 2 1 Tecnisce Universität Berlin Wintersemester 004/005 Fakultät II; Institut für Matematik Prof. Dr. G. Bärwolff/C. Mense.0.005 Probeklausur zur LV Numerik für Informatiker en Aufgabe a Berecnen Sie die LU-Zerlegung

Mehr

Numerisches Programmieren (IN0019) 9. Symmetrisches Eigenwertproblem. Eigenwert-Problem. Verallgemeinerte Fourier-Reihe

Numerisches Programmieren (IN0019) 9. Symmetrisches Eigenwertproblem. Eigenwert-Problem. Verallgemeinerte Fourier-Reihe Numerisces Programmieren (IN009) Frank R. Scmidt 9. Symmetrisces Eigenwertproblem Winter Semester 06/07 Verallgemeinerte Fourier-Reie Das Berecnen von Eigenwerten wird bei viele praktisce Anwendungen vorausgesetzt,

Mehr

Übungen zu Matrixgruppen

Übungen zu Matrixgruppen Übungen zu Matrixgruppen Andreas Cap Sommersemester 2018 Kapitel 1: Einleitung Analysis und Matrizen (1 Seien G und H Gruppen und sei ϕ : G H ein Homomorphismus. Zeigen Sie, dass das Bild Im(ϕ eine Untergruppe

Mehr

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Aufgaben und en Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Wintersemester 008/009 Anweseneitsaufgaben Übung 4 Einleitung Es soll darauf ingewiesen werden, daß es in der Woce vor der Klausur

Mehr

Mathematische Grundlagen der Computerlinguistik Lineare Algebra

Mathematische Grundlagen der Computerlinguistik Lineare Algebra Mathematische Grundlagen der Computerlinguistik Lineare Algebra Dozentin: Wiebke Petersen 10. Foliensatz Wiebke Petersen math. Grundlagen 30 Einleitung Die lineare Algebra beschäftigt sich mit Vektorräumen

Mehr

HM II Tutorium 1. Lucas Kunz. 24. April 2018

HM II Tutorium 1. Lucas Kunz. 24. April 2018 HM II Tutorium 1 Lucas Kunz 24. April 2018 Inhaltsverzeichnis 1 Theorie 2 1.1 Körper...................................... 2 1.2 Gruppen..................................... 2 1.3 Vektorraum...................................

Mehr

T := {σ S 4 σ 3 = Id}. a) Es seien V ein Vektorraum und Φ ein Endomorphismus von V, sodass

T := {σ S 4 σ 3 = Id}. a) Es seien V ein Vektorraum und Φ ein Endomorphismus von V, sodass I. a) Es sei (G, ) eine abelsche Gruppe mit neutralem Element e G. Zeigen Sie, dass U := {g G g 3 = e G } eine Untergruppe von G ist. b) In der symmetrischen Gruppe S 4 definieren wir analog zu a) die

Mehr

2.1 Vektorräume. 1. für alle x, y U ist x + y U und. 2. für alle x U und alle λ R ist λx U. O V (= O U) U, und dass ( 1) x U, also x U.

2.1 Vektorräume. 1. für alle x, y U ist x + y U und. 2. für alle x U und alle λ R ist λx U. O V (= O U) U, und dass ( 1) x U, also x U. Vektorräume Definition Eine nicht leere Menge V, für die eine Addition (dh eine Rechenvorschrift + derart, dass a + b V für alle a, b V ist und eine skalare Multiplikation (dh λa V für alle λ R (λ ist

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

9 Aus der linearen Algebra. Themen: Lineare Abbildungen Darstellung durch Matrizen

9 Aus der linearen Algebra. Themen: Lineare Abbildungen Darstellung durch Matrizen 9 Aus der linearen Algebra Themen: Der à n Lineare Abbildungen Darstellung durch Matrizen Der à n besteht aus den n-tupeln mit x i Ã. x 1 x 2 x = (x 1, x 2,...,x n ) oder x =. x n Der à n besteht aus den

Mehr

3 Allgemeine Algebren

3 Allgemeine Algebren Grundlagen der Matematik für Informatiker 1 Grundlagen der Matematik für Informatiker 2 3 Allgemeine Algebren Definition 3.1 Für eine Menge A nennen wir eine n-stellige Funktion : A n A eine n-äre algebraisce

Mehr

Kapitel II. Vektorräume

Kapitel II. Vektorräume Inhalt der Vorlesung LAAG I Prof. Dr. Arno Fehm TU Dresden WS2017/18 Kapitel II. Vektorräume In diesem ganzen Kapitel sei K ein Körper. 1 Definition und Beispiele 1.1 Beispiel. Ist K = R, so haben wir

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr

Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient

Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient Differenzenquotient Sei f : R R eine Funktion. Der Quotient Kapitel 7 Differentialrecnung f f 0 + f 0 f f 0 0 eißt Differenzenquotient an der Stelle 0. f, f Sekante 0, f 0 f 0 Josef Leydold Matematik für

Mehr

Übersicht. Einführung Universelles Hashing Perfektes Hashing

Übersicht. Einführung Universelles Hashing Perfektes Hashing Hasing Übersict Einfürung Universelles Hasing Perfektes Hasing 2 Das Wörterbuc-Problem Gegeben: Universum U = [0 N-1], wobei N eine natürlice Zal ist. Ziel: Verwalte Menge S U mit folgenden Operationen.

Mehr

Charaktere. 1 Wiederholung. 2 Charaktere verschiedener Darstellungen. 1.1 Zerlegung von Darstellungen. 1.2 Schursches Lemma

Charaktere. 1 Wiederholung. 2 Charaktere verschiedener Darstellungen. 1.1 Zerlegung von Darstellungen. 1.2 Schursches Lemma Caraktere 1 Wiederolung 1.1 Zerlegung von Darstellungen Jede Darstellung läßt sic Zelegen in V = V a1 1 V a Wobei die V i irreduzible Darstellungen von G sind und a i N. Die Sätze der Carakterteorie liefern

Mehr

Lineare Algebra I. Prof. Dr. Daniel Roggenkamp Vorlesung -

Lineare Algebra I. Prof. Dr. Daniel Roggenkamp Vorlesung - Lineare Algebra I Prof. Dr. Daniel Roggenkamp - 22.Vorlesung - Aus der letzten Vorlesung: Polynome K[t] (p 0, p,, p i K mit p i = 0 i > i 0 für ein i 0 = i 0 p i t i = p 0 + p t + p 2 t 2 + + p i0 t i

Mehr

Lineare Algebra für Physiker 11. Übungsblatt

Lineare Algebra für Physiker 11. Übungsblatt Lineare Algebra für Physiker 11. Übungsblatt Fachbereich Mathematik SS 01 Prof. Dr. Matthias Schneider./. Juli 01 Dr. Silke Horn Dipl.-Math. Dominik Kremer Gruppenübung Aufgabe G1 (Minitest) (a) Welche

Mehr

Lösung zu Serie 18. Lineare Algebra D-MATH, HS Prof. Richard Pink

Lösung zu Serie 18. Lineare Algebra D-MATH, HS Prof. Richard Pink Lineare Algebra D-MATH, HS 201 Prof. Richard Pink Lösung zu Serie 18 1. Sei V,, ein endlich-dimensionaler unitärer Vektorraum. Zeige, dass zu jeder Sesquilinearform f : V V C eine eindeutige lineare Abbildung

Mehr

2.9 Die komplexen Zahlen

2.9 Die komplexen Zahlen LinAlg II Version 1 3. April 2006 c Rudolf Scharlau 121 2.9 Die komplexen Zahlen Die komplexen Zahlen sind unverzichtbar für nahezu jede Art von höherer Mathematik. Systematisch gehören sie zum einen in

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Sommersemester 2010 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax = b

Mehr

4 Funktionenfolgen und normierte Räume

4 Funktionenfolgen und normierte Räume $Id: norm.tex,v 1.57 2018/06/08 16:27:08 hk Exp $ $Id: jordan.tex,v 1.34 2018/07/12 20:08:29 hk Exp $ 4 Funktionenfolgen und normierte Räume 4.7 Kompakte Mengen Am Ende der letzten Sitzung hatten wir zwei

Mehr

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v.

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v. Teil I Lineare Algebra I Vorlesung Sommersemester 2011 Olga Holtz MA 378 Sprechstunde Fr 14-16 und nv holtz@mathtu-berlinde Sadegh Jokar MA 373 Sprechstunde, Do 12-14 und nv jokar@mathtu-berlinde Kapitel

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.41 2018/05/08 15:50:54 k Exp $ 1 Analytisce Geometrie und Grundlagen 1.5 Abstände und Winkel Am Ende der letzten Sitzung atten wir eine metrisce Form des Stralensatzes ergeleiten, gegeben

Mehr

Übungen zur Linearen Algebra I

Übungen zur Linearen Algebra I Blatt 1 Aufgabe 1. Wie lautet die Definition der Diskriminante für quadratische Polynome? Aufgabe 2. Sei X 2 + bx + c ein quadratisches Polynom, dessen Diskriminante ein Quadrat ist, und seien λ = ( b

Mehr

Mathematik für Anwender. Testklausur mit Lösungen

Mathematik für Anwender. Testklausur mit Lösungen Fachbereich Mathematik/Informatik 4. Januar 0 Prof. Dr. H. Brenner Mathematik für Anwender Testklausur mit en Dauer: Zwei volle Stunden + 0 Minuten Orientierung, in denen noch nicht geschrieben werden

Mehr

Lineare Algebra I. Christian Ebert & Fritz Hamm. Gruppen & Körper. Vektorraum, Basis & Dimension. Lineare Algebra I. 18.

Lineare Algebra I. Christian Ebert & Fritz Hamm. Gruppen & Körper. Vektorraum, Basis & Dimension. Lineare Algebra I. 18. 18. November 2011 Wozu das alles? Bedeutung von Termen Vektoren in R n Ähnlichkeiten zwischen Termbedeutungen Skalarprodukt/Norm/Metrik in R n Komposition von Termbedeutungen Operationen auf/abbildungen

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel V SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

4.4 Hermitesche Formen

4.4 Hermitesche Formen 44 Hermitesche Formen Wie üblich bezeichnen wir das komplex konjugierte Element von ζ = a + bi C (a, b R) mit ζ = a bi Definition 441 Sei V ein C-Vektorraum Eine hermitesche Form (HF) auf V ist eine Abbildung

Mehr

V. Lineare Algebra. 35 Lineare Abbildungen und Matrizen. 156 V. Lineare Algebra

V. Lineare Algebra. 35 Lineare Abbildungen und Matrizen. 156 V. Lineare Algebra 156 V. Lineare Algebra V. Lineare Algebra 35. Lineare Abbildungen und Matrizen 156 36. Eigenwerte und Eigenvektoren 161 37. Hauptvektoren 165 38. Normen und Neumannsche Reihe 168 39. Numerische Anwendungen

Mehr

Ein immer wiederkehrendes Konzept in der Mathematik ist die Zurückführung auf Bekanntes, beziehungsweise auf besonders

Ein immer wiederkehrendes Konzept in der Mathematik ist die Zurückführung auf Bekanntes, beziehungsweise auf besonders Vorlesung 14 Differentialrecnung Ein immer wiedererendes Konzept in der Matemati ist die Zurücfürung auf Beanntes, bezieungsweise auf besonders einface Fälle. Besonders einfac sind lineare Funtionen in

Mehr

Á 4. Differenzierbarkeit, Stetigkeit

Á 4. Differenzierbarkeit, Stetigkeit Á 4. Differenzierbarkeit, Stetigkeit Historisc ist der Begriff der Differenzierbarkeit lange vor dem der Stetigkeit entwickelt worden. Untersciedlice Definitionen der Differenzierbarkeit werden von Gottfried

Mehr

2 Grundstrukturen. 2.1 Gruppen. Prof. Dr. Peter Schneider. Vorlesung WS Lineare Algebra 1 2 GRUNDSTRUKTUREN

2 Grundstrukturen. 2.1 Gruppen. Prof. Dr. Peter Schneider. Vorlesung WS Lineare Algebra 1 2 GRUNDSTRUKTUREN Vorlesung WS 08 09 Lineare Algebra 1 Prof. Dr. Peter Schneider 2 Grundstrukturen Notation: Sind M und N zwei Mengen, so heißt die Menge M N := {(m, n) : m M, n N} das cartesische Produkt oder auch die

Mehr

Komplexe Analysis D-ITET. Serie 4

Komplexe Analysis D-ITET. Serie 4 Prof. Dr. P. S. Jossen M. Wellershoff Frühlingssemester 08 Komplexe Analysis D-ITET Serie 4 ETH Zürich D-MATH Aufgabe 4. Benutzen Sie Ihre Lieblingsprogrammiersprache, um die folgenden Vektorfelder zu

Mehr

Numerische Simulation von Differential-Gleichungen der Himmelsmechanik

Numerische Simulation von Differential-Gleichungen der Himmelsmechanik Numerisce Simulation von Differential-Gleicungen der Himmelsmecanik Teilnemer: Max Dubiel (Andreas-Oberscule) Frank Essenberger (Herder-Oberscule) Constantin Krüger (Andreas-Oberscule) Gabriel Preuß (Heinric-Hertz-Oberscule)

Mehr

Mathematik 1 für Studierende der Biologie Teil II: Limes & Konvergenz

Mathematik 1 für Studierende der Biologie Teil II: Limes & Konvergenz Matematik 1 für Studierende der Biologie Teil II: Limes & Konvergenz Cristian Leibold 7. Oktober 2014 Folgen Allgemeines zu Folgen Monotonie und Bescränkteit Grenzwerte und Konvergenz Summen und Reien

Mehr

4 Matrizenrechnung. Beide Operationen geschehen also koeffizientenweise. Daher übertragen sich die Rechenregeln von K(m n, k).

4 Matrizenrechnung. Beide Operationen geschehen also koeffizientenweise. Daher übertragen sich die Rechenregeln von K(m n, k). 4 Matrizenrechnung Der Vektorraum der m n Matrizen über K Sei K ein Körper und m, n N\{0} A sei eine m n Matrix über K: a a 2 a n a 2 a 22 a 2n A = = (a ij) mit a ij K a m a m2 a mn Die a ij heißen die

Mehr

Übung ln(p) x aus dem Primzahlsatz π(x) x/ ln(x) folgt. Gehen Sie dabei wie folgt vor: i) p x

Übung ln(p) x aus dem Primzahlsatz π(x) x/ ln(x) folgt. Gehen Sie dabei wie folgt vor: i) p x Übung 0 Übung 0 Zeigen Sie, dass der Primzahlsatz π(x) x/ ln(x) aus p x ln(p) x folgt Übung 02 Zeigen Sie, dass p x ln(p) x aus dem Primzahlsatz π(x) x/ ln(x) folgt Gehen Sie dabei wie folgt vor: i) p

Mehr

Einführung in die lineare Algebra und GeometrieWS 2018/19 October 30, 2018

Einführung in die lineare Algebra und GeometrieWS 2018/19 October 30, 2018 1 Beweisen Sie folgende Aussage: Das Produkt zweier ungeraden Zahlen ist ungerade Beweisen Sie folgende Aussage: Es gibt keine ganzen Zahlen n, m mit 8m + 4n = 100 [Hinweis: Beweisen Sie indirekt Nehmen

Mehr

Grundlagen der Mathematik 2 Nachklausur

Grundlagen der Mathematik 2 Nachklausur Andreas Gathmann und Yue Ren Sommersemester 6 Grundlagen der Mathematik Nachklausur Bearbeitungszeit: 8 Minuten Aufgabe (6 Punkte): Es sei f : R R, (x,y) xye (x+y). (a) Bestimme alle lokalen Maxima und

Mehr

M U = {x U f 1 =... = f n k (x) = 0}, (1)

M U = {x U f 1 =... = f n k (x) = 0}, (1) Aufgabe 11. a) Es sei M = {(x, y, z) R 3 f 1 = xy = 0; f = yz = 0}. Der Tangentialraum T x M muss in jedem Punkt x M ein R-Vektorraum sein und die Dimension 1 besitzen, damit diese Menge M eine Untermannigfaltigkeit

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung WS 15/16: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung WS 15/16: Woche vom Übungsaufgaben 11. Übung WS 15/16: Woche vom 4. 1. - 8. 1. 2016 Integralsatz von Gauß 23.1, 23.3, 23.5 (a,g), 23.6 (a) Integralsatz von Stokes 23.7, 23.8 (a), 23.10 Zusatzaufgabe zu Gauß + Stokes in 2D

Mehr

5 Die Allgemeine Lineare Gruppe

5 Die Allgemeine Lineare Gruppe 5 Die Allgemeine Lineare Gruppe Gegeben sei eine nicht leere Menge G und eine Abbildung (Verknüpfung) : G G G, (a, b) a b( a mal b ) Das Bild a b von (a, b) heißt Produkt von a und b. Andere gebräuchliche

Mehr

Mathematik GK 11 m3, AB 06 Klausurvorbereitung Differentialq. Lsg x 3 9x 4 2x 2 x 4. 4x 3 9x 4 : 2x 2 x 4 =2x 1 x 3 2x 2 8x

Mathematik GK 11 m3, AB 06 Klausurvorbereitung Differentialq. Lsg x 3 9x 4 2x 2 x 4. 4x 3 9x 4 : 2x 2 x 4 =2x 1 x 3 2x 2 8x Aufgabe : Berecne a) 4x 5x 5x 4x b) 4x 9x 4 x x 4 4x 5x 5x : 4x x x 4x x 4x 5x 4x x 4x 4x 4x 9x 4 : x x 4 x x x 8x x x 4 x x 4 c) 4x 4 x 8x 4x 4 x 4x 4 x 4 x 4x x : x x x x 4 4x 4x x x x x Aufgabe : Bestimme

Mehr

Ferienkurs Theoretische Mechanik SS 2011

Ferienkurs Theoretische Mechanik SS 2011 Ferienkurs Teoretisce Mecanik SS Lösungen Freitag Aufgabe : Rotation eines Quaders um die Raumdiagonale Die Hauptacsen verlaufen durc den Scwerpunkt des Quaders parallel zu den Kanten. Die Kante der Länge

Mehr

Kapitel 7. Funktionentheorie. 7.1 Holomorphe und harmonische Funktionen. 1. Definitionen

Kapitel 7. Funktionentheorie. 7.1 Holomorphe und harmonische Funktionen. 1. Definitionen Kapitel 7 Funktionentheorie In diesem Kapitel geht es meistens um Funktionen, die auf einem Gebiet G C definiert sind und komplexe Werte annehmen. Nach Lust, Laune und Bedarf wird C mit R identifiziert,

Mehr

Mathematische Grundlagen der Computerlinguistik Lineare Algebra

Mathematische Grundlagen der Computerlinguistik Lineare Algebra Mathematische Grundlagen der Computerlinguistik Lineare Algebra Dozentin: Wiebke Petersen 10. Foliensatz Wiebke Petersen math. Grundlagen 1 Einleitung Die lineare Algebra beschäftigt sich mit Vektorräumen

Mehr

1. Übungsblatt: Lineare Algebra II Abgabe: 24./ in den Übungsgruppen

1. Übungsblatt: Lineare Algebra II Abgabe: 24./ in den Übungsgruppen Hannover, den 0. April 2006. Übungsblatt: Lineare Algebra II Abgabe: 24./25.4.2006 in den Übungsgruppen ( ) 2 5 a) Zeigen Sie, dass A = und B = 2 ( 7 6 invertierbare Matrix T an mit T AT = B. b) Zeigen

Mehr

2 Ein Beispiel und der Haken an der Sache

2 Ein Beispiel und der Haken an der Sache Numerik I. Version: 9.02.08 2 Ein Beispiel und der Haken an der Sace In lineare Algebra I-II wurde gezeigt, wie durc das Gaußsce Verfaren lineare Gleicungssysteme gelöst werden. Das folgende einface Beispiel

Mehr

Die komplexen Zahlen werden definiert als die geordneten Paare z = (x, y) reeller Zahlen x, y R, zusammen mit den Rechenoperationen

Die komplexen Zahlen werden definiert als die geordneten Paare z = (x, y) reeller Zahlen x, y R, zusammen mit den Rechenoperationen A Komplexe Zahlen A.1 Definition Die komplexen Zahlen werden definiert als die geordneten Paare z = (x, y) reeller Zahlen x, y R, zusammen mit den Rechenoperationen z 1 +z 2 (x 1,y 1 )+(x 2,y 2 ) := (x

Mehr

Ableitung und Mittelwertsätze

Ableitung und Mittelwertsätze Ableitung und Mittelwertsätze Definition. Sei I R ein Intervall und f : I R. ) f eißt differenzierbar an 0 I, wenn der Grenzwert eistiert. f() f( 0 ) lim 0 0 = f ( 0 ) = lim 0 f( 0 + ) f( 0 ) Ist dabei

Mehr

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

Zeigen Sie unter Verwendung der Tatsache, dass (K, +) bereits eine abelsche Gruppe ist:

Zeigen Sie unter Verwendung der Tatsache, dass (K, +) bereits eine abelsche Gruppe ist: FU Berlin: WiSe 1-14 (Analysis 1 - Lehr. Übungsaufgaben Zettel 11 Aufgabe 47 Wir betrachten die Menge K Q Q zusammen mit den Verknüpfungen: (a, b(c, d (a b, c d, a, b, c, d Q (a, b (c, d (ac 2bd, ac bd,

Mehr

AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW

AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW Lineare Gleichungssysteme Lösen Sie folgende Gleichungssysteme über R: a) x + x + x = 6x + x + x = 4 x x x = x 7x x = 7 x x = b) x + x 4x + x 4 = 9 x + 9x x x

Mehr

Der Vier-Quadrate-Satz von Lagrange

Der Vier-Quadrate-Satz von Lagrange Der Vier-Quadrate-Satz von Lagrange DBW Herbst 2017 1 Was bewies Lagrange eigentlich? Joseph Louis Lagrange bewies im achtzehnten Jahrhundert den folgenden Satz: Jede natürliche Zahl ist als Summe vierer

Mehr

35 Matrixschreibweise für lineare Abbildungen

35 Matrixschreibweise für lineare Abbildungen 35 Matrixschreibweise für lineare Abbildungen 35 Motivation Wir haben gesehen, dass lineare Abbildungen sich durch ihre Wirkung auf die Basisvektoren ausdrücken lassen Mithilfe von Matrizen können wir

Mehr

Übungsaufgaben zu Analysis 2 Lösungen von Blatt V vom 07.05.15. f(x, y) = 2(x + y) + xy + 3x 2, g(x, y) = xy + e xy.

Übungsaufgaben zu Analysis 2 Lösungen von Blatt V vom 07.05.15. f(x, y) = 2(x + y) + xy + 3x 2, g(x, y) = xy + e xy. Prof. Dr. Moritz Kaßmann Fakultät für Matematik Sommersemester 015 Universität Bielefeld Übungsaufgaben zu Analysis Lösungen von Blatt V vom 07.05.15 Aufgabe V.1 + Punkte) Gegeben seien die Funktionen

Mehr

Wiederholungsserie II

Wiederholungsserie II Lineare Algebra II D-MATH, FS 205 Prof. Richard Pink Wiederholungsserie II. Zeige durch Kopfrechnen, dass die folgende reelle Matrix invertierbar ist: 205 2344 234 990 A := 224 423 990 3026 230 204 9095

Mehr

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie KIT SS 3 Institut für Analysis.6.3 Prof. Dr. Tobias Lamm Dr. Patrick reuning Aufgabe Höhere Mathematik II für die Fachrichtung Physik 9. Übungsblatt Ein Heißluftballon

Mehr

Ausgewählte Lösungen zu den Übungsblättern 9-10

Ausgewählte Lösungen zu den Übungsblättern 9-10 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Dezember Ausgewählte Lösungen zu den Übungsblättern 9- Übungsblatt

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr