Doppelintegrale. rd dr. Folie 1

Größe: px
Ab Seite anzeigen:

Download "Doppelintegrale. rd dr. Folie 1"

Transkript

1 Doppelintegrale G fda f, dd R R G 1 f ( rcos, rsin) rd dr Folie 1

2 Doppelintegrale einführendes Beispiel Als Vorwissen sollten Sie die Grundlagen ur Integration mitbringen (s..b. L. Papula, Mathematik für Ingenieure und Naturwissenschaftler Band 1). Um die Grundidee hinter Doppelintegralen u verstehen, betrachten wir als einführendes Beispiel die Volumenberechnung wischen einer in der --Ebene liegenden Grundfläche und einer darüber liegenden Fläche, gegeben durch eine Funktion (,). (,) Grundfläche Doppelintegrale haben sehr viele verschiedene Anwendungen und können auf keinen Fall auf Volumenberechnungen reduiert werden. Wir betrachten diese hier nur wegen der guten Anschaulichkeit. Folie

3 Doppelintegrale einführendes Beispiel Das Gesamtvolumen V kann durch Aufsummieren von Teilvolumina V bestimmt werden: Die Teilvolumina werden näherungsweise mit einem mittleren Funktionswert (Höhe) bestimmt: (,) (, ) k i j A V n k1 k k k... k1 V V A V A k n V lim A da n k 1 A0 k k (Grundfläche Höhe) Der Übergang um Integral geschieht durch die Bestimmung des Grenwertes einer 'unendlich feinen' Summe: In dieser abstrakten Schreibweise ist der Unterschied um einfachen Integral kaum u erkennen. Etwas konkreter wird es auf der folgenden Seite. G Folie 3

4 Doppelintegrale einführendes Beispiel Anstelle der einfachen Summe über k, bei der jede Position durch einen Inde gekenneichnet ist, können anschaulicher wei Indies (i, j) ur 'Adressierung' verwendet werden. Entsprechend muss über beide Indies summiert werden. (, ) V (, ) A k i j n i n i n n j j i (, ) i j j (,) (, ) k i j A Übergang um Doppelintegral: n n i j V lim (, ) V ni, nj i 1 j 1, 0 G (, ) dd i j Folie 4

5 Doppelintegrale Die jeweiligen Integrationsgrenen sind durch die Geometrie des Integrationsbereichs festgelegt. und d... wirken jeweils wie eine Klammer. Man muss darauf achten, dass die, für die entsprechende Variable utreffenden Integrationsgrenen, jeweils an das richtige Integral geschrieben werden. Für die im Eingangsbeispiel verwendet Reihenfolge gilt: G (, ) da (, ) dd (, ) d d, d.h. die Integrationsgrenen für gehören um inneren Integral, die -Grenen um Äußeren. Die Integration erfolgt von,von innen nach außen. Für die hier festgelegte Reihenfolge wird also uerst über integriert, wird hierbei (genau wie bei partiellen Ableitungen) wie eine Zahl behandelt. Anschließend führt man die Integration über durch. Dies geschieht genau wie bei herkömmlichen Einfachintegralen. G o u o u Folie 5

6 Doppelintegrale Rechenbeispiel mit rechteckigem Integrationsgebiet Beispiel: Integriert werden soll die Funktion (,)=3 (s. Abb. rechts) Das Integrationsgebiet entspricht dem geeigten Bereich in der --Ebene. Um die Integrationsgrenen u identifiieren, betrachtet man die Projektion auf die --Ebene: o Für die -Integrationsgrenen gilt also: 0 4 u u o Für die -Integrationsgrenen gilt: 1 5 Folie 6

7 Doppelintegrale Rechenbeispiel mit rechteckigem Integrationsgebiet Beispiel: (,)= (, ) da (, ) dd 3 d d G G 1 0 Man integriert von innen nach außen, d.h. unächst löst man das -Integral, wird dabei wie eine Zahl behandelt: d 3 d 3 ( 4 0) Jett das äußere Integral: d ( 5 1) Endergebnis: 5 4 (, ) da (, ) dd 3 d d 99 G G 1 0 Folie 7

8 Doppelintegrale Rechteckiges Integrationsgebiet Zusammenfassung Rechteckige Integrationsgebiete sind definiert durch: da (, ) dd (, ) dd (, ) G G o u Bei der Berechnung ist u beachten: Es wird wei mal nacheinander integriert Von innen nach außen Inneres Integral: alles was nicht heißt ist (wie) eine Zahl Äußeres Integral: gan normal. Alle sind ausintegriert. o u -Bereich: u o -Bereich: u o Übung: Integrieren Sie die Funktion (,)= über das Gebiet: Zur Kontrolle das Ergebnis: 564 Folie 8

9 Doppelintegrale beliebige Integrationsgebiete Das für rechteckige Integrationsgebiete geeigte Vorgehen lässt sich unmittelbar auf allgemeinere Integrationsgebiete, mit eingrenenden Funktionen, übertragen. Betrachten wir das Volumen, welches durch die abgebildetes Deckelfläche (Funktion (,)) und die geeigte Grundfläche (Integrationsgebiet) definiert ist. Deckel: (,) Die Integrationsgrenen sind wieder am besten mit Hilfe der Projektion u bestimmen: Die -Grenen sind jett durch wei Funktionen definiert: f u () f o (). Bgl. der -Grenen verfährt man wie uvor: u o. f ( ) V da (, ) dd (, ) dd (, ) G G a f ( ) b o u u f o () f u () o Grundfläc Folie 9

10 Doppelintegrale Rechenbeispiel mit allgemeinem Integrationsgebiet Beispiel: Integriert werden soll wieder die Funktion: (,)=3 (s. Abb. rechts) Das Integrationsgebiet ist jett trapeförmig. Um die Integrationsgrenen u identifiieren, betrachtet man wieder die Projektion: f o () Für die -Integrationsgrenen gilt: f o ()=, f u ()=0 also 0 u f u () o Für die -Integrationsgrenen gilt: 1 5 Folie 10

11 Doppelintegrale Rechenbeispiel mit allgemeinem Integrationsgebiet Beispiel: (,)= 3 5 (, ) da (, ) dd 3 d d G G 1 0 Zunächst das -Integral, (im Integranden und als Integrationsgrene) wird hierbei wieder wie eine Zahl behandelt: d 3 d 3 ( 0) Jett das äußere Integral: d ( 5 1) 937. Folie 11

12 Doppelintegrale Rechenbeispiel mit allgemeinem Integrationsgebiet Übung: Integrieren Sie die Funktion (,)= über das Gebiet: Zur Kontrolle das Ergebnis: Folie 1

13 Doppelintegrale vereinfachte Berechnung Unter folgenden Voraussetungen lässt sich die Berechnung von Doppelintegralen vereinfachen: 1. Die Integrationsgrenen für beide Veränderliche sind konstant. Der Integrand lässt sich in ein Produkt erlegen, wobei der eine Faktor nur von, der andere nur von abhängt, also (,) = u() v() Dann (und nur dann!) gilt: o o o o g( ) h( ) d d u( ) d v( ) d u u u u Unter den Voraussetungen 1. &. lässt sich also ein Doppelintegral als Produkt weier Einfachintegrale schreiben. Folie 13

14 Doppelintegrale vereinfachte Berechnung Beispiel Die Funktion, e soll über das Gebiet integriert werden: G, da e dd G Vor. 1. &. erfüllt e e d d e d e d Substitution: u e e 15. e 1 e e Folie 14

15 Doppelintegrale Polarkoordinaten Das bisher besprochene Vorgehen ist prinipiell für sehr allgemeine Integrationsgebiete anwendbar. Je nach Art der berandenden Funktionen, können die auftretenden Integrale aber schnell kompliiert werden. Bei runden Integrationsgebieten oder solchen, die aus Kreissegmenten aufgebaut sind, bieten sich oft Polarkoordinaten an. Bei Polarkoordinaten werden die kartesischen Koordinaten und eines Punktes durch den entsprechenden Radius (Abstand wischen Punkt und Ursprung) und einen Winkel beschrieben: = r cos() = r sin() Folie 15

16 Doppelintegrale Polarkoordinaten Bei der Integration müssen: 1. die Integrationsgrenen,. der Integrand und 3. die Differentiale da=dd in Polarkoordinaten ausgedrückt werden (vergl. 'Übersetungsvorschrift' nächste Seite). Zur Beschreibung des Flächenelements: in kartesischen Koordinaten: da d d dr in Polarkoordinaten: da rd dr r+dr P d d d d r P r Die Größe der blauen Fläche (= da) ergibt sich (näherungsweise) u rd dr. Im Doppelintegral taucht also ein usätlicher Faktor r auf. Folie 16

17 Doppelintegrale Übersetungsvorschriften in kartesischen Koordinaten: G (, ) da f ( ) o o f ( ) u u (, ) dd in Polarkoordinaten: G (, ) da rcos rsin r r r 1 1 ( rcos rsin ) r d dr, Folie 17

18 Doppelintegrale Polarkoordinaten Integrationsgrenen Bestimmung der Radien: innerer Radius = untere Integrationsgrene äußerer Radius = obere Integrationsgrene Zur Bestimmung der eingrenenden Winkel: Die Fläche wird gegen den Uhreigersinn überstrichen. Zuerst Winkel dann = untere Integrationsgrene = obere Integrationsgrene r r Es muss gelten < r r 1 1 ( rcos rsin ), r d dr Beispiel: für das eingefärbte Integrationsgebiet gilt 3 1 / 4 ( rcos rsin ), r d dr Folie 18

19 Doppelintegrale Polarkoordinaten Beispiel Beispiel: Gesucht ist das Flächenträgheitsmoment I der abgebildeten Fläche. (Allgemein werden Flächenträgheitsmomente mit Hilfe von Doppelintegralen berechnet, wobei das Integrationsgebiet durch den entsprechenden (Balken-) Querschnitt definiert ist.) Es gilt: I G da Integration in Polarkoordinaten: 1) ) I da r sin ddr r dr sin d r dr 1 cos( ) d G 0 / 5 0 / 5 0 / / r sin( ) 4 sin 4 sin ) Da die Voraussetungen erfüllt sind, kann das Doppelintegral als Produkt weier Einfachintegrale geschrieben werden (vergl. Folie 13). ) Es gilt: sin 1 1 cos( ) Folie 19

20 Doppelintegrale Unterteilen von Integrationsgebieten Wie bei einfachen Integralen, können Integrationsgebiete auch bei Doppelintegralen geteilt werden: (, ) da (, ) da (, ) da G G G G 1 1 Man teilt das Integrationsgebiet so auf, dass über jedes Teilgebiet in angepassten Koordinaten integriert werden kann. Beispielsweise bietet sich beim rechts abgebildeten Integrationsgebiet folgende Aufteilung an: (, ) da (, ) da (, ) da r f ( ), (, ) da ( rcos rsin ) rd dr (, ) dd r f ( ) 1 1 u u o o Folie 0

21 Doppelintegrale Unterteilen von Integrationsgebieten Übung: Bestimmen Sie geeignete Unterteilungen und die entsprechenden Integrationsgrenen. Wie lauten die entsprechenden Doppelintegrale? die Integration selbst ist hier nicht gefragt. a) b) da ( ) G da G ur Kontrolle s. nächste Seite. Folie 1

22 Doppelintegrale Unterteilen von Integrationsgebieten Lösung: a) Linke Seite mit Polarkordinaten, b) Hier muss in drei Gebiete aufgeteilt rechts kartesisch: werden: Halbkreis, Dreieck, Viereck (, ) (, ) ( ) da (, ) da (, ) da (, ) G G1 G r cos ( )sin( ) ddr dd da (, ) da (, ) da (, ) da (, ) G G1 G G r sin( ) ddr ( ) dd ( ) dd 44 Folie

23 Doppelintegrale Doppelintegrale werden eingeführt, weiterhin wird die Bestimmung der Integrationsgrenen und die Integration in kartesischen - und in Polarkoordinaten besprochen. Vorwissen: Grundlagen ur Integration. Um die Grundidee hinter Doppelintegralen u verstehen, betrachten wir als einführendes Beispiel die Volumenberechnung wischen einer in der --Ebene liegenden Grundfläche und einer darüber liegenden Fläche, gegeben durch eine Funktion (,). Folie 3

24 Doppelintegrale Folie 4

Mehrfachintegrale 1-E1. Ma 2 Lubov Vassilevskaya

Mehrfachintegrale 1-E1. Ma 2 Lubov Vassilevskaya Mehrfachintegrale 1-E1 1-E2 Mehrfachintegrale c Die Erweiterung des Integralbegriffs führt zu den Mehrfachintegralen, die in den naturwissenschaftlich-technischen Anwendungen u.a. bei der Berechnung der

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 8

Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 8 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 212/1 Vorlesung 8 Integration über ebene Bereiche Wir betrachten einen regulären Bereich in der x-y Ebene, der einfach zusammenhängend ist.

Mehr

7 Differential- und Integralrechung für Funktionen

7 Differential- und Integralrechung für Funktionen Differential- und Integralrechung für Funktionen mehrer Veränderlicher 7 7 Differential- und Integralrechung für Funktionen mehrer Veränderlicher Die Differential- und Integralrechung für Funktionen mehrer

Mehr

Mathematik II Frühlingssemester 2019 Kapitel 10: Mehrdimensionale Integrale

Mathematik II Frühlingssemester 2019 Kapitel 10: Mehrdimensionale Integrale Mathematik II Frühlingssemester 2019 Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 40 10. Mehrdimensionale Integrale Doppelintegrale Definition und geometrische Deutung von Doppelintegralen

Mehr

Mathematik II für MB und ME

Mathematik II für MB und ME Übungsaufgaben Serie : Integralrechnung. Berechnen Sie folgende Integrale 3 + 2 2 d, b) d) sin(3) cos(3) d, e) Mathematik II für MB und ME e a d, c) 6 d, f) + 2 2. Berechnen Sie durch geeignete Substitution

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt Übungen zur Ingenieur-Mathematik III WS 9/ Blatt 4..9 Aufgabe : Berechnen Sie das Volumen des Volltorus, der durch Rotation der reisscheibe { x,, z R 3, x b + z a } mit < a < b um die z-achse entsteht.

Mehr

14.3 Berechnung gekrümmter Flächen

14.3 Berechnung gekrümmter Flächen 4.3 Berechnung gekrümmter Flächen Gekrümmte Flächen werden berechnet, indem sie als Graph einer Funktion zweier Veränderlicher aufgefasst werden. Fläche des Graphen einer Funktion zweier Veränderlicher

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 9: Mehrdimensionale Integrale Prof. Dr. Erich Walter Farkas Mathematik I+II, 9. Mehrdim. Int. 1 / 39 1 Doppelintegrale 2 Prof.

Mehr

Zylinderkoordinaten 1 E1. Ma 2 Lubov Vassilevskaya

Zylinderkoordinaten 1 E1. Ma 2 Lubov Vassilevskaya Zylinderkoordinaten E E E3 Berechnung in beliebigen krummlinigen Koordinaten Die Koordinaten sind durch die Beziehungen definiert: x x u, v, w, y y u, v, w, z z u, v, w Für sie sollen stetige partielle

Mehr

ein geeignetes Koordinatensystem zu verwenden.

ein geeignetes Koordinatensystem zu verwenden. 1.13 Koordinatensysteme (Anwendungen) Man ist immer bemüht, für die mathematische Beschreibung einer wissenschaftlichen Aufgabe ( Chemie, Biologie,Physik ) ein geeignetes Koordinatensystem zu verwenden.

Mehr

Serie 5. Figure 1: 1.a)

Serie 5. Figure 1: 1.a) Analsis D-BAUG Dr. Cornelia Busch FS 16 Serie 5 1. Bei den folgenden Integralen ist die Reihenfolge der Integrationen umzukehren: Die innere Variable soll zur äusseren werden und umgekehrt. Wie lautet

Mehr

Funktionen mehrerer Variablen: Integralrechnung. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya

Funktionen mehrerer Variablen: Integralrechnung. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya Funktionen mehrerer Variablen: Integralrechnung ufgaben mit Lösungen Jörg Gayler, Lubov Vassilevskaya Inhaltsverzeichnis ii Doppelintegrale. Doppelintegrale.. Doppelintegrale mit konstanten Integrationsgrenzen

Mehr

Abitur 2010 Mathematik LK Geometrie V

Abitur 2010 Mathematik LK Geometrie V Seite http://www.abiturloesung.de/ Seite Abitur Mathematik LK Geometrie V Gegeben sind in einem kartesischen Koordinatensystem des R der Punkt A( ) und die Menge der Punkte B k ( k) mit k R. Die Punkte

Mehr

Die nummerierten Felder bitte mithilfe der Videos ausfüllen:

Die nummerierten Felder bitte mithilfe der Videos ausfüllen: 5 Koordinatensysteme Zoltán Zomotor Versionsstand: 6. August 2015, 21:43 Die nummerierten Felder bitte mithilfe der Videos ausfüllen: http://www.z5z6.de This work is based on the works of Jörn Loviscach

Mehr

Mehrdimensionale Integralrechnung 1

Mehrdimensionale Integralrechnung 1 Mehrdimensionale Integralrechnung Im - dimensionalen Fall wurde die Integralrechnung eingeführt, um Flächen unter Kurven zu berechnen. Eine ähnliche Fragestellung führt uns auf die mehrdimensionale Integralrechnung.

Mehr

Analysis II für M, LaG/M, Ph 12. Übungsblatt

Analysis II für M, LaG/M, Ph 12. Übungsblatt Analysis II für M, La/M, Ph. Übungsblatt Fachbereich Mathematik WS / Prof. Dr. Christian Herrmann 8.. Vassilis regoriades Horst Heck ruppenübung Aufgabe. erechnen Sie das ebietsintegral sin (x y) d, wobei

Mehr

Kursarbeit Nr.1 LK Mathematik NAME :

Kursarbeit Nr.1 LK Mathematik NAME : Kursarbeit Nr.1 LK Mathematik 7. 10. 2004 1. Bestimmen Sie eine Stammfunktion F zur angegebenen Funktion f! a) f :R R, f x =1 1 x 100 b) f :R R, f x =sin 2 x 5 x c) f :R R, f x = x 5 x 3 2 2 x 2 2. Berechnen

Mehr

K A P I T E L - I N T E G

K A P I T E L - I N T E G Seitee 1 / 17 K A P I T E L - I N T E G R A L R E C H N U N G 1 Grundlagen Ist eine gegebene Funktion die Ableitung einer Funktion,, also, so heißt STAMMFUNKTION oder ein INTEGRAL von. Die Integration

Mehr

Integrationsregeln, Integration durch Substitution. 1-E1 Ma 1 Lubov Vassilevskaya

Integrationsregeln, Integration durch Substitution. 1-E1 Ma 1 Lubov Vassilevskaya Integrationsregeln, Integration durch Substitution 1-E1 Ma 1 Lubov Vassilevskaya 1-E2 Ma 1 Lubov Vassilevskaya 1-E3 Ma 1 Lubov Vassilevskaya Integrationsregeln Faktorregel: b a b C f x dx = C a f x dx

Mehr

Aufgabenkomplex 3: Integralrechnung, Kurven im Raum

Aufgabenkomplex 3: Integralrechnung, Kurven im Raum Technische Universität Chemnit. Mai Fakultät für Mathematik Höhere Mathematik I. Aufgabenkomple : Integralrechnung, Kurven im Raum Letter Abgabetermin: 6. Mai in Übung oder Briefkasten bei Zimmer Rh. Str.

Mehr

12. Mehrfachintegrale

12. Mehrfachintegrale - 1-1. Mehrfachintegrale Flächen- und Volumenelemente Naive Gemüter sind geneigt, den Flächeninhalt dx dy (kartesische Koordinaten) in den neuen Koordinaten durch du dv anzugeben. Das ist i.a. falsch!

Mehr

Mathematische Einführung

Mathematische Einführung Lehrstuhl für Technische Elektrophysik Technische Universität München Übungen zu "Elektrizitätslehre" (Prof. Wachutka) Mathematische Einführung Die vorliegende Einführung in die Mathematik zur Vorlesung

Mehr

Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005

Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005 Einführung in die Integralrechnung Mag. Mone Denninger. November 5 INHALTSVERZEICHNIS 8. Klasse Inhaltsverzeichnis Einleitung Berechnung einfacher Stammfunktionen. Integrationsregeln.........................

Mehr

Kreise DEMO. Text Nr Stand 22. September 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.

Kreise DEMO. Text Nr Stand 22. September 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Kreise Tet Nr. 5050 Stand. September 016 DEO FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULATHEATIK 5050 Kreis Vorwort Der Kreis ist ein Standardthema im Schulunterricht. Daher kommt er in der Internetbibliothek

Mehr

Partielle Ableitungen & Tangentialebenen. Folie 1

Partielle Ableitungen & Tangentialebenen. Folie 1 Partielle Ableitungen & Tangentialebenen Folie 1 Bei Funktionen mit einer Variable, gibt die Ableitung f () die Steigung an. Bei mehreren Variablen, z(,), gibt es keine eindeutige Steigung. Die Steigung

Mehr

Uneigentliche Integrale

Uneigentliche Integrale Uneigentliche Integrale -E Ma Lubov Vassilevskaya Integrierbarkeit ccvon Funktionen Folgende Gründe können die Integrierbarkeit verhindern: Die Funktion f (x) ist im endlichen Integrationsintervall [a,

Mehr

Integralrechnung für Funktionen mehrerer Variabler

Integralrechnung für Funktionen mehrerer Variabler Inhaltsverzeichnis 9 Integralrechnung für Funktionen mehrerer ariabler 36 9. Integration über ebene Bereiche in kartesischen Koordinaten.............. 36 9. Integration über ebene Bereiche in Polarkoordinaten..................

Mehr

Höhere Mathematik für Ingenieure 2

Höhere Mathematik für Ingenieure 2 Prüfungklausur (A) zum Modul Höhere Mathematik für Ingenieure 5. Juli 8, 8. - 1. Uhr (1.Termin) - Lösungen zum Theorieteil - Aufgabe 1: Die -periodische Funktion f : R R sei auf [, ) gegeben durch + 3,

Mehr

Serie 6. x 2 + y 2, 0 z 4.

Serie 6. x 2 + y 2, 0 z 4. Analysis D-BAUG Dr. Cornelia Busch FS 6 Serie 6. Wir betrachten drei verschiedene Flaschen in der Form eines Paraboloids P, eines Hyperboloids H und eines Kegels K. Diese sind wie folgt gegeben: P = {

Mehr

ein Normalbereich bezüglich der y-achse, siehe Abbildung 2.3.

ein Normalbereich bezüglich der y-achse, siehe Abbildung 2.3. Lektion 2 Doppelintegrale 2. Doppelintegrale über einem Normalbereich Wir wollen das Integral für eine reellwertige, stetige Funktion mit zwei reellen Veränderlichen, einführen. Motiviert wird dies durch

Mehr

Schwerpunkte des Kapitels Differentialrechnung für skalare Felder Integralrechnung für skalare Felder Kurvenintegrale. Aufgabe 9.2 Aufgabe 9.

Schwerpunkte des Kapitels Differentialrechnung für skalare Felder Integralrechnung für skalare Felder Kurvenintegrale. Aufgabe 9.2 Aufgabe 9. 9. Mehrdimensionale Analysis 1/42 9. Mehrdimensionale Analysis Differentialrechnung für skalare Felder 2/42 Schwerpunkte des Kapitels Differentialrechnung für skalare Felder Integralrechnung für skalare

Mehr

24 Mehrdimensionale Integrale

24 Mehrdimensionale Integrale 24 Mehrdimensionale Integrale Jörn Loviscach Versionsstand: 20. März 2012, 16:00 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu: http://www.j3l7h.de/videos.html

Mehr

Räumliche Bereichsintegrale mit Koordinatentransformation

Räumliche Bereichsintegrale mit Koordinatentransformation Räumliche Bereichsintegrale mit Koordinatentransformation Gegeben seien ein räumlicher Bereich, das heißt ein Körper K im R 3, und eine von drei Variablen abhängige Funktion f f(,, z). Die Aufgabe bestehe

Mehr

x = r cos ', y = r sin ',wobei 0 6 r 6 2, z = z und somit

x = r cos ', y = r sin ',wobei 0 6 r 6 2, z = z und somit zu c). Ü erechnen Sie das Volumen und die Masse des Körpers aus Ü.; Der Körper aus Aufgabe Ü.; ist begrenzt durch die Flächen mit den Gleichungen z, + y und y z mit z >. Für die Dichte gelte (; y; z) +

Mehr

Lösung Pflichtteilaufgaben zur Integralrechnung

Lösung Pflichtteilaufgaben zur Integralrechnung Testklausur K Integralrechnung# Lösung Pflichtteilaufgaben ur Integralrechnung Aufgabe : a) F) + b) f) F) Aufgabe : n+ n+ a) f) F) n + Für n kann keine Stammfunktion angegeben werden. Hinweis: Für die

Mehr

Mathematik - Oberstufe

Mathematik - Oberstufe Mathematik - Oberstufe Pflicht- /Wahlteilaufgaben und Musterlösungen ur Integralrechnung Zielgruppe: Oberstufe Gymnasium Schwerpunkt: Stammfunktion, Flächenberechnung, Rotationsvolumen Aleander Schwar

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 2. Juli 2018 1/1 Wir geben einige wesentliche Sätze über bestimmte Integrale an, deren Beweise man in den Standardlehrbüchern der Analysis findet.

Mehr

Serie 6: Mehrfachintegrale und ihre Hauptsubstitutionen. D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Bemerkungen:

Serie 6: Mehrfachintegrale und ihre Hauptsubstitutionen. D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Bemerkungen: D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 6: Mehrfachintegrale und ihre Hauptsubstitutionen emerkungen: Die Aufgaben der Serie 6 bilden den Fokus der Übungsgruppen vom 3. März/2. April..

Mehr

Abitur 2010 Mathematik GK Geometrie VI

Abitur 2010 Mathematik GK Geometrie VI Seite http://www.abiturloesung.de/ Seite Abitur Mathematik GK Geometrie VI In einem kartesischen Koordinatensystem mit Ursprung O sind die Punkte A( ), B( ) und die Gerade g : x = O A + λ, λ R, gegeben.

Mehr

2. Flächenträgheitsmomente

2. Flächenträgheitsmomente . Flächenträgheitsmomente.1 Definitionen. Zusammengesette Querschnitte.3 Hauptachsen Prof. Dr. Wandinger 3. Balken TM 3.-1 .1 Definitionen Flächenträgheitsmomente: Die ur Berechnung der Spannungen eingeführten

Mehr

2. Flächenträgheitsmomente

2. Flächenträgheitsmomente . Flächenträgheitsmomente.1 Definitionen. Zusammengesette Querschnitte.3 Hauptachsen Prof. Dr. Wandinger 3. Balken TM 3.-1 .1 Definitionen Flächenträgheitsmomente: Die ur Berechnung der Spannungen eingeführten

Mehr

Spiralen DEMO. Text Nr Stand 9. März 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.

Spiralen DEMO. Text Nr Stand 9. März 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Spiralen Text Nr. 5435 Stand 9. März 06 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 5435 Spiralen Vorwort Es gibt eine ganze Reihe von spiralähnlichen Kurven. Einige davon habe ich für diesen

Mehr

Abitur 2016 Mathematik Geometrie V

Abitur 2016 Mathematik Geometrie V Seite http://www.abiturloesung.de/ Seite Abitur Mathematik Geometrie V Betrachtet wird der abgebildete Würfel A B C D E F G H. Die Eckpunkte D, E, F und H dieses Würfels besitzen in einem kartesischen

Mehr

Mathematik für Ingenieure 2

Mathematik für Ingenieure 2 Mathematik für Ingenieure 2 Funktionen mit mehreren Veränderlichen 1 (Grundlagen) 1 Einführung Einführung und Beispiele 2 Einführung (1) - Beispiele Bisher haben wir ausschließlich Funktionen mit einer

Mehr

Integralrechnung für GLET

Integralrechnung für GLET Freitagsrunden Tech Talk November 2, 2012 1 Grundlagen Rechenregeln für Integrale 2 Mehrdimensionale Integrale Flächenintegrale Volumenintegrale Lösbar? 3 Kugel- und Zylinderkoordinaten Kugelkoordinaten

Mehr

Höhere Mathematik für Ingenieure 2

Höhere Mathematik für Ingenieure 2 Prüfungklausur zum Modul Höhere Mathematik für Ingenieure 5. Juli 8, 3. - 7. Uhr.Termin - Lösungen zum Aufgabenteil - Aufgabe : Gegeben sei die Funktion f 3. 7 Punkte erechnen Sie näherungsweise den Wert

Mehr

Klausur Mathematik I

Klausur Mathematik I Klausur Mathematik I E-Techniker/Mechatroniker/Informatiker/W-Ingenieure). März 007 Hans-Georg Rück) Aufgabe 6 Punkte): a) Berechnen Sie alle komplexen Zahlen z mit der Eigenschaft z z = und z ) z ) =.

Mehr

7. Integralrechnung. Literatur: [SH, Kapitel 9]

7. Integralrechnung. Literatur: [SH, Kapitel 9] 7. Integralrechnung Literatur: [SH, Kapitel 9] 7.. Was sind Integrale? 7.2. Unbestimmte Integrale 7.3. Flächen und bestimmte Integrale 7.4. Eigenschaften und bestimmte Integrale 7.5. Partielle Integration

Mehr

1 Definition und Konstruktion vektorwertiger Funktionen und Funktionen mehrerer Variabler

1 Definition und Konstruktion vektorwertiger Funktionen und Funktionen mehrerer Variabler Zusammenfassung Kapitel IV: Funktionen mehrerer Veränderlicher und vektorwertige Funktionen 1 Definition und Konstruktion vektorwertiger Funktionen und Funktionen mehrerer Variabler Definition vektorwertige

Mehr

Solutions I Publication:

Solutions I Publication: WS 215/16 Solutions I Publication: 28.1.15 1 Vektor I 4 2 Ein Objekt A befindet sich bei a = 5. Das zweite Objekt B befindet sich bei b = 4. 2 3 (a) Die Entfernung von Objekt A zum Ursprung ist die Länge

Mehr

Substitution bei bestimmten Integralen. 1-E1 Ma 1 Lubov Vassilevskaya

Substitution bei bestimmten Integralen. 1-E1 Ma 1 Lubov Vassilevskaya Substitution bei bestimmten Integralen -E Ma Lubov Vassilevskaya -E Ma Lubov Vassilevskaya Substitution bei bestimmten Integralen: Lernziele Was wir wissen: Wann berechnet man Integrale mit Hilfe einer

Mehr

Mathematik für Biologen und Chemiker Prof. Scheltho - Übungen Mathe 2

Mathematik für Biologen und Chemiker Prof. Scheltho - Übungen Mathe 2 Mathematik für Biologen und Chemiker Prof. Scheltho - Übungen Mathe 2 Fortsetzung der komlexen Zahlen : 9. Radizieren und Potenzen a) Berechnen Sie (1+i) 20 und geben Sie das Resultat als Polarkoordinaten

Mehr

D-ERDW, D-HEST, D-USYS Mathematik II FS 16 Dr. Ana Cannas. MC-Serie 3. Kurven in der Ebene Einsendeschluss: 18. März 2016, 16 Uhr (MEZ)

D-ERDW, D-HEST, D-USYS Mathematik II FS 16 Dr. Ana Cannas. MC-Serie 3. Kurven in der Ebene Einsendeschluss: 18. März 2016, 16 Uhr (MEZ) D-ERDW, D-HEST, D-USYS Mathematik II FS 16 Dr. Ana Cannas MC-Serie 3 Kurven in der Ebene Einsendeschluss: 18. März 216, 16 Uhr (MEZ) Bei allen Aufgaben ist genau eine Antwort richtig. Sie dürfen während

Mehr

8 Euklidische Vektorräume und Fourierreihen

8 Euklidische Vektorräume und Fourierreihen Mathematik für Ingenieure II, SS 9 Dienstag 7.7 $Id: fourier.te,v 1.6 9/7/7 13:: hk Ep $ $Id: diff.te,v 1. 9/7/7 16:13:53 hk Ep $ 8 Euklidische Vektorräume und Fourierreihen 8.4 Anwendungen auf Differentialgleichungen

Mehr

Abitur 2011 G8 Musterabitur Mathematik Geometrie VI

Abitur 2011 G8 Musterabitur Mathematik Geometrie VI Seite http://www.abiturloesung.de/ Seite Abitur G8 Musterabitur Mathematik Geometrie VI In einem kartesischen Koordinatensystem ist ein Würfel W der Kantenlänge gegeben. Die Eckpunkte G ( ) und D ( ) legen

Mehr

12 Gewöhnliche Differentialgleichungen

12 Gewöhnliche Differentialgleichungen 12 Gewöhnliche Differentialgleichungen 121 Einführende Beispiele und Grundbegriffe Beispiel 1 ( senkrechter Wurf ) v 0 Ein Flugkörper werde zum Zeitpunkt t = 0 in der Höhe s = 0 t = 0 s = 0 mit der Startgeschwindigkeit

Mehr

Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1...

Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1... Pflichtteil Wahlteil Analysis 8 Wahlteil Analysis Wahlteil Analysis 9 Wahlteil Analytische Geometrie Wahlteil Analytische Geometrie 9 Lösungen: Pflichtteil Lösungen zur Prüfung : Pflichtteil Benötigte

Mehr

7 Integralrechnung für Funktionen einer Variablen

7 Integralrechnung für Funktionen einer Variablen 7 Integralrechnung für Funktionen einer Variablen In diesem Kapitel sei stets D R, und I R ein Intervall. 7. Das unbestimmte Integral (Stammfunktion) Es sei f : I R eine Funktion. Eine differenzierbare

Mehr

Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 15

Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 15 5. Es sei Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 5 f(x, y) : x y, : x, y, x + y, y x. erechnen Sie f(x, y) d. Wir lösen diese Aufgabe auf zweierlei Art. Zuerst betrachten wir das Gebiet

Mehr

1. Ebene gerade Balken

1. Ebene gerade Balken 1. Ebene gerade Balken Betrachtet werden gerade Balken, die nur in der -Ebene belastet werden. Prof. Dr. Wandinger 4. Schnittlasten bei Balken TM 1 4.1-1 1. Ebene gerade Balken 1.1 Schnittlasten 1.2 Balken

Mehr

Ein Integral einer stetigen Funktion über einem Elementarbereich. lässt sich durch Hintereinanderausführung eindimensionaler Integrationen berechnen:

Ein Integral einer stetigen Funktion über einem Elementarbereich. lässt sich durch Hintereinanderausführung eindimensionaler Integrationen berechnen: Satz von Fubini Ein Integral einer stetigen Funktion über einem Elementarbereich V : a j (x 1,..., x j 1 ) x j b j (x 1,..., x j 1 ) lässt sich durch Hintereinanderausführung eindimensionaler Integrationen

Mehr

Folie 1. Taylor-Reihen

Folie 1. Taylor-Reihen Folie 4 e!!! 4! Taylor-Reihen Im Zusammenhang mit der Berechnung von Tangenten hatten wir den Begriff der Linearisierung eingeführt. Dies bedeutet, dass eine Funktion in einem Teilbereich durch eine Tangente

Mehr

Ferienkurs Analysis 3 für Physiker. Übung: Integration im R n

Ferienkurs Analysis 3 für Physiker. Übung: Integration im R n Ferienkurs Analysis für Physiker Übung: Integration im R n Autor: Benjamin Rüth Stand: 6. Mär 4 Aufgabe (Zylinder) Gegeben sei der Zylinder Z der Höhe h > über dem in der x-y-ebene gelegenen reis mit Radius

Mehr

Lineare Differentialgleichungen 1. Ordnung

Lineare Differentialgleichungen 1. Ordnung Lineare Differentialgleichungen 1. Ordnung Eine lineare Differentialgleichung 1. Ordnung hat folgende Gestalt: +f() = r(). Dabei sind f() und r() gewisse, nur von abhängige Funktionen. Wichtig: sowohl

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt N dl. y 3

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt N dl. y 3 Übungen zur Ingenieur-Mathematik III WS / Blatt 9.. Aufgabe 5: Berechnen Sie das Integral K ( x y N dl über den Rand des Kreises K {(x, y x + y } einmal direkt mit Hilfe einer geeigneten Parametrisierung

Mehr

Mehrdimensionale Integration

Mehrdimensionale Integration Kapitel C Mehrdimensionale Integration h s r h h r h r Inhalt dieses Kapitels C000 1 Der Satz von Fubini 3 Aufgaben und Anwendungen 1 Vertauschen von Integral und Reihe Mehrdimensionale Integration #Der

Mehr

Vorkurs Mathematik für Ingenieur Innen WS 2018/2019 Übung 8

Vorkurs Mathematik für Ingenieur Innen WS 2018/2019 Übung 8 Prof. Dr. J. Pannek Dynamics in Logistics Vorkurs Mathematik für Ingenieur Innen WS 8/9 Übung 8 Aufgabe : Integration a) Berechnen Sie die folgenden Integrale: i) 4x + ) dx ii) 8 3 x dx iii) 3 x3 ) dx

Mehr

Mathematik I Herbstsemester 2018 Kapitel 5: Integralrechnung

Mathematik I Herbstsemester 2018 Kapitel 5: Integralrechnung Mathematik I Herbstsemester 208 Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas / 70 5. Integralrechnung Grundbegriffe Das bestimmte Integral als Flächeninhalt Der Fundamentalsatz Partielle

Mehr

x + y + z = 6, x = 0, z = 0, x + 2y = 4, indem Sie das Volumen als Dreifachintegral schreiben.

x + y + z = 6, x = 0, z = 0, x + 2y = 4, indem Sie das Volumen als Dreifachintegral schreiben. Übungen (Aufg. u. Lösungen) zur Ingenieur-Mathematik II SS 8 Blatt 1 3.7.8 Aufgabe 47: Berechnen Sie das Volumen des von den folgenden Flächen begrenzten Körpers x + y + z 6, x, z, x + y 4, indem Sie das

Mehr

III. Integralrechnung 7. Übungen für die Klausur Teil 1 - Integralrechnung

III. Integralrechnung 7. Übungen für die Klausur Teil 1 - Integralrechnung III. Integralrechnung 7. Übungen für die Klausur Teil - Integralrechnung Beachten Sie auch die Materialien aus dem Unterricht. Hier finden Sie viele Übungen, die Sie entweder noch nicht gemacht haben oder

Mehr

Übungen zu Moderne Theoretischen Physik III SS Maxwell-Verteilung: (30 Punkte, schriftlich)

Übungen zu Moderne Theoretischen Physik III SS Maxwell-Verteilung: (30 Punkte, schriftlich) Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zu Moderne Theoretischen Physik III SS 06 Prof. Dr. A. Shnirman Blatt 4 PD Dr. B. arozhny, P. Schad Lösungsvorschlag.

Mehr

Mathematik LK13 Kursarbeit Musterlösung Aufgabe I:

Mathematik LK13 Kursarbeit Musterlösung Aufgabe I: Mathematik LK13 Kursarbeit 1 6.11.14 Musterlösung Aufgabe I: Analysis I 1. Spaß mit natürlichen Eponentialfunktionen Gegeben sind die Funktionen f ()=e ( + ) und g ( )=5 e Untersuchen Sie beide Funktionen

Mehr

Partielle Ableitungen

Partielle Ableitungen Partielle Ableitungen 7-E Partielle Ableitungen einer Funktion von n Variablen Bei einer Funktion y f x1, x,..., xn von n unabhängigen Variablen x1, x,..., x n lassen sich insgesamt n partielle Ableitungen

Mehr

Prof. D. Salamon Funktionentheorie ETH Zürich MATH, PHYS 3. November Musterlösungen 6

Prof. D. Salamon Funktionentheorie ETH Zürich MATH, PHYS 3. November Musterlösungen 6 Prof. D. Salamon Funktionentheorie ETH Zürich MATH, PHYS 3. November 009 Musterlösungen 6. Sei B r := { C < r} und f : C C durch 3 + definiert. Welches ist der grösste Wert von r so dass f Br injektiv

Mehr

Transformation Allgemeines Die Lage eines Punktes kann durch einen Ortsvektor (ausgehend vom Ursprung des Koordinatensystems

Transformation Allgemeines Die Lage eines Punktes kann durch einen Ortsvektor (ausgehend vom Ursprung des Koordinatensystems Transformation - 1 1. Allgemeines 2. Zwei durch eine Translation verknüpfte gleichartige Basissysteme 3. Zwei durch eine Translation verknüpfte verschiedenartige Basissysteme (noch gleiche Orientierung)

Mehr

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Vorkurs Mathematik Übungen zu Komplexen Zahlen Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten

Mehr

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 1 /27 Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra 8. Das Skalarprodukt, metrische

Mehr

L Hospitial - Lösungen der Aufgaben

L Hospitial - Lösungen der Aufgaben A ln - (Zähler und Nenner müssen gegen gehen, wenn gegen geht): Für geht der Zähler gegen ln Für geht der Nenner gegen - ( ln ) ' ( )' - L'Hospital darf angewendet werden Zähler und Nenner differenzieren

Mehr

Funktionen mehrerer Variablen

Funktionen mehrerer Variablen Funktionen mehrerer Variablen Partielle Ableitungen 1-E Die Grundfragen Um Differentialrechnung im Mehrdimensionalen zu formulieren, müssen wir folgende Fragen beantworten: 1-1 Wie wird die Konstruktion

Mehr

Musteraufgaben zu den Mathematikmodulen Ein Selbsttest

Musteraufgaben zu den Mathematikmodulen Ein Selbsttest Musteraufgaben zu den Mathematikmodulen Ein Selbsttest I. Grundlagen der Mathematik I Terme und Gleichungen, elementare Funktionen (bis zu 5 h) Grundsätzliches zum Vereinfachen von Termen und Lösen von

Mehr

Übung 11: Lösungen. Technische Universität München SS 2004 Zentrum Mathematik Prof. Dr. K. Buchner

Übung 11: Lösungen. Technische Universität München SS 2004 Zentrum Mathematik Prof. Dr. K. Buchner Technische Universität München SS 4 Zentrum Mathematik 5.7.4 Prof. Dr. K. Buchner Dr. W. Aschbacher Analysis II Übung : Lösungen Aufgabe T 3 (Mehrdimensionale Integrale, (a Wir benutzen die verallgemeinerten

Mehr

Mathematik 2 für Wirtschaftsinformatik

Mathematik 2 für Wirtschaftsinformatik für Wirtschaftsinformatik Sommersemester 2012 Hochschule Augsburg : Gliederung 1 Folgen und Reihen 2 Komplexe Zahlen 3 Reelle Funktionen 4 Differenzieren 1 5 Differenzieren 2 6 Integration 7 Zinsen 8

Mehr

1 Integrale von Funktionen in mehreren Variablen

1 Integrale von Funktionen in mehreren Variablen $Id: integral.tex,v.0 009//0 :4:35 hk Exp $ Integrale von Funktionen in mehreren Variablen.3 Integration über Jordan-meßbare Mengen Als ein zweites Beispiel der Integration über Jordan-meßbare Mengen wollen

Mehr

Partielle Ableitungen höherer Ordnung

Partielle Ableitungen höherer Ordnung Partielle Ableitungen höherer Ordnung 1-E Partielle Ableitungen höherer Ordnung f ( x, y) = x cos y + y e x Partielle Ableitungen 1. Ordnung: f x = cos y + y e x, f y = x sin y + e x Partielle Ableitungen

Mehr

Mathematik für Naturwissenschaftler

Mathematik für Naturwissenschaftler Mathematik für Naturwissenschaftler von Prof. Dr. Bartel Leendert van der Waerden Universität Zürich Wissenschaftsverlag Mannheim/Wien/Zürich INHALTSVERZEICHNIS 1. Teil: Analytische Geometrie und Vektorrechnung

Mehr

Linien- oder Kurvenintegrale

Linien- oder Kurvenintegrale Linien- oder Kurvenintegrale 1-E Einführendes Beispiel Abb. 1-1: Zum Begriff der Arbeit einer konstanten Kraft Wir führen den Begriff eines Linien- oder Kurvenintegrals am Beispiel der physikalischen Arbeit

Mehr

9 Differentialrechnung für Funktionen von mehreren Variablen

9 Differentialrechnung für Funktionen von mehreren Variablen 9 Dierentialrechnung ür Funktionen von mehreren Variablen 9.1 Funktionen von zwei reellen Variablen und ihre Darstellung Unter Funktionen von zwei unabhängigen Variablen versteht man eine Vorschrit, die

Mehr

Abitur 2013 Mathematik Geometrie V

Abitur 2013 Mathematik Geometrie V Seite 1 http://www.abiturloesung.de/ Seite Abitur 1 Mathematik Geometrie V Teilaufgabe b ( BE) Ein auf einer horizontalen Fläche stehendes Kunstwerk besitzt einen Grundkörper aus massiven Beton, der die

Mehr

INHALT. Mengenlehre. Komplexe Zahlen. Intergalrechnung. Doppelintegrale. Partielle Differentiation. Differentialgleichung 1.

INHALT. Mengenlehre. Komplexe Zahlen. Intergalrechnung. Doppelintegrale. Partielle Differentiation. Differentialgleichung 1. INHALT Mengenlehre Komplexe Zahlen Intergalrechnung Doppelintegrale Partielle Differentiation Differentialgleichung 1. Ordnung Mathe-Party StudiumPlus 1 Sommersemester 017 Mathe-Party StudiumPlus Sommersemester

Mehr

Demo: Mathe-CD KOMPLEXE ZAHLEN

Demo: Mathe-CD KOMPLEXE ZAHLEN KMPLEXE ZAHLEN Diese Datei gibt einige Seiten Einblick in die Serie Komplexe Zahlen, und, die gegen Zusatbestellung auf der CD u haben ist. Abonnenten erhalten sie automatisch. Datei Nr. 50000 Januar 00

Mehr

1.3.2 Partielle und totale Ableitung

1.3.2 Partielle und totale Ableitung 0 1.3. Partielle und totale Ableitung Ziel: Verallgemeinerung der Differential- und Integralrechnung auf mehrere Dimensionen Eine Verallgemeinerung von einfachen (eindimensionalen, 1D skalaren Funktion

Mehr

Mathematik für Bauingenieure

Mathematik für Bauingenieure Mathematik für Bauingenieure Kerstin Rjasanowa ISBN 3-446-4479- Leseprobe Weitere Informationen oder Bestellungen unter http://www.hanser.de/3-446-4479- sowie im Buchhandel 7.9 Anwendungen der Integralrechnung

Mehr

Dieses Kapitel widmet sich den komplexen Zahlen. Die in den folgenden Kapiteln dargestellten Themen können damit

Dieses Kapitel widmet sich den komplexen Zahlen. Die in den folgenden Kapiteln dargestellten Themen können damit Komplexe Zahlen Dieses Kapitel widmet sich den komplexen Zahlen. Die in den folgenden Kapiteln dargestellten Themen können damit komplex gelesen werden. Allerdings ist diese Sichtweise nicht unbedingt

Mehr

ist symmetrisch bezüglich der y-achse, da f( x) = f(x) ist. e x + e x = 2 2 (Substitution: a = e x )

ist symmetrisch bezüglich der y-achse, da f( x) = f(x) ist. e x + e x = 2 2 (Substitution: a = e x ) Problemstellung. f() e + e ist symmetrisch bezüglich der y-achse, da f( ) f() ist. Es ist f () e e. Aus f () folgt ; f(). f () e + e vor.

Mehr

MATHEMATIK. Lehr- und Übungsbuch. Fachbuchverlag Leipzig im Carl Hanser Verlag. Band 2. Analysis

MATHEMATIK. Lehr- und Übungsbuch. Fachbuchverlag Leipzig im Carl Hanser Verlag. Band 2. Analysis i Lehr- und Übungsbuch MATHEMATIK Band 2 Analysis Mit 164 Bildern, 265 Beispielen und 375 Aufgaben mit Lösungen Fachbuchverlag Leipzig im Carl Hanser Verlag Inhaltsverzeichnis 1 Grundlagen 11 1.1 Abbildungen

Mehr

ANALYSIS I FÜR TPH WS 2018/19 7. Übung Übersicht

ANALYSIS I FÜR TPH WS 2018/19 7. Übung Übersicht 7. Übung Übersicht Aufgaben zu Kapitel 1, 11 und (ein wenig) 12 Aufgabe 1: Kurvendiskussion (i) Aufgabe 2: Kurvendiskussion (ii) Aufgabe 3: ( ) Kurvendiskussion (iii) Aufgabe 4: ( ) Beweis einer Ungleichung

Mehr

Mathematik-Verlag, 1

Mathematik-Verlag,   1 Mathematik-Verlag, www.matheverlag.com 1 005 Pflichtteil Lösungen zur Prüfung 005: Pflichtteil Benötigte Kenntnisse: Analysis: Ableiten, Stammfunktion, ganzrationale Gleichungen, Asymptoten, Normalengleichung,

Mehr