Lösungen und definitive Korrekturanweisung

Save this PDF as:
Größe: px
Ab Seite anzeigen:

Download "Lösungen und definitive Korrekturanweisung"

Transkript

1 Bündner Mittelschulen Einheitsprüfung 2016 Geometrie Lösungen und definitive Korrekturanweisung Es werden nur ganze Punkte vergeben. Negative Punktzahlen sind nicht möglich. Punktzahl in die freie Spalte eintragen. Korrektur in rot. 1-Punkteaufgaben werden nur richtig () / falsch (0 Punkte) korrigiert. Bezeichnung mit (richtig) oder f (falsch) Bei Aufgaben mit mehreren Punkten ist die ganze Aufgabe so zu korrigieren, dass die Punkteverteilung angewandt werden kann. 1) (Bild nicht massstabsgetreu) 3 Punkte 1. Punkt: Konstruktion der Mittelparallelen 2. Punkt: Konstruktion des Kreismittelpunktes 3. Punkt: Spiegelung des Mittelpunktes und des Kreises. Wird eine korrekte Konstruktion von k gefunden, in der s nicht verwendet und konstruiert wird, wird der 1. und der 3. Punkt gegeben. Für den 2. Punkt muss auch in diesem Fall der Mittelpunkt M (oder allenfalls M ) konstruiert sein. Seite 1 pagina 1

2 2) a) Beispielbild Der Punkt wird gegeben, wenn ein vollständiges Quadernetz mit der Höhe 2 cm (±1 mm) hergestellt wurde. b) Beispielbilder b a 2. Punkt 1. Punkt Der 1. Punkt wird gegeben, wenn auf dem eigenen Netz der geschlossene Pfad korrekt dargestellt wurde. Dazu muss es sich um ein korrektes Quadernetz handeln, ansonsten werden keine Punkte vergeben. 2. Punkt: Streckenabschnitt auf der Quaderkante muss allenfalls auf beiden Rechtecken markiert werden (siehe Beispielbild a). Der zweite Punkt wird gegeben, wenn die Darstellung komplett ist. Wird beim Zeichnen des geschlossenen Pfades die Grund- und die Deckfläche des Quaders vertauscht, wird total ein Punkt abgezogen. 3) Die Namen lauten (von oben nach unten, jeweils von links nach rechts): Quadrat, Rechteck, Rhombus, Rhomboid oder Parallelogramm, Drachenviereck, Trapez, allgemeines Viereck. Symmetrieachsen: Quadrat 4, Rechteck 2, Rhombus 2, Drachenviereck 1, alle anderen keine. 3 Punkte 1. Punkt: Alle Vierecke sind mit korrekten Bezeichnungen ausgestattet Punkt für die Symmetrieachsen: Dabei wird jede Figur einzeln korrigiert und als korrekt bzw. fehlerhaft beurteilt. 0 und 1 fehlerhafte Figuren 2 und 3 fehlerhafte Figuren mehr als 3 fehlerhafte Figuren 0 Punkte Seite 2 pagina 2

3 4) 3 Punkte 1. Punkt: Zwei Ansichten sind der Form nach korrekt. 2. Punkt: Die dritte Ansicht ist der Form nach korrekt. 3. Punkt: Die fetten Kanten (Zitat Lehrmittel) sind korrekt eingetragen. Diese Lösung ergibt, bei korrektem Auf- und Seitenriss, total (1. Punkt für zwei korrekte Ansichten der Form nach, sowie der 3. Punkt der Aufgabe, da der unsichtbare Würfel nicht dargestellt wird, für diese Situation aber die fetten Kanten korrekt dargestellt sind. Der 3. Punkt ist nur möglich, wenn der erste Punkt erteilt wird und zwar, wenn nicht beachtet wurde, dass in der Ansicht von oben, in der Position oben links ein Würfel steht. Der 3. Punkt kann dann gegeben werden, wenn die fetten Kanten für diese Darstellung korrekt eingetragen sind. Für die ersten beiden Punkte können auch nur die Umrisse dargestellt sein. Es müssen also nicht alle Kanten zwischen zwei Würfeln dargestellt sein. 5) a) Rechnung in dm: : 250: (6 25) =. = dm oder m Korrekt gerundete Lösung korrekte, exakte Lösung 2 Punkte Wird ein Rechenfehler gemacht, die Lösung dann aber korrekt (exakt) angegeben, wird ein Punkt gegeben. Ohne Masseinheit wird ein Punkt abgezogen. b) Rechnung in dm: 22 60: ( ) = dm = 3.52 mm Der Punkt kann auch erteilt werden, wenn die gleiche, falsche Grundfläche aus a) verwendet wird. Korrekt gerundete Resultate werden akzeptiert. Ohne Masseinheit wird der Punkt nicht erteilt. Seite 3 pagina 3

4 6) a) (Bild nicht massstabsgetreu) 1. Punkt: korrekter Höhenstreifen oder korrekter k(m c,s c ) 2. Punkt: 2 korrekte Lösungen (nur zusammen mit 1. Punkt möglich) Wird M c nicht konstruiert sondern durch Messen ermittelt, wird abgezogen. b) =.. =. cm 2 vollständige, korrekte Lösung 7) c) = =. cm a) = 73 Rhombus oder Rhomboid oder Parallelogramm oder Parallelenviereck Korrekte Lösung Wird b) falsch gelöst, kann dieser Punkt trotzdem erreicht werden (Folgefehler) Wird korrekt gerechnet, aber auf eine falsche Genauigkeit korrekt gerundet oder fehlt die Masseinheit, wird der Punkt trotzdem gegeben. korrekter Winkel und eine Vierecksart b) = 90 Drachenviereck korrekter Winkel und Vierecksart c) = 70 gleichschenkliges Trapez Korrekter Winkel und Vierecksart Sind alle Winkel in a)-c) korrekt berechnet worden, aber keine Punkte erteilt worden, weil die Vierecksarten nicht korrekt angegeben wurden, wird hier gegeben. Seite 4 pagina 4

5 8) a) =. cm 2 korrekte, als solche erkennbare Teilstrecken 1 Punkt Korrekte, gerundete Lösung mit Masseinheit b) = 83 =. cm 1. Punkt: korrekter räumlicher Pythagoras 2. Punkt: korrekte Lösung mit Masseinheit (korrekt gerundet). 9) 1. Punkt: Korrekte Position der Spitze der Pyramide. 2. Punkt: Korrekte Pyramide inkl. Sichtbarkeit. Der 2. Punkt ist nur erreichbar, wenn der 1. Punkt erteilt wurde. (Alle Ecken liegen auf erkennbaren Schnittpunkten der Hilfslinien!) 10) h = 12 6 = =. Der Lösungsweg muss nicht zwingend ersichtlich sein, da es sich dabei gemäss Lehrmittel um Lernstoff handelt (h = 3) 1. Punkt: Höhe des gleichseitigen Dreiecks mit Kantenlänge 12. = 4 = =. cm 2 2. Punkt: korrekte Oberfläche aus eigener (eventuell falscher) Höhe. Auch der Flächeninhalt des gleichseitigen Dreiecks gehört zum Lernstoff, könnte also auch direkt verwendet werden ( = 3). Wird die Aufgabe in einem Zug gelöst, werden beide Punkte gegeben. Fehlende oder falsche Masseinheit im Endresultat führt zu Abzug Seite 5 pagina 5

6 11) = = 12) a) = = cm 3 Je korrekter Winkel wird ein Punkt gegeben. Korrekte Lösung b) h = : (20 50) = cm Korrekte Lösung aus eventuell falschem Volumen (Folgefehler) c) Schenkel des Trapezes: = 13 cm 1. Punkt: korrekte Berechnung des Schenkels des Trapezes = ä ä ä = cm 2 2. Punkt: korrekter Mantel Auch aus falschem Schenkel und falscher Quaderhöhe (Aufgabe b) möglich (Folgefehler) Fehlt mindestens einmal in den Lösungen der Aufgabe 13 die Masseinheiten, wird einmal ein Punkt abgezogen. Seite 6 pagina 6

Korrekturanweisung. Bei Aufgaben mit mehreren Punkten ist die ganze Aufgabe so zu korrigieren, dass die Punkteverteilung angewandt werden kann.

Korrekturanweisung. Bei Aufgaben mit mehreren Punkten ist die ganze Aufgabe so zu korrigieren, dass die Punkteverteilung angewandt werden kann. Bündner Mittelschulen Einheitsprüfung 015 Korrekturanweisung Geometrie Es werden nur ganze Punkte vergeben. Negative Punktzahlen sind nicht möglich. Punktzahl in die freie Spalte eintragen. Korrektur in

Mehr

Lösungen und Korrekturanweisung

Lösungen und Korrekturanweisung Bündner Mittelschulen Einheitsprüfung 016 Arithmetik und Algebra Lösungen und Korrekturanweisung Es werden nur ganze Punkte vergeben. Negative Punktzahlen sind nicht möglich. 1-Punkteaufgaben werden nur

Mehr

Bündner Mittelschulen Einheitsprüfung 2015 Arithmetik und Algebra. Korrekturanweisung

Bündner Mittelschulen Einheitsprüfung 2015 Arithmetik und Algebra. Korrekturanweisung Bündner Mittelschulen Einheitsprüfung 2015 Arithmetik und Algebra Korrekturanweisung Es werden nur ganze Punkte vergeben. Negative Punktzahlen sind nicht möglich. 1-Punkteaufgaben werden nur richtig (1

Mehr

Sekundarschulabschluss für Erwachsene

Sekundarschulabschluss für Erwachsene S Lösungen Name: Sekundarschulabschluss für rwachsene Nummer: Geometrie Sek 2017 Totalzeit: 60 Minuten Hilfsmittel: nichtprogrammierbarer Taschenrechner, Geometrie-Werkzeug (Geo-reieck, Zirkel, Massstab)

Mehr

Sekundarschulabschluss für Erwachsene

Sekundarschulabschluss für Erwachsene SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2015 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60 Für

Mehr

Sekundarschulabschluss für Erwachsene

Sekundarschulabschluss für Erwachsene SE Lösungen Name: Sekundarschulabschluss für Erwachsene Nummer: Geometrie Sek 2016 Totalzeit: 60 Minuten Hilfsmittel: nichtprogrammierbarer Taschenrechner, Geometrie-Werkzeug (Geo-reieck, Zirkel, Massstab)

Mehr

Sekundarschulabschluss für Erwachsene. 1. Grundkonstruktionen 1.1 Zeichnen Sie alle Winkelhalbierenden ein. (3 P)

Sekundarschulabschluss für Erwachsene. 1. Grundkonstruktionen 1.1 Zeichnen Sie alle Winkelhalbierenden ein. (3 P) SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2013 Totalzeit: 60 Minuten Hilfsmittel: nichtprogrammierbarer Taschenrechner, Geometrie-Werkzeug Maximal erreichbare Punktzahl: 60 Für die

Mehr

Sekundarschulabschluss für Erwachsene. Geometrie A 2014

Sekundarschulabschluss für Erwachsene. Geometrie A 2014 SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2014 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60 Für

Mehr

Sekundarschulabschluss für Erwachsene. Geometrie A b) Strecken Sie das Dreieck ABC (Streckfaktor: -1/ Streckzentrum Z) (3 Punkte)

Sekundarschulabschluss für Erwachsene. Geometrie A b) Strecken Sie das Dreieck ABC (Streckfaktor: -1/ Streckzentrum Z) (3 Punkte) SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2013 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

Sekundarschulabschluss für Erwachsene

Sekundarschulabschluss für Erwachsene SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2011 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

SAE. Geometrie B Name: Sekundarschulabschluss für Erwachsene

SAE. Geometrie B Name: Sekundarschulabschluss für Erwachsene SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2015 Totalzeit: 60 Minuten Hilfsmittel: nichtprogrammierbarer Taschenrechner, Geometrie-Werkzeug Maximal erreichbare Punktzahl: 60 Für die

Mehr

Sekundarschulabschluss für Erwachsene. Geometrie A 2012

Sekundarschulabschluss für Erwachsene. Geometrie A 2012 SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2012 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

Kongruenz, Vierecke und Prismen

Kongruenz, Vierecke und Prismen Kongruenz, Vierecke und Prismen Kongruente Figuren Ziele: Begriff: Kongruenz, Kongruenzsätze für Dreiecke Schrittfolgen für Konstruktionen beschreiben, über Eindeutigkeit entscheiden kongruente Teilfiguren

Mehr

WER WIRD MATHESTAR? Raum und Form. Mathematisch argumentieren. Gruppenspiel oder Einzelarbeit. 45 Minuten

WER WIRD MATHESTAR? Raum und Form. Mathematisch argumentieren. Gruppenspiel oder Einzelarbeit. 45 Minuten WER WIRD MATHESTAR? Lehrplaneinheit Berufsrelevantes Rechnen - Leitidee Kompetenzen Sozialform, Methode Ziel, Erwartungshorizont Zeitlicher Umfang Didaktische Hinweise Raum und Form Mathematisch argumentieren

Mehr

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 28195 Bremen Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe

Mehr

Mathematik, 2. Sekundarschule (bisheriges Lehrmittel)

Mathematik, 2. Sekundarschule (bisheriges Lehrmittel) Zentrale Aufnahmeprüfung 2011 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 2. Sekundarschule (bisheriges Lehrmittel) Von der Kandidatin oder vom Kandidaten auszufüllen:

Mehr

A B. Geometrische Grundbegriffe zuordnen. Geometrische Grundbegriffe zuordnen.

A B. Geometrische Grundbegriffe zuordnen.  Geometrische Grundbegriffe zuordnen. Hinweis: Dieses Geometrieheft wurde im Zuge einer ergänzenden Lernbegleitung für die Jahrgangsstufe 4 erstellt und erhebt keinen Anspruch auf Vollständigkeit, bzw. wird fortlaufend weiterentwickelt Das

Mehr

Drachen. Station 7. Aufgabe. Name: Untersuche die Eigenschaften eines Drachenvierecks. a) Welche Seiten sind gleich lang? b) Gibt es parallele Seiten?

Drachen. Station 7. Aufgabe. Name: Untersuche die Eigenschaften eines Drachenvierecks. a) Welche Seiten sind gleich lang? b) Gibt es parallele Seiten? Eigenschaften von Figuren Station 7 Aufgabe Drachen Untersuche die Eigenschaften eines Drachenvierecks. D f A E e C B a) Welche Seiten sind gleich lang? b) Gibt es parallele Seiten? c) Sind die Diagonalen

Mehr

Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt

Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt 1 7 Flächeninhalt 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt A = cm 2 und die Grundlinie a = 4 cm haben. Rechteck: h = 2,5 cm Parallelogramm:

Mehr

1. Satz des Pythagoras Ist im rechtwinkligen Dreieck die Hypothenuse (= längste Seite) und und die beiden Katheten, so gilt: bzw. bzw. bzw.

1. Satz des Pythagoras Ist im rechtwinkligen Dreieck die Hypothenuse (= längste Seite) und und die beiden Katheten, so gilt: bzw. bzw. bzw. Themenerläuterung Bei diesem Thema werden die unterschiedlichsten Körper vorgegeben wie Würfel, Prisma, Zylinder, Kegel und Pyramide. Auf den Außenflächen bzw. in den Körpern befinden sich Strecken, deren

Mehr

SAE. Geometrie B Name: Sekundarschulabschluss für Erwachsene

SAE. Geometrie B Name: Sekundarschulabschluss für Erwachsene SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2014 Totalzeit: 60 Minuten Hilfsmittel: nichtprogrammierbarer Taschenrechner, Geometrie-Werkzeug Maximal erreichbare Punktzahl: 60 Für die

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................

Mehr

Kapitel D : Flächen- und Volumenberechnungen

Kapitel D : Flächen- und Volumenberechnungen Kapitel D : Flächen- und Volumenberechnungen Berechnung einfacher Flächen Bei Flächenberechnungen werden die Masse folgendermassen bezeichnet: = Fläche in m 2, dm 2, cm 2, mm 2, etc a, b, c, d = Bezeichnung

Mehr

Aufgabe 1 E: Fläche und Umfang von geradlinig begrenzten Figuren

Aufgabe 1 E: Fläche und Umfang von geradlinig begrenzten Figuren Schüler/in Aufgabe 1 E: Fläche und Umfang von geradlinig begrenzten Figuren LERNZIELE: Flächeninhalt mit Rasterzählmethode bestimmen Flächeninhalt und Umfang mit Formeln berechnen Flächeninhalt durch Zerlegen

Mehr

FACHHOCHSCHULE ZÜRICH Musterprüfung Geometrie * Klasse ZS K2 18. März 2011

FACHHOCHSCHULE ZÜRICH Musterprüfung Geometrie * Klasse ZS K2 18. März 2011 1 FACHHOCHSCHULE ZÜRICH Musterprüfung Geometrie * Klasse ZS K2 18. März 2011 A Name:... 1. Teil: Winkelberechnungen Aufgabe W-1: In nebenstehendem Sehnenviereck sei = 80º und = 70º. Wie gross sind dann

Mehr

ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke: x 2. Strecke: 4x x 4x 85 x 17

ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke: x 2. Strecke: 4x x 4x 85 x 17 Textgleichungen Aus der Geometrie Lösungen 1. Von zwei Strecken ist die eine viermal so lang wie die andere. Zusammen ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke:

Mehr

MATHEMATIK-WETTBEWERB 2008/2009 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2008/2009 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2008/2009 DES LANDES HESSEN 2. RUNDE LÖSUNGEN 1. a) 1) L = { 3; 2} 2) L = { 3; 1; 2; 3} 3) L = { 2; 1; 0; 1}, denn x 2 < 0 und x + 3 > 0 oder x 2 > 0 und x + 3 < 0, somit x < 2 und

Mehr

Mathematik 1 (ohne Taschenrechner)

Mathematik 1 (ohne Taschenrechner) Kanton St.Gallen Bildungsdepartement St.Gallische Kantonsschulen Gymnasium Aufnahmeprüfung 2013 Mathematik 1 (ohne Taschenrechner) Dauer: Kandidatennummer: Geburtsdatum: Korrigiert von: 90 Minuten Punktzahl/Note:

Mehr

Konstruktion Dreiecke und Vierecke PRÜFUNG 09. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote :

Konstruktion Dreiecke und Vierecke PRÜFUNG 09. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : GEOMETRIE PRÜFUNGSVORBEREITUNG Konstruktion Dreiecke und Vierecke PRÜFUNG 09 Name: Klasse: Datum: : Note: Ausgabe:. September 2011 Klassenschnitt/ Maximalnote : Selbsteinschätzung: / (freiwillig) Für alle

Mehr

Aufgabe 1. Wie muss? richtig angeschrieben werden?

Aufgabe 1. Wie muss? richtig angeschrieben werden? Aufgabe 1 Wie muss? richtig angeschrieben werden? Aufgabe 1 Wie muss? richtig angeschrieben werden? Aufgabe 2 Wie gross ist die Summe der Innenwinkel im konvexen und konkaven Viereck? Aufgabe 2 Wie gross

Mehr

Thurgau~~ Mathematik FMS 2 I HMS Summe Note. Thurgauische Kantonsschulen Aufnahmeprüfung Erster Teil - ohne Taschenrechner

Thurgau~~ Mathematik FMS 2 I HMS Summe Note. Thurgauische Kantonsschulen Aufnahmeprüfung Erster Teil - ohne Taschenrechner Aufnahmeprüfung 2013 Mathematik FMS 2 I HMS 2 Erster Teil - ohne Taschenrechner Name: Vorname: Davon erreicht: Prüfungsdauer: 45 Minuten. Viel Erfolg! 4 6 Gruppennummer Lösungen - Lösungen - Lösungen ~~

Mehr

Lösungen. 1 Aufnahmeprüfung 2015 Mathematik

Lösungen. 1 Aufnahmeprüfung 2015 Mathematik _ Aufnahmeprüfung 205 Mathematik Lösungen Allgemeine Hinweise für Experten. Die kleinste Bewertungseinheit ist ein halber Punkt (keine Viertelpunkte), gemäss Bewertungsschlüssel und Notenskala. 2. Für

Mehr

Bestimme ferner die Koordinaten des Bildpunktes von B bei der Spiegelung

Bestimme ferner die Koordinaten des Bildpunktes von B bei der Spiegelung Vektoren - Skalar- und Vektorprodukt ================================================================== 1. Gegeben sind die Punkte A 1 2 3 und B 3 4 1 bzgl. eines kartesischen Koordina- tensystems mit

Mehr

Oberfläche von Körpern

Oberfläche von Körpern Definition Die Summe der Flächeninhalte der Flächen eines Körpers nennt man Oberflächeninhalt. Quader Der Oberflächeninhalt eines Quaders setzt sich folgendermaßen zusammen: O Q =2 h b+2 h l+2 l b=2 (h

Mehr

Mathematik 2. Tintenschreiber, Bleistift und Radiergummi, Geodreieck, Taschenrechner (ohne Algebrasystem)

Mathematik 2. Tintenschreiber, Bleistift und Radiergummi, Geodreieck, Taschenrechner (ohne Algebrasystem) Kanton St. Gallen Bildungsdepartement BM / FMS / WMS / WMI / IMS Aufnahmeprüfung Frühling 2019 Mathematik 2 (mit Taschenrechner) Dauer: 60 Minuten Kandidatennummer: Geburtsdatum: Korrigiert von: Punktzahl

Mehr

MATHEMATIK-WETTBEWERB 2018/2019 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2018/2019 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2018/2019 DES LANDES HESSEN 2. RUNDE LÖSUNGEN AUFGABENGRUPPE A 1. 2. a) L = { 81; 0; 9} x + 81 = 0 oder 27x 2 = 0 oder x 9 = 0 b) L = { 8;... ; 1; 1;... ; 8} 27x 2 > 0 (gilt immer

Mehr

FMS 2 / HMS 2 Erster Teil - ohne Taschenrechner. Name:... Kandidatennummer/ Gruppennummer Vorname:... Aufgabe Nr.: Summe

FMS 2 / HMS 2 Erster Teil - ohne Taschenrechner. Name:... Kandidatennummer/ Gruppennummer Vorname:... Aufgabe Nr.: Summe Aufnahmeprüfung 2013 Mathematik FMS 2 / HMS 2 Erster Teil - ohne Taschenrechner Name:....................... Kandidatennummer/ Gruppennummer Vorname:....................... Aufgabe Nr.: 1 2 3 4 5 6 7 Summe

Mehr

Aufgabe 1 G: Fläche und Umfang von geradlinig begrenzten Figuren

Aufgabe 1 G: Fläche und Umfang von geradlinig begrenzten Figuren Schüler/in Aufgabe 1 G: Fläche und Umfang von geradlinig begrenzten Figuren LERNZIELE: Flächeninhalt mit Rasterzählmethode bestimmen Flächeninhalt und Umfang mit Formeln berechnen Flächeninhalt durch Zerlegen

Mehr

Mathematik Aufnahmeprüfung 2014 Profile m,n,s

Mathematik Aufnahmeprüfung 2014 Profile m,n,s Mathematik Aufnahmeprüfung 2014 Profile m,n,s Zeit: Rechner: Hinweis: 2 Stunden. TI30/TI34 oder vergleichbare. Der Lösungsweg muss nachvollziehbar sein, ansonsten werden keine Teilpunkte vergeben. Numerische

Mehr

2 14,8 13,8 10,7. Werte einsetzen

2 14,8 13,8 10,7. Werte einsetzen Hinweis zu den Lösungen In den Graphiken stellen grüne Linien, Werte und Flächen vorgegebene Werte, rote Linien, Werte und Flächen gesuchte Werte und blaue Linien, Werte und Flächen zu ermittelnde Zwischenwerte

Mehr

Cube Du setzt dich mit Volumen und Oberfläche von Würfeln und Quadern auseinander und trainierst gleichzeitig dein Vorstellungsvermögen.

Cube Du setzt dich mit Volumen und Oberfläche von Würfeln und Quadern auseinander und trainierst gleichzeitig dein Vorstellungsvermögen. Cube Du setzt dich mit Volumen und Oberfläche von Würfeln und Quadern auseinander und trainierst gleichzeitig dein Vorstellungsvermögen. bereich verstehen und verwenden die Begriffe Koordinaten, Ansicht,

Mehr

Ma 11b (CON) Aufgabenblatt Stereometrie (1) 2015/2016

Ma 11b (CON) Aufgabenblatt Stereometrie (1) 2015/2016 1. Übertragen Sie aus der Formelsammlung die Skizzen und Formeln nachfolgender Körper aus dem Kapitel Stereometrie in ihr Heft: Würfel, Quader, Dreiecksprisma, Zylinder, Quadratische Pyramide, Rechteckpyramide,

Mehr

1. Winkel (Kapitel 3)

1. Winkel (Kapitel 3) 1. Winkel (Kapitel 3) 1.1 Winkel Einführung 1.2 Winkel an Geraden bjak 1 1.3 Winkel am Dreieck bjak 2 1.4 Winkel am Kreis bjak 3 bjak 4 2. Dreiecke (Kapitel 3) 2.1 Linien am Dreieck bjak 5 2.2 Flächeninhalt

Mehr

1 Grundwissen Pyramide

1 Grundwissen Pyramide 1 Grundwissen Pyramide 1 Definition und Volumen der Pyramide Eine Pyramide ist ein geradlinig begrenzter Körper im R 3. Dabei wird ein Punkt S außerhalb der Ebene eines Polygons (Vieleck) mit den Ecken

Mehr

Körper. Körper. Kompetenztest. Name: Klasse: Datum:

Körper. Körper. Kompetenztest. Name: Klasse: Datum: Testen und Fördern Name: Klasse: Datum: 1) Welche idealisierten Grundformen entsprechen den Bildern? Ordne die Bezeichnungen den Bildern zu. vierseitiges Prisma regelmäßige dreiseitige Pyramide regelmäßiges

Mehr

SEMESTERPRÜFUNG MATHEMATIK 2. KLASSEN KSR. Dienstag, 29. MAI Uhr

SEMESTERPRÜFUNG MATHEMATIK 2. KLASSEN KSR. Dienstag, 29. MAI Uhr NAME: VORNAME: KLASSE: Mögliche Punktzahl: 56 Erreichte Punktzahl: / 50 Note: SEMESTERPRÜFUNG MATHEMATIK. KLASSEN KSR Dienstag, 9. MAI 007 1.10 14.40 Uhr ALLGEMEINES Bitte Prüfung sofort anschreiben, auf

Mehr

(3r) r 2 =? xy 3y a + 6b 14. ( xy

(3r) r 2 =? xy 3y a + 6b 14. ( xy Mathematik Aufnahmeprüfung 2014 Profile m,n,s Lösungen Aufgabe 1 (a) Vereinfache (schreibe als einen Bruch): 2 + a 2 + 3b 7 =? (b) (c) Vereinfache so weit wie möglich: Vereinfache so weit wie möglich:

Mehr

Universität Bielefeld. Elementare Geometrie. Sommersemester Elemente, Buch I. Stefan Witzel

Universität Bielefeld. Elementare Geometrie. Sommersemester Elemente, Buch I. Stefan Witzel Universität Bielefeld Elementare Geometrie Sommersemester 2018 Elemente, Buch I Stefan Witzel Vierecke Vier Punkte P, Q, R, S bilden ein Viereck PQRS, wenn sich weder die Segmente PQ und RS noch die Segmente

Mehr

Mathematik MITTELSCHULEN AARGAU DEPARTEMENT BILDUNG, KULTUR UND SPORT

Mathematik MITTELSCHULEN AARGAU DEPARTEMENT BILDUNG, KULTUR UND SPORT DEPARTEMENT BILDUNG, KULTUR UND SPORT Abteilung Berufsbildung und Mittelschule MITTELSCHULEN AARGAU Sektion Mittelschule AUFNAHMEPRÜFUNG FACHMITTELSCHULE, WIRTSCHAFTSMITTELSCHULE UND INFORMATIKMITTELSCHULE

Mehr

Geometrische Körper Fragebogen zum Film - Lösung B1

Geometrische Körper Fragebogen zum Film - Lösung B1 Geometrische Körper Fragebogen zum Film - Lösung B Fragen zum Film Geometrische Körper (BR Alpha) ) Ergänze mit den passenden Begriffen! Eine _Kante_ entsteht dort, wo zwei _Flächen_ zusammenstoßen. Eine

Mehr

1 Zahlen. 1.1 Zahlenmengen. Grundwissen Mathematik 5

1 Zahlen. 1.1 Zahlenmengen. Grundwissen Mathematik 5 1 Zahlen 1.1 Zahlenmengen I N= { 1, 2, 3,...} Menge der natürlichen Zahlen I N 0 = { 0, 1, 2,...} Menge der natürlichen Zahlen mit Null Z = {...-3; -2; -1; 0; 1; 2; 3;...} Menge der ganzen Zahlen V 12

Mehr

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke Geometrische Mappe Die metallenen Dreiecke 1 Material 4 metallene Rahmen (14 cm X 14 cm) mit gleichseitigen Dreiecken (Seitenlänge 10 cm). Die Dreiecke sind wie folgt unterteilt Ganze Halbe Drittel Viertel

Mehr

MATHEMATIK-WETTBEWERB 2001/2002 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2001/2002 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 00/00 DES LANDES HESSEN AUFGABEN DER GRUPPE A PFLICHTAUFGABEN P. Von 40 Schülern fahren 44 mit öffentlichen Verkehrsmitteln zur Schule. Wie viel Prozent sind das? P. Nach einer Preiserhöhung

Mehr

Eine Hilfe, wenn du mal nicht mehr weiterweisst...

Eine Hilfe, wenn du mal nicht mehr weiterweisst... Geometrie 6. Klasse Eine Hilfe, wenn du mal nicht mehr weiterweisst... Themen Seite Das 1 Das Viereck 2 Der Kreis 2 Die Winkel 3 Parallele Geraden zeichnen 4 Eine Senkrechte zeichnen 4 Die Spiegelsymmetrie

Mehr

Lösungen und Korrekturhinweise

Lösungen und Korrekturhinweise Jahrgangsstufentest Mathematik für die Jahrgangsstufe an den bayerischen Hauptschulen 7. September 007 Lösungen und Korrekturhinweise Arbeitszeit: 5 Minuten Schule: Klasse: Lernbereich/Lehrplanthema Aufgaben

Mehr

Thurgau~~ Mathematik FMS 3 I HMS 3. Thurgauische Kantonsschulen. Erster Teil- ohne Taschenrechner. Kandidatennummer I. Name: Gruppennummer.

Thurgau~~ Mathematik FMS 3 I HMS 3. Thurgauische Kantonsschulen. Erster Teil- ohne Taschenrechner. Kandidatennummer I. Name: Gruppennummer. Aufnahmeprüfung 2013 Mathematik FMS 3 I HMS 3 Erster Teil- ohne Taschenrechner Name: Vorname: Gruppennummer ~~ Thurgau~~ Aufgabe Nr.: 1 2 3 4 5 6 7 Summe Note Punktzahl: 6 7 5 6 4 6 8 42 Davon erreicht:

Mehr

Geometrie-Dossier Vierecke

Geometrie-Dossier Vierecke Geometrie-Dossier Vierecke Name: Inhalt: Vierecke: Bezeichnungen Parallelenvierecke: Ihre Form und Eigenschaften Konstruktion von Parallelenvierecken Winkelsumme in Vielecken, Flächenberechnung in Vielecken

Mehr

Geometrie. in 15 Minuten. Geometrie. Klasse

Geometrie. in 15 Minuten. Geometrie. Klasse Klasse Geometrie Geometrie 6. Klasse in 5 Minuten Winkel und Kreis Zeichne und überprüfe in deinem Übungsheft: a) Wo liegen alle Punkte, die von einem Punkt A den Abstand cm haben? b) Färbe den Bereich,

Mehr

20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen.

20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen. Flächeninhalte von Vielecken Parallelogramm Übungen - 9 20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen.

Mehr

Einstufungstest für den Bereich: Zahlenraum (Zahlen und Variablen) / Lösung

Einstufungstest für den Bereich: Zahlenraum (Zahlen und Variablen) / Lösung Einstufungstest für den Bereich: Zahlenraum (Zahlen und Variablen) / Lösung Einmaleins Einmaleins/ A1 a) 4 6 = 24 g) 6 6 = 36 b) 2 7 = 14 h) 8 7 = 56 c) 5 3 = 15 i) 9 5 = 45 d) 1 8 = 8 j) 8 6 = 48 e) 6

Mehr

Parallelogramme und Dreiecke A512-03

Parallelogramme und Dreiecke A512-03 12 Parallelogramme und Dreiecke A512-0 1 10 Dreiecke 01 Berechne den Flächeninhalt der vier Dreiecke. Die Dreiecke und sind gleichschenklig. 2 M 12,8 cm 7,2 cm 1 9,6 cm 12 cm A 1 = A 2 = A = A = 61, cm2,56

Mehr

Lösungen. ga47ua Lösungen. ga47ua. Name: Klasse: Datum:

Lösungen. ga47ua Lösungen. ga47ua. Name: Klasse: Datum: Lösungen Lösungen Name: Klasse: Datum: 1) Bringe die Arbeitsschritte bei der Konstruktion eines Rechtecks in die richtige Reihenfolge. 2) Entscheide, ob folgende Aussagen wahr oder falsch sind. wahr falsch

Mehr

Lösungen V.1. Pfeile bedeuten ist auch ein. (Lambacher-Schweizer Geometrie 2, S. 150)

Lösungen V.1. Pfeile bedeuten ist auch ein. (Lambacher-Schweizer Geometrie 2, S. 150) Lösungen V.1 I: Trapez (zwei parallele Seiten; keine Symmetrie) II: gleichschenkliges Trapez (zwei parallele Seiten, die anderen beiden gleich lang; achsensymmetrisch) III: Drachen(viereck) (jeweils zwei

Mehr

Kodieranweisungen Testheft A

Kodieranweisungen Testheft A Kodieranweisungen Testheft A Aufgabennr. Aufgabenname Bewertung Bedingung Seite Item Aufgabe 1 Umkehraufgabe 1 richtig: 2. Kästchen wurde angekreuzt 1 M10071 Umkehraufgabe 0 falsch: alle anderen Antworten

Mehr

Kompetenzbereich. Kompetenz

Kompetenzbereich. Kompetenz Faltkunst Du vertiefst dein Verständnis für Achsenspiegelungen und achsensymmetrische Figuren, indem du vom einfachen Scherenschnitt bis zur anspruchsvollen Origamifigur vieles mit Papier umsetzt. Die

Mehr

c) Der Umfang einer quadratförmigen Rabatte misst 60,4 m. Wie lange ist eine Seitenlänge?

c) Der Umfang einer quadratförmigen Rabatte misst 60,4 m. Wie lange ist eine Seitenlänge? 13.3 Übungen zur Flächenberechnung 13.3.1 Übungen Quadrat Berechnen Sie für diese Quadrate das gesuchte Maß, geben Sie das Resultat in der verlangten Einheit an. a) l 4,8 dm, A? cm 2, U? m A l 2 4,8 2

Mehr

Kanton Zürich Bildungsdirektion Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich

Kanton Zürich Bildungsdirektion Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich Kanton Zürich Aufnahmeprüfung 017 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Lösungen Serie: E1 basierend auf dem Lehrmittel Mathematik Hohl Allgemeine Richtlinien für die Korrektur

Mehr

Mathematik, 2. Sekundarschule (Neues Lehrmittel, Erprobungsversion)

Mathematik, 2. Sekundarschule (Neues Lehrmittel, Erprobungsversion) Zentrale Aufnahmeprüfung 2011 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 2. Sekundarschule (Neues Lehrmittel, Erprobungsversion) Von der Kandidatin oder vom Kandidaten

Mehr

Wie gross ist der Flächeninhalt A eines Quadrats mit der Seitenlänge a? A = a 2

Wie gross ist der Flächeninhalt A eines Quadrats mit der Seitenlänge a? A = a 2 Stereometrie-Formeln Quadrat eines Quadrats mit der Seitenlänge a? A = a Quadrat Wie lang ist die Diagonale d eines Quadrats mit der Seitenlänge a? d = a Rechteck eines Rechtecks mit den Seitenlängen a

Mehr

Kurs 7 Geometrie 2 MSA Vollzeit (1 von 2)

Kurs 7 Geometrie 2 MSA Vollzeit (1 von 2) Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 2815 Bremen Kurs 7 Geometrie 2 MSA Vollzeit (1 von 2) Name: Ich 1. 2. 3. So schätze ich meinen Lernzuwachs ein. kann die

Mehr

Vorbereitung auf die Gymiprüfung 2017 im Kanton Zürich. Mathematik. Sekundarschule, Teil 2. Übungsheft

Vorbereitung auf die Gymiprüfung 2017 im Kanton Zürich. Mathematik. Sekundarschule, Teil 2. Übungsheft Vorbereitung auf die Gymiprüfung 2017 im Kanton Zürich Mathematik Sekundarschule, Teil 2 Übungsheft Lektion 7 Konstruktionen 1 Lektion 7 Konstruktionen 1 1. Konstruiere ein Dreieck mit folgenden ngaben:

Mehr

7 Ebene Figuren (angepasst an das Lehrmittel Mathematik 1)

7 Ebene Figuren (angepasst an das Lehrmittel Mathematik 1) Name: Geometrie-Dossier 7 Ebene Figuren (angepasst an das Lehrmittel Mathematik 1) Inhalt: Fläche und Umfang von Rechteck und Quadrat Dreiecke (Benennung, Konstruktion) Winkelberechnung im Dreieck und

Mehr

Körper Lösungen. 1) Welche idealisierten Grundformen entsprechen den Bildern? Ordne die Bezeichnungen den Bildern zu. vierseitiges Prisma

Körper Lösungen. 1) Welche idealisierten Grundformen entsprechen den Bildern? Ordne die Bezeichnungen den Bildern zu. vierseitiges Prisma 1) Welche idealisierten Grundformen entsprechen den Bildern? Ordne die Bezeichnungen den Bildern zu. vierseitiges Prisma regelmäßige dreiseitige Pyramide regelmäßiges sechsseitiges Prisma regelmäßige vierseitige

Mehr

MATHEMATIK-WETTBEWERB 2012/2013 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2012/2013 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2012/2013 DES LANDES HESSEN 1. RUNDE LÖSUNGEN AUFGABENGRUPPE A PFLICHTAUFGABEN P1. a) 16 b) 11 c) 16 P2. a) 5 % b) 70 % P3. a) x ist das Taschengeld (in e), das Jonas (pro Woche)

Mehr

FMS 3 / HMS 3 Erster Teil - ohne Taschenrechner. Name:... Kandidatennummer/ Gruppennummer Vorname:... Aufgabe Nr.: Summe

FMS 3 / HMS 3 Erster Teil - ohne Taschenrechner. Name:... Kandidatennummer/ Gruppennummer Vorname:... Aufgabe Nr.: Summe Aufnahmeprüfung 2013 Mathematik FMS 3 / HMS 3 Erster Teil - ohne Taschenrechner Name:....................... Kandidatennummer/ Gruppennummer Vorname:....................... Aufgabe Nr.: 1 2 3 4 5 6 7 Summe

Mehr

8.5.1 Real Geometrie Viereck, Dreieck

8.5.1 Real Geometrie Viereck, Dreieck 8.5.1 Real Geometrie Viereck, Dreieck P8: Mathematik 8 G2: komb.üchlein Zeitraum : 3 Wochen Inhalte Kernstoff Zusatzstoff Erledigt am Vierecke Typen: Quadrat, Rechteck, P8: 146 P8: 147 Rhombus, Parallelogramm,

Mehr

Kodieranweisungen Testheft B

Kodieranweisungen Testheft B Kodieranweisungen Testheft B Aufgabennr. Aufgabenname Bewertung Bedingung Seite Item Aufgabe 1.1 Rapido 1 richtig: 2. Kästchen wurde angekreuzt 1 M4204A1 Rapido 0 falsch: alle anderen Antworten 1 M4204A1

Mehr

Grundwissen zur 5. Klasse (G9) - Lösungen

Grundwissen zur 5. Klasse (G9) - Lösungen Grundwissen zur 5. Klasse (G9) - Lösungen (Strukturiert nach dem Schulbuch Lambacher Schweizer 5 zum Lehrplan Plus) I. Natürliche und ganze Zahlen a) Veranschaulichung von Zahlen Du musst wissen, wie man

Mehr

r)- +"1. ([+ ax1 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf 2. Multipliziere aus:

r)- +1. ([+ ax1 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf 2. Multipliziere aus: Seite 1 von 22 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf Multipliziere aus: r)- +"1. ([+ ax1 Venvandle mit Hilfe einer binomischen Formel in ein Produkt. 9a2-30ab'+ ba In einem Dreieck

Mehr

Schrägbilder von Körpern Quader

Schrägbilder von Körpern Quader Schrägbilder von Körpern Quader Vervollständige die Zeichnung jeweils zum Schrägbild eines Quaders. Bezeichne die für die Berechnung des Volumens und des Oberflächeninhalts notwendigen Seiten und bestimme

Mehr

Konvexes Viereck Trapez Drachenviereck Parallelogramm Sehnenviereck Tangentenviereck Überraschung? Haus der Vierecke. Dr.

Konvexes Viereck Trapez Drachenviereck Parallelogramm Sehnenviereck Tangentenviereck Überraschung? Haus der Vierecke. Dr. Haus der Vierecke Dr. Elke Warmuth Sommersemester 2018 1 / 40 Konvexes Viereck Trapez Drachenviereck Parallelogramm Rhombus Rechteck Sehnenviereck Tangentenviereck Überraschung? 2 / 40 Wir betrachten nur

Mehr

Grundwissen zur 5. Klasse (G9)

Grundwissen zur 5. Klasse (G9) Grundwissen zur 5. Klasse (G9) (Strukturiert nach dem Schulbuch Lambacher Schweizer 5 zum Lehrplan Plus) I. Natürliche und ganze Zahlen a) Veranschaulichung von Zahlen Du musst wissen, wie man Zahlen am

Mehr

Themen: Geometrie (Kongruenzabbildungen, Winkelsätze, Flächenberechnungen)

Themen: Geometrie (Kongruenzabbildungen, Winkelsätze, Flächenberechnungen) Klasse 7 Mathematik Vorbereitung zur Klassenarbeit Nr. 4 im Mai 2019 Themen: Geometrie (Kongruenzabbildungen, Winkelsätze, Flächenberechnungen) Checkliste Was ich alles können soll Ich kenne den Begriff

Mehr

Aufgaben zur Förderung grundlegender Kenntnisse, Fähigkeiten und Fertigkeiten

Aufgaben zur Förderung grundlegender Kenntnisse, Fähigkeiten und Fertigkeiten Ausgewählte Aufgaben zur Aufgaben zur Förderung grundlegender Kenntnisse, Fähigkeiten und Fertigkeiten Lehrplanabschnitt M 9.6 Fortführung der Raumgeometrie Ausführliche Hinweise zur Verwendung der folgenden

Mehr

Mathematik Aufnahmeprüfung 2015

Mathematik Aufnahmeprüfung 2015 Mathematik Aufnahmeprüfung 2015 Zeit: 2 Stunden. Rechner: TI30/TI34 oder vergleichbare. Hinweis: Der Lösungsweg muss nachvollziehbar sein, ansonsten werden keine Teilpunkte vergeben. Numerische Resultate

Mehr

Figuren und Körper Lösungen

Figuren und Körper Lösungen 1) Bringe die Arbeitsschritte bei der Konstruktion eines Rechtecks in die richtige Reihenfolge. 2 3 4 1 2) Entscheide, ob folgende Aussagen wahr oder falsch sind. wahr falsch Ein Rechteck hat einen Umkreis.

Mehr

Schrägbilder zeichnen

Schrägbilder zeichnen Was sind Schrägbilder und welchen Zweck haben sie? Durch ein Schrägbild wird auf einer ebenen Fläche (z.b. Blatt Papier) ein Körper räumlich dargestellt (räumliche Perspektive des Körpers). Es gibt sehr

Mehr

STATION GEO-PUZZLE. Berufsrelevantes Rechnen. Messen, Form und Raum. Einzelarbeit beim Lernen an Stationen. 15 Minuten

STATION GEO-PUZZLE. Berufsrelevantes Rechnen. Messen, Form und Raum. Einzelarbeit beim Lernen an Stationen. 15 Minuten Lehrplaneinheit Leitidee Kompetenzen Sozialform, Methode Ziel, Erwartungshorizont Zeitlicher Umfang Didaktische Hinweise STATION GEO-PUZZLE Messen, Form und Raum Mathematische Werkzeuge einsetzen; Lösen

Mehr

Mathematik Probe-Aufnahmeprüfung 2013-II Profile m,n,s

Mathematik Probe-Aufnahmeprüfung 2013-II Profile m,n,s Mathematik Probe-ufnahmeprüfung 2013-II Profile m,n,s Zeit: Rechner: Hinweis: 2 Stunden. TI30/TI34 oder vergleichbare. Der Lösungsweg muss nachvollziehbar sein, ansonsten werden keine Teilpunkte vergeben.

Mehr

Geometrie Winkel und Vierecke PRÜFUNG 02. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : Ausgabe: 2.

Geometrie Winkel und Vierecke PRÜFUNG 02. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : Ausgabe: 2. GEOMETRIE PRÜFUNGSVORBEREITUNG Seite 1 Geometrie Winkel und Vierecke PRÜFUNG 02 Name: Klasse: Datum: : Note: Ausgabe: 2. Mai 2011 Klassenschnitt/ Maximalnote : Selbsteinschätzung: / (freiwillig) Für alle

Mehr

Erreichte Punkte ALLGEMEINE MATHEMATISCHE KOMPETENZEN:

Erreichte Punkte ALLGEMEINE MATHEMATISCHE KOMPETENZEN: GRUNDWISSENTEST 06 IM FACH MATHEMATIK FÜR DIE JAHRGANGSSTUFE 9 DER REALSCHULE HINWEISE: Beim Kopieren der Aufgabenblätter ist auf die Maßhaltigkeit zu achten, um Verzerrungen zu vermeiden. Nicht zugelassen

Mehr

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind?

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? M 7.1 Achsensymmetrie Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? Nenne drei Eigenschaften achsensymmetrischer Figuren. Gegeben sind ein Punkt und die Symmetrieachse.

Mehr

M 7.1. Achsensymmetrie. Nenne drei Eigenschaften achsensymmetrischer Figuren.

M 7.1. Achsensymmetrie. Nenne drei Eigenschaften achsensymmetrischer Figuren. M 7.1 Achsensymmetrie Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? Nenne drei Eigenschaften achsensymmetrischer Figuren. Gegeben sind ein Punkt und die Symmetrieachse.

Mehr

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind?

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? M 7.1 Achsensymmetrie Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? Nenne drei Eigenschaften achsensymmetrischer Figuren. Gegeben sind ein Punkt und die Symmetrieachse.

Mehr

M 7.1. Achsensymmetrie. Nenne drei Eigenschaften achsensymmetrischer Figuren.

M 7.1. Achsensymmetrie. Nenne drei Eigenschaften achsensymmetrischer Figuren. M 7.1 Achsensymmetrie Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? Nenne drei Eigenschaften achsensymmetrischer Figuren. Gegeben sind ein Punkt und die Symmetrieachse.

Mehr

Mathematik 1: (ohne Taschenrechner) Korrekturanleitung. Kanton St.Gallen Bildungsdepartement. BMS/FMS/WMS/WMI Aufnahmeprüfung Herbst 2015

Mathematik 1: (ohne Taschenrechner) Korrekturanleitung. Kanton St.Gallen Bildungsdepartement. BMS/FMS/WMS/WMI Aufnahmeprüfung Herbst 2015 Kanton St.Gallen Bildungsdepartement BMS/FMS/WMS/WMI Aufnahmeprüfung Herbst 015 Mathematik 1: (ohne Taschenrechner) Korrekturanleitung Die Korrekturanleitung legt die Verteilung der Punkte auf die einzelnen

Mehr