Reaktionen der Zellatmung (1)

Größe: px
Ab Seite anzeigen:

Download "Reaktionen der Zellatmung (1)"

Transkript

1 ARBEITSBLATT 1 Reaktionen der Zellatmung (1) 1. Benennen Sie den dargestellten Stoffwechselweg und die beteiligten Substanzen! CoA-S Acetyl-CoA Citrat Oxalacetat Isocitrat Malat Citratzyklus α-ketoglutarat Fumarat Succinyl-CoA CoA-S Succinat 2. Stellen Sie die Funktion dieses Stoffwechselweges innerhalb der Zellatmung dar! Die Zellatmung besteht aus den drei Abschnitten Glykolyse, Pyruvat-Oxidation/Citratzyklus und Atmungskette. In der Glykolyse beginnt der Abbau der Glucose, die in zwei C3-Körper gespalten und zu Pyruvat oxidiert wird. Bevor die vollständige Oxidation im Citratzyklus erfolgen kann, wird Pyruvat oxidativ decarboxyliert und der übrig bleibende Acetyl-Rest an CoA gebunden. Es entsteht Acetyl-CoA, eine zentrale Substanz im Energiestoffwechsel, da auch Fettsäuren in der Beta-Oxidation zu Acetyl-CoA abgebaut werden. Der Acetyl-Rest wird dann in den Citratzyklus eingeschleust und vollständig oxidiert. Kohlenstoffatome werden dabei als Kohlenstoffdioxid freigesetzt, die Elektronen von NAD + beziehungsweise FAD aufgenommen. Diese Elektronen werden dann in der Atmungskette auf molekularen Sauerstoff übertragen. Die dabei frei werdende Energie wird genutzt, um ATP zu synthetisieren. 1

2 ARBEITSBLATT 1 Reaktionen der Zellatmung (1) 3. Vervollständigen Sie die Reaktionsschemata zweier Teilschritte des Citratzyklus! Stellen Sie dar, welche Bedeutung und Besonderheiten diese Reaktionen im Rahmen der Zellatmung haben! NAD + NADH+H + CO 2 Isocitrat α-ketoglutarat FAD FADH 2 Succinat Fumarat Beide Reaktionen sind Teilschritte des Citratzyklus, in denen Elektronen, die aus der Oxidation des Substrats stammen, auf einen passenden Elektronenakzeptor übertragen und so für die Atmungskette nutzbar werden. Die Oxidation des Isocitrat ist insofern bedeutsam, da dieser Teilschritt einer der beiden Reaktionen ist, in denen bis zur Carboxylgruppe oxidierte Kohlenstoffatome des Substrats durch eine Decarboxylierung als Kohlenstoffdioxid-Moleküle freigesetzt werden. Zur zweiten Reaktion wäre anzumerken, dass das die Reaktion katalysierende Enzym, die Succinat-Dehydrogenase, als einziges Enzym des Citratzyklus membrangebunden ist. Es handelt sich dabei um den Komplex II der Atmungskette. Das beteiligte FAD ist kein mobiler Elektronenüberträger, sondern kovalent an das Enzym gebunden. 2

3 ARBEITSBLATT 2 Reaktionen der Zellatmung (2) 1. Beschriften Sie in der Abbildung die verschiedenen Strukturen und Kompartimente! Beschreiben Sie die Aufgabe der einzelnen Strukturen bei der Zellatmung! Matrix NADH FAD Komplex I Komplex II Komplex III Komplex IV Ubichinol Ubichinon Intermembranraum Cytochrom c NADH ist ein wasserlösliches Cosubstrat im Cytosol und in der Matrix der Mitochondrien, das als Elektronenüberträger dient. Es bindet an den Komplex I der Atmungskette. FAD ist ebenfalls ein Elektronenübertrager, der kovalent am Komplex II der Atmungskette gebunden ist. Ubichinon (UQ) ist ein lipophiles Molekül, das sich frei in der inneren Membran der Mitochondrien bewegen und so Elektronen von den Komplexen I und II zum Komplex III transportieren kann. Ubichinon ist das einzige Nichtprotein in der Atmungskette. Cytochrom c dient als mobiler Elektronenüberträger im Intermembranraum. Es transportiert Elektronen vom Komplex III zum Komplex IV. Komplex I der Atmungskette oxidiert NADH zu NAD + und überträgt die beiden Elektronen auf Ubichinon, das in der reduzierten Form Ubichinol (UQH 2 ) heißt und zwei Protonen aus der Matrix aufnimmt. Während des Transports der Elektronen von NADH zu UQ werden je Molekül NADH vier Protonen aus der Matrix in den Intermembranraum gepumpt. Komplex II der Atmungskette ist ein Enzym des Citratzyklus, die Succinat-Dehydrogenase.

4 ARBEITSBLATT 2 Reaktionen der Zellatmung (2) Komplex II oxidiert Succinat zu Fumarat und überträgt die Elektronen auf FAD, das so zu FADH 2 reduziert wird. Von dort werden die Elektronen auf UQ weitergegeben, das nach Aufnahme zweier Protonen aus der Matrix zu UQH 2 wird. Komplex III der Atmungskette oxidiert UQH 2 zu UQ. Die Protonen gelangen in den Intermembranraum, die beiden Elektronen werden nacheinander auf je ein Molekül Cytochrom c übertragen. Während dieses Elektronentransports über den sogenannten Q-Zyklus werden zwei weitere Protonen aus der Matrix in den Intermembranraum transportiert. Komplex IV der Atmungskette oxidiert Cytochrom c und speichert die Elektronen, bis vier aufgenommen wurden. Diese dienen dann dazu, ein Molekül Sauerstoff, das an der Matrixseite des Komplexes IV bindet, zu zwei Molekülen Wasser zu reduzieren. Parallel zum Transport der vier Elektronen von Cytochrom c auf Sauerstoff werden vier Protonen aus der Matrix in den Intermembranraum gepumpt. 2. Die Abbildung zeigt eine Phase des Q-Zyklus. Beschreiben Sie den weiteren Weg der vier Elektronen! 1 2 Elektron 4 wird zunächst von Komplex III auf ein Cytochrom c- Molekül weitergegeben und von diesem zum Komplex IV transportiert. Dort wird es zusammen mit drei weiteren Elektronen auf molekularen Sauerstoff übertragen. Elektron 3 reduziert gerade das an der UQ-Bindungsstelle angedockte UQ-Molekül zum Semichinon. Die Elektronen 1 und 2 werden im nächsten Schritt vom Komplex III aufgenommen. Eines der beiden beispielsweise das Elektron 2 wird in der Folgezeit das nächste Cytochrom c-molekül reduzieren, das an den Komplex III bindet. Das andere also Elektron 1 wird auf das Semichinon übertragen, das nun nach vollständiger Reduktion zwei Protonen aus der Matrix aufnimmt und sich als UQH 2 von seiner Bindungsstelle löst. UQH 2 kann dann an der Ubichinol-Bindungsstelle des Komplexes III binden, sodass Elektron 1 wieder am Anfang des beschriebenen Weges ist

5 ARBEITSBLATT 3 Atmung Gärung (1) 1. Beschriften Sie die Abbildung! Geben Sie anhand der Grafik einen Überblick über die dargestellten Zusammenhänge! NAD + NADH O 2 Glucose Pyruvat CO 2 ATP ADP + P i Die Grafik gibt einen Überblick über die Zellatmung. Sie weist Zusammenhänge auf zwischen der Glykolyse, den Prozessen im Mitochondrium Pyruvat-Oxidation, Citratzyklus, Atmungskette, ATP-Synthese und dem Bau- und Betriebsstoffwechsel. Die Grafik verdeutlicht, dass die Glykolyse nur dann ablaufen kann, wenn ADP und NAD + zur Verfügung stehen. ADP liegt immer dann vor, wenn im Stoffwechsel ATP verbraucht wird. Die Regeneration von NAD + durch Oxidation des NADH erfolgt bei Vorhandensein von Sauerstoff im Mitochondrium. Es wird weiterhin ersichtlich, dass die ATP-Produktion im Mitochondrium nur dann stattfinden kann, wenn die Glykolyse Pyruvat liefert und der Stoffwechsel durch ATP-Spaltung ADP bereitstellt. Schließlich kann der Bau- und Betriebsstoffwechsel nur solange aufrecht erhalten werden, wie ATP zur Verfügung steht.

6 ARBEITSBLATT 3 Atmung Gärung (1) 2. Beschriften Sie die Abbildung! Erläutern Sie, inwiefern die hier dargestellten Prozesse eher eine Notlösung darstellen als eine Alternative zur Zellatmung! NAD + Ethanol NADH Acetaldehyd CO 2 Glucose Pyruvat ATP ADP + P i Die Grafik zeigt die alkoholische Gärung. Wenn kein Sauerstoff zur Verfügung steht und damit die Atmungs-Prozesse in den Mitochondrien zum Erliegen kommen, kann wie schon in Aufgabe 1 ausgeführt zunächst auch die Glykolyse kein ATP mehr liefern. Zellen, die über keinen alternativen Weg zur Oxidation des NADH verfügen, sind dann vom Absterben bedroht. Viele Pflanzenzellen oder beispielsweise auch die Zellen der Hefe können bei Sauerstoffmangel auf die alkoholische Gärung umschalten. Sie verfügen über ein Enzym, das Pyruvat zu Acetaldehyd decarboxyliert. Dieses wird unter Oxidation von NADH zu Ethanol reduziert. Das so entstandene NAD + steht dann der Glykolyse zur Verfügung, sodass wenigstens eine geringe Menge an ATP gebildet werden kann. Die alkoholische Gärung ist keine vollwertige Alternative zur Zellatmung, sondern nur eine Notlösung für Zeiten des Sauerstoffmangels. Das folgt schon daraus, dass viel weniger ATP pro

7 ARBEITSBLATT 3 Atmung Gärung (1) Molekül Glucose gebildet wird und daher viel mehr Glucose verbraucht werden muss, um die lebensnotwendige Menge an ATP zu produzieren. Der größte Teil der chemischen Energie der Glucose liegt am Ende der Gärung im Endprodukt Ethanol. Diese Energie ist für die Zelle nicht mehr verwertbar. Ethanol wird nämlich ausgeschieden, da es hochgiftig ist. 3. Die Grafik zeigt Möglichkeiten tierischer Zellen, Gärungsprodukte zu verwerten. So findet 1 in Leber und Niere statt, 2 im Herzmuskel. Beschriften Sie die Abbildung! Beschreiben Sie anhand der Grafik die Stoffwechselwege! Gehen Sie dabei auch auf notwendige Voraussetzungen ein! 2 NAD + 2 NADH 2 H Glucose Lactat Pyruvat Die Verwertung des Lactat beginnt damit, dass der letzte Schritt der Milchsäuregärung umgekehrt wird: Lactat wird zu Pyruvat oxidiert, wobei NAD + zu NADH reduziert wird. Schon dieser Schritt ist nur in Zellen möglich, die über Sauerstoff verfügen, sodass in der Atmungskette NADH zu NAD + oxidiert wird, das dann für diese Reaktion zur Verfügung steht. Der nahe liegende Weg, das Pyruvat im Mitochondrium weiter zu oxidieren, setzt natürlich auch eine Versorgung der Zelle mit Sauerstoff voraus. Diese Möglichkeit, das Pyruvat weiter zu verarbeiten, wird vom Herzmuskel genutzt. In Leber und Niere wird viel Energie aufgewandt, um aus Pyruvat Glucose aufzubauen. Über so viel Energie verfügt die Zelle auch nur bei funktionierender Zellatmung. 3

8 ARBEITSBLATT 4 Atmung Gärung (2) 1. Benennen Sie das Versuchsmaterial! Beschreiben Sie Aufbau und Durchführung des Experiments! Nennen Sie das beobachtete Ergebnis und werten Sie es aus! Sanduhr Gasflasche mit Stickstoff Waschflasche mit Kalkwasser Waschflasche mit keimenden Erbsen Zwei Waschflaschen werden etwa zur Hälfte mit Kalkwasser gefüllt. In eine dritte Waschflasche werden keimende Erbsen gegeben. Die Gasflasche mit Stickstoff und die drei Waschflaschen werden mit Gummischläuchen so verbunden, dass der Stickstoff nach Öffnen der Gasflasche zunächst durch eine der Waschflaschen mit Kalkwasser strömt, dann durch die Waschflasche mit den Erbsen und schließlich durch die zweite Waschflasche mit Kalkwasser. Dann öffnet man das Absperrventil der Gasflasche und achtet auf Veränderungen in den Waschflaschen. Es zeigt sich in keiner der Waschflaschen eine Veränderung. Registriert man die Anzahl der Bläschen in den beiden Waschflaschen mit Kalkwasser, so ist auch in diesem Punkt keine Änderung festzustellen (gleichförmiges Sprudeln der Bläschen). Aus diesem Ergebnis kann geschlossen werden, dass die Erbsen unter Stickstoff kein Kohlenstoffdioxid produzieren, also weder Zellatmung noch Gärung durchführen, da sich sonst das Kalkwasser in der letzten Waschflasche getrübt hätte. Waschflasche mit Kalkwasser

9 ARBEITSBLATT 4 Atmung Gärung (2) 2. Stellen Sie dar, worin sich Versuchsansatz und -ergebnis vom Versuch in Aufgabe 1 unterscheiden! Erklären Sie das Versuchsergebnis! Anstelle der keimenden Erbsen ist diesmal eine Hefesuspension in der mittleren Waschflasche. Es zeigen sich zwei Unterschiede: Am auffälligsten ist, dass sich schon nach kurzer Zeit das Kalkwasser in der dritten Waschflasche trübt. Außerdem sieht man, dass in dieser Waschflasche mehr Bläschen aufsteigen als in der ersten. Die Trübung des Kalkwassers ist ein Nachweis, dass die Hefezellen auch in der Stickstoffatmosphäre Kohlenstoffdioxid produzieren. Sie betreiben dann alkoholische Gärung. Da dabei die Ausbeute an ATP sehr gering ist, muss viel mehr Glucose abgebaut werden als in der Zellatmung, um dieselbe Menge an ATP zu erhalten. Daher entsteht im Experiment auch viel Kohlenstoffdioxid, sodass sich das Kalkwasser rasch trübt. Das von den Hefezellen ausgeschiedene Kohlenstoffdioxid ist auch die Ursache dafür, dass in der dritten Waschflasche mehr Gasbläschen aufsteigen als in der ersten: In der ersten Waschflasche ist es nur der aus der Flasche strömende Stickstoff, in der dritten zusätzlich das gebildete Kohlenstoffdioxid.

10 ARBEITSBLATT 5 Respiratorischer Quotient 1. Beschriften Sie die Abbildung! Beschreiben Sie die Durchführung der Experimente, dessen Ergebnisse abgebildet sind! Bestimmen Sie aufgrund der Ergebnisse den Respiratorischen Quotienten (RQ) für den betreffenden Organismus. Leiten Sie aus den Ergebnissen Aussagen ab über den zugrunde liegenden Energiestoffwechsel! Sanduhr Gitterrost keimende Erbsen Wassertropfen NaOH-Plätzchen Die keimenden Erbsen werden in einer Schale auf einen Gitterrost gestellt, der sich in einer liegenden Flasche befindet. Die Flasche wird mit einem durchbohrten Stopfen verschlossen. In die Bohrung des Stopfens wird ein Glasrohr eingeführt und in dessen Ende ein Wassertropfen eingebracht. Beobachtet man den Ansatz eine gewisse Zeit, so stellt man keine Veränderung fest. Ergänzt man den Versuchsansatz durch ein Schälchen mit NaOH-Plätzchen, das unter den Gitterrost gestellt wird, so zeigt sich, dass der Wassertropfen in Richtung Flasche wandert, das Gasvolumen in der Flasche also kleiner geworden ist. Der zweite Teil des Versuches lässt erkennen, dass die keimenden Erbsen in der vorgegebenen

11 ARBEITSBLATT 5 Respiratorischer Quotient Zeit der Flasche eine bestimmte Menge Gas entnommen haben. Dabei handelt es sich wohl um den Sauerstoff, den die keimenden Erbsen in der Zellatmung verbrauchten. Das dabei ausgeschiedene Kohlenstoffdioxid wurde durch die NaOH-Plätzchen gebunden, sodass es keinen Einfluss auf das Gasvolumen in der Flasche hatte. Da im ersten Teil des Experiments keine Veränderung im Gasvolumen zu beobachten war, folgt, dass das Volumen des von den keimenden Erbsen verbrauchten Sauerstoffs durch das des gebildeten Kohlenstoffdioxids ersetzt wurde. Da der Respiratorische Quotient (RQ) als das Verhältnis der Menge ausgeschiedenen Kohlenstoffdioxids zur Menge aufgenommenen Sauerstoffs definiert ist, ist also für die keimenden Erbsen der RQ gleich null. Der RQ von null zeigt, dass für die keimenden Erbsen Kohlenhydrate Substrat des Energiestoffwechsels sind. Die Oxidation von Kohlenhydraten kann nämlich vereinfacht durch die folgende Gleichung beschrieben werden: C n H 2n O n + n O 2 n CO 2 + n H 2 O Dabei wird also genau so viel Kohlenstoffdioxid produziert wie Sauerstoff verbraucht wird. Bei der Veratmung von Fettsäuren würde die Bilanz anders aussehen. Die Oxidation einer Fettsäure, beispielsweise der Stearinsäure, könnte durch die folgende Gleichung beschrieben werden: CH 3 (CH 2 ) 16 COOH + 26 O 2 18 CO H 2 O Hier wird also viel weniger Kohlenstoffdioxid produziert, als Sauerstoff verbraucht wird. Der RQ würde unter diesen Voraussetzungen einen Wert von etwa 0,7 aufweisen.

12 ARBEITSBLATT 5 Respiratorischer Quotient 2. Die Abbildungen zeigen die Ergebnisse von Experimenten zum Respiratorischen Quotienten, bei denen anstelle der keimenden Erbsen aus Aufgabe 1 eine Maus als Versuchsobjekt diente. Bestimmen Sie aufgrund der Ergebnisse den RQ der Maus! Leiten Sie aus dem Ergebnis Aussagen ab über den zugrunde liegenden Energiestoffwechsel! Im ersten Teilversuch, ohne Verwendung von NaOH-Plätzchen, wird die Gasmenge in der Flasche um etwa 1,5 Einheiten verringert, im zweiten Teilversuch um 10 Einheiten. Die Maus verbraucht also während des Experimentes 10 Einheiten Sauerstoff, wie Teilversuch 2 zeigt. Die Verringerung des Gasvolumens im ersten Teilversuch weist nach, dass von diesen 10 Einheiten 8,5 durch das Volumen des ausgeschiedenen Kohlenstoffdioxids ersetzt wurden. Der RQ der Maus beträgt also 0,85. Daraus kann man schließen, dass die Maus neben Kohlenhydraten andere Nährstoffe, etwa Fette, als Substrat der Zellatmung verwendet.

Regulation der Glykolyse: Phosphofructokinase

Regulation der Glykolyse: Phosphofructokinase Regulation der Glykolyse: Phosphofructokinase Abbauwege des Pyruvats Weitere Oxidation (zu CO 2 ) Alkoholische Gärung Pyruvat- Decarboxylase Alkohol- Dehydrogenase NAD + wird bei der Gärung regneriert,

Mehr

- der oxidative Abbau von Acetyl-CoA (und die somit gebildeten Reduktionsäquivalente) - Lieferung von Substraten für verschiedene Synthesen

- der oxidative Abbau von Acetyl-CoA (und die somit gebildeten Reduktionsäquivalente) - Lieferung von Substraten für verschiedene Synthesen Die Aufgabe des Citratcyklus ist: - der oxidative Abbau von Acetyl-CoA (und die somit gebildeten Reduktionsäquivalente) - Lieferung von Substraten für verschiedene Synthesen Die Aufgabe des Citratcyklus

Mehr

Biologische Oxidation: Atmung (Dissimilation) C 6 H 12 O O 2 6 CO H 2 O G kj

Biologische Oxidation: Atmung (Dissimilation) C 6 H 12 O O 2 6 CO H 2 O G kj Biologische Oxidation: Atmung (Dissimilation) C 6 H 12 O 6 + 6 O 2 6 CO 2 + 6 H 2 O G 0-2872 kj Hydrolyse der Stärke Ausgangssubstrate: Glucose, Fructose Stärkehydrolyse: Amylasen Endo- ( -Amylase) und

Mehr

Schritt für Schritt Simulation Die Atmungskette

Schritt für Schritt Simulation Die Atmungskette KENNZEICHEN: KURS - SCHULE - - Schritt für Schritt Simulation Die Atmungskette Inhalt Übersicht über das Mitochondrium und die Mitochondrienmembran S.2 Zeichenerklärung S.3 Stichwortverzeichnis S.4 Leitfaden

Mehr

Was bisher geschah 1

Was bisher geschah 1 Was bisher geschah 1 Zellatmung (Übersicht) Der Citratcyclus ist die erste Stufe der Zellatmung 2 Citratzyklus Synonyme: Tricarbonsäurezyklus (TCA-Zyklus) Krebszyklus, Zitronensäurezyklus Der Zyklus ist

Mehr

Der Energiestoffwechsel eukaryotischer Zellen

Der Energiestoffwechsel eukaryotischer Zellen Der Energiestoffwechsel eukaryotischer Zellen Der Abbau (Katabolismus/Veratmung/Verbrennung) reduzierter Kohlenstoffverbindungen (Glukose, Fettsäuren, Aminosäuren) bzw. deren makromolekularer Speicher

Mehr

Citratzyklus. Citratzyklus

Citratzyklus. Citratzyklus Der hat in der Zelle verschiedene Aufgaben. Teilschritte werden z.b. bei manchen Gärungen eingesetzt (Methyl-Malonyl-CoA-Weg). Er ist wichtig zur Bereitstellung verschiedener Vorstufen für Biosynthesen,

Mehr

Der Citratzyklus (= Trikarbonsäurezyklus, Krebszyklus)

Der Citratzyklus (= Trikarbonsäurezyklus, Krebszyklus) Der Citratzyklus (= Trikarbonsäurezyklus, Krebszyklus) Biochemischer Kreisprozeß Ablauf in der mitochondrialen Matrix Glykolyse β-oxidation Atmungskette AS-Abbau Der Citratzyklus Der Citratzyklus: Übersicht

Mehr

Atmung Übersicht. Atmung der Mitochondrien

Atmung Übersicht. Atmung der Mitochondrien Atmung der Mitochondrien Atmung Übersicht e - Transportkette REAKTION: C 6 H 12 O 6 + 6O 2 6CO 2 + 6H 2 O + Energie (Glucose) (Sauerstoff) (Kohlendioxid) (Wasser) Nur ca. 40% der Energie wird zu ATP Der

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lehrerhandreichungen zu: "Zellatmung" Das komplette Material finden Sie hier:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lehrerhandreichungen zu: Zellatmung Das komplette Material finden Sie hier: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lehrerhandreichungen zu: "Zellatmung" Das komplette Material finden Sie hier: School-Scout.de Schlagwörter ADP; Atmungskette; ATP;

Mehr

Einführung in die Biochemie

Einführung in die Biochemie Stoffwechselvorgänge, bei denen Kohlenhydrate abgebaut werden um dem rganismus Energie zur Verfügung zu stellen, können auf verschieden Wegen ablaufen: 1. Die Atmung ist der aerobe Abbau, bei dem zur Energiegewinnung

Mehr

Kraftwerk Körper Energiegewinnung in unseren Zellen

Kraftwerk Körper Energiegewinnung in unseren Zellen Was passiert eigentlich, wenn wir etwas essen und dann loslaufen müssen? Wie können unsere Zellen die Stoffen aus der Nahrung zur Energiegewinnung nutzen? Die Antwort auf diese Fragen gibt s in diesem

Mehr

Kapitel 5: 1. Siderophore assistieren dem Transfer welcher der folgenden Makronährstoffe über Membranen? A. Stickstoff B. Phosphor C. Eisen D.

Kapitel 5: 1. Siderophore assistieren dem Transfer welcher der folgenden Makronährstoffe über Membranen? A. Stickstoff B. Phosphor C. Eisen D. Kapitel 5: 1 Siderophore assistieren dem Transfer welcher der folgenden Makronährstoffe über Membranen? A. Stickstoff B. Phosphor C. Eisen D. Kalium Kapitel 5: 2 Welcher der folgenden Makronährstoffe ist

Mehr

Biochemie II - Tutorium

Biochemie II - Tutorium Mathematik und Naturwissenschaften, Biologie, Biochemie Biochemie II - Tutorium Dresden, 16.11.2016 Ablauf des Tutoriums Einführung und Wiederholung Vorlesungszusammenfassung Übungsaufgaben Selbststudium

Mehr

I. Zellatmung. =Abbau von Kohlenhydraten unter Sauerstoffverbrauch (aerob) KH + O 2 --> CO 2 + H 2 O + Energie

I. Zellatmung. =Abbau von Kohlenhydraten unter Sauerstoffverbrauch (aerob) KH + O 2 --> CO 2 + H 2 O + Energie KATABOLISMUS Abbau komplexer organischer Moleküle (reich an Energie) zu einfacheren (mit weniger Energie). Ein Teil der Energie wird genutzt um Arbeit zu verrichten (Zelle erhalten, Wachstum) I. Zellatmung

Mehr

Z 11 GRUNDLAGEN DER BIOCHEMIE STOFFWECHSELWEGE 1) DIE WICHTIGSTEN STOFFWECHSELWEGE: 2) ÜBERSICHT ÜBER DEN ENERGIESTOFFWECHSEL

Z 11 GRUNDLAGEN DER BIOCHEMIE STOFFWECHSELWEGE 1) DIE WICHTIGSTEN STOFFWECHSELWEGE: 2) ÜBERSICHT ÜBER DEN ENERGIESTOFFWECHSEL GRUNDLAGEN DER BIOCHEMIE STOFFWECHSELWEGE Zusammenfassung Zusammenfassung Kapitel 11 1) DIE WICHTIGSTEN STOFFWECHSELWEGE: Fette und Kohlenhydrate aus der Nahrung nutzt der Körper hauptsächlich zur Energiegewinnung.

Mehr

Z11 GRUNDLAGEN DER BIOCHEMIE STOFFWECHSELWEGE 1) DIE WICHTIGSTEN STOFFWECHSELWEGE: 2) ÜBERSICHT ÜBER DEN ENERGIESTOFFWECHSEL

Z11 GRUNDLAGEN DER BIOCHEMIE STOFFWECHSELWEGE 1) DIE WICHTIGSTEN STOFFWECHSELWEGE: 2) ÜBERSICHT ÜBER DEN ENERGIESTOFFWECHSEL GRUNDLAGEN DER BIOCHEMIE STOFFWECHSELWEGE 1) DIE WICHTIGSTEN STOFFWECHSELWEGE: Fette und Kohlenhydrate aus der Nahrung nutzt der Körper hauptsächlich zur Energiegewinnung. Proteine aus der Nahrung werden

Mehr

Atmungskette inklusive Komplex II

Atmungskette inklusive Komplex II Atmungskette inklusive Komplex II Energiegewinnung durch oxidative Phosphorylierung GW2014 Das Prinzip der Oxidativen Phosphorylierung 14_01_01_harness_energy.jpg Chemiosmotische Kopplung 2016 1 1) 2)

Mehr

Der Fettsäurestoffwechsel. Basierend auf Stryer Kapitel 22

Der Fettsäurestoffwechsel. Basierend auf Stryer Kapitel 22 Der Fettsäurestoffwechsel Basierend auf Stryer Kapitel 22 1 CoA 2 3 Überblick 4 Ein paar Grundlagen... Carbonsäure Alkohol Carbonsäureester Eine Acyl-Gruppe 5 Eine Acyl-Gruppe H O Formyl H 3 C O Acetyl

Mehr

Die innere Mitochondrienmebran ist durchlässig für: 1. Pyruvat 2. Malat 3. Aspartat 4. Citrat

Die innere Mitochondrienmebran ist durchlässig für: 1. Pyruvat 2. Malat 3. Aspartat 4. Citrat Der Malat-Shuttle Die innere Mitochondrienmebran ist durchlässig für: 1. Pyruvat 2. Malat 3. Aspartat 4. Citrat Die innere Mitochondrienmembran ist undurchlässig für: 1. Wasserstoffatomen > 2. Acetyl-

Mehr

BIOCHEMIE. Prof. Manfred SUSSITZ. über(be)arbeitet und zusammengestellt nach Internetvorlagen:

BIOCHEMIE. Prof. Manfred SUSSITZ. über(be)arbeitet und zusammengestellt nach Internetvorlagen: BIOCHEMIE Prof. Manfred SUSSITZ über(be)arbeitet und zusammengestellt nach Internetvorlagen: Medizinische Fakultät, Universität Erlangen http://www2.chemie.uni-erlangen.de/projects/vsc/chemie-mediziner-neu/start.html

Mehr

Kataboler und Anaboler Stoffwechsel

Kataboler und Anaboler Stoffwechsel Vorlesung Vom Molekül zur Zelle Ao.Univ.Prof. Dr. Georg Weitzer Fortsetzung von Block 3 nach Prof. Müllner, ab 8.1. Kataboler und Anaboler Stoffwechsel Aktuelle Folien unter http://homepage.univie.ac.at/georg.weitzer/lectures.html

Mehr

Citratzyklus. Biochemie Maria Otto,Bo Mi Ok Kwon Park

Citratzyklus. Biochemie Maria Otto,Bo Mi Ok Kwon Park Citratzyklus Biochemie 13.12.2004 Maria Otto,Bo Mi Ok Kwon Park O CH 3 C Acetyl-CoA + H 2 O HO C COO C NADH O C H Citrat Cis-Aconitat H C Malat Citratzyklus HO C H Isocitrat CH H 2 O Fumarat C = O FADH

Mehr

Anaerobe NADH-Regeneration: Gärung

Anaerobe NADH-Regeneration: Gärung Anaerobe NADH-egeneration: Gärung Milchsäure-Gärung H 3 Lactat-DH H H H 3 Pyruvat Lactat Anaerobe NADH-egeneration: Gärung Milchsäure-Gärung H 3 Lactat-DH H H H 3 Pyruvat Lactat Alkoholische Gärung H 3

Mehr

Grundzüge des Energiestoffwechsels I

Grundzüge des Energiestoffwechsels I Grundzüge des Energiestoffwechsels I 4.5 Grundzüge des Energiestoffwechsels 4.5.2 Glykolyse 4.5.3 Pyruvatdecarboxylierung 4.5.4 Citratzyklus 4.5.5 Glyoxylatzyklus und Gluconeogenese 4.5.6 Atmung, Endoxidation

Mehr

Seiten im Campbell und Tierphsbuch. Citratsäurezyklus: T. S. 53 / Cam. S. 180 f, , , 190

Seiten im Campbell und Tierphsbuch. Citratsäurezyklus: T. S. 53 / Cam. S. 180 f, , , 190 Versuch: Atmung Seiten im Campbell und Tierphsbuch Zusammenfassung Campbell S. 915 bis 925 RQ Tierphys S. 259 Was sind Tracheen? T. S. 255 / Cam S. 746 f., 917 ff., 1349 Lunge : T. S. 243 ff. / Cam S.

Mehr

Oxidative Phosphorylierung

Oxidative Phosphorylierung BICEMIE DER ERÄRUG II Grundzüge des Metabolismus xidative Phosphorylierung 24.04.2012 xidative Phosphorylierung xidative Phosphorylierung -Die Elektronen in AD und in FAD 2 (hohes Übertragungspotential)

Mehr

Stoffwechsel. Metabolismus (3)

Stoffwechsel. Metabolismus (3) Vorlesung Zell- und Molekularbiologie Stoffwechsel Metabolismus (3) Überblick Stoffwechsel Glykolyse Citratcyklus Chemiosmotische Prinzipien 1 Glykolyse 1 Glucose und in der Glykolyse daraus gebildete

Mehr

Der Stoffwechsel. Wir zeigen dir wie er funktioniert.

Der Stoffwechsel. Wir zeigen dir wie er funktioniert. Der Stoffwechsel. Wir zeigen dir wie er funktioniert. Der Stoffwechsel. Wir zeigen dir wie er funktioniert. Guter Stoffwechsel, schlechter Stoffwechsel, der Stoffwechsel schläft, den Stoffwechsel ankurbeln,

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Die Endoxidation mit 1 Farbfolie. Das komplette Material finden Sie hier:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Die Endoxidation mit 1 Farbfolie. Das komplette Material finden Sie hier: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Die Endoxidation mit 1 Farbfolie Das komplette Material finden Sie hier: Download bei School-Scout.de S 2 M 1 Die Knallgasreaktion

Mehr

Atmungskette ( Endoxidation) Reaktionen und ATP-Synthase

Atmungskette ( Endoxidation) Reaktionen und ATP-Synthase Atmungskette ( Endoxidation) Reaktionen und ATP-Synthase Einleitung Aufrechterhaltung von Struktur und Funktion aller Lebensformen hängt von einer ständigen Energiezufuhr ab Höchste Energieausbeute liefert

Mehr

❶ ❷ ❸ ❹ 1) ATP: 2) Energiegewinnungswege:

❶ ❷ ❸ ❹ 1) ATP: 2) Energiegewinnungswege: 1) ATP: ist der Energielieferant des Körpers. Die Spaltung von ATP (Adenosintriphosphat) zu ADP (Adenosindiphosphat) + P gibt Energie frei, welche der Körper nutzen kann (z.b. Muskel für Kontraktion, vgl.

Mehr

Biochemie II - Tutorium

Biochemie II - Tutorium Mathematik und Naturwissenschaften, Biologie, Biochemie Biochemie II - Tutorium Dresden, 04.01.2016 Zellkern Lipidtröpfchen Nucleotidmetabolismus Glykogen- Stoffwechsel Pentosephosephatweg Glucose Glucose

Mehr

Grundlagen der Physiologie

Grundlagen der Physiologie Grundlagen der Physiologie Abbau eines Zuckermoleküls www.icbm.de/pmbio Lebensweise eines heterotrophen Aerobiers 1 Überblick Stoffwechsel Glykolyse Citratcyklus Chemiosmotische Prinzipien Anabolismus

Mehr

Einführung in die Biochemie

Einführung in die Biochemie Stoffwechselvorgänge, bei denen Kohlenhydrate abgebaut werden um dem rganismus Energie zur Verfügung zu stellen, können auf verschieden Wegen ablaufen: 1. Die Atmung ist der aerobe Abbau, bei dem zur Energiegewinnung

Mehr

12. Oxidative Phosphorylierung

12. Oxidative Phosphorylierung 12. Oxidative Phosphorylierung 303 Zweck: Gewinnung von ATP Regeneration von NAD + und FAD Gesamtreaktionen: 3 ADP + 3 P i 3 ATP NADH + 0,5 O 2 + H + NAD + + H-O-H 2 ADP + 2 P i 2 ATP FADH 2 + 0,5 O 2

Mehr

Übungsaufgaben zum Lernprogramm Stoffwechsler

Übungsaufgaben zum Lernprogramm Stoffwechsler 1 Energiebindung und Stoffaufbau durch Photosynthese 1.1 Ergänze mit Hilfe des Programms die folgende Tabelle: Ort in der Zelle: Lichtreaktion Calvin-Zyklus der Edukte: der Produkte: Energieträger: Bildung:

Mehr

Atmung Respiration 1

Atmung Respiration 1 Atmung Respiration 1 Atmung Die oxidative Phosphorylierung ist der letzte Schritt einer Serie von Energieumwandlungen, die insgesamt als Zellatmung oder einfach Atmung (Respiration) bezeichnet werden 2

Mehr

Biologie für Mediziner

Biologie für Mediziner Biologie für Mediziner - Zellbiologie 1 - Prof. Dr. Reiner Peters Institut für Medizinische Physik und Biophysik/CeNTech Robert-Koch-Strasse 31 Tel. 0251-835 6933, petersr@uni-muenster.de Dr. Martin Kahms

Mehr

Einführung in die Biochemie

Einführung in die Biochemie Stoffwechselvorgänge, bei denen Kohlenhydrate abgebaut werden um dem rganismus Energie zur Verfügung zu stellen, können auf verschieden Wegen ablaufen: 1. Die Atmung ist der aerobe Abbau, bei dem zur Energiegewinnung

Mehr

Mechanismen der ATP Synthese in Mitochondrien

Mechanismen der ATP Synthese in Mitochondrien Mechanismen der ATP Synthese in Mitochondrien Übersicht Die Bedeutung von ATP Aufbau eines Mitochondriums ATP Synthese: Citratzyklus Atmungskette ATP Synthase Regulation der ATP Synthese Die Bedeutung

Mehr

Das Sinnloseste: der Zitronensäurezyklus

Das Sinnloseste: der Zitronensäurezyklus Vortrag zum Thema Das Sinnloseste: der Zitronensäurezyklus von Daniel Metzsch 1 Inhalte 1. Zuerst ein paar Strukturformeln 2. Einordnung in den Metabolismus 3. Überblick über den Zitronensäurezyklus 4.

Mehr

schnell und portofrei erhältlich bei

schnell und portofrei erhältlich bei Kurzlehrbuch Biochemie Kurzlehrbuch Biochemie Bearbeitet von Melanie Königshoff, Timo Brandenburger 2. überarb. Aufl. 2007. Taschenbuch. 46 S. Paperback ISBN 978 3 13 136412 8 Format (B x L): 24 x 17 cm

Mehr

1. Zeichnen und beschriften Sie die stereochemische Struktur von L- Threonin. Geben Sie an, ob R- oder S-Konfiguration vorliegt.

1. Zeichnen und beschriften Sie die stereochemische Struktur von L- Threonin. Geben Sie an, ob R- oder S-Konfiguration vorliegt. Übung und Lösung zur Übung Aminosäuren 1. Zeichnen und beschriften Sie die stereochemische Struktur von L- Threonin. Geben Sie an, ob R- oder S-Konfiguration vorliegt. 2. Das Tripeptid Glutathion ( -Glu-Cys-Gly)

Mehr

Bioenergetik. Technische Universität Ilmenau, FG Nanotechnologie. Zentrum für Mikro- und Nanotechnologien

Bioenergetik. Technische Universität Ilmenau, FG Nanotechnologie. Zentrum für Mikro- und Nanotechnologien Bioenergetik Quellen: 1. Physiologie des Menschen (mit Pathophysiologie) R.F. Schmidt, F. Lang, G. Thews, 29. Auflage Springer Medizin Verlag Heidelberg (2005), ISBN 3-540-21882-3. 2. www.cg.bnv bamberg.de/t3/fileadmin/images/fachbereiche/biologie/dateien/kh-abbau.ppt

Mehr

Reduction / Oxidation

Reduction / Oxidation Reduction / Oxidation Pyruvat C6H12O 6 Glucose Glycogen Glucose-6-P Glycolyse 2 e - 2 Pyruvat 2 e - 2 Acetyl-CoA 2 CO 2 ATP ADP ATP ADP Citrat-Zyklus oder Tricarbonsäure 4 CO 2 8 e - Zyklus 6 O2 6 H 2

Mehr

Präsentation STOFFWECHSEL STOFFWECHSEL. Fettstoffwechsel im Sport. Biologische Oxidation Zitratzyklus und Atmungskette

Präsentation STOFFWECHSEL STOFFWECHSEL. Fettstoffwechsel im Sport. Biologische Oxidation Zitratzyklus und Atmungskette STOFFWESEL GRUNDLAGEN STÖRUNGEN:Diagnose, Therapie, Prävention 6 Bedeutung der körperlichen Aktivität Präsentation Fettstoffwechsel im Sport Glukose exokinase 1ATP -> 1ADP Glukose-6-Phosphat Phosphohexoisomerase

Mehr

KOHLENHYDRATE PYRUVAT-DEHYDROGENASE

KOHLENHYDRATE PYRUVAT-DEHYDROGENASE PYRUVAT-DEHYDROGENASE PYRUVAT-DEHYDROGENASE: Um ein Optimum Beute garantieren zu können, Wird das entstandene Pyruvat (bei der aeroben) Glykolyse, durch die PDH in Acetyl-CoA umgewandelt, um dann, Teil

Mehr

Einführung in die Biochemie Glykolyse

Einführung in die Biochemie Glykolyse Glykolyse Der Abbau der Glukose beginnt beim aeroben und beim anaeroben Abbau nach dem gleichen rinzip, der Glykolyse. Dabei wird Brenztraubensäure (2-Ketopropansäure) gebildet. Die Glykolyse ist die erste

Mehr

Biochemie II - Tutorium

Biochemie II - Tutorium Mathematik und Naturwissenschaften, Biologie, Biochemie Biochemie II - Tutorium Dresden, 04.01.2016 Ablauf des Tutoriums Einführung und Wiederholung Vorlesungszusammenfassung Übungsaufgaben Selbststudium

Mehr

Um diesen Prozess zu verstehen, müssen wir die Wege der Glukose genauer betrachten.

Um diesen Prozess zu verstehen, müssen wir die Wege der Glukose genauer betrachten. Glukose hilft uns, auch bei intensiven Belastungen zu überleben. Wieso? Um diesen Prozess zu verstehen, müssen wir die Wege der Glukose genauer betrachten. In diesem Artikel geht es nicht nur um den Abbau

Mehr

Musterlösung. Frage Summe Note Punkte 1, ,5 1,0

Musterlösung. Frage Summe Note Punkte 1, ,5 1,0 Biochemische Teilklausur zum Grundmodul 0 im Bachelor-Studiengang Biowissenschaften (neue Prüfungsordnung Dauer Std.), 2. 2. 203, 8:00-9:00 Uhr, Sporthalle, sowie Biochemische Teilklausur zum Grundmodul

Mehr

10.2 Der Citratzyklus 203

10.2 Der Citratzyklus 203 10.2 Der Citratzyklus 203 Ketonkörper-Biosynthese. Bei den Ketonkörpern handelt es sich um die verschiffbare Form von Acetyl-CoA. Staut sich viel Acetyl-CoA in der Leber an im Hungerzustand, dann werden

Mehr

Wiederholung. Fettsäuresynthese: Multienzymkomplex Sekundäre Pflanzenstoffe

Wiederholung. Fettsäuresynthese: Multienzymkomplex Sekundäre Pflanzenstoffe Wiederholung Ökologie der C 4 -Pflanzen CAM-Zyklus: primäre CO 2 -Fixierung in der Nacht, Übertragung an Ribulose-1,5-bisphosphat am Tag: zeitliche Kompartimentierung Photorespiration, Lichtatmung Photosynthese

Mehr

Alkoholische Gärung von Zuckern

Alkoholische Gärung von Zuckern KantonsSchuleOlten Fachschaft Chemie Alkoholische Gärung von Zuckern Aufgabe: Jede Gruppe führt die Gärungsversuche mit einer Zuckerart (Glucose, Fructose, Maltose, Saccharose oder Lactose) durch. Die

Mehr

Biochemie II - Tutorium

Biochemie II - Tutorium Mathematik und Naturwissenschaften, Biologie, Biochemie Biochemie II - Tutorium Dresden, 23.11.2016 Ablauf des Tutoriums Einführung und Wiederholung Vorlesungszusammenfassung Übungsaufgaben Selbststudium

Mehr

Pentosephosphatzyklus. Synonym: Hexosemonophosphatweg

Pentosephosphatzyklus. Synonym: Hexosemonophosphatweg Pentosephosphatzyklus Synonym: Hexosemonophosphatweg Gliederung Funktion & Lokalisation Grundgerüst des Ablaufs Anpassung an Stoffwechselsituation Regelung Beispielreaktion Funktion & Lokalisation Gewinnung

Mehr

Klausur zur Vorlesung Biochemie I im WS 2001/02

Klausur zur Vorlesung Biochemie I im WS 2001/02 (insgesamt 100 Punkte, mindestens 40 erforderlich) Klausur zur Vorlesung Biochemie I im WS 2001/02 am 18.02.2002 von 08.15 09.45 Uhr Gebäude 52, Raum 207 Bitte Namen, Matrikelnummer und Studienfach unbedingt

Mehr

Pharmazeutische Biologie Grundlagen der Biochemie

Pharmazeutische Biologie Grundlagen der Biochemie harmazeutische Biologie Grundlagen der Biochemie A Enzyme E1 E2 E3 E4 Biosynthese A B D E B E7 E2 E6 E1 E3 E5 E4 E1 E2 E5 E4 rof. Dr. Theo Dingermann Institut für harmazeutische Biologie Goethe-Universität

Mehr

Einführung in die Biochemie Gärung anaerober Abbau

Einführung in die Biochemie Gärung anaerober Abbau Gärungen sind ATP liefernde Energiestoffwechsel, die ohne Sauerstoff als xidationsmittel ablaufen. Ein Grund zur Nutzung der Gärung kann ein plötzlich anstehender Bedarf an rasch verfügbarerer Energie

Mehr

Johann Wolfgang Goethe-Universität Frankfurt am Main

Johann Wolfgang Goethe-Universität Frankfurt am Main Johann Wolfgang Goethe-Universität Frankfurt am Main Fachbereich Biowissenschaften Teilklausur Biochemie Studiengang Biowissenschaften Modul BSc-Biowiss-7 Studiengang Bioinformatik Modul BSc-Bioinf-8.Studiengang

Mehr

Asmaa Mebrad Caroline Mühlmann Gluconeogenese

Asmaa Mebrad Caroline Mühlmann Gluconeogenese Gluconeogenese Asmaa Mebrad Caroline Mühlmann 06.12.2004 Definition: wichtiger Stoffwechselweg, bei dem Glucose aus Nicht-Kohlenhydrat-Vorstufen synthetisiert wird Ablauf bei längeren Hungerperioden dient

Mehr

Biochemie II - Tutorium

Biochemie II - Tutorium Mathematik und Naturwissenschaften, Biologie, Biochemie Biochemie II - Tutorium Dresden, 09.01.2016 Ablauf des Tutoriums Einführung und Wiederholung Vorlesungszusammenfassung Übungsaufgaben Selbststudium

Mehr

Redoxprozesse. Warum ist Sauerstoff für uns lebensnotwendig?

Redoxprozesse. Warum ist Sauerstoff für uns lebensnotwendig? Redoxprozesse Diese Lerneinheit befasst sich mit der Knallgasexplosion und Atmungskette - eine biologische Betrachtung von Redoxreaktionen mit den folgenden Lehrzielen: Warum ist Sauerstoff für uns lebensnotwendig?

Mehr

Aufnahme der Nährstoffbausteine vom Darm in die Blutbahn durch Diffusion und aktiven Transport

Aufnahme der Nährstoffbausteine vom Darm in die Blutbahn durch Diffusion und aktiven Transport Nährstoffe 10 1 10 1 Organische Stoffe, die von heterotrophen Organismen zur Energiegewinnung bzw. zum Aufbau des Organismus aufgenommen werden müssen. Kohlenhydrate (Zucker und Stärke) Fette (ein Fettmolekül

Mehr

LIPIDE. Periphere Gruppe mit Cysteinylrest. FS-Synthase. Zentrale Gruppe Phosphopanthetinarm kovalente Bindung

LIPIDE. Periphere Gruppe mit Cysteinylrest. FS-Synthase. Zentrale Gruppe Phosphopanthetinarm kovalente Bindung Periphere Gruppe mit Cysteinylrest FS-Synthase Zentrale Gruppe Phosphopanthetinarm kovalente Bindung Die FS-Biosynthse aus Acetyl-CoA und Malonyl-CoA, wird komplett an dem dimeren Multienzymkomplex FETTSÄURESYNTHETASE

Mehr

Reduction / Oxidation

Reduction / Oxidation H :! H.. C.. H :! H H :! H.. C.. OH :! H H :! H 3 C.. C.. OH :! H O ::! H 3 C.. C.. H O ::! H 3 C.. C.. O -! O=C=O Oxidationszahl Methan -4 Methanol -2 Ethanol -1 Acetaldehyd +1 Acetat +3 Kohlendioxyd

Mehr

Versuch 6. Leitenzyme

Versuch 6. Leitenzyme Versuch 6 Leitenzyme Protokollant: E-mail: Studiengang: Gruppen-Nr: Semester: Betreuer: Max Mustermann max@quantentunnel.de X X X Dr. Kojro Einleitung Ziel dieses Versuches ist der Nachweis von bestimmten

Mehr

Abschlussklausur zur Vorlesung Biomoleküle II WS 2004/05

Abschlussklausur zur Vorlesung Biomoleküle II WS 2004/05 16.02.2005 Abschlussklausur zur Vorlesung Biomoleküle II WS 2004/05 Name: Studienfach: Matrikelnummer: Fachsemester: Hinweise: 1. Bitte tragen Sie Ihren Namen, Matrikelnummer, Studienfach und Semesterzahl

Mehr

Stoffwechsel. Die Chemie des Lebens ist in Stoffwechselwegen organisiert

Stoffwechsel. Die Chemie des Lebens ist in Stoffwechselwegen organisiert Die Chemie des Lebens ist in Stoffwechselwegen organisiert Der Stoffwechsel ist die Summe aller chemischen Reaktionen, die in den Zellen eines Organismus auftreten. Unter Mithilfe von Enzymen verläuft

Mehr

BIOCHEMIE des Stoffwechsels ( )

BIOCHEMIE des Stoffwechsels ( ) BIOCHEMIE des Stoffwechsels (772.113) 8. Einheit Oxidative Phosphorylierung Acetyl-CoA Elektronentransport Oxidative Phosphorylierung TCA- Cyclus Matrix Im Citronensäure-Cyclus werden die (u.a. durch Pyruvat-

Mehr

Überblick über die Zellatmung (qualitativ) : Welche Produkte entstehen? Name des Teilprozesses. C-Körper / Wasser H-Überträger Energieüberträger

Überblick über die Zellatmung (qualitativ) : Welche Produkte entstehen? Name des Teilprozesses. C-Körper / Wasser H-Überträger Energieüberträger Überblick über die Zellatmung (qualitativ) : Welche Produkte entstehen? ame des Teilprozesses -Körper / Wasser -Überträger Energieüberträger Glykolyse oxidative Decarboxilierung Zitronensäurezyklus Atmungskette

Mehr

Die Atmungskette. 1. Einleitung und Funktion. Inhalt:

Die Atmungskette. 1. Einleitung und Funktion. Inhalt: Die Atmungskette Inhalt: 1. Einleitung und Funktion 2. Die einzelnen Komplexe der Atmungskette 3. Zusammengefasst: Die Vorgänge in der Atmungskette 4. Transporte durch die Mitochondrienmembran 5. Die Regulation

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lehrerhandreichung zu: Chemie im Alltag: Gärung

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lehrerhandreichung zu: Chemie im Alltag: Gärung Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lehrerhandreichung zu: Chemie im Alltag: Gärung Das komplette Material finden Sie hier: School-Scout.de Schlagwörter ADP; aerob; anaerob;

Mehr

KOHLENHYDRATE. Die Glykolyse

KOHLENHYDRATE. Die Glykolyse Die Glykolyse Hexokinase Glucose Kostet 1ATP Mg 2+ Glucose-6-P Die Glucokinase kann durch Insulin induziert werden in : 1) Den Fettzellen 2) Den ß-Zellen des Pankreas 3) Der Nierenrinde 4) Der Leber Die

Mehr

Versuchsprotokoll. 1.) Versuch 2a: Quantitative Bestimmung der Atmung

Versuchsprotokoll. 1.) Versuch 2a: Quantitative Bestimmung der Atmung Versuchsprotokoll 1.) Versuch 2a: Quantitative Bestimmung der Atmung 1.1. Einleitung: Bei der aeroben Atmung, also dem oxidativen Abbau der Kohlenhydrate, entsteht im Citratzyklus und bei der oxidativen

Mehr

Gluconeognese Neusynthese von Glucose aus Pyruvat

Gluconeognese Neusynthese von Glucose aus Pyruvat Gluconeognese Neusynthese von Glucose aus Pyruvat Warum notwendig? Das Gehirn ist auf eine konstante Versorgung mit Glucose angewiesen. Eine Unterzuckerung (< 3 4 mmol/l) führt unweigerlich zur Bewußtlosigkeit

Mehr

Ueberblick des Zuckerabbaus: Pyruvat!

Ueberblick des Zuckerabbaus: Pyruvat! Ueberblick des Zuckerabbaus: Pyruvat + 2 ATP Oxidativer Abbau Fermentation (Muskel) Alkohol-Gärung (Hefe) Alkoholische Gärung: In Hefe wird unter aneroben Bedingungen NAD + durch Umwandlung von Pyruvat

Mehr

Zellatmung in Hefe. Klassenstufe Oberthemen Unterthemen Anforderungsniveau Durchführungsniveau Vorbereitung

Zellatmung in Hefe. Klassenstufe Oberthemen Unterthemen Anforderungsniveau Durchführungsniveau Vorbereitung Zellatmung in Hefe Bildquelle: Fotolia Klassenstufe Oberthemen Unterthemen Anforderungsniveau Durchführungsniveau Vorbereitung Biologie G-Kurs Stoffwechsel Zellatmung unterschiedlich Aufgabenstellung Die

Mehr

Der Stoffwechsel: Konzepte und Grundmuster

Der Stoffwechsel: Konzepte und Grundmuster Der Stoffwechsel: Konzepte und Grundmuster 1 Lebende Organismen Was unterscheidet lebende Organismen von toter Materie? Lebende Organismen haben einen hohen Gehalt an chemischer Komplexität und Organisation

Mehr

Kohlenstoffdioxid wird in lichtabhängigen Reaktion freigesetzt Sauerstoff wird wie in der Atmung verbraucht. Lichtatmung

Kohlenstoffdioxid wird in lichtabhängigen Reaktion freigesetzt Sauerstoff wird wie in der Atmung verbraucht. Lichtatmung 1. Kompartimentierung bei der Photorespiration Kohlenstoffdioxid wird in lichtabhängigen Reaktion freigesetzt Sauerstoff wird wie in der Atmung verbraucht. Lichtatmung Kosten: o Energie, da ATP verbraucht

Mehr

Grundlagen der Physiologie

Grundlagen der Physiologie Grundlagen der Physiologie Gärungen und anaerobe Atmungsprozesse www.icbm.de/pmbio Glykolyse C 6 H 12 O 6 2 C 3 H 4 O 3 + 4 [H] (+ 2 ATP) Entsorgung überschüssiger Reduktionsequivalente durch Übertragung

Mehr

Didaktische FWU-DVD. Zellatmung. Klasse Klasse Trailer ansehen

Didaktische FWU-DVD. Zellatmung. Klasse Klasse Trailer ansehen 55 11259 Didaktische FWU-DVD Zellatmung Biologie Chemie Klasse 10 13 Klasse 10 13 Trailer ansehen Schlagwörter ADP; Atmungskette; ATP; Biochemie; Citratzyklus; Coenzym; Energie; Energiebedarf; Enzym; Filmkompetenz;

Mehr

In den grünen Pflanzenteilen, genauer gesagt in bestimmten Organellen der Pflanzenzellen, den

In den grünen Pflanzenteilen, genauer gesagt in bestimmten Organellen der Pflanzenzellen, den A 7 Fotosynthese Stellen sie die Wort- und die Symbolgleichung für den Vorgang der Fotosynthese in grünen Pflanzen auf. Wortgleichung: Symbolgleichung: Vervollständigen Sie den Text. In den grünen Pflanzenteilen,

Mehr

«Ausdauertraining» Naturwissenschaftliche Aspekte

«Ausdauertraining» Naturwissenschaftliche Aspekte EHSM / Trainerbildung Jost Hegner Was verstehen wir unter «Leistung» im pädagogischen Sinne? unter «Leistung» im physikalischen Sinne: Power (in Joule/s; Watt)? unter «Leistung» im physiologischen Sinne:

Mehr

Mitochondriale Elektronentransportkette (Atmungskette)

Mitochondriale Elektronentransportkette (Atmungskette) Mitochondriale Elektronentransportkette (Atmungskette) Mitochondriale Elektronentransportkette (Atmungskette) Komplex I und II übetragen Elektronen auf Coenzym Q (Ubichinon) Gekoppelte Elektronen-Protonen

Mehr

Kapitel 20: 1. Nach Abschluss der Arbeiten werden sterile Arbeitsbänke und Laminar-Flow-Bänke durch sterilisiert.

Kapitel 20: 1. Nach Abschluss der Arbeiten werden sterile Arbeitsbänke und Laminar-Flow-Bänke durch sterilisiert. Kapitel 20: 1 Nach Abschluss der Arbeiten werden sterile Arbeitsbänke und Laminar-Flow-Bänke durch sterilisiert. A. Röntgenstrahlen B. UV -Licht C. Gamma-Strahlung D. Ionisierende Strahlung Kapitel 20:

Mehr

Schulinternes Curriculum Biologie

Schulinternes Curriculum Biologie Schulinternes Curriculum Biologie EF Unterrichtsvorhaben V Thema/Kontext: Biologie und Sport welchen Einfluss hat körperliche Aktivität auf unseren Körper? Inhaltsfeld: Energiestoffwechsel (IF 2) Inhaltliche

Mehr

Grundkurs Chemie anaerober Abbau aerober Abbau 1977/I 1983/II 1984/IV 1986/IV 1987/II

Grundkurs Chemie anaerober Abbau aerober Abbau 1977/I 1983/II 1984/IV 1986/IV 1987/II Grundkurs Chemie anaerober Abbau aerober Abbau 1977/I 3.2 Beschreiben Sie die Struktur eines Fett-, eines Polysaccharidund eines Proteinmoleküls mit Hilfe einer Strukturformel bzw. eines Strukturformelausschnittes

Mehr

Versuch 5. Isocitrat-Dehydrogenase

Versuch 5. Isocitrat-Dehydrogenase Versuch 5 Isocitrat-Dehydrogenase Protokollant: E-mail: Studiengang: Gruppen-Nr: Semester: Betreuer: Max Mustermann max@quantentunnel.de X X X PD Dr. Gimpl Einleitung Ziel des Versuches ist es, die Abhängigkeit

Mehr

Stoffwechselphysiologie advance Organizer

Stoffwechselphysiologie advance Organizer Stoffwechselphysiologie advance Organizer Dissimilation Die Glykolyse ist der gemeinsame Weg von Atmung und Gärung. Ein Glucose-Molekül wird zu 2 Pyruvat ( C 3 ) abgebaut. Bei diesem Schritt werden 2 ATP

Mehr

Lichtreaktionen. Lichtsammelkomplex. Komplex. Fotosystem I Plastocyanin Plastochinon

Lichtreaktionen. Lichtsammelkomplex. Komplex. Fotosystem I Plastocyanin Plastochinon ARBEITSBLATT 1 Lichtreaktionen 1. Beschriften Sie in der Abbildung die verschiedenen Komponenten! Beschreiben Sie den weiteren Weg des mit einem Pfeil gekennzeichneten Elektrons beim nichtzyklischen Elektronentransport!

Mehr

9 Herkunft des ATP. 9.2 Der Citratzyklus

9 Herkunft des ATP. 9.2 Der Citratzyklus 200 9.2 Der Citratzyklus Im Rahmen des Citratzyklus wird Acetyl-CoA zu zwei Molekülen CO 2 umgewandelt, wobei zusätzlich noch Energie in Form von ATP und GTP sowie Reduktionsäquivalente in Form von NADH/H

Mehr

Glykolyse! Pyruvat-! dehydrogenase! Citronensäure-! Zyklus!!

Glykolyse! Pyruvat-! dehydrogenase! Citronensäure-! Zyklus!! Glykolyse! Pyruvat-! dehydrogenase! Citronensäure-! Zyklus!! Indirekte ATP synthese! Protonen können in wässriger Lösung sehr! schnell transportiert werden.! Ionen können biologische Membranen nicht spontan

Mehr

Gesundheitserziehung

Gesundheitserziehung Gesundheitserziehung Lehrgang für BiologInnen Innsbruck, 09. - 10. November 2012 Ingo Wartusch Saurer Regen Problem: S-haltige Brennstoffe S + O 2 SO 2 SO 2 + 2 O 2 SO 3 2 SO 3 + 1/2 O 2 2 SO 4 --> pic

Mehr

Es gibt 3 Ketonkörper:

Es gibt 3 Ketonkörper: KETONKÖRPER Es gibt 3 Ketonkörper: O II CH3-C-CH2-COO ACETOACETAT CH3-C-CH2-COO I OH ß-HYDROXYBUTTERSÄURE O II CH3-C-CH3 ACETON (LYENENZYKLUS) Der Sinn der Ketogenese liegt darin, die s aus der ß-Oxidation

Mehr

1. Biochemie-Klausur Zahnmediziner, WS 03/04

1. Biochemie-Klausur Zahnmediziner, WS 03/04 1. Biochemie-Klausur Zahnmediziner, WS 03/04 1. Welche Aussage zur ß-Oxidation von Fettsäuren in Peroxisomen ist falsch? A) Die Aufnahme langkettiger Fettsäuren in die Peroxisomen erfolgt Carnitin-unabhängig!

Mehr