Kap. 10: Folgen und Reihen. Eine Funktion a : N Ñ R

Größe: px
Ab Seite anzeigen:

Download "Kap. 10: Folgen und Reihen. Eine Funktion a : N Ñ R"

Transkript

1 Definition: Zahlenfolge Kap. 10: Folgen und Reihen 10.1 Definition: Zahlenfolge Eine Funktion a : N Ñ R poder Cq heißt reelle (oder komplexe) Zahlenfolge. Man nennt a n apnq das n-te Folgenglied und schreibt kurz pa n q npn oder pa n q. Ebenso sind pa n q npn0 oder pa n q něn0 mit festem n 0 P Z Zahlenfolgen. Eine Teilfolge entsteht, indem man (endlich oder unendlich viele) Folgenglieder weglässt, wobei noch unendlich viele Glieder übrigbleiben müsses: Für natürliche Zahlen 1 ď n 1 ă n 2 ă n 3 ă ist pa nk q kpn eine Teilfolge von pa n q npn. Höhere Mathematik 188

2 Definition: Zahlenfolge Später behandeln wir auch Folgen von Vektoren p v n q npn mit v n P R d, Folgen von Matrizen pa n q npn mit A n P Matpp, qq oder Funktionenfolgen pf n q npn mit f n : ra, bs Ñ R N N 2 2 a 9 a 7 a 2 a 4 a 6 a 8 a 5 a 3 a Höhere Mathematik 189

3 Konvergenz, Grenzwert 10.2 Konvergenz, Grenzwert Eine Zahlenfolge pa n q npn heißt konvergent, wenn es eine Zahl a P R (oder C) mit der folgenden Eigenschaft gibt: zu jedem ɛ ą 0 gibt es ein n 0 P N, so dass für alle n ě n 0 die Ungleichung a n a ă ɛ gilt. Dann heißt a der Grenzwert der Folge pa n q npn, die Folge konvergiert gegen a und wir schreiben lim a n a oder a n Ñ a Ist die Zahlenfolge pa n q npn nicht konvergent, so heißt sie divergent. a ` ε a a ε n 0 N Höhere Mathematik 190

4 Grenzwertsatz Einfache Hilfsmittel zur Berechnung von Grenzwerten: 10.3 Grenzwertsatz Die Zahlenfolgen pa n q npn und pb n q npn seien konvergent, und a lim a n sowie b lim b n seien die Grenzwerte. Dann gilt: a) pa n ` b n q npn ist konvergent und lim pa n ` b n q a ` b. b) Für beliebiges α P C ist pαa n q npn konvergent und lim pαa n q αa. c) pa n b n q npn ist konvergent und lim pa n b n q ab. d) Sind alle b n 0 und gilt b 0, so ist ˆ an a b. lim b n ˆ an b n npn konvergent und Höhere Mathematik 191

5 Nullfolge, bestimmte Divergenz 10.4 Nullfolge, bestimmte Divergenz a) Eine konvergente Folge pa n q npn mit lim a n 0 heißt Nullfolge. b) a n Ñ 0 ðñ a n Ñ 0 c) Eine reelle Zahlenfolge heißt bestimmt divergent gegen 8 (bzw. gegen 8), wenn für jedes r ą 0 ein n 0 P N existiert, so dass für alle n ě n 0 die Ungleichung a n ą r (bzw. a n ă r) gilt. Dann heißt 8 ( bzw. 8 ) der uneigentliche Grenzwert der Folge und wir schreiben lim a n 8 p bzw. lim a n 8q oder a n Ñ 8. Bemerkung: pa n q npn konvergiert gegen a genau dann, wenn pa n aq npn eine Nullfolge ist. a n Ñ 8 ðñ für n ě n 0 ist a n ą 0 und 1 a n Ñ 0. Höhere Mathematik 192

6 Konvergenz und Ordnung 10.5 Konvergenz und Ordnung a) Sei lim a n a und lim b n b. Ist für n ě n 0 stets a n ď b n, so ist auch a ď b. b) Gegeben seien drei reelle Zahlenfolgen pa n q, pb n q und pc n q und es gelte lim a n lim c n s. Falls es ein n 0 P N mit a n ď b n ď c n für alle n ě n 0 gibt, so ist auch pb n q konvergent und lim b n s. (b) heißt Einschließungskriterium oder Sandwich-Lemma oder Schraubstock-Kriterium. Höhere Mathematik 193

7 Wichtige Beispiele 10.6 Wichtige Beispiele a) `? n ` 1?n npn konvergiert gegen 0. b) p n? nq npn konvergiert gegen 1. c) Für jedes c ą 0 konvergiert p n? cq npn gegen 1. n? d) Für jedes feste l P N konvergiert n l gegen 1 (folgt aus b) und dem Grenzwertsatz). npn e) Die Folge pz n q npn mit z P C und z ă 1 ist eine Nullfolge. Hilfreich ist die folgende Wachstumshierarchie. Weiter rechtsstehende Folgen gehen schneller als linksstehende gegen unendlich, also z.b. ist lim sei α ą 0 und q ą 1. 1 ln n n α q n n! n n n 7 0. Dabei 2n Höhere Mathematik 194

8 Wichtige Beispiele Wichtiges Hilfsmittel ist die Stirling-Formel n! «n e n? 2πn Der Quotient der beiden Terme hat den Grenzwert 1. Die Differenz geht gegen unendlich. Es gibt noch weit genauere Abschätzungen. Höhere Mathematik 195

9 Satz Zur Klarstellung dient der folgende Satz Satz Die Folge pa n q npn sei konvergent. a) Dann ist ihr Grenzwert a eindeutig bestimmt und b) jede Teilfolge pa nk q kpn ist konvergent und hat denselben Grenzwert a. Ein wichtiger Begriff im Zusammenhang mit Teilfolgen: 10.8 Definition Häufungswert Die Zahl b heißt ein Häufungswert der Folge pa n q npn, wenn es eine konvergente Teilfolge pa nk q kpn mit Grenzwert b gibt, also lim kñ8 a n k b gilt. Höhere Mathematik 196

10 Satz Beispiele Die durch a n sin 5 6n definierte Folge hat jedes x P r 1, 1s als Häufungswert. Bei einer konvergenten Folge ist der Grenzwert der einzige Häufungswert. Höhere Mathematik 197 N

11 beschränkte und monotone Folge 10.9 beschränkte und monotone Folge a) Eine Folge pa n q npn heißt beschränkt, wenn es ein r ą 0 gibt mit a n ď r für alle n P N. b) Eine reelle Zahlenfolge pa n q npn heißt monoton wachsend, wenn a n`1 ě a n für alle n P N gilt, monoton fallend, wenn a n`1 ď a n für alle n P N gilt, monoton, wenn sie monoton wachsend oder monoton fallend ist. Höhere Mathematik 198

12 Satz von Bolzano und Weierstraß Neben Satz 10.3 lautet das wichtigste Konvergenz-Kriterium wie folgt: Satz von Bolzano und Weierstraß Jede monotone und beschränkte reelle Zahlenfolge ist konvergent. Bemerkung: Eine andere Formulierung, die auch für komplexe Zahlenfolgen gültig ist, lautet: Jede beschränkte Folge (in R oder C) besitzt eine konvergente Teilfolge. Genauer: Ist die Folge pa n q npn beschränkt, so existiert eine Teilfolge pa nk q kpn und eine Zahl b mit lim kpn a n k b. Höhere Mathematik 199

13 Intervallschachtelung Intervallschachtelung Gegeben seien eine monoton wachsende reelle Zahlenfolge pa n q npn und eine monoton fallende reelle Zahlenfolge pb n q npn. Es gelte (i) a n ď b n für alle n P N und (ii) lim pb n a n q 0. Man sagt, dass die abgeschlossenen Intervalle ra n, b n s Ď ra n 1, b n 1 s eine Intervallschachtelung definieren. Dann enthält der Durchschnitt genau eine reelle Zahl s, nämlich 8č ra n, b n s s lim a n lim b n. Höhere Mathematik 200

14 Beispiel: die Eulersche Zahl e Beispiel: die Eulersche Zahl e Die Eulersche Zahl e kann folgendermaßen definiert werden: Wir betrachten die Folgen pa n q npn und pb n q npn mit den Folgengliedern Dann gilt: a n ˆ 1 ` 1 n n, b n 1. Die Folge pa n q npn ist monoton wachsend. 2. Die Folge pb n q npn ist monoton fallend. 3. Es ist b n a n ě 0 und lim pb n a n q Das Prinzip der Intervallschachtelung ergibt: ˆ 1 ` 1 n`1. n lim a n lim b n : e. Höhere Mathematik 201

15 Beispiel: die Eulersche Zahl e Zahlenwerte: sehr langsame Konvergenz gegen e n a n b n Höhere Mathematik 202

16 Limes superior und Limes inferior Zwei weitere Begriffe: Limes superior und Limes inferior Gegeben sei eine reelle Zahlenfolge pa n q npn. Falls pa n q npn beschränkt ist, sind der größte Häufungswert (Limes superior) lim sup a n : maxtb b ist Häufungswert von pa n q npn u und der kleinste Häufungswert (Limes inferior) definiert. lim inf a n : mintb b ist Häufungswert von pa n q npn u Falls pa n q npn nicht nach oben beschränkt ist (d.h. zu jedem r ą 0 existiert ein n P N mit a n ą r), so setzen wir lim sup a n : 8. Falls pa n q npn nicht nach unten beschränkt ist (d.h. zu jedem r ą 0 existiert ein n P N mit a n ă r), so setzen wir lim inf a n : 8. Höhere Mathematik 203

17 Aus konvergent folgt beschränkt Als partielle Umkehrung des Satzes von Bolzano-Weierstraß geben wir noch folgendes Resultat an: Aus konvergent folgt beschränkt Jede konvergente Folge pa n q npn ist beschränkt. Höhere Mathematik 204

18 Cauchy-Kriterium Als wichtiges (abstraktes) Konvergenz-Kriterium dient: Cauchy-Kriterium Eine Folge pa n q npn ist genau dann konvergent, wenn zu jedem ɛ ą 0 ein n 0 P N existiert, so dass für alle n ą m ě n 0 die Ungleichung gilt. a n a m ă ɛ Höhere Mathematik 205

19 Reihen Reihen Die zu einer gegebenen Zahlenfolge pa n q npn gebildete Folge ps n q npn der Partialsummen nÿ s n heißt eine unendliche Reihe. Der Summand a k heißt k-tes Reihenglied. Anstatt ps n q npn schreibt man kurz Falls die unendliche Reihe schreiben wir k 1 a k a n für die unendliche Reihe. a n gegen die Zahl s P C konvergiert, so s lim s n a n. Eine Reihe heißt absolut konvergent, wenn nÿ k 1 a k konvergiert. Höhere Mathematik 206

20 Reihen Beispiel: a 1 a 3 a 4 1 a 2 s 1 s 2 s 3 s4 Mit a 1 2, a 2 1, a 3 1, a 4 0.5,... entspricht die Partialsumme s n dem orientierten Flächeninhalt unter den ersten n Kästchen. Man hat in diesem Beispiel s 1 2, s 2 1, s 3 2, s 4 2.5, s Die Reihe konvergiert, wenn die Folge der Partialsummen einen Grenzwert hat. Höhere Mathematik 207

21 Konvergenz und absolute Konvergenz Bemerkung: Unendliche Reihen sind also spezielle Zahlenfolgen. Die Begriffe Konvergenz und Grenzwert, Beschränktheit und Monotonie einer unendlichen Reihe beziehen sich immer auf die Folge der Partialsummen ps n q npn (bzw. ps n q něn0 mit n 0 P Z). Die Konvergenz kann mit allen bisherigen Methoden untersucht werden. Ist die unendliche Reihe z.b. monoton und beschränkt, so ist sie konvergent (Satz von Bolzano-Weierstraß). Insbesondere ist eine Reihe genau dann absolut konvergent, wenn die Reihe der Absolutbeträge konvergiert. Die unendliche Reihe ist genau dann konvergent, wenn das Cauchy-Kriterium gilt: Zu jedem ɛ ą 0 existiert ein n 0 P N so, dass für alle n ą m ě n 0 die Ungleichung nÿ s n s m a ă ɛ gilt. ˇ kˇˇˇˇˇ Konvergenz und absolute Konvergenz Eine absolut konvergente Reihe konvergiert. Die Umkehrung gilt nicht. k m`1 Höhere Mathematik 208

22 Harmonische und geometrische Reihe Harmonische und geometrische Reihe a) Die Reihe nennt man die harmonische Reihe. Die harmonische Reihe divergiert. b) Die Reihe n 0 1 n 1 ` 1 2 ` 1 3 ` 1 4 ` z n 1 ` z ` z 2 ` z 3 ` mit z P C nennt man die geometrische Reihe. Für z 1 lautet die Partialsumme (nach 1.9, geometrische Summenformel) s n nÿ k 0 z k 1 z n`1 1 z. Die geometrische Reihe konvergiert genau für z ă 1, der Grenzwert ist dann 1 1 z. Höhere Mathematik 209

23 Rechenregeln für konvergente Reihen Der Grenzwertsatz 10.3 ergibt: Rechenregeln für konvergente Reihen Die unendlichen Reihen s a und s b. a n und Dann ist für beliebige α, β P C die Reihe Grenzwert ist αs a ` βs b, also b n seien konvergent, ihre Grenzwerte seien pαa n ` βb n q konvergent und ihr pαa n ` βb n q α a n ` β b n. Höhere Mathematik 210

24 Notwendiges Kriterium für die Konvergenz Weitere Kriterien zur Konvergenz- bzw. Divergenz-Untersuchung von Reihen Notwendiges Kriterium für die Konvergenz Falls die Reihe eine Nullfolge sein. a n konvergiert, so muss die Folge pa n q npn der Reihenglieder Beispiel: Die geometrische Reihe z n mit z P C und z ě 1 ist divergent. Höhere Mathematik 211

25 Majorantenkriterium Das wichtigste Kriterium für Konvergenz bzw. Divergenz von Reihen: Majorantenkriterium Für zwei Reihen a n und b n und ein festes n 0 P N gelte a n ď b n für alle n ě n 0. Falls dann b n konvergiert, so konvergieren auch a n und a n. Man beachte, dass die Reihe b n absolut konvergieren muss, da stets b n ě 0 und daher b n b n ist. Die Reihe b n heißt eine Majorante von a n. Höhere Mathematik 212

26 Minorantenkriterium Minorantenkriterium Für zwei Reihen a n und b n und ein festes n 0 P N gelte a n ě b n ě 0 für alle n ě n 0. Falls dann b n divergiert, so divergiert auch a n. Die Reihe b n heißt eine Minorante von N a n. Eine Folge mit positiven Gliedern konvergiert genau dann, wenn die Partialsummen beschränkt sind. Sind die Partialsummen bei der roten Majorante beschränkt, sind sie es bei der blauen Minorante auch, sind die Partialsummen der Minorante unbeschränkt, können die der Majorante nicht beschränkt sein. Höhere Mathematik 213

27 Vergleichskriterium Wichtige Konsequenz von Minoranten- und Majorantenkriterium ist das Vergleichskriterium Vergleichskriterium a n Es gebe eine Zahl c ą 0 mit lim b n c Dann konvergiert a n genau dann absolut, wenn b n absolut konvergiert. Höhere Mathematik 214

28 Beispiele Beispiele a) Die Reihe Der Grenzwert 1 n 2 konvergiert. s kann erst viel später berechnet werden. 1 n 2 π b) Die Reihe 1? n divergiert. c) Man merke sich schon jetzt als wichtige Reihen zum Vergleich: Die Reihe 1 n α ist # konvergent, falls α ą 1 ist, bestimmt divergent gegen 8, falls 0 ă α ď 1 ist. Höhere Mathematik 215

29 Wurzelkriterium Satz: Wurzelkriterium Falls ein q P R mit 0 ă q ă 1 und ein n 0 P N existieren, so dass a n an ď q für alle n ě n 0, p q so konvergieren a n und a n. Falls a n an ě 1 für unendlich viele n P N gilt, so divergieren a n und a n. Bemerkung: Falls die Bedingung (*) nur mit q 1 gilt (z.b. harmonische Reihe), so kann nicht auf Konvergenz geschlossen werden. Dann muss die Reihe mit anderen Kriterien untersucht werden. Höhere Mathematik 216

30 Quotientenkriterium Quotientenkriterium Falls ein q P R mit 0 ă q ă 1 und ein n 0 P N existieren, so dass a n 0 und a n`1 ˇ a n ˇ ď q für alle n ě n 0 p q gilt, so konvergieren a n und a n. Falls ein n 0 P N existiert, so dass a n 0 und ˇ a n`1 a n ˇ ě 1 für alle n ě n 0 p q gilt, so divergieren a n und a n. Bemerkung: Falls die Bedingung (**) nur mit q 1 gilt, muss die Reihe wieder mit anderen Kriterien untersucht werden. Höhere Mathematik 217

31 Beispiele Das Quotientenkriterium ist oft leichter zu handhaben als das Wurzelkriterium. Aber: es verlangt a n 0 ab einem Index n Beispiele a) Die Reihe n 0 1 n! ist konvergent. Anmerkung: Der Grenzwert ist die Eulersche Zahl e Die Folge der Partialsummen ps n q ně0 konvergiert viel schneller gegen e als die Folge `p1 ` 1 in n qn npn Zahlenwerte: n s n Höhere Mathematik 218

32 b) Für die Reihen 8 1 n und ÿ 1 ergibt sich jeweils n2 lim ˇ a n`1 a n ˇ 1. Beispiele Also kann mit dem Quotientenkriterium keine Aussage zur Konvergenz der Reihen getroffen werden. Ebenso erhalten wir a n an 1, lim also hilft auch das Wurzelkriterium nicht weiter. Höhere Mathematik 219

33 Limesversion Oft prüft man die Existenz von 0 ă q ă 1 in den Kriterien und so: Limesversion a n sei eine Reihe mit lim sup a n an ă 1 oder lim sup ˇ a n`1 a n ˇ ă 1. Dann konvergieren die Reihen a n und a n. Beispiel: für k P Z und 0 ď q ă 1 ist lim n a n k q n q ă 1. Daher gilt nach n k q n Ñ 0. Höhere Mathematik 220

34 Satz: Leibnizkriterium Wir nennen die reelle Zahlenreihe a n alternierend, wenn die Reihenglieder a n P R abwechselnd positiv und negativ sind, also sign pa n q sign pa n`1 q für alle n P N gilt Satz: Leibnizkriterium Die Reihe a n sei alternierend. Falls die Folge der Absolutbeträge p a n q npn eine monoton fallende Nullfolge ist, so konvergiert die Reihe a n. Zusatz: Der Grenzwert s erfüllt für jedes n P N mit sign pa n q 1 n 1 ÿ k 1 a k ď s ď nÿ k 1 a k. Höhere Mathematik 221

35 Leibniz sche Reihe Beispiel: Leibniz sche Reihe Die Reihe p 1q n 1 n ` ` heißt die Leibniz sche Reihe. Sie ist alternierend und die Folge der Absolutbeträge p a n q npn ` 1 n ist eine monoton fallende Nullfolge. Also konvergiert die npn Leibniz sche Reihe. Wir zeigen (viel) später: p 1q n 1 n ln Höhere Mathematik 222

KAPITEL 2. Folgen und Reihen

KAPITEL 2. Folgen und Reihen KAPITEL 2 Folgen und Reihen 1. Konvergenz und Divergenz Definition 2.1 (Folgen). Eine Abbildung a : N R (bzw. a : N 0 R) nennt man Folge. Statt a : N R schreibt man meist (a n ) n N und a n statt a(n).

Mehr

2 Folgen und Reihen. 2.1 Folgen in C Konvergenz von Folgen. := f(n)

2 Folgen und Reihen. 2.1 Folgen in C Konvergenz von Folgen. := f(n) 2 Folgen und Reihen 2.1 Folgen in C 2.1.1 Konvergenz von Folgen Eine Folge komplexer Zahlen ist eine Funktion f : N C. Mit a n schreibt man (a n ) n=1, (a n ) oder auch a 1, a 2,.... := f(n) (a n ) heißt

Mehr

Folgen und Reihen. 1 Konvergenz

Folgen und Reihen. 1 Konvergenz Folgen und Reihen Man betrachte viele Zahlen hintereinander geschrieben. Solche Folgen von Zahlen können durch nummeriert werden. Es entsteht eine Zuordnung der natürlichen Zahlen zu den Gliedern der Folge.

Mehr

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen Definition: Eine Folge ist eine geordnete Menge von Elementen an (den sogenannten Gliedern ), die

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen Definition: Eine Folge ist eine geordnete Menge von Elementen an (den sogenannten Gliedern ), die 3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen Definition: Eine Folge ist eine geordnete Menge von Elementen an (den sogenannten Gliedern ), die eindeutig den natürlichen Zahlen zugeordnet sind ( n N, auch

Mehr

Häufungspunkte und Satz von Bolzano und Weierstraß.

Häufungspunkte und Satz von Bolzano und Weierstraß. Häufungspunkte und Satz von Bolzano und Weierstraß. Definition: Sei (a nk ) k N eine konvergente Teilfolge der Folge (a n ) n N.Dannwirdder Grenzwert der Teilfolge (a nk ) k N als Häufungspunkt der Folge

Mehr

Ferienkurs Analysis 1, SoSe Unendliche Reihen. Florian Beye August 15, 2008

Ferienkurs Analysis 1, SoSe Unendliche Reihen. Florian Beye August 15, 2008 Ferienkurs Analysis 1, SoSe 2008 Unendliche Reihen Florian Beye August 15, 2008 1 Reihen und deren Konvergenz Definition 1.1. Eine reelle bzw. komplexe Reihe ist eine unendliche Summe über die Glieder

Mehr

INGENIEURMATHEMATIK. 8. Reihen. Sommersemester Prof. Dr. Gunar Matthies

INGENIEURMATHEMATIK. 8. Reihen. Sommersemester Prof. Dr. Gunar Matthies Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik INGENIEURMATHEMATIK 8. Reihen Prof. Dr. Gunar Matthies Sommersemester 2016 G. Matthies Ingenieurmathematik

Mehr

HM I Tutorium 5. Lucas Kunz. 24. November 2016

HM I Tutorium 5. Lucas Kunz. 24. November 2016 HM I Tutorium 5 Lucas Kunz 24. November 206 Inhaltsverzeichnis Theorie 2. Definition einer Reihe.............................. 2.2 Wichtige Reihen................................. 2.3 Limites inferior

Mehr

D-INFK Analysis I FS 2017 Prof. Dr. Özlem Imamoglu. MC-Fragen Serie 1. Einsendeschluss: Freitag, der :00 Uhr

D-INFK Analysis I FS 2017 Prof. Dr. Özlem Imamoglu. MC-Fragen Serie 1. Einsendeschluss: Freitag, der :00 Uhr D-INFK Analysis I FS 2017 Prof. Dr. Özlem Imamoglu MC-Fragen Serie 1 Einsendeschluss: Freitag, der 26.09.2014 12:00 Uhr 1. Welche der folgenden Aussagen sind richtig? (a) Eine divergente Folge ist nicht

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2015 Folgen und Reihen

Vorbereitungskurs Mathematik zum Sommersemester 2015 Folgen und Reihen Vorbereitungskurs Mathematik zum Sommersemester 2015 Folgen und Reihen Susanna Pohl Vorkurs Mathematik TU Dortmund 12.03.2015 Folgen und Reihen Folgen und Grenzwerte Rechenregeln für konvergente Folgen

Mehr

Folgen und Reihen. Thomas Blasi

Folgen und Reihen. Thomas Blasi Folgen und Reihen Thomas Blasi 02.03.2009 Inhaltsverzeichnis Folgen und Grenzwerte 2. Definitionen und Bemerkungen............................. 2.2 Konvergenz und Beschränktheit.............................

Mehr

HM I Tutorium 5. Lucas Kunz. 21. November 2018

HM I Tutorium 5. Lucas Kunz. 21. November 2018 HM I Tutorium 5 Lucas Kunz 2. November 208 Inhaltsverzeichnis Theorie 2. Definition.................................... 2.2 Wichtige Reihen................................. 2.3 Absolute Konvergenz..............................

Mehr

Kapitel 5 Reihen 196

Kapitel 5 Reihen 196 Kapitel 5 Reihen 96 Kapitel 5. Definition und Beispiele 97 Das Material dieses Kapitels können Sie nachlesen in: MICHAEL SPIVAK, Calculus, Kapitel 22 DIRK HACHENBERGER, Mathematik für Informatiker, Kapitel

Mehr

Vorlesung: Analysis I für Ingenieure

Vorlesung: Analysis I für Ingenieure Vorlesung: Analysis I für Ingenieure Dozent: Dr. Michael Karow Thema: unendliche Reihen Definition. Eine unendliche Reihe ist der Grenzwert einer Folge von Summen: a k = lim k a k, wobei a k C. Falls der

Mehr

Analysis I - Ferienkurs

Analysis I - Ferienkurs TU-München, Dienstag, der 6.03.200 Analysis I - Ferienkurs Andreas Schindewolf 5. März 200 Inhaltsverzeichnis. Folgen 3.. Konvergenz und Cauchy-Folgen..................... 3.2. Konvergenz-Kriterien für

Mehr

Wenn man eine Folge gegeben hat, so kann man auch versuchen, eine Summe. a 0 + a 1 + a 2 +

Wenn man eine Folge gegeben hat, so kann man auch versuchen, eine Summe. a 0 + a 1 + a 2 + 8 Reihen 38 8 Reihen Wenn man eine Folge gegeben hat, so kann man auch versuchen, eine Summe a 0 + a + a 2 + zu bilden. Wir wollen nun erklären, was wir darunter verstehen wollen. Zunächst kann man die

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 2. Folgen Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies Grundlagen Mathematik

Mehr

Folgen und Reihen. Folgen. Inhalt. Mathematik für Chemiker Teil 1: Analysis. Folgen und Reihen. Reelle Funktionen. Vorlesung im Wintersemester 2014

Folgen und Reihen. Folgen. Inhalt. Mathematik für Chemiker Teil 1: Analysis. Folgen und Reihen. Reelle Funktionen. Vorlesung im Wintersemester 2014 Inhalt Mathematik für Chemiker Teil 1: Analysis Vorlesung im Wintersemester 2014 Kurt Frischmuth Institut für Mathematik, Universität Rostock Rostock, Oktober 2014... Folgen und Reihen Reelle Funktionen

Mehr

7 KONVERGENTE FOLGEN 35. inf M = Infimum von M. bezeichnet haben. Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt.

7 KONVERGENTE FOLGEN 35. inf M = Infimum von M. bezeichnet haben. Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt. 7 KONVERGENTE FOLGEN 35 und die größe untere Schranke mit bezeichnet haben. inf M = Infimum von M Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt der Limes superior der Folge, und lim

Mehr

Kapitel 3: Folgen und Reihen

Kapitel 3: Folgen und Reihen Kapitel 3: und Reihen Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika (KO) Kapitel 3: und Reihen 1 / 29 Gliederung 1 Grundbegriffe 2 Abbildungen und elementare

Mehr

Folgen, Reihen, Potenzreihen, Exponentialfunktion

Folgen, Reihen, Potenzreihen, Exponentialfunktion Ferienkurs Seite 1 Technische Universität München Ferienkurs Analysis 1 Hannah Schamoni Wintersemester 2011/12 Folgen, Reihen, Potenzreihen, Exponentialfunktion 20.03.2012 Inhaltsverzeichnis 1 Folgen 2

Mehr

HM I Tutorien 6 und 7

HM I Tutorien 6 und 7 HM I Tutorien 6 und 7 Lucas Kunz. Dezember 207 und 8. Dezember 207 Inhaltsverzeichnis Vorwort 2 2 Theorie 2 2. Definition einer Reihe.............................. 2 2.2 Absolute Konvergenz..............................

Mehr

Kapitel IV. Folgen und Konvergenz

Kapitel IV. Folgen und Konvergenz Kapitel IV Folgen und Konvergenz Inhalt IV.1 Zahlenfolgen Motivation und Begriffsbestimmungen IV.2 Konvergente Folgen Konvergenz und Grenzwert einer Folge Rechenregeln konvergenter Folgen IV.3 Einige nützliche

Mehr

Ferienkurs Analysis 1

Ferienkurs Analysis 1 Skript Ferienkurs Analysis 1 Fabian Hafner und Thomas Baldauf TUM Wintersemester 2016/17 04.04.2017 Das Skript wurde teilweise übernommen vom Skript des Ferienkurses WS 2014, verfasst von Andreas Wörfel.

Mehr

3. Folgen und Reihen. 3.1 Folgen und Grenzwerte. Denition 3.1 (Folge) Kapitelgliederung

3. Folgen und Reihen. 3.1 Folgen und Grenzwerte. Denition 3.1 (Folge) Kapitelgliederung Kapitelgliederung 3. Folgen und Reihen 3.1 Folgen und Grenzwerte 3.2 Rechenregeln für konvergente Folgen 3.3 Monotone Folgen und Teilfolgen 3.4 Ein Algorithmus zur Wurzelberechnung 3.5 Reihen 3.6 Absolut

Mehr

Absolute Konvergenz. Definition 3.8. Beispiel 3.9. Eine Reihe. a n. konvergent ist. Die alternierende harmonische Reihe aber nicht absolut konvergent.

Absolute Konvergenz. Definition 3.8. Beispiel 3.9. Eine Reihe. a n. konvergent ist. Die alternierende harmonische Reihe aber nicht absolut konvergent. Definition 3.8 Eine Reihe n=1 a n heißt absolut konvergent, wenn die Reihe konvergent ist. a n n=1 Beispiel 3.9 Die alternierende harmonische Reihe aber nicht absolut konvergent. n=1 ( 1)n 1 n ist zwar

Mehr

LS Informatik 4 & Folgen und Reihen. Buchholz / Rudolph: MafI 2 38

LS Informatik 4 & Folgen und Reihen. Buchholz / Rudolph: MafI 2 38 3. Folgen und Reihen Buchholz / Rudolph: MafI 2 38 Kapitelgliederung 3.1 Folgen und Grenzwerte 3.2 Rechenregeln für konvergente Folgen 3.3 Monotone Folgen und Teilfolgen 3.4 Ein Algorithmus zur Wurzelberechnung

Mehr

eine reelle oder komplexe Folge ist, kann man daraus eine neue Folge {s n } n=0 konstruieren durch s n = a 0 + a a n, a k.

eine reelle oder komplexe Folge ist, kann man daraus eine neue Folge {s n } n=0 konstruieren durch s n = a 0 + a a n, a k. Analysis, Woche 7 Reihen I 7. Folgen aus Folgen Wenn a n eine reelle oder komplexe Folge ist, kann man daraus eine neue Folge s n konstruieren durch s n = a 0 + a + + a n, oder netter geschrieben s n =

Mehr

4. Folgen von (reellen und komplexen) Zahlen [Kö 5]

4. Folgen von (reellen und komplexen) Zahlen [Kö 5] 20 4. Folgen von (reellen und komplexen) Zahlen [Kö 5] 4.1 Grundbegriffe Definition 1. a) Eine Folge (reeller bzw. komplexer) Zahlen ist eine Abbildung a: Z k C mit einem k Z. Schreibweise: a(n) = a n

Mehr

n=1 a n mit reellen Zahlen a n einen

n=1 a n mit reellen Zahlen a n einen 4 Unendliche Reihen 4. Definition und Beispiele Ein altes Problem der Analysis ist es, einer Reihe mit reellen Zahlen einen Wert zuzuordnen. Ein typisches Beispiel ist die unendliche Reihe + +..., die

Mehr

= (n 2 ) 1 (Kurzschreibweise: a n = n 2 ) ergibt die Zahlenfolge 1, 4, 9, 16, 25, 36,.

= (n 2 ) 1 (Kurzschreibweise: a n = n 2 ) ergibt die Zahlenfolge 1, 4, 9, 16, 25, 36,. 2 Folgen, Reihen, Grenzwerte 2.1 Zahlenfolgen Definition: Eine Folge ist eine geordnete Menge von Elementen an (den sogenannten Gliedern ), die eindeutig den natürlichen Zahlen zugeordnet sind (n N; auch

Mehr

k=1 {S n } n N konvergiert, so schreibt man: a n n=1 und spricht dann von Konvergenz oder Divergenz der unendlichen Reihe

k=1 {S n } n N konvergiert, so schreibt man: a n n=1 und spricht dann von Konvergenz oder Divergenz der unendlichen Reihe 7 Reihen sind spezielle Folgen, die durch Summation entstehen. Definition 7. : {a n } n N sei Folge in C; S n := n Folge {S n } n N unendliche Reihe. Falls a k statt lim S n. a k heißt {S n } n N konvergiert,

Mehr

10 Aus der Analysis. Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit

10 Aus der Analysis. Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit 10 Aus der Analysis Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit Zahlenfolgen Ein unendliche Folge reeller Zahlen heißt Zahlenfolge. Im Beispiel 2, 3, 2, 2 2, 2

Mehr

Folgen, Reihen, Grenzwerte u. Stetigkeit

Folgen, Reihen, Grenzwerte u. Stetigkeit Folgen, Reihen, Grenzwerte u. Stetigkeit Josef F. Bürgler Abt. Informatik HTA Luzern, FH Zentralschweiz HTA.MA+INF Josef F. Bürgler (HTA Luzern) Einf. Infinitesimalrechnung HTA.MA+INF 1 / 33 Inhalt 1 Folgen

Mehr

3 Folgen, Reihen und stetige Funktionen

3 Folgen, Reihen und stetige Funktionen Höhere Mathematik 101 3 Folgen, Reihen und stetige Funktionen 3.1 Folgen und Reihen: Definitionen und Beispiele Eine reelle oder komplexe Zahlenfolge ist eine Abbildung, die jeder natürlichen Zahl n eine

Mehr

Analyis I - Reihen und Potenzreihen

Analyis I - Reihen und Potenzreihen Analyis I - Reihen und January 13, 2009 Analyis I - Reihen und Definition (Reihen) Reihen Sei (a k ) k N eine Folge und n N. Dann heißt (s k ) k N mit s n = n k=1 die Partialsummenfolge von (a k ) k N.

Mehr

10 Kriterien für absolute Konvergenz von Reihen

10 Kriterien für absolute Konvergenz von Reihen 10 Kriterien für absolute Konvergenz von Reihen 10.1 Majoranten- und Minorantenkriterium 10.3 Wurzelkriterium 10.4 Quotientenkriterium 10.9 Riemannscher Umordnungssatz 10.10 Äquivalenzen zur absoluten

Mehr

5. Unendliche Reihen [Kö 6]

5. Unendliche Reihen [Kö 6] 25 5. Unendliche Reihen [Kö 6] 5.1 Grundbegriffe Definition 1. Es sei k Z und (a i ) i k eine (komplexe) Folge. Unter der unendlichen Reihe a i versteht man die Folge (s n ) n k der Partialsummen s n :=

Mehr

Folgen und Reihen. Christoph Laabs, n s k und ist Grenzwert dieser Reihe.

Folgen und Reihen. Christoph Laabs, n s k und ist Grenzwert dieser Reihe. Folgen und Reihen Christoph Laabs, christoph.laabs@tu-dresden.de Grundlagen Eine Reihe ist darstellbar durch z. B. = a 0 + a + a 2 + a + a 4 +... Ausgesprochen wird das als Summe von von k bis Unendlich.

Mehr

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5 10 Folgen und Reihen 10.1 Definition und Beispiele Eine Abbildung a : Æ Ê heißt (reelle) Zahlenfolge. Statt a(n)schreibenwirkürzera n undbezeichnendieganzefolgemit(a n ) n Æ odereinfach(a n ),wasaber nicht

Mehr

eine reelle oder komplexe Folge ist, kann man daraus eine neue Folge {s n } n=0 konstruieren durch s n = a 0 + a a n, s n = a k.

eine reelle oder komplexe Folge ist, kann man daraus eine neue Folge {s n } n=0 konstruieren durch s n = a 0 + a a n, s n = a k. Analysis, Woche 7 Reihen I A 7. Folgen aus Folgen Wenn a n eine reelle oder komplexe Folge ist, kann man daraus eine neue Folge s n konstruieren durch s n = a 0 + a + + a n, oder netter geschrieben s n

Mehr

D-INFK Analysis I FS 2017 Prof. Dr. Özlem Imamoglu. MC-Fragen Serie 1. Einsendeschluss: Freitag, der :00 Uhr

D-INFK Analysis I FS 2017 Prof. Dr. Özlem Imamoglu. MC-Fragen Serie 1. Einsendeschluss: Freitag, der :00 Uhr D-INFK Analysis I FS 2017 Prof. Dr. Özlem Imamoglu MC-Fragen Serie 1 Einsendeschluss: Freitag, der 26.09.2014 12:00 Uhr 1. Welche der folgenden Aussagen sind richtig? Eine divergente Folge ist nicht beschränkt.

Mehr

x k = s k=1 y k = y konvergent. Dann folgt (cx k ) = cx für c K. Partialsummenfolge konvergiert

x k = s k=1 y k = y konvergent. Dann folgt (cx k ) = cx für c K. Partialsummenfolge konvergiert 4 Reihen Im Folgenden sei K R oder K C. 4. Definition. Es sei (x k ) Folge in K. Wir schreiben x k s und sagen, die Reihe x k konvergiere, falls die sogenannte Partialsummen-Folge s n x k n, 2,... in K

Mehr

(alternierendes Vorzeichen) a n := ( 1)n n + 1 a n := 3n 2 7n a n := n(n 1)(n 2), n 3

(alternierendes Vorzeichen) a n := ( 1)n n + 1 a n := 3n 2 7n a n := n(n 1)(n 2), n 3 ANALYSIS FÜR PHYSIK UND VERWANDTE FÄCHER I 43 2. Folgen und Reihen Folgen und Reihen werden in jedem Analysislehrbuch besprochen, siehe etwa [H, Kapitel III], [K, Kapitel 5], [J2, Kapitel 23] oder [M,

Mehr

ANALYSIS 1 Kapitel 4: Folgen von (reellen und komplexen) Zahlen

ANALYSIS 1 Kapitel 4: Folgen von (reellen und komplexen) Zahlen ANALYSIS 1 Kapitel 4: Folgen von (reellen und komplexen) Zahlen MAB.01012UB MAT.101UB Vorlesung im WS 2017/18 Günter LETTL Institut für Mathematik und wissenschaftliches Rechnen Karl-Franzens-Universität

Mehr

Kapitel 3. Reihen und ihre Konvergenz

Kapitel 3. Reihen und ihre Konvergenz Kapitel 3 Reihen und ihre Konvergenz Abschnitt 3.1 Der Reihenbegri und erste Beispiele Denitionen zu Reihen, 1 Denition. Sei (a n ) n N0 eine Folge reeller Zahlen. Für n N 0 heiÿt dann die Zahl s n :=

Mehr

1 Reihen von Zahlen. Inhalt:

1 Reihen von Zahlen. Inhalt: 5 Kapitel 3 Reihen Reihen von Zahlen Inhalt: Konvergenz und Divergenz von Reihen reeller oder komplexer Zahlen, geometrische Reihe, harmonische Reihe, alternierende Reihen. Cauchy-Kriterium, absolute Konvergenz,

Mehr

$Id: reihen.tex,v /06/12 10:59:50 hk Exp $ unendliche Summe. a 1 + a 2 + a 3 +.

$Id: reihen.tex,v /06/12 10:59:50 hk Exp $ unendliche Summe. a 1 + a 2 + a 3 +. Mathematik für Informatiker B, SS 202 Dienstag 2.6 $Id: reihen.tex,v.8 202/06/2 0:59:50 hk Exp $ 7 Reihen Eine Reihe ist eine unendliche Summe a + a 2 + a 3 +. Die Summanden a i können dabei reell oder

Mehr

3.3 Konvergenzkriterien für reelle Folgen

3.3 Konvergenzkriterien für reelle Folgen 3.3 Konvergenzkriterien für reelle Folgen Satz: Eine monoton wachsende, nach oben beschränkte reelle Folge a n ) n N ist konvergent mit Grenzwert lim a n = sup{a n n N} Beweis: Sei a n ) n N nach oben

Mehr

ANALYSIS 1 Kapitel 5: Unendliche Reihen

ANALYSIS 1 Kapitel 5: Unendliche Reihen ANALYSIS 1 Kapitel 5: Unendliche Reihen MAB.01012UB MAT.101UB Vorlesung im WS 2017/18 Günter LETTL Institut für Mathematik und wissenschaftliches Rechnen Karl-Franzens-Universität Graz 5.1 Grundbegrie

Mehr

Folgen und Reihen. Beschränkte Folge: Es gibt eine Zahl c = const.

Folgen und Reihen. Beschränkte Folge: Es gibt eine Zahl c = const. Folgen und Reihen Folgen: Def.: Eine Abbildung a N K, n a(n) := a n (K = R C) wird Zahlenfolge genannt. Sie heißt reelle (komplexe) Zahlenfolge, falls K = R(C) ist. Symbole: a n K: Elemente der Folge,

Mehr

Kapitel 4 Folgen, Reihen & Funktionen

Kapitel 4 Folgen, Reihen & Funktionen Kapitel 4 Folgen, Reihen & Funktionen Inhaltsverzeichnis FOLGEN REELLER ZAHLEN... 3 DEFINITION... 3 GRENZWERT... 3 HÄUFUNGSPUNKT... 4 MONOTONIE... 4 BESCHRÄNKTHEIT... 4 SÄTZE... 4 RECHNEN MIT GRENZWERTEN...

Mehr

$Id: reihen.tex,v /12/08 16:13:24 hk Exp $ 1 q

$Id: reihen.tex,v /12/08 16:13:24 hk Exp $ 1 q $Id: reihen.tex,v.35 207/2/08 6:3:24 hk Exp $ 5 Reihen 5. Konvergenz von Reihen In der letzten Sitzung hatten wir die Summenformel für die sogenannte geometrische Reihe q n = für q < q hergeleitet und

Mehr

3.2 Konvergenzkriterien für reelle Folgen

3.2 Konvergenzkriterien für reelle Folgen 3.2 Konvergenzkriterien für reelle Folgen Definition: Eine reelle Folge a n ) n N heißt monoton wachsend : n < m : a n a m streng monoton wachsend : n < m : a n < a m nach oben beschränkt : C R : n : a

Mehr

Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16)

Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16) 1 Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16) Kapitel 7: Konvergenz und Reihen Prof. Miles Simon Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke Universität Magdeburg.

Mehr

6 - Unendliche Reihen

6 - Unendliche Reihen Kapitel 2 Folgen und Reihen Seite 1 6 Unendliche Reihen Definition 6.1 (Unendliche Reihen) Sei eine Folge aus C. Unter der unendlichen Reihe mit den Gliedern versteht man das Symbol oder Die Zahl heißt

Mehr

ANALYSIS I FÜR TPH WS 2018/19 3. Übung Übersicht

ANALYSIS I FÜR TPH WS 2018/19 3. Übung Übersicht ANALYSIS I FÜR TPH WS 208/9 3. Übung Übersicht Aufgaben zu Kapitel 5 und 6 Aufgabe : Konvergenz von Reihen (i) Aufgabe 2: Konvergenz von Reihen (ii) Aufgabe 3: ( ) Konvergenz von Reihen (iii) Aufgabe 4:

Mehr

Das Newton Verfahren.

Das Newton Verfahren. Das Newton Verfahren. Ziel: Bestimme eine Nullstelle einer differenzierbaren Funktion f :[a, b] R. Verwende die Newton Iteration: x n+1 := x n f x n) f x n ) für f x n ) 0 mit Startwert x 0. Das Verfahren

Mehr

Beispiel. Gegeben sei die Folge (a n ) n N mit. a n := n 2 + 5n + 1 n. Es gilt. (n 2 + 5n + 1) n 2 = n2 + 5n + 1 n) n2 + 5n n, woraus folgt

Beispiel. Gegeben sei die Folge (a n ) n N mit. a n := n 2 + 5n + 1 n. Es gilt. (n 2 + 5n + 1) n 2 = n2 + 5n + 1 n) n2 + 5n n, woraus folgt Beispiel. Gegeben sei die Folge (a n ) n N mit a n := n 2 + 5n + 1 n Es gilt ( ( ) (n 2 + 5n + 1) n 2 = n2 + 5n + 1 n) n2 + 5n + 1 + n, woraus folgt a n = (n2 + 5n + 1) n 2 n2 + 5n + 1 + n = 5n + 1 n2

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 20/2 R. Steuding (HS-RM) NumAna Wintersemester 20/2 / 20 2. Reihen R. Steuding (HS-RM) NumAna

Mehr

5. Reihen. k=1 x k = s. Oft startet man die Folge/Reihe auch bei k =0oder einem anderen Wert. Für Konvergenzfragen macht das keinen Unterschied.

5. Reihen. k=1 x k = s. Oft startet man die Folge/Reihe auch bei k =0oder einem anderen Wert. Für Konvergenzfragen macht das keinen Unterschied. 5 5. Reihen Im Folgenden sei X K n oder ein beliebiger K-Vektorraum mit Norm. 5.. Definition. Es sei (x k ) Folge in X. DieFolge n s n x k n,,... der Partialsummen heißt (unendliche) Reihe und wird mit

Mehr

4. Folgen. Folge in R 2 mit Grenzwert (1, 1 2 ).

4. Folgen. Folge in R 2 mit Grenzwert (1, 1 2 ). 8 4. Folgen Im Folgenden sei X = K n (oder ein K-Vektorraum) mit der Norm.(Eslangtvöllig,sichden Fall X = R 2 vorzustellen.) Auf R bzw. C verwenden wir als Norm stets den Betrag. 4.. Definition. Eine Folge

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Hochschule Darmstadt FB Mathematik und Naturwissenschaften Wirtschaftsmathematik für die Betriebswirtschaftslehre (B.Sc.) Sommersemester 207 Adam Georg Balogh Dr. rer. nat. habil. Adam Georg Balogh E-mail:

Mehr

Konvergenz und Divergenz einer unendlichen Reihe. 5-E Ma 2 Lubov Vassilevskaya

Konvergenz und Divergenz einer unendlichen Reihe. 5-E Ma 2 Lubov Vassilevskaya Konvergenz und Divergenz einer unendlichen Reihe 5-E Ma 2 Lubov Vassilevskaya Folgen und Reihen: Beispiele Unter dem Bildungsgesetz einer unendlichen Reihe n i= versteht man einen funktionalen Zusammenhang

Mehr

Der Abschluss D ist die Menge, die durch Hinzunahme der Intervallränder entsteht, in den obigen Beispielen also

Der Abschluss D ist die Menge, die durch Hinzunahme der Intervallränder entsteht, in den obigen Beispielen also Festlegung Definitionsbereich 11.1 Festlegung Definitionsbereich Festlegung: Wir betrachten Funktionen f : D Ñ R, deren Definitionsbereich eine endliche Vereinigung von Intervallen ist, also z.b. D ra,

Mehr

Analysis I. Guofang Wang Universität Freiburg

Analysis I. Guofang Wang Universität Freiburg Universität Freiburg 22.11.2016 3. Mächtigkeit und die komplexe Zahlen Komplexe Zahlen Definition Die komplexe Zahlen sind definiert als C = R 2 = R R, mit (x 1, y 1 ) + (x 2, y 2 ) = (x 1 + x 2, y 1 +

Mehr

Kapitel 3. Folgen und Reihen. 3.1 Folgen

Kapitel 3. Folgen und Reihen. 3.1 Folgen Kapitel 3 Folgen und Reihen 3. Folgen 3.2 Cauchy Folgen 3.3 Unendliche Reihen 3.4 Absolut konvergente Reihen 3.5 Multiplikation von Reihen 3.6 Potenzreihen 3. Folgen In diesem gesamten Abschnitt bezeichnen

Mehr

Folgen und Reihen. Mathematik-Repetitorium

Folgen und Reihen. Mathematik-Repetitorium Folgen und Reihen 1.1 Vollständige Induktion 1.2 Zahlenfolgen 1.3 Eigenschaften konvergenter Zahlenfolgen 1.4 Konvergenzkriterien 1.5 Unendliche Reihen 1.6 Eigenschaften unendlicher Reihen 1.7 Rechnen

Mehr

1 Folgen und Stetigkeit

1 Folgen und Stetigkeit 1 Folgen und Stetigkeit 1.1 Folgen Eine Folge ist eine durchnummerierte Zusammenfassung von reellen Zahlen. Sie wird geschrieben als (a 1, a 2, a 3,...) = (a n ) n N. Es ist also a n R. Der Index n gibt

Mehr

Mathematik I. Vorlesung 24. Reihen

Mathematik I. Vorlesung 24. Reihen Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 24 Reihen Wir betrachten Reihen von komplexen Zahlen. Definition 24.1. Sei ( ) k N eine Folge von komplexen Zahlen. Unter der Reihe versteht

Mehr

Man schreibt dann lim. = bzw. lim

Man schreibt dann lim. = bzw. lim Die Funktion f : R R geht für x nach (bzw. ), fallses für allem R + ein t(ε) R + gibt, so dass gilt ist x > t(ε), dann folgt f(x) > M bzw. ist x > t(ε), dann folgt f(x) < M. Man schreibt dann lim x = bzw.

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 4. Übungsblatt

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 4. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 0/4 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 4. Übungsblatt Aufgabe

Mehr

9 Konvergenz und absolute Konvergenz von Reihen

9 Konvergenz und absolute Konvergenz von Reihen 9 Konvergenz und absolute Konvergenz von Reihen 9.2 Konvergenz von Reihen 9.5 Monotoniekriterium für Reihen 9.6 Konvergenzkriterium von Cauchy für Reihen 9.9 Rechenregeln für konvergente Reihen 9.10 Absolute

Mehr

Kapitel VI. Reihen. VI.1 Definitionen und Beispiele. Definition VI.1. Sei (a n ) n=1 KN eine Zahlenfolge. Dann heißt die Folge (s m ) m=1 KN, mit

Kapitel VI. Reihen. VI.1 Definitionen und Beispiele. Definition VI.1. Sei (a n ) n=1 KN eine Zahlenfolge. Dann heißt die Folge (s m ) m=1 KN, mit Kapitel VI Reihen VI. Definitionen und Beispiele Definition VI.. Sei (a n KN eine Zahlenfolge. Dann heißt die Folge (s m KN, mit m s m := a n, (VI. Reihe in K und s m nennt man die m. Partialsumme (dieser

Mehr

a 0, a 1, a 2, a 3,... Dabei stehen die drei Pünktchen für unendlich oft so weiter.

a 0, a 1, a 2, a 3,... Dabei stehen die drei Pünktchen für unendlich oft so weiter. 7 Folgen 30 7 Folgen Wir betrachten nun (unendliche) Folgen von Zahlen a 0, a, a 2, a 3,.... Dabei stehen die drei Pünktchen für unendlich oft so weiter. Bezeichnung Wir bezeichnen mit N die Menge der

Mehr

Reihen. Definition 16 Zu einer Zahlenfolge{a n} n=0,1,2,... definieren die Glieder. a i, n = 0, 1, 2,... s n = a 0 + a

Reihen. Definition 16 Zu einer Zahlenfolge{a n} n=0,1,2,... definieren die Glieder. a i, n = 0, 1, 2,... s n = a 0 + a Reihen Definition 16 Zu einer Zahlenfolge{a n} n=0,1,2,... definieren die Glieder s n = a 0 + a 1 +...+a n = n a i, n = 0, 1, 2,... i=0 die zugehörige Reihe {s n} n=0,1,2,... Es wird s n auch die nte Partialsumme

Mehr

Folgen und Reihen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Folgen und Reihen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden Folgen und Reihen Bernhard Ganter Institut für Algebra TU Dresden D-0062 Dresden bernhard.ganter@tu-dresden.de Folgen Eine (unendliche) (Zahlen)folge ist eine Abbildung f : N R. Statt f (n) schreibt man

Mehr

Folgen und Reihen. Kapitel Zahlenfolgen

Folgen und Reihen. Kapitel Zahlenfolgen Kapitel 2 Folgen und Reihen 2. Zahlenfolgen Definition. Eine Folge reeller Zahlen a 0,a,a 2,..., die gewonnen wird durch eine Vorschrift, die jeder natürlichen Zahl n N genau eine reelle Zahl a n zuordnet,

Mehr

Spickzettel Mathe C1

Spickzettel Mathe C1 Spickzettel Mathe C1 1 Mengenlehre 1.1 Potenzmenge Die Potenzmenge P (Ω) einer Menge Ω ist die Menge aller Teilmengen von Ω. Dabei gilt: P (Ω) := {A A Ω} card P (Ω) = 2 card Ω P (Ω) 1.2 Mengenalgebra Eine

Mehr

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba.

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba. Die Eindeutigkeit nach Satz 3 ergibt schließlich (5). (6) folgt aus (2) und () wegen Aussage (7) ergibt sich aus () und (6). 0 = log b = log b ( a a) = log b a +log ba. 3 Reihen 3. Konvergenz und Divergenz

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 5: Konvergenz Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 15. Dezember 2011) Folgen Eine Folge x 0, x 1,

Mehr

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5 3 Folgen 3.1 Definition und Beispiele Eine Abbildung a : Æ Ê heißt (reelle) Zahlenfolge. Statt a(n) schreiben wir kürzer a n und bezeichnen die ganze Folge mit (a n ) n Æ oder einfach (a n ), was aber

Mehr

Kapitel V. Folgen und Konvergenz. V.1 Konvergenz von Zahlenfolgen

Kapitel V. Folgen und Konvergenz. V.1 Konvergenz von Zahlenfolgen Kapitel V Folgen und Konvergenz V.1 Konvergenz von Zahlenfolgen Wir erinnern an den Begriff der Folge, den wir schon im Kapitel III verwenden. Eine Folge (a n ) n=1 AN in A ist eine Abbildung a ( ) : N

Mehr

Konvergenz einer Folge. 1-E1 Ma 1 Lubov Vassilevskaya

Konvergenz einer Folge. 1-E1 Ma 1 Lubov Vassilevskaya Konvergenz einer Folge 1-E1 Ma 1 Lubov Vassilevskaya Konvergenz einer Folge: Inhalt Drei Verhaltensmuster von Folgen. Beispiele 1 ) = 1 n, = n n +1, 2 ) = ( 1)n n +1 n und ihre graphischen Darstellungen.,

Mehr

Unendliche Reihen - I

Unendliche Reihen - I Unendliche Reihen - I Zur Wiederholung. Sei eine Folge ( ) N aus R (bzw. C) gegeben (die Folge der Summanden). Die Folge (s n ) n N in der Form Die Reihe mit s n = n heißt unendliche Reihe und wird geschrieben.

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Analysis I für Studierende der Ingenieurwissenschaften Ingenuin Gasser Department Mathematik Universität Hamburg Technische Universität Hamburg Harburg Wintersemester 2008/2009 3.2 Konvergenzkriterien

Mehr

V.1 Konvergenz, Grenzwert und Häufungspunkte

V.1 Konvergenz, Grenzwert und Häufungspunkte V.1 Konvergenz, Grenzwert und Häufungspunkte S. 108 110 A. Bereits bekannt: Folge Extrem wichtig: Grenzwert bzw. Konvergenz: a n a oder lim n a n = a : ε R, ε > 0 n 0 N : a n a < ε n n 0 Begriffe: Fast

Mehr

Höhere Mathematik I. G. Herzog, Ch. Schmoeger. Wintersemester 2018/19. Karlsruher Institut für Technologie

Höhere Mathematik I. G. Herzog, Ch. Schmoeger. Wintersemester 2018/19. Karlsruher Institut für Technologie Höhere Mathematik I G. Herzog, Ch. Schmoeger Wintersemester 208/9 Karlsruher Institut für Technologie Inhaltsverzeichnis Reelle Zahlen 2 2 Folgen und Konvergenz 2 3 Unendliche Reihen 3 4 Potenzreihen 45

Mehr

11. Folgen und Reihen.

11. Folgen und Reihen. - Funktionen Folgen und Reihen Folgen Eine Folge reeller Zahlen ist eine Abbildung a: N R Statt a(n) für n N schreibt man meist a n ; es handelt sich also bei einer Folge um die Angabe der Zahlen a, a

Mehr

Modul Grundbildung Analysis WiSe 10/11. A.: Wurde in diesem Kapitel behandelt. C.: Weitere Fragen (Nicht nur für die Klausur interessant)

Modul Grundbildung Analysis WiSe 10/11. A.: Wurde in diesem Kapitel behandelt. C.: Weitere Fragen (Nicht nur für die Klausur interessant) Modul Grundbildung Analysis WiSe 10/11 Im Folgenden bedeutet A: Wurde in diesem Kapitel behandelt B: Interessante Aufgaben C: Weitere Fragen (Nicht nur für die Klausur interessant) V1 Konvergenz, Grenzwert

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 26 1. Folgen R. Steuding (HS-RM)

Mehr

Reihen. Kapitel 3. Reihen, Potenzreihen und elementare Funktionen. Peter Becker (H-BRS) Analysis Sommersemester / 543

Reihen. Kapitel 3. Reihen, Potenzreihen und elementare Funktionen. Peter Becker (H-BRS) Analysis Sommersemester / 543 Kapitel 3 Reihen, Potenzreihen und elementare Funktionen Peter Becker (H-BRS) Analysis Sommersemester 2016 160 / 543 Inhalt Inhalt 3 Reihen Absolute Konvergenz Potenzreihen Elementare Funktionen Anwendung:

Mehr

4. Reihen. Im Folgenden sei K = R oder K = C und (x k ), (y k ),... Folgen in K Definition. Wir schreiben. x k = s. und sagen, die Reihe

4. Reihen. Im Folgenden sei K = R oder K = C und (x k ), (y k ),... Folgen in K Definition. Wir schreiben. x k = s. und sagen, die Reihe 9 4. Reihen Im Folgenden sei K R oder K C und (x k ), (y k ),... Folgen in K. 4.. Definition. Wir schreiben x k s und sagen, die Reihe x k konvergiere, falls die sogenannte Partialsummen-Folge s n x k

Mehr

Folgen und Reihen. Katharina Brazda 9. März 2007

Folgen und Reihen. Katharina Brazda 9. März 2007 Katharina Brazda 9. März 2007 Inhaltsverzeichnis 1 Folgen 2 1.1 Definition von Folgen - explizite und rekursive Darstellung.............. 2 1.2 Wachstumsverhalten von Folgen - Monotonie und Beschränktheit..........

Mehr

Mathematische Anwendersysteme Einführung in MuPAD

Mathematische Anwendersysteme Einführung in MuPAD Mathematische Anwendersysteme Einführung in MuPAD Tag 6 Folgen Konvergenzkriterien Reihen Potenzreihen 2322004 Gerd Rapin grapin@mathuni-goettingende Gerd Rapin Mathematische Anwendersysteme: Einführung

Mehr

Kommutativität. De Morgansche Regeln

Kommutativität. De Morgansche Regeln 1. Formale Logik Proposition 1.1. Die logischen Elementarverknüpfungen gehorchen folgenden Äquivalenzen: (1.1) (1.2) p p p p p p Idempotenz (1.3) (1.4) p q q p p q q p Kommutativität (1.5) (1.6) (p q)

Mehr

Folgen und Reihen. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden)

Folgen und Reihen. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden) Fragen und Antworten Folgen und Reihen (bitte nur für den Eigengebrauch verwenden) Inhaltsverzeichnis 1 Folgen und Reihen 2 1.1 Fragen............................................... 2 1.1.1 Folgen...........................................

Mehr

6 Reelle und komplexe Zahlenfolgen

6 Reelle und komplexe Zahlenfolgen Mathematik für Physiker I, WS 200/20 Freitag 0.2 $Id: folgen.tex,v. 200/2/06 :2:5 hk Exp $ $Id: reihen.tex,v. 200/2/0 4:4:40 hk Exp hk $ 6 Reelle und komplexe Zahlenfolgen 6. Cauchyfolgen Wir kommen nun

Mehr

Rechenoperationen mit Folgen. Rekursion und Iteration.

Rechenoperationen mit Folgen. Rekursion und Iteration. Rechenoperationen mit Folgen. Die Menge aller Folgen in V bildet einen Vektorraum, V N, für den die Addition und skalare Multiplikation wie folgt definiert sind. (a n ) n N + (b n ) n N := (a n + b n )

Mehr