Beweis. Bauer (4. Auflage, 1991), S , Hoffmann-Jørgensen, Vol. I, S. 457.

Größe: px
Ab Seite anzeigen:

Download "Beweis. Bauer (4. Auflage, 1991), S , Hoffmann-Jørgensen, Vol. I, S. 457."

Transkript

1 Exkurs A: Bedingte Erwartungswerte, bedingte Verteilungen (Ω, A, P ) sei W-Raum, X : Ω IR P-quasiintegrierbar, F A Unter - σ- Algebra. E(X F) = E P (X F) (Version des) bedingter Erwartungswert von X unterf (bzgl.p): P-f.s. eindeutig bestimmte P-quasiintegrierbare ZV Ω IR mit (1) (2) F F F meßbar E(X F)dP = X dp F F( Radon - Nikodym - Gleichung). Für A A heißt P (A F) := E(1 A F) bedingte Wahrscheinlichkeit von A unter F. Einige Rechenregeln: Satz A.1 Es sei X : Ω IR P-quasiintegrierbar, F A. (a) EE(X F) = EX (b) X F meßbar E(X F) = X P-f.s. (c) (Tower property) F G A E(E(X G) F) = E(X F) = E(E(X F) G) P-f.s. (d) (Taking out what is known) Y : Ω IR sei F- meßbar, XY quasiintegrierbar E(XY F) = Y E(X F) P-f.s. (e) X und F unabhängig E(X F) = EX P-f.s. (f) (Jensensche Ungl.) I IR sei offenes Intervall, X L 1 (P ), P (X I) = 1, f : I IR konvex mit f(x) 0 oder f(x) L 1 (P ) E(X F) I P-f.s., f(e(x F)) E(f(X) F) P-f.s. Beweis. Bauer (4. Auflage, 1991), S , Hoffmann-Jørgensen, Vol. I, S Satz A2 F A. (a) (Monotone Konvergenz) X n, X : Ω IR seien meßbar, X n X f.s., EX1 E(X n F) E(X F) f.s. Falls X n X, f.s., EX 1 + < E(X n F) E(X F) f.s. < (b) (Beschränkte Konvergenz) X n f.s. n IN, X n X f.s. L 1 (P ), X : Ω IR ZV, Y L 1 (P ), X n Y X L 1 (P ), E(X n F) E(X F) f.s. 1

2 (c) (Fatou) X n, Y : Ω IR seien meßbar, n IN. X n Y f.s. n IN, EY < E(lim inf X n F) lim inf X n Y f.s. n IN, EY + < E(lim sup E(X n F) f.s. X n F) lim sup E(X n F) f.s. Beispiel A.3 A i A, i I seien paarweise disjunkt, I abzählbar, i I A i = Ω, F = σ(a i, i I). Dann gilt E(X F) = i I E(X A i )1 Ai mit A i XdP/P (A i ), P (A i ) > 0 E(X A i ) = 0 (z.b.), sonst. (Ω t, A t ) seien meßb. Räume, Y t : Ω Ω t meßbar, t T. E(X Y t, t T ) := E(X σ(y t, t T )) heißt bedingter Erwartungswert von X unter (Y t ) t T. (Ω 2, ) sei meßb. Raum, Y : Ω Ω 2 meßbar. E(X Y = y) bedingter Erwartungswert von X unter Y = y, y Ω 2 : P Y f.s. eindeutig bestimmte P Y -quasiintegrierbare ZV : Ω 2 IR mit (3) E(X Y = y)dp Y (y) = Y 1 ( ) XdP. Es gilt E(X Y ) = E(X Y = ) Y P-f.s. Für X L 1 (P ) heißt bedingte Varianz von X unter F. Es gilt falls X L 2 (P ). Zu bedingten Verteilungen: Var(X F) := E((X E(X F)) 2 F) Var(X F) = E(X 2 F) (E(X F)) 2 Definition A.4 (Ω i, A i ) seien meßbare Räume, X : Ω Ω 1 meßbar, Y : Ω Ω 2 meßbar, F A. (a) Ein Markov-Kern K = K P von (Ω, F) nach (Ω 1, A 1 ) mit 2

3 K(, A 1 ) = P (X A 1 F) P-f.s. A 1 A 1 heißt (eine Version der regulären)bedingte Verteilung von X unter F (bzgl. P). Bezeichnung P X F := K. RN- Gleichung (2) hat die Form (4) P X F (ω, A 1 )dp (ω) = P (X 1 (A 1 ) F ) A 1 A 1, F F. F P X Y := P X σ(y ) heißt bedingte Verteilung von X unter Y. (b) Ein Markov-Kern K = K P von (Ω 2, ) nach (Ω 1, A 1 ) mit K(, A 1 ) = P (X A 1 Y = ) P Y -f.s. A 1 A 1 heißt bedingte Verteilung von X unter Y =y, y Ω 2. Bezeichnung P X Y =y (A 1 ) := K(y, A 1 ). RN- Gleichung (3) hat also die Form (5) P X Y =y (A 1 )dp Y (y) = P (X 1 (A 1 ) Y 1 ( )) In Situation wie in A.4 (b) : = P (X,Y ) (A 1 ) A i A i. Lemma A.5 Y : Ω Ω 2 sei meßbar, K Markov-Kern von (Ω 2, ) nach (Ω 1 A 1 ) (i) Ω 2 IR +, y K(y, D y ) ist meßbar D A 1 A2. (ii) K(y, D) := K(y, D y ) def. Markovkern von (Ω 2, ) nach (Ω 1 Ω 2, A 1 A2 ). (iii) K P Y (D) := K(y, D y )dp Y (y), D A 1 A2, ist W-Maß auf A 1 A2. (iv) (Fubini für Markov-Kerne) f : Ω 1 Ω 2 IR sei K P Y quasiintegrierbar fdk P Y = f(x, y)k(y, dx)dp Y (y). Beweis. (i) D := {D A 1 A2 : y K(y, D y ) meßb.} ist ein Dynkin-System. Für E = {A 1 : A i A i } gilt E D, denn K(y, (A 1 ) y ) = K(y, A 1 )1 A2 (y). Ferner ist E ein - stabiler Erzeuger von A 1 A2. Es folgt A 1 A2 = σ(e) = δ(e) D A 1 A2, wobei δ(e) das von E erzeugte Dynkin - System bezeichnet. (ii) und (iii) sind klar. (iv) Für f = 1 D, D A 1 A2, ist das die Definition von K P Y. Rest folgt über Aufbau der A 1 A2 -meßbaren Funktionen. Beispiel A.6 X : Ω Ω 1 und Y : Ω Ω 2 seien meßbar. 3

4 (a) X, Y unabhängig P X Y =y := P X ist eine bedingte Verteilung von X unter Y = y, denn P X (A 1 )dp Y (y) = P X (A 1 )P Y ( ) = P X P Y (A 1 ) = P (X,Y ) (A 1 ), A i A i. Also gilt die definierende RN-Gleichung (5). (Die Umkehrung gilt auch.) (b) Es existiere die bedingte Verteilung P X Y =y, h : (Ω 1, A 1 ) (Ω 3, A 3 ) sei meßbar P h(x) Y =y := (P X Y =y ) h (Bildmaß) ist eine bedingte Verteilung von h(x) unter Y = y. Dazu sei K(y, A 3 ) := P X Y =y (h 1 (A 3 ), y Ω 2. Dann gilt: K ist Markov-Kern von (Ω 2, ) nach (Ω 3, A 3 ) und Beh. K(y, A 3 )dp Y (y) = P X Y =y (h 1 (A 3 )) dp Y (y) = (5) P (X,Y ) (h 1 (A 3 ) ) = P (h(x),y ) (A 3 ) Falls bedingte Verteilungen existieren, lassen sich bedingte Erwartungswerte als Erwartungswerte bzgl. bedingter Verteilungen berechnen. Satz A.7 X : Ω Ω 1 und Y : Ω Ω 2 seien meßbar, P X Y =y existiere, f : Ω 1 Ω 2 IR sei P (X,Y ) -quasiintegrierbar Beweis. (i) Nach A.5 (iii) ist (i) P (X,Y ) = P X Y = P Y (s.a.5) (ii) E(f(X, Y ) Y = y) = f(x, y)p X Y =y (dx) P Y -f.s (iii) Ef(X, Y ) = f(x, y)p X Y =y (dx)dp Y (y) ein W-Maß auf A 1 A2. Wegen (5) gilt X Y = Q := P P Y Q(A 1 ) = P X Y =y (A 1 )1 A2 (y)dp Y (y) = P (X,Y ) (A 1 ), A i A i, also Q E = P (X,Y ) E für den -stabilen Erzeuger E = {A 1 : A i A i } von A 1 A2. Es folgt Q = P (X,Y ). (ii) Die rechte Seite ist - meßbar in y. Ferner gilt mit Teil (i) und A.5 (iv) f(x, y)p X Y =y (dx)dp Y (y) = f1 Ω1 dp X Y = P Y = f1 Ω1 dp (X,Y ) = Y 1 ( ) f(x, Y )dp. 4

5 Dies ist definierende RN-Gleichung (3). (iii) Wähle = Ω 2 im Beweis von (ii). Korollar A.8 X : Ω Ω 1 und Y : Ω Ω 2 seien meßbar. (a) P X Y =y existiere, h : Ω 1 IR sei P X - quasiintegrierbar E(h(X) Y = y) = h(x)p X Y =y (dx) P Y -f.s. (F A, P X F existiere E(h(X) F)(ω) = h(x)p X F (ω, dx) P-f.s.) (b) (Substitutionsregel bei Unabhängigkeit) X, Y seien unabhängig, f : Ω 1 Ω 2 IR sei P (X,Y ) -quasiintegrierbar Beweis. (a) Setze f(x, y) = h(x) in A.7 (ii). E(f(X, Y ) Y = y) = f(x, y)dp X (x) = Ef(X, y) P Y -f.s. (b) Nach A.6 (a) ist P X eine bedingte Verteilung von X unter Y = y. Die Beh. folgt damit aus A.7 (ii). A.8 (b) kann man verschärfen: Y sei F-meßbar, F A, X und F seien unabhängig E(f(X, Y ) F) = E(f(X, Y ) Y ) = f(x, Y )dp X (x) P-f.s. (s. Hoffmann-Jørgensen, Vol. I, S. 452). A 8 (b) entspricht F = σ(y ). Satz A.9 (Existenz) X : Ω Ω 1 sei meßbar, Ω 1 polnisch, A 1 = B(Ω 1 ). (a) Y : Ω Ω 2 sei meßbar es ex. bedingte Verteilung P X Y =y. (b) F A es ex. bedingte Verteilung P X F. Beweis. Bauer, S. 397, Gänssler/Stute, S Jede offene und jede abgeschlossene Teilmenge von IR n ist polnisch. Bemerkung A.10 (Eindeutigkeit) X : Ω Ω 1 und Y : Ω Ω 2 seien meßbar, K 1, K 2 seien bedingte Verteilungen von X unter Y = y, A 1 sei abzählbar erzeugt N, P Y (N) = 0 mit K 1 (y, A 1 ) = K 2 (y, A 1 ) y N A 1 A 1. Beweis. Bauer, S. 397, Gänssler/ Stute, S

6 X : Ω Ω 1 und Y : Ω Ω 2 seien meßbar. Interessant für die Berechnung der bedingten Verteilung ist der Fall, dass P (X,Y ) durch ein Produktmaß dominiert wird, P (X,Y ) << µ 1 µ2, f (X,Y ) = dp (X,Y ) /dµ 1 µ2. Dabei ist µ i ein σ-endliches Maß auf A i. Die µ 2 - Dichte f Y von P Y lässt sich als Randdichte berechnen, f Y (y) = f (X,Y ) (x, y)dµ 1 (x). Sei f X Y =y (x) := f (X,Y ) (x,y) f Y (y), f Y (y) > 0 g(x), sonst die bedingte Dichte von X unter Y = y. (g ist eine beliebige W-Dichte bzgl.µ 1.) Satz A.11 In obiger Situation sei K(y, A 1 ) := A 1 f X Y =y (x)dµ 1 (x), y Ω 2, A 1 A 1 K ist eine bedingte Verteilung von X unter Y = y. Beweis. K ist offenbar ein Markov-Kern von (Ω 2, ) nach (Ω 1, A 1 ). Es gilt P Y (f Y = 0) = {f Y =0} f Y dµ 2 = 0. Ferner K(y, A 1 )dp Y (y) = K(y, A 1 )dp Y (y) {f Y >0} = f X Y =y (x)dµ 1 (x)f Y (y)dµ 2 (y) {f Y >0} A 1 = f X,Y ) (x, y)dµ 1 (x)dµ 2 (y) {f Y >0} A 1 = P (X,Y ) (A 1 ) A i A i. Also gilt die RN- Gleichung (5). 6

7 Bedingte Erwartungswerte und Bedingte Verteilungen

7 Bedingte Erwartungswerte und Bedingte Verteilungen 7 edingte Erwartungswerte und edingte Verteilungen Sei (Ω,, P ein W Raum, (Ω, ein Messraum, Y : Ω Ω sei (, -messbar und nehme die Werte y 1,..., y n Ω an. Y 1 (y k {ω Ω Y (ω y k } : k Ω 1 + + n und σ(y

Mehr

3 Bedingte Erwartungswerte

3 Bedingte Erwartungswerte 3 Bedingte Erwartungswerte 3.3 Existenz und Eindeutigkeit des bedingten Erwartungswertes E A 0(X) 3.6 Konvexitätsungleichung für bedingte Erwartungswerte 3.9 Konvergenzsätze von Levi, Fatou und Lebesgue

Mehr

1.3 Zufallsvariablen

1.3 Zufallsvariablen 1.3 Zufallsvariablen Beispiel Irrfahrt zwischen drei Zuständen Start in G bei t = 0, Zeithorizont T N Grundraum σ-algebra Ω = {ω = (ω 0, ω 1,..., ω T ) {G, R, B} T +1, ω 0 = G} Wahrscheinlichkeitsmaß P

Mehr

Stochastik Wiederholung von Teil 1

Stochastik Wiederholung von Teil 1 Stochastik Wiederholung von Teil 1 Andrej Depperschmidt Sommersemester 2016 Wahrscheinlichkeitsraum Definition Das Tripple (Ω, A, P) heißt Wahrscheinlichkeitsraum, falls gilt: (i) A ist eine σ-algebra,

Mehr

Erwartungswert als Integral

Erwartungswert als Integral Erwartungswert als Integral Anton Klimovsky Gemischte ZVen, allgemeine ZVen, Erwartungswert für allgemeine ZVen, Lebesgue-Integral bzgl. WMaß, Eigenschaften des Integrals, Lebesgue-Maß, Lebesgue-Integral

Mehr

Maße auf Produkträumen

Maße auf Produkträumen Maße auf Produkträumen Es seien (, Ω 1 ) und (X 2, Ω 2 ) zwei Meßräume. Wir wollen uns zuerst überlegen, wie wir ausgehend davon eine geeignete σ-algebra auf X 2 definieren können. Wir betrachten die Menge

Mehr

Zufallsvariable, Verteilung, Verteilungsfunktion

Zufallsvariable, Verteilung, Verteilungsfunktion Kapitel 5 Zufallsvariable, Verteilung, Verteilungsfunktion 5.1 Zufallsvariable Sei (Ω, A, P ) ein beliebiger Wahrscheinlichkeitsraum. Häufig interessiert nicht ω selbst, sondern eine Kennzahl X(ω), d.h.

Mehr

Stochastik I. Vorlesungsmitschrift

Stochastik I. Vorlesungsmitschrift Stochastik I Vorlesungsmitschrift Ulrich Horst Institut für Mathematik Humboldt-Universität zu Berlin Inhaltsverzeichnis 1 Grundbegriffe 1 1.1 Wahrscheinlichkeitsräume..................................

Mehr

3 Produktmaße und Unabhängigkeit

3 Produktmaße und Unabhängigkeit 3 Produktmaße und Unabhängigkeit 3.1 Der allgemeine Fall Im Folgenden sei I eine beliebige Indexmenge. i I sei (Ω i, A i ein messbarer Raum. Weiter sei Ω : i I Ω i ein neuer Ergebnisraum. Wir definieren

Mehr

Einführung in die angewandte Stochastik

Einführung in die angewandte Stochastik Einführung in die angewandte Stochastik Fabian Meyer 5. April 2018 Inhaltsverzeichnis 1 Wahrscheinlichkeitsrechnung 3 1.1 Definitionen................................... 3 1.2 Wahrscheinlichkeitsmaß, Wahrscheinlichkeitsverteilung,

Mehr

Strassen Type Theorems Proseminar Stochastik

Strassen Type Theorems Proseminar Stochastik Strassen Type Theorems Proseminar Stochastik Cecelie Hector Universität Hamburg Fachbereich Mathematik SoSe 2004 Vortrag am 25.06.04 Definition (a). Ein topologischer Raum E heißt polnisch, wenn es eine

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Scheinklausur zur Vorlesung Stochastik II

Scheinklausur zur Vorlesung Stochastik II Institut für Mathematische Stochastik WS 2007/2008 Universität Karlsruhe 25. 02. 2008 Dr. B. Klar Scheinklausur zur Vorlesung Stochastik II Muster-Lösung Dauer: 90 Minuten Name: Vorname: Matrikelnummer:

Mehr

Erwartungswert und Varianz von Zufallsvariablen

Erwartungswert und Varianz von Zufallsvariablen Kapitel 7 Erwartungswert und Varianz von Zufallsvariablen Im Folgenden sei (Ω, A, P ) ein Wahrscheinlichkeitsraum. Der Erwartungswert von X ist ein Lebesgue-Integral (allerdings allgemeiner als in Analysis

Mehr

Übungen zu bedingten Erwartungswerten. Tutorium Stochastische Prozesse 13. Dezember 2016

Übungen zu bedingten Erwartungswerten. Tutorium Stochastische Prozesse 13. Dezember 2016 Übungen zu bedingten Erwartungswerten Tutorium Stochastische Prozesse 13. Dezember 2016 Bedingter Erwartungswert Definition Sei X eine reellwertige Zufallsvariable auf (Ω, A, P), so dass E[ X ]

Mehr

8. Formelsammlung. Pr[ ] = 0. 0 Pr[A] 1. Pr[Ā] = 1 Pr[A] A B = Pr[A] Pr[B] DWT 8.1 Gesetze zum Rechnen mit Ereignissen 203/467 Ernst W.

8. Formelsammlung. Pr[ ] = 0. 0 Pr[A] 1. Pr[Ā] = 1 Pr[A] A B = Pr[A] Pr[B] DWT 8.1 Gesetze zum Rechnen mit Ereignissen 203/467 Ernst W. 8. Formelsammlung 8.1 Gesetze zum Rechnen mit Ereignissen Im Folgenden seien A und B, sowie A 1,..., A n Ereignisse. Die Notation A B steht für A B und zugleich A B = (disjunkte Vereinigung). A 1... A

Mehr

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit 3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit Lernziele dieses Kapitels: Mehrdimensionale Zufallsvariablen (Zufallsvektoren) (Verteilung, Kenngrößen) Abhängigkeitsstrukturen Multivariate

Mehr

1 Diskrete Wahrscheinlichkeitstheorie

1 Diskrete Wahrscheinlichkeitstheorie Prof. A. Sapozhnikov Wahrcheinlichkeittheorie I INHALTSVERZEICHNIS 1 Dikrete Wahrcheinlichkeittheorie 1.1 Laplace-Wahrcheinlichkeit. Urnenmodelle. N! Begriffe: Ziehen ohne Zurücklegen, mit Reihenfolge,

Mehr

Lehrstuhl IV Stochastik & Analysis. Stochastik II. Wahrscheinlichkeitstheorie I. Skriptum nach einer Vorlesung von Hans-Peter Scheffler

Lehrstuhl IV Stochastik & Analysis. Stochastik II. Wahrscheinlichkeitstheorie I. Skriptum nach einer Vorlesung von Hans-Peter Scheffler Fachschaft Mathematik Uni Dortmund Lehrstuhl IV Stochastik & Analysis Stochastik II Wahrscheinlichkeitstheorie I Skriptum nach einer Vorlesung von Hans-Peter Scheffler Letzte Änderung: 26. November 2002

Mehr

2 Fortsetzung von Prämaßen zu Maßen, Eindeutigkeit

2 Fortsetzung von Prämaßen zu Maßen, Eindeutigkeit 2 Fortsetzung von Prämaßen zu Maßen, Eindeutigkeit a) Fortsetzungssatz, Eindeutigkeit Es wird gezeigt, dass jedes Prämaß µ auf einem Ring R zu einem Maß µ auf A(R) fortgesetzt werden kann, d.h. µ kann

Mehr

1 Das Lebesgue-Maß. 1.1 Etwas Maßtheorie. Sei stets X eine nichtleere Menge mit Potzenzmenge P(X) := {A : A X}.

1 Das Lebesgue-Maß. 1.1 Etwas Maßtheorie. Sei stets X eine nichtleere Menge mit Potzenzmenge P(X) := {A : A X}. 1 Das Lebesgue-Maß 1.1 Etwas Maßtheorie Sei stets X eine nichtleere Menge mit Potzenzmenge P(X) := {A : A X}. Definition 1.1. Ein nichtleeres Mengensystem A P(X) heißt σ-algebra, wenn: (A1) X A (A2) Wenn

Mehr

Lemma 23 Die (paarweise verschiedenen) Ereignisse A 1,..., A n sind genau dann unabhängig,

Lemma 23 Die (paarweise verschiedenen) Ereignisse A 1,..., A n sind genau dann unabhängig, Lemma 23 Die (paarweise verschiedenen) Ereignisse A 1,..., A n sind genau dann unabhängig, wenn für alle (s 1,..., s n ) {0, 1} n gilt, dass wobei A 0 i = Āi und A 1 i = A i. Pr[A s 1 1... Asn n ] = Pr[A

Mehr

Liste wichtiger Stammfunktionen

Liste wichtiger Stammfunktionen Liste wichtiger Stammfunktionen Funktion Stammfunktion x n, x ln(x) n R \ { } n + xn+ ln( x ) x ln(x) x a x, a > sin(x) cos(x) sin 2 (x) cos 2 (x) x 2 x 2 a x ln(a) cos(x) sin(x) (x sin(x) cos(x)) 2 (x

Mehr

2 Zufallsvariable, Verteilungen, Erwartungswert

2 Zufallsvariable, Verteilungen, Erwartungswert 2 Zufallsvariable, Verteilungen, Erwartungswert Bisher: Zufallsexperimente beschrieben durch W-Räume (Ω, A, P) Häufig interessiert nur eine zufällige Größe X = X(ω), die vom Ergebnis ω des Zufallsexperiments

Mehr

Maße und Integrale. begleitend zur Vorlesung Stochastik I Humboldt-Universität zu Berlin SS 2008 P. Imkeller. Berlin, den 26.

Maße und Integrale. begleitend zur Vorlesung Stochastik I Humboldt-Universität zu Berlin SS 2008 P. Imkeller. Berlin, den 26. Maße und Integrale begleitend zur Vorlesung Stochastik I Humboldt-Universität zu Berlin SS 2008 P. Imkeller Berlin, den 26. April 2008 Inhaltsverzeichnis 1 Konstruktion von Maßen 3 2 Konstruktion von Integralen

Mehr

Einführung und Grundlagen

Einführung und Grundlagen Kapitel 1 Einführung und Grundlagen Generelle Notation: Ω, A, P sei ein W-Raum im Hintergrund nie weiter spezifiziert Die betrachteten Zufallsvariablen seien auf Ω definiert, zb X : Ω, A M, A, wobei M,

Mehr

D-MATH Mass und Integral FS 2018 Prof. Dr. Urs Lang. Lösung - Serie 2. + A k = A c k Ac k 0

D-MATH Mass und Integral FS 2018 Prof. Dr. Urs Lang. Lösung - Serie 2. + A k = A c k Ac k 0 D-MATH Mass und Integral FS 2018 Prof. Dr. Urs Lang Lösung - Serie 2 Abgabetermin: Mittwoch, 07.03.2018 in die Fächli im HG F 28. Homepage der Vorlesung: https://metaphor.ethz.ch/x/2018/fs/401-2284-00l/

Mehr

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung 4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung Häufig werden mehrere Zufallsvariablen gleichzeitig betrachtet, z.b. Beispiel 4.1. Ein Computersystem bestehe aus n Teilsystemen. X i sei der Ausfallzeitpunkt

Mehr

Klausur zur Vorlesung Stochastik II

Klausur zur Vorlesung Stochastik II Institut für Mathematische Stochastik WS 003/004 Universität Karlsruhe 05. 04. 004 Prof. Dr. G. Last Klausur zur Vorlesung Stochastik II Dauer: 90 Minuten Name: Vorname: Matrikelnummer: Diese Klausur hat

Mehr

Aufgaben zu Kapitel 0

Aufgaben zu Kapitel 0 Aufgaben zu Kapitel 0 0.1. Seien A und B zwei Mengen. Wie kann man paarweise disjunkte Mengen A 1, A 2 und A 3 so wählen, dass A 1 A 2 A 3 = A B gilt? 0.2. Seien E ein Menge und A eine Teilmengen von E.

Mehr

Maximale Generatoren Integral Stochastischer Ordnungen - Fortsetzung Eigenschaften von stochastischen Ordnungen Kleine Generatoren

Maximale Generatoren Integral Stochastischer Ordnungen - Fortsetzung Eigenschaften von stochastischen Ordnungen Kleine Generatoren Universität Hamburg Fachbereich Mathematik Schwerpunkt Mathematische Statistik und Stochastische Prozesse Bundesstr. 55 D-20146 Hamburg Maximale Generatoren Integral Stochastischer Ordnungen - Fortsetzung

Mehr

Studienbegleitende Prüfung Stochastik 2

Studienbegleitende Prüfung Stochastik 2 Universität Karlsruhe (TH) Institut für Stochastik Prof. Dr. N. Bäuerle Name: Vorname: Matr.-Nr.: Studienbegleitende Prüfung Stochastik 2 27. März 2007 Diese Klausur hat bestanden, wer mindestens 20 Punkte

Mehr

4 Messbare Funktionen

4 Messbare Funktionen 4 Messbare Funktionen 4.1 Definitionen und Eigenschaften Definition 4.1. Seien X eine beliebige nichtleere Menge, M P(X) eine σ-algebra in X und µ ein Maß auf M. Das Paar (X, M) heißt messbarer Raum und

Mehr

4. Gemeinsame Verteilung und Grenzwertsätze

4. Gemeinsame Verteilung und Grenzwertsätze 4. Gemeinsame Verteilung und Grenzwertsätze Häufig in der Praxis: Man muss mehrere (n) ZV en gleichzeitig betrachten (vgl. Statistik I, Kapitel 6) Zunächst Vereinfachung: Betrachte n = 2 Zufallsvariablen

Mehr

4. Gemeinsame Verteilung und Grenzwertsätze

4. Gemeinsame Verteilung und Grenzwertsätze 4. Gemeinsame Verteilung und Grenzwertsätze Häufig in der Praxis: Man muss mehrere (n) ZV en gleichzeitig betrachten (vgl. Statistik I, Kapitel 6) Zunächst Vereinfachung: Betrachte n = 2 Zufallsvariablen

Mehr

Meßbare Funktionen. bilden die Grundlage der Integrationstheorie. Definition 24.1 :

Meßbare Funktionen. bilden die Grundlage der Integrationstheorie. Definition 24.1 : 24 Meßbare Funktionen bilden die Grundlage der Integrationstheorie. Definition 24. : Sei X eine beliebige Menge, Y ein topologischer Raum, λ ein Maß auf X. f : X Y heißt λ-messbar, falls f (Ω) λ-messbar

Mehr

Zulassungsprüfung Stochastik,

Zulassungsprüfung Stochastik, Zulassungsprüfung Stochastik, 5.5. Wir gehen stets von einem Maßraum (Ω, A, µ) bzw. einem Wahrscheinlichkeitsraum (Ω,A,P) aus. Die Borel σ-algebra auf R n wird mit B n bezeichnet, das Lebesgue Maß auf

Mehr

Kapitel II Kontinuierliche Wahrscheinlichkeitsräume

Kapitel II Kontinuierliche Wahrscheinlichkeitsräume Kapitel II Kontinuierliche Wahrscheinlichkeitsräume 1. Einführung 1.1 Motivation Interpretation der Poisson-Verteilung als Grenzwert der Binomialverteilung. DWT 1.1 Motivation 211/476 Beispiel 85 Wir betrachten

Mehr

Musterlösung Analysis 3 - Maßtherorie

Musterlösung Analysis 3 - Maßtherorie Musterlösung Analysis 3 - Maßtherorie 10. März 2011 Aufgabe 1: Zum Aufwärmen (i) Zeige, dass die Mengensysteme {, X} und P(X) σ-algebren sind. Es sind jeweils nur die Charakteristika nachzuweisen. (1)

Mehr

Vorlesungsskript: Martingale

Vorlesungsskript: Martingale Vorlesungsskript: Martingale von Steffen Dereich Fachbereich Mathematik und Informatik Philipps-Universität Marburg Version vom 25. Februar 2010 Inhaltsverzeichnis 4 Martingale 2 4.1 Einführung.......................................

Mehr

2 Zufallsvariable und Verteilungsfunktionen

2 Zufallsvariable und Verteilungsfunktionen 8 2 Zufallsvariable und Verteilungsfunktionen Häufig ist es so, dass den Ausgängen eines Zufallexperiments, d.h. den Elementen der Ereignisalgebra, eine Zahl zugeordnet wird. Das wollen wir etwas mathematischer

Mehr

Finanzmathematische Modelle und Simulation

Finanzmathematische Modelle und Simulation Finanzmathematische Modelle und Simulation WS 9/1 Rebecca Henkelmann In meiner Ausarbeitung Grundbegriffe der Stochastik I, geht es darum die folgenden Begriffe für die nächsten Kapitel einzuführen. Auf

Mehr

Vorlesung 5a. Zufallsvariable mit Dichten

Vorlesung 5a. Zufallsvariable mit Dichten Vorlesung 5a 1 Vorlesung 5a Zufallsvariable mit Dichten Vorlesung 5a Zufallsvariable mit Dichten Teil 1 Uniforme Verteilung, Exponentialverteilung. Kontinuierlich uniform verteilte Zufallsvariable: 2 Kontinuierlich

Mehr

Diskrete Zufallsvariablen (Forts.) I

Diskrete Zufallsvariablen (Forts.) I 9 Eindimensionale Zufallsvariablen Diskrete Zufallsvariablen 9.4 Diskrete Zufallsvariablen (Forts.) I T (X ) ist endlich oder abzählbar unendlich, die Elemente von T (X ) werden daher im Folgenden häufig

Mehr

Diskrete Zufallsvariablen (Forts.) I

Diskrete Zufallsvariablen (Forts.) I 9 Eindimensionale Zufallsvariablen Diskrete Zufallsvariablen 9.4 Diskrete Zufallsvariablen (Forts.) I T (X ) ist endlich oder abzählbar unendlich, die Elemente von T (X ) werden daher im Folgenden häufig

Mehr

Unabhängige Zufallsvariablen

Unabhängige Zufallsvariablen Kapitel 9 Unabhängige Zufallsvariablen Die Unabhängigkeit von Zufallsvariablen wird auf die Unabhängigkeit von Ereignissen zurückgeführt. Im Folgenden sei Ω, A, P ) ein Wahrscheinlichkeitsraum. Definition

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie. Tobias Ried

Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie. Tobias Ried Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie Tobias Ried. März 2 2 Aufgabe (Messbarkeit der Komposition zweier Abbildungen). Seien (X, A), (Y, B) und (Z, C) Messräume und f : (X,

Mehr

Finanzmathematik I Lösungvorschläge für Übungsblatt 1

Finanzmathematik I Lösungvorschläge für Übungsblatt 1 Finanzmathematik I Lösungvorschläge für Übungsblatt 1 J. Widenmann ufgabe 1: Zu zeigen ist, dass Q die Definition Ü.1.1.2 erfüllt. Zunächst bemerken wir, dass Q wegen der nnahme f 0 Werte in R + annimmt.

Mehr

1. Masstheorie Mengensysteme 1. MASSTHEORIE 1

1. Masstheorie Mengensysteme 1. MASSTHEORIE 1 1. MASSTHEORIE 1 1. Masstheorie In der Wahrscheinlichkeitstheorie betrachten wir Situationen, die wir nicht exakt vorhersagen können. Zum einen kann dies sein, da der Ausgang zufällig ist. Zum anderen

Mehr

Universität Basel Wirtschaftswissenschaftliches Zentrum. Zufallsvariablen. Dr. Thomas Zehrt

Universität Basel Wirtschaftswissenschaftliches Zentrum. Zufallsvariablen. Dr. Thomas Zehrt Universität Basel Wirtschaftswissenschaftliches Zentrum Zufallsvariablen Dr. Thomas Zehrt Inhalt: 1. Einführung 2. Zufallsvariablen 3. Diskrete Zufallsvariablen 4. Stetige Zufallsvariablen 5. Erwartungswert

Mehr

Kapitel X: Reguläre bedingte Wahrscheinlichkeitsverteilungen

Kapitel X: Reguläre bedingte Wahrscheinlichkeitsverteilungen Reinhard Höpfner Vorlesung Stochastik Kapitel X: Reguläre bedingte Wahrscheinlichkeitsverteilungen Wintersemester 2016/17 Institut für Mathematik, Johannes Gutenberg Universität Mainz November 18, 2016

Mehr

Wahrscheinlichkeitstheorie und Statistik

Wahrscheinlichkeitstheorie und Statistik Wahrscheinlichkeitstheorie und Statistik Definitionen und Sätze Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2018 2.5.2018 Diskrete Wahrscheinlichkeitsräume Diskreter

Mehr

3 Markov-Eigenschaft der Brownschen Bewegung

3 Markov-Eigenschaft der Brownschen Bewegung Man verifiziert 2.) für P n = Q n, und somit gilt: jede Teilfolge von (P n ) n N besitzt eine konvergente Teilfolge. Betrachte nun die endlich-dimensionalen Randverteilungen der Maße P n. Dazu sei π t1,...,t

Mehr

3 Bedingte Erwartungen und Wahrscheinlichkeiten (Version November 2011)

3 Bedingte Erwartungen und Wahrscheinlichkeiten (Version November 2011) 3 Bedingte Erwartungen und Wahrscheinlichkeiten (Version November 2011) 3.1 Definition der bedingten Erwartung und grundlegende Eigenschaften Erinnerung: Sei (Ω, F, P) ein Wahrscheinlichkeitsraum und (

Mehr

1 Bedingte Erwartungswerte

1 Bedingte Erwartungswerte Die folgenden Regeln sind das alltägliche Handwerkszeug für den Umgang mit bedingten Erwartungen und werden in diesem Abschnitt, allerdings ohne Beweise, zitiert. Es ist durchaus eine lohnenswerte Übung,

Mehr

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Version: 15. Jänner 2017 Evelina Erlacher Inhaltsverzeichnis 1 Mengen 2 2 Wahrscheinlichkeiten 3 3 Zufallsvariablen 5 3.1 Diskrete Zufallsvariablen............................

Mehr

σ-algebren, Definition des Maßraums

σ-algebren, Definition des Maßraums σ-algebren, Definition des Maßraums Ziel der Maßtheorie ist es, Teilmengen einer Grundmenge X auf sinnvolle Weise einen Inhalt zuzuordnen. Diese Zuordnung soll so beschaffen sein, dass dabei die intuitiven

Mehr

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Version: 22. September 2015 Evelina Erlacher 1 Mengen Es sei Ω eine Menge (die Universalmenge ) und A, B seien Teilmengen von Ω. Dann schreiben

Mehr

4 Absolutstetige Verteilungen und Zufallsvariablen 215/1

4 Absolutstetige Verteilungen und Zufallsvariablen 215/1 4 Absolutstetige Verteilungen und Zufallsvariablen 215/1 23. Bemerkung Integralbegriffe für Funktionen f : R d R (i) Lebesgue-Integral (Vorlesung Analysis IV). Spezialfall: (ii) Uneigentliches Riemann-Integral

Mehr

Maßtheorie. Skript zur Vorlesung von Prof. Dr. Michael Kohler. Sommersemester 2005 und Wintersemester 2005/2006

Maßtheorie. Skript zur Vorlesung von Prof. Dr. Michael Kohler. Sommersemester 2005 und Wintersemester 2005/2006 Maßtheorie Skript zur Vorlesung von Prof. Dr. Michael Kohler Sommersemester 2005 und Wintersemester 2005/2006 1 1 Grundbegriffe der Maßtheorie Ziel: Konstruktion von Maßzahlen (wie z. B. Länge / Fläche

Mehr

13 Grenzwertsätze Das Gesetz der großen Zahlen

13 Grenzwertsätze Das Gesetz der großen Zahlen 13 Grenzwertsätze 13.1 Das Gesetz der großen Zahlen Der Erwartungswert einer zufälligen Variablen X ist in der Praxis meist nicht bekannt. Um ihn zu bestimmen, sammelt man Beobachtungen X 1,X 2,...,X n

Mehr

Klausur zur Vorlesung Stochastik II

Klausur zur Vorlesung Stochastik II Institut für Stochastik WS 007/008 Universität Karlsruhe. 0. 008 r. B. Klar Klausur zur Vorlesung Stochastik II Muster-Lösung auer: 90 Minuten Name: Vorname: Matrikelnummer: iese Klausur hat bestanden,

Mehr

Aktuelle Themen aus der Stochastik Wintersemester 2017/2018 Abschnitt 5: Endliche Maße und schwache Konvergenz von Maßen in metrischen Räumen

Aktuelle Themen aus der Stochastik Wintersemester 2017/2018 Abschnitt 5: Endliche Maße und schwache Konvergenz von Maßen in metrischen Räumen Aktuelle Themen aus der Stochastik Wintersemester 2017/2018 Abschnitt 5: Endliche Maße und schwache Konvergenz von Maßen in metrischen Räumen Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut

Mehr

Formelsammlung Statistik III Grundlagen der Statistik I: Wahrscheinlichkeitstheorie und Inferenz I

Formelsammlung Statistik III Grundlagen der Statistik I: Wahrscheinlichkeitstheorie und Inferenz I Formelsammlung Statistik III Grundlagen der Statistik I: Wahrscheinlichkeitstheorie und Inferenz I Prof. Dr. Torsten Hothorn Institut für Statistik Ludwig Maximilians Universität München L A TEX-Satz von

Mehr

Statistik I für Betriebswirte Vorlesung 3

Statistik I für Betriebswirte Vorlesung 3 Statistik I für Betriebswirte Vorlesung 3 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 15. April 2019 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 3 Version: 1. April

Mehr

Serie 2 Lösungsvorschläge

Serie 2 Lösungsvorschläge D-Math Mass und Integral FS 214 Prof. Dr. D. A. Salamon Serie 2 Lösungsvorschläge 1. Seien folgende Mengen gegeben: und für a, b R R := [, ] := R {, }, (a, ] := (a, ) { }, [, b) := (, b) { }. Wir nennen

Mehr

Varianz und Kovarianz

Varianz und Kovarianz KAPITEL 9 Varianz und Kovarianz 9.1. Varianz Definition 9.1.1. Sei (Ω, F, P) ein Wahrscheinlichkeitsraum und X : Ω eine Zufallsvariable. Wir benutzen die Notation (1) X L 1, falls E[ X ]

Mehr

2. Integration. {x : f(x) <a+ 1 n }

2. Integration. {x : f(x) <a+ 1 n } 9 2.1. Definition. 2. Integration in Maß ist eine nichtnegative, abzählbar additive Mengenfunktion. in Maßraum ist ein Tripel (X,,µ) bestehend aus einem messbaren Raum X mit der -lgebra und einem auf definierten

Mehr

Metrische äußere Maße, Borel-Maße

Metrische äußere Maße, Borel-Maße Metrische äußere Maße, Borel-Maße Zum einen haben wir mit dem Fortsetzungssatz gesehen, dass man mit einem äußeren Maß (auf P(X) ) stets eine σ-algebra und ein Maß auf dieser bekommt. Liegt nun ein metrischer

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

2 Martingale in stetiger Zeit

2 Martingale in stetiger Zeit 2 Martingale in stetiger Zeit Ziel dieses Abschnitts ist es die wichtigsten Resultate für Martingale aus diskreter Zeit in stetige Zeit zu übertragen. Wie zu erwarten ist treten in stetiger Zeit einige

Mehr

5 Erwartungswerte, Varianzen und Kovarianzen

5 Erwartungswerte, Varianzen und Kovarianzen 47 5 Erwartungswerte, Varianzen und Kovarianzen Zur Charakterisierung von Verteilungen unterscheidet man Lageparameter, wie z. B. Erwartungswert ( mittlerer Wert ) Modus (Maximum der Wahrscheinlichkeitsfunktion,

Mehr

Hawkes Prozesse Grundlagen

Hawkes Prozesse Grundlagen Hawkes Prozesse Grundlagen Im Folgenden sei (Ω, F, F, P) eine stochastische Basis. Das heißt F = (F t ) t ist eine rechtsstetige Filtration mit F t F für alle t und P ein Wahrscheinlichkeitsmaß auf dem

Mehr

Kapitel 7. Martingale 1

Kapitel 7. Martingale 1 Kapitel 7 Martingale 1 7.1 Definition: a) (Ω, F) sei ein messbarer Raum. Eine Filtration (oder Filtrierung) ist eine aufsteigende Folge F = (F n ) n N von Teil-σ-Algebren von F, d.h. F n F n+1 F für n

Mehr

1 Multivariate Zufallsvariablen

1 Multivariate Zufallsvariablen 1 Multivariate Zufallsvariablen 1.1 Multivariate Verteilungen Definition 1.1. Zufallsvariable, Zufallsvektor (ZV) Sei Ω die Ergebnismenge eines Zufallsexperiments. Eine (univariate oder eindimensionale)

Mehr

WAHRSCHEINLICHKEITS- THEORIE II

WAHRSCHEINLICHKEITS- THEORIE II Skript zur Vorlesung WAHRSCHEINLICHKEITS- THEORIE II Jürgen Gärtner unter Mitwirkung von S. Ribbecke, N. Paetsch und S. Sturm Version Juli 2006 Inhaltsverzeichnis 1. Maßtheoretische Grundlagen 5 1.1.

Mehr

Maß- und Integrationstheorie

Maß- und Integrationstheorie Maß- und Integrationstheorie Klaus Ritter Kaiserslautern, SS 2014 Literatur Insbesondere J. Elstrodt, Maß- und Integrationstheorie, Springer, Berlin, 1. Auflage 1996, 7. Auflage 2011. Vorkenntnisse Grundlagen

Mehr

Ferienkurs in Maß- und Integrationstheorie

Ferienkurs in Maß- und Integrationstheorie Zentrum Mathematik Technische Universität München Dipl. Math. Wolfgang Erb WS 9/ Übungsblatt Ferienkurs in Maß- und Integrationstheorie Aufgabe. (σ-algebren Sei eine Menge und A eine σ-algebra in. Seien

Mehr

Stochastik I. Lehrstuhl für Mathematische Statistik. Universität Würzburg. Prof. Dr. Michael Falk

Stochastik I. Lehrstuhl für Mathematische Statistik. Universität Würzburg. Prof. Dr. Michael Falk Stochastik I Lehrstuhl für Mathematische Statistik Universität Würzburg Prof. Dr. Michael Falk Inhaltsverzeichnis Das Kolmogoroffsche Axiomensystem 2 Erste Folgerungen aus dem Axiomensystem 2 3 Grundlagen

Mehr

Eine Auswahl wichtiger Definitionen und Aussagen zur Vorlesung»Stochastik für Informatiker und Regelschullehrer«

Eine Auswahl wichtiger Definitionen und Aussagen zur Vorlesung»Stochastik für Informatiker und Regelschullehrer« Eine Auswahl wichtiger Definitionen und Aussagen zur Vorlesung»Stochastik für Informatiker und Regelschullehrer«Werner Linde WS 2008/09 Inhaltsverzeichnis 1 Wahrscheinlichkeiten 2 1.1 Wahrscheinlichkeitsräume...........................

Mehr

Kapitel I. Maßtheorie

Kapitel I. Maßtheorie Aufgabenvorschläge für das Proseminar zur Maß- und Integrationstheorie (WS 10/11) Shantanu Dave & Günther Hörmann Kapitel I. Maßtheorie zu 1. Maße und σ-algebren 1 Sei Ω eine Menge. Zeige: (a) Ist A eine

Mehr

Zulassungsprüfung Stochastik,

Zulassungsprüfung Stochastik, Zulassungsprüfung Stochastik, 13.10.2017 Wir gehen stets von einem Wahrscheinlichkeitsraum Ω,A,P aus. Aufgabe 1 15 Punkte Seien a,b > 0 und x,y fest. Gegeben sei das Maß µ : B 1 [0,, µa := a1 A x+b1 A

Mehr

KONSTRUKTION VON MASSEN

KONSTRUKTION VON MASSEN KONSTRUKTION VON MASSEN MARCUS HEITEL 1. Einleitung Wir wollen im Folgenden das Lebesguemaß konstruieren. Dieses soll die Eigenschaft λ ( [a, b = b a für a, b R besitzen. Nun ist ein Maß aber auf einer

Mehr

7 Der Satz von Girsanov

7 Der Satz von Girsanov 7 Der Satz von Girsanov Der Satz von Girsanov wird uns eine neue Perspektive auf die Rolle des Drifts liefern. Die Prozesse Brownsche Bewegung B t, Brownsche Bewegung mit Drift X t = B t + µt haben wir

Mehr

KAPITEL 1. Martingale

KAPITEL 1. Martingale KAPITEL 1 Martingale 1.1. Stochastische Prozesse Sei (Ω, F, P) ein Wahrscheinlichkeitsraum. Das heißt, Ω ist eine Menge, F ist eine σ-algebra auf Ω, und P ein Wahrscheinlichkeitsmaß auf (Ω, F ). Zuerst

Mehr

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.)

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.) Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.) 1 Zusammenfassung Bedingte Verteilung: P (y x) = P (x, y) P (x) mit P (x) > 0 Produktsatz P (x, y) = P (x y)p (y) = P (y x)p (x) Kettenregel

Mehr

Anzahl der Versuche, bei denen A eingetreten ist : Anzahl aller Versuche Mit Hilfe des obigen Gesetzes der groen Zahlen folgt Z = Pr[jZ pj ] ";

Anzahl der Versuche, bei denen A eingetreten ist : Anzahl aller Versuche Mit Hilfe des obigen Gesetzes der groen Zahlen folgt Z = Pr[jZ pj ] ; Wahrscheinlichkeit und relative Haugkeit. Sei X eine Indikatorvariable fur ein Ereignis A, Pr[A] = p. Somit ist X Bernoulli-verteilt mit E[X] = p. Z = 1 n (X 1 + : : : + X n ) gibt die relative Haugkeit

Mehr

Wahrscheinlichkeitstheorie

Wahrscheinlichkeitstheorie Wahrscheinlichkeitstheorie Skript 1 zur Vorlesung von Prof. Dr. Michael Kohler Wintersemester 2011/12 1 Dieses Skript basiert auf dem Exzerpt zur Vorlesung Wahrscheinlichkeitstheorie von Prof. Dr. Harro

Mehr

A. Maß- und Integrationstheorie

A. Maß- und Integrationstheorie A. Maß- und Integrationstheorie Im folgenden sind einige Ergebnisse aus der Maß- und Integrationstheorie zusammengestellt, die wir im Laufe der Vorlesung brauchen werden. Für die Beweise der Sätze sei

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. D. Castrigiano Dr. M. Prähofer Zentralübung 38. Einschränkung eines Maßes TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker 4 (Analysis 3) http://www.ma.tum.de/hm/ma9204

Mehr

Stochastik 2. Beispielaufgaben. Institut für Stochastik WS 2006/07 Universität Karlsruhe Prof. Dr. N. Bäuerle Blatt 0 Dipl.-Math. oec. A.

Stochastik 2. Beispielaufgaben. Institut für Stochastik WS 2006/07 Universität Karlsruhe Prof. Dr. N. Bäuerle Blatt 0 Dipl.-Math. oec. A. Institut für Stochastik WS 2006/07 Universität Karlsruhe Prof. Dr. N. Bäuerle Blatt 0 Dipl.-Math. oec. A. Mundt Übungen zur Vorlesung Stochastik 2 Beispielaufgaben Hinweis: Zu diesem Aufgaben werden in

Mehr

Übersicht Wahrscheinlichkeitsheorie

Übersicht Wahrscheinlichkeitsheorie Übersicht Wahrscheinlichkeitsheorie Gunther Leobacher und Friedrich Pillichshammer Universität Linz, Institut für Finanzmathematik, Altenbergerstrasse 69, 4040 Linz, Austria E-mail: gunther.leobacher@jku.at,

Mehr

TU DORTMUND Sommersemester 2018

TU DORTMUND Sommersemester 2018 Fakultät Statistik. April 08 Blatt Aufgabe.: Wir betrachten das Zufallsexperiment gleichzeitiges Werfen zweier nicht unterscheidbarer Würfel. Sei A das Ereignis, dass die Augensumme beider Würfel ungerade

Mehr

Kapitel 5: Markovketten

Kapitel 5: Markovketten Kapitel 5: Markovketten Definition 5.1 Bezeichnungen Bsp. 5.1 Definition 5.2 Eine Fam. (X i ) i I von ZV en X i : Ω E auf (Ω, F, P) mit Werten im messb. Raum (E, E) heißt Stochastischer Prozess. E Zustandsraum

Mehr

3. Übungsblatt - Lösungsskizzen. so, dass f tatsächlich eine Wahrscheinlichkeitsdichte

3. Übungsblatt - Lösungsskizzen. so, dass f tatsächlich eine Wahrscheinlichkeitsdichte Einführung in die Wahrscheinlichkeitstheorie und Statistik Prof. Dr. Jan Johannes Sandra Schluttenhofer Wintersemester 208/9 3. Übungsblatt - Lösungsskizzen Aufgabe 9 Stetige Verteilungen, 4 =.5 +.5 +

Mehr

Wahrscheinlichkeitstheorie 2 & 3. Prof. Dr. Barbara Gentz mitgeschrieben von Arthur Sinulis 30. Januar 2015

Wahrscheinlichkeitstheorie 2 & 3. Prof. Dr. Barbara Gentz mitgeschrieben von Arthur Sinulis 30. Januar 2015 Wahrscheinlichkeitstheorie 2 & 3 Prof. Dr. Barbara Gentz mitgeschrieben von Arthur Sinulis 3. Januar 215 Inhaltsverzeichnis. Bedingte Erwartungswerte 4 1. Martingale, Stoppzeiten und Filtrierungen 9 1.1.

Mehr