Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom

Größe: px
Ab Seite anzeigen:

Download "Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom"

Transkript

1 Prof. Dr. M. Kaßmann Fakultät für Mathematik Wintersemester 2011/2012 Universität Bielefeld Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom Aufgabe III.1 (4 Punkte) Sei Ω R d ein beschränktes Gebiet. Die Funktionen u n C 2 (Ω) C(Ω) seien harmonisch in Ω mit u n Ω = g n, wobei g n C( Ω) mit sup g n g m 0 für n, m. Ω Zeigen Sie, dass die Folge (u n) gleichmäßig gegen eine Funktion u : Ω R konvergiert, welche ebenfalls harmonisch in Ω und stetig in Ω ist. Aufgabe III.2 (2+3 Punkte) a) Sei u C 2 (B r(0)) C(B r(0)) eine nicht-negative Funktion, welche harmonisch in B r(0) R d sei. Zeigen Sie mit Hilfe der Poisson-Formel folgende explizite Darstellung der Harnack-Ungleichung: Für jedes x B r(0) gilt r d 2 r x (r + x ) u(0) u(x) r + x d 1 rd 2 u(0). (r x ) d 1 b) Beweisen Sie mit Hilfe der Harnack-Ungleichung den folgenden Satz von Liouville: Satz. Sei u C 2 (R d ) eine harmonische Funktion, die nach oben oder nach unten beschränkt ist. Dann ist u konstant. Aufgabe III.3 ( Punkte) Wir verallgemeinern die Definition von subharmonischen und superharmonischen Funktionen für stetige Funktionen. Sei stets Ω R d ein Gebiet. Definition. Eine Funktion u C(Ω) heißt subharmonisch ( superharmonisch) in Ω, falls für jede Kugel B mit B Ω und jeder auf B harmonischen Funktion f mit u f (u f) auf B gilt: u f (u f) in B. Beweisen Sie die folgenden Eigenschaften der in diesem Sinne subharmonischen Funktionen. a) Ist u C(Ω) subharmonisch in Ω, so genügt u dem starken Maximumprinzip in Ω. b) Sei Ω beschränkt. Seien u C(Ω) subharmonisch und v C(Ω) superharmonisch auf Ω mit v u auf Ω. Dann gilt entweder v > u auf Ω oder v u. c) Sei u C(Ω) subharmonisch in Ω und sei B eine Kugel mit B Ω. Sei u C 2 (B) C(B) die Lösung des Problems u = 0 auf B, u = u auf B. Dann ist die Funktion U : Ω R, ebenfalls subharmonisch in Ω. U(x) = u(x) für x B, u(x) für x Ω \ B d) Seien u 1, u 2,..., u N C(Ω) subharmonische Funktionen auf Ω. Dann ist auch die Funktion subharmonisch auf Ω. x u(x) = maxu 1(x), u 2(x),..., u N (x)}

2 Übungsblatt III Seite 2 Aufgabe III.4 (5 Punkte) Sei B + = x R d : x < 1, x d > 0} der offene Halbball um 0. Sei u C 2 (B + ) C(B + ) harmonisch in B + mit u = 0 auf B + x d = 0}. Definiere für x B 1(0) u(x) falls x d 0 v(x) = u(x 1,..., x d 1, x d ) falls x d < 0. Beweisen Sie, dass v harmonisch in B 1(0) ist. Lösungsvorschläge Aufgabe III.1 Aus der Voraussetzung folgt wegen der Vollständigkeit von C( Ω), dass eine Funktion g C( Ω) existiert mit g n g C( Ω) = sup g n (x) g(x) 0, n. x Ω Da für beliebiges n, m N die Funktion x u n (x) u m (x) harmonisch in Ω ist und Ω beschränkt ist, nimmt u n u m sein Maximum auf dem Rand an. Damit ist u n u m C(Ω) g n g m C( Ω) 0, n, m. Wegen der Vollständigkeit von C(Ω) existiert somit ein u C(Ω) mit u n u C(Ω) 0, n. Wir zeigen, dass u harmonisch in Ω ist und u = g auf Ω. Sei B r (x 0 ) Ω beliebig. Dann gilt für beliebiges n N u n (x 0 ) = u n (x) dx B r(x 0 ) (da u n harmonisch ist). Da u n gegen u gleichmäßig konvergiert, können wir auf beiden Seiten der obigen Gleichung zum Grenzwert n übergehen und erhalten folglich u(x 0 ) = u(x) dx, B r(x 0 ) d.h. u erfüllt die Mittelwerteigenschaft in Ω. Damit ist u harmonisch in Ω. Zuletzt gilt für beliebiges x Ω, dass d.h. u = g in Ω. Aufgabe III.2 u(x) = lim n u n(x) = lim n g n(x) = g(x), a) Wir stellen u mit Hilfe der Poisson-Formel dar: Sei x B r (0) beliebig. Dann ist u(x) = r2 x 2 ω d r u(y) y x d do(y).

3 Übungsblatt III Seite 3 Hierbei ist wie in der Vorlesung ω d = B 1 (0) die Oberfläche der (d 1)-dimensionalen Einheitssphäre. Gemäß der Dreiecksungleichung gilt für jedes y B r (0) r x x y r + x. Unter Verwendung der ersten Ungleichung und der Tatsache, dass u nicht-negativ ist, erhalten wir u(x) r2 x 2 ω d r 1 (r x ) d u(y) do(y) = 1 ω d r r+ x (r x ) d 1 Da u harmonisch ist, gilt die Mittelwerteigenschaft, also ist 1 1 u(0) = u(y) do(y) = B r (0) r d 1 ω d Wir kombinieren (1) und (2) und erhalten u(x) r d 2 r+ x u(0). (r x ) d 1 u(y) do(y). (1) u(y) do(y). (2) Die andere Ungleichung erhält man auf analoge Weise, indem die zweite Ungleichung von oben verwendet wird. b) Wir verwenden Teil a) zum Beweis des Satzes. Sei zunächst u von unten beschränkt, d.h. es existiert ein M R derart, dass u(x) M für jedes x R d. Definiere v(x) = u(x) M. Dann ist v 0 in R d und harmonisch. Alle Voraussetzungen aus a) sind somit erfüllt. Zu beliebigem x R d wähle r > 0 hinreichend groß, so dass x B r (0). Dann folgt mit Teil a), dass r d 2 r x (r + x ) d 1 v(0) v(x) r + x rd 2 v(0). (r x ) d 1 Für r erhalten wir hieraus, dass v(x) = v(0). Damit ist v konstant in R d und somit auch u. Falls u von oben beschränkt ist, d.h. es existiert ein M R derart, dass u(x) M für jedes x R d, setzen wir v(x) = M u(x) und verfahren analog. Aufgabe III.3 a) Sei u C(Ω) subharmonisch in Ω und es existiere ein x 0 Ω mit Definiere die Menge M := u(x 0 ) = sup u(x). x Ω A = x Ω : u(x) = M}. Wir zeigen, dass A sowohl abgeschlossen als auch offen ist. Die Abgeschlossenheit ist hierbei klar. Wir zeigen die Offenheit von A mittels Widerspruchsbeweis: Angenommen, A sei nicht offen. Dann existiert ein x A, so dass für jede Kugel B mit Mittelpunkt x, deren Abschluss in Ω liegt, ein x 1 B existiert mit u(x 1 ) < M (u ist nicht konstant in diesen Kugeln).

4 Übungsblatt III Seite 4 Sei r > 0 mit B r (x) Ω. Wähle ε < r mit x 1 B ε (x). Sei v die Lösung des Problems v = 0 auf B ε (x) v = u auf B ε (x). Unter Verwendung der Mittelwerteigenschaft ist zunächst v(x) = v(y) do(y) B ρ(x) für jedes ρ (0, ε). Wegen der Stetigkeit von v auf B ε (x) ist aber auch v(x) = v(y) do(y) = B ε(x) u(y) do(y) < M = u(x), B ε(x) was einen Widerspruch zur Subharmonizität von u darstellt. Also existiert für jedes x A eine Kugel B mit Mittelpunkt x auf der u konstant (= M) ist, d.h. B A und somit ist A offen. Damit ist A =, Ω} und wegen A folgt A = Ω. b) Angenommen die Aussage sei falsch. Dann existiert wegen u v 0 in Ω ein Punkt x 0 Ω mit (u v)(x 0 ) = sup(u v) = M 0. Ω Wir können zusätzlich annehmen, dass eine Kugel B = B(x 0 ) mit B Ω derart existiert, dass u v M in B (sonst u v). Seien u und v die harmonischen Funktionen die auf B mit u bzw. v übereinstimmen (Poisson-Formel!). Dann folgt aus der Definition von sub- und superharmonischen Funktionen, dass M sup(u v) (u v)(x 0 ) (u v)(x 0 ) = M B und damit gilt Gleichheit in der obigen Zeile. Wegen des starken Maximumprinzips für harmonische Funktionen gilt also u v M in B und damit folgt u v M in B, was auf Grund der Wahl von B einen Widerspruch darstellt. c) Seien B eine beliebige Kugel mit B Ω und f eine auf B harmonische Funktion mit U f in B. Da u subharmonisch ist, gilt u U in B und somit u U in B wegen der Stetigkeit beider Funktionen. Wiederum wegen der Subharmonizität von u folgt hieraus mit der Voraussetzung, dass u f in B und somit U f in B \ B. Da U harmonisch in B ist, gilt nach dem starken Maximumprinzip auch U f in B B und somit folgt U f in B, was die Behauptung beweist. d) Sei B eine beliebige Kugel mit B Ω. Sei f eine in B harmonische Funktion mit u f in B. Sei j 1,..., N} beliebig. Für jedes x B gilt nach Voraussetzung u j (x) u(x) f(x) und wegen der Subharmonizität von u j folgt somit u j f in B. Da j beliebig war, ist auch u f in B und somit u subharmonisch in Ω. Aufgabe III.4 Die Aufgabe lässt sich auf verschiedene Arten lösen. Variante 1: Wir verwenden eine lokale Form der Mittelwerteigenschaft.

5 Übungsblatt III Seite 5 Satz. Sei u C(Ω) derart, dass für jedes x Ω eine Folge positiver reeller Zahlen (r j ) mit r j 0 existiert, so dass u(x) = für jedes j. Dann ist u harmonisch in Ω. u(y) dy (3) Der Satz besagt somit, dass es ausreicht, die MWE lediglich in hinreichend kleinen Kugeln um jeden Punkt aus Ω nachzuweisen um die Harmonizität der Funktion zu erhalten. Beweis. Wir verwenden die bereits bekannte MWE und die Lösung v des Dirichlet- Problems auf der Kugel. Sei B R (a) Ω beliebig. Sei v die Lösung des Dirichlet-Problems v = 0 in B R (a) v = u in B R (a) (Poisson-Formel!). Wir zeigen, dass v = u auf B R (a) gilt, was die Behauptung liefert. Angenommen, es existieren Punkte in B R (a) derart, dass v u positiv in diesen Punkten ist. Dann nimmt v u wegen der Stetigkeit von u und v sein Maximum in B R (a) an (denn v = u in B R (a)). Es bezeichne M = max (v u) > 0. Setze B R (a) E := x B R (a) : (v u)(x) = M}. E ist kompakt, E B R (a) und E B R (a) (sonst ist M = 0). Wähle nun x E derart, dass x a x a für alle x E (beachte, dass E kompakt ist). Es ist offensichtlich, dass x B R (a); Also können wir wegen (3) r > 0 hinreichend klein wählen mit B r (x) B R (a) und u(x) = u(y) dy. B r(x) Weiterhin gilt wegen der Harmonizität von v in B R (a) B r (x), dass Wegen x E gilt aber (v u)(x) = (v u)(y) dy. B r(x) (v u)(y) (v u)(x) y B r (x) und wegen der Wahl von x gilt die obige Ungleichung strikt in einer offenen Menge O B r (x) \ E. Damit ist aber (v u)(x) > (v u)(y) dy. B r(x) Widerspruch. Also ist v u in B R (a). Analog zeigt man v u in B R (a), also ist v = u in B R (a) und wegen der Harmonizität von v auf B R (a) ist u(a) = u(y) dy, B R (a) d.h. u erfüllt die MWE in Ω und ist somit harmonisch in Ω.

6 Übungsblatt III Seite 6 Die Aufgabe lässt sich nun unter Verwendung dieses Satzes recht einfach lösen. Es bezeichne B den unteren offenen Halbball um 0. Wir betrachten drei Fälle: i) x B +. Wähle r j = 1 j dist(x, B+ ). Da v = u in B + und u harmonisch in B + ist, gilt (3) für jedes j. ii) x B. Wähle r j = 1 j dist(x, B ). Dann ist wegen der Harmonizität von u in B + v(y) dy = u(y 1,..., y d 1, y d ) dy = u(y) dy B rj (x 1,...,x d 1, x d ) = u(x 1,..., x d 1, x d ) = v(x) für jedes j. iii) x B 1 (0) mit x d = 0. Wähle r j = 1 j dist(x, B 1(0)). Da v(z) = v(z) (wobei z = (z 1,..., z d 1, z d )) in jedem Punkt z B 1 (0) gilt, ist v(x) = 0 = B + v(y) dy + B v(y) dy = v(y) dy für jedes j. Also gilt (3) in jedem x B 1 (0) und damit folgt die Behauptung aus dem obigen Satz. Variante 2: Spiegelung der Randdaten. Sei ϕ : B 1 (0) R definiert durch u(x) für x d 0 ϕ(x) = u(x 1,..., x d 1, x d ) für x d < 0. Es gilt ϕ C( B 1 (0)). Sei ũ : B 1 (0) R die Lösung des Problems ũ = 0 in B 1 (0) ũ = ϕ auf B 1 (0). Mit Hilfe der Poisson-Formel sieht man, dass ũ(x) = u(x 1,..., x d 1, x d ) falls x d < 0, (4) ũ(x) = 0 falls x d = 0. Damit sind die beiden Funktionen u und ũ B + harmonisch in B + mit denselben Randwerten auf B +, stimmen also wegen des Maximumprinzips auf B + überein. Zusammen mit (4) stimmen damit v und ũ auf ganz B 1 (0) überein, also ist v harmonisch.

Wie in der reellen Analysis üblich notiert man Folgen f in der Form

Wie in der reellen Analysis üblich notiert man Folgen f in der Form 2.1.3 Folgen und Konvergenz Viele aus der Analysisvorlesung bekannte Begriffe lassen sich in den Bereich der metrischen Räume verallgemeinern. Diese Verallgemeinerung hat sich als sehr nützliches mathematisches

Mehr

x x 2 + y + 2y 2 y x 2 + y = 2 (x 2 + y 2 ) 2 = 0, (x,y) =r

x x 2 + y + 2y 2 y x 2 + y = 2 (x 2 + y 2 ) 2 = 0, (x,y) =r Funktionentheorie, Woche 8 Harmonische Funktionen 8. Folgen der Holomorphie Im letzten Kapitel sahen wir, dass der Realteil einer holomorphen Funktion harmonisch ist, und dass es zu jeder harmonischen

Mehr

Partielle Differentialgleichungen Kapitel 11

Partielle Differentialgleichungen Kapitel 11 Partielle Differentialgleichungen Kapitel Die Laplace- und Poisson- Gleichungen Die Struktur bei elliptischen Gleichungen zweiter Ordnung ist nicht wesentlich verschieden bei Operatoren mit konstanten

Mehr

Nun zeigen wir: wie kann man durch eine Liftung eine neue Unterlösung konstruieren.

Nun zeigen wir: wie kann man durch eine Liftung eine neue Unterlösung konstruieren. 56 SS2016 Definition 6.17 (Unterlösung,Oberlösung). Ω R n seieingebietleinelliptischeroperator wie in Bedingung 6.1. Seien a i j, b i c stetig mit c 0 in Ω. Sei f stetig in Ω. Eine Funktion u C(Ω) heißt

Mehr

Die Perronsche Methode

Die Perronsche Methode Emilia Finsterwald und Peter Schrank 21.06.2012 Gliederung 1 Oskar Perron 2 3 4 5 6 7 8 Oskar Perron (1880-1975) b7.mai 1880 in Frankenthal - d22.feb. 1975 in München Lösung eines speziellen s Im Fall

Mehr

Die Perronsche Methode

Die Perronsche Methode Die Perronsche Methode Stephanie Seger LMU München Hüttenseminar 13.12.2012-16.12.2012 Stephanie Seger Die Perronsche Methode 1/13 Lösung eines speziellen Randwertproblems Existenz von Lösungen des klassischen

Mehr

Übungsaufgaben zu Analysis 1 Lösungen von Blatt VI vom

Übungsaufgaben zu Analysis 1 Lösungen von Blatt VI vom Prof. Dr. Moritz Kaßmann Fakultät für Mathematik Wintersemester 04/05 Universität Bielefeld Übungsaufgaben zu Analysis Lösungen von Blatt VI vom 0..4 Aufgabe VI. (6 Punkte) Gegeben sind die Folgen (a n)

Mehr

Übungen zu Partielle Differentialgleichungen, WS 2016

Übungen zu Partielle Differentialgleichungen, WS 2016 Übungen zu Partielle Differentialgleichungen, WS 2016 Ulisse Stefanelli 16. Januar 2017 1 Beispiele 1. Betrachten Sie die Beispiele von nichtlinearen PDG und Systemen, die wir im Kurs diskutiert haben,

Mehr

u(x) = Notation: Bei Mittelungen über die Kugel oder die Sphäre schreiben wir =

u(x) = Notation: Bei Mittelungen über die Kugel oder die Sphäre schreiben wir = 4.2 Eigenschaften harmonischer Funktionen Die Mittelwerteigenschaft: Eine besondere Eigenschaft harmonischer Funktionen ist, dass der Funktionswert an einer Stelle x stets gleich dem Mittelwert von u über

Mehr

Übungsaufgaben zur Vorlesung ANALYSIS I (WS 12/13) Lösungsvorschlag Serie 12

Übungsaufgaben zur Vorlesung ANALYSIS I (WS 12/13) Lösungsvorschlag Serie 12 Humboldt-Universität zu Berlin Institut für Mathematik Prof. A. Griewank Ph.D.; Dr. A. Hoffkamp; Dipl.Math. T.Bosse; Dipl.Math. L. Jansen Übungsaufgaben zur Vorlesung ANALYSIS I (WS 2/3) Lösungsvorschlag

Mehr

4. Fortsetzung auf R N.

4. Fortsetzung auf R N. 4. Fortsetzung auf R N. Frage: Wann kann man Funktionen u W (Ω) zu ũ W (RN ) fortsetzen? Hier wird i.a. eine Fortsetzung durch 0 in R N \ Ω nicht zum Erfolg führen, da man die schwachen Ableitungen über

Mehr

Analyis I -Metrische Räume - eine Einführung in die Topologie

Analyis I -Metrische Räume - eine Einführung in die Topologie Analyis I -Metrische Räume - eine Einführung in die Topologie E = E isolierter Punkte x 1 x 2 x 3 E ist abgeschlossen U ɛ (x) x innerer Punkt Ω Häufungspunkte Ω Metrik Metrische Räume Definition Sei X

Mehr

15. Bereichsintegrale

15. Bereichsintegrale H.J. Oberle Analysis III WS 212/13 15. Bereichsintegrale 15.1 Integrale über uadern Ziel ist die Berechnung des Volumens unterhalb des Graphen einer Funktion f : R n D R, genauer zwischen dem Graphen von

Mehr

Lösungen zum Übungsblatt 7

Lösungen zum Übungsblatt 7 Lösungen zum Übungsblatt 7 Mirko Getzin Universität Bielefeld Fakultät für Mathematik 5. Dezember 203 Ich gebe keine Gewähr auf eine vollständige Richtigkeit der Lösungen zu den Übungsaufgaben. Das Dokument

Mehr

Partielle Differentialgleichungen Kapitel 7

Partielle Differentialgleichungen Kapitel 7 Partielle Differentialgleichungen Kapitel 7 Intermezzo zu Distributionen Die Physik hat der Mathematik die Dirac-δ-Funktion gebracht. Diese δ-funktion soll folgende Eigenschaften haben: n δ (x ϕ (x dx

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, D) metrische Räume und f : X Y eine Abbildung. i) f heißt stetig in x 0 (x 0 D(f)), wenn

Stetige Funktionen. Definition. Seien (X, d) und (Y, D) metrische Räume und f : X Y eine Abbildung. i) f heißt stetig in x 0 (x 0 D(f)), wenn Stetige Funktionen Eine zentrale Rolle in der Analysis spielen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume). Dabei sind i.a. nicht beliebige

Mehr

1 Die direkte Methode der Variationsrechnung

1 Die direkte Methode der Variationsrechnung Die direkte Methode der Variationsrechnung Betrachte inf I(u) = f(x, u(x), u(x)) dx : u u + W,p () wobei R n, u W,p mit I(u ) < und f : R R n R. (P) Um die Existenz eines Minimierers direkt zu zeigen,

Mehr

Partielle Differentialgleichungen Prüfung am

Partielle Differentialgleichungen Prüfung am Partielle Differentialgleichungen Prüfung am 27.04.2017 Name, Vorname Matrikelnummer Unterschrift Dauer: 60 Minuten. Keine Unterlagen, kein Handy/PC, kein Taschenrechner, keine Gruppenarbeit. Bitte schreiben

Mehr

Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME

Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME Dietmar A. Salamon ETH-Zürich 23. Februar 2015 1 Topologische Grundbegriffe Sei (X, d) ein metrischer Raum, d.h. X ist eine Menge und d : X X R ist

Mehr

Lösungsskizzen zur Präsenzübung 03

Lösungsskizzen zur Präsenzübung 03 Lösungsskizzen zur Präsenzübung 03 Mirko Getzin Universität Bielefeld Fakultät für Mathematik 02. Mai 2014 Keine Gewähr auf vollständige Richtigkeit und Präzision aller (mathematischen) Aussagen. Das Dokument

Mehr

4.1 Motivation von Variationsmethoden Variationsmethoden im Sobolevraum Motivation von Variationsmethoden

4.1 Motivation von Variationsmethoden Variationsmethoden im Sobolevraum Motivation von Variationsmethoden Kapitel 4 Das Dirichlet Prinzip Bevor wir uns der Lösung von Randwertproblemen mithilfe der eben entwickelten Techniken zuwenden, wollen wir uns einer Idee zur Lösung widmen, die einige Elemente dieser

Mehr

Lösungsvorschlag zur Übungsklausur zur Analysis I

Lösungsvorschlag zur Übungsklausur zur Analysis I Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 NWF I - Mathematik 9..9 Universität Regensburg Lösungsvorschlag zur Übungsklausur zur Analysis I Frage 1 Vervollständigen Sie die folgenden

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel IV SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

Lösung zu Kapitel 5 und 6

Lösung zu Kapitel 5 und 6 Lösung zu Kapitel 5 und 6 (1) Sei f eine total differenzierbare Funktion. Welche Aussagen sind richtig? f ist partiell differenzierbar f kann stetig partiell differenzierbar sein f ist dann immer stetig

Mehr

Lösungsvorschlag zum 2. Übungsblatt zur Vorlesung Analysis II im Sommersemester Mai 2018

Lösungsvorschlag zum 2. Übungsblatt zur Vorlesung Analysis II im Sommersemester Mai 2018 Institut für Analysis Prof. Dr. Michael Plum M.Sc. Jonathan Wunderlich Lösungsvorschlag zum. Übungsblatt zur Vorlesung Analysis II im Sommersemester 08 3. Mai 08 Aufgabe 5 (K: Es seien n N und A R n eine

Mehr

u = 1 in Ω, v = 1 in BR (0), v = 0 auf B R (0). w = v + u = 1 1 = 0 in Ω,

u = 1 in Ω, v = 1 in BR (0), v = 0 auf B R (0). w = v + u = 1 1 = 0 in Ω, Aufgabe Es sei Ω R n ein beschränktes Gebiet mit Ω B R (0 für ein R > 0. Zeigen Sie: Ist u C (Ω C(Ω eine Lösung von u = in Ω, u = 0 auf Ω, so gilt die Abschätzung 0 u(x R x n für alle x Ω. Hinweis: Berechnen

Mehr

sign: R R, sign(x) := 0 falls x = 0 1 falls x < 0 Diese ist im Punkt x 0 = 0 nicht stetig, denn etwa zu ε = 1 finden wir kein δ > 0

sign: R R, sign(x) := 0 falls x = 0 1 falls x < 0 Diese ist im Punkt x 0 = 0 nicht stetig, denn etwa zu ε = 1 finden wir kein δ > 0 ANALYSIS FÜR PHYSIK UND VERWANDTE FÄCHER I 81 3. Stetigkeit 3.1. Stetigkeit. Im Folgenden sei D R eine beliebige nichtleere Teilmenge. Typischerweise wird D ein allgemeines Intervall sein, siehe Abschnitt

Mehr

Nachklausur zur Analysis 1, WiSe 2016/17

Nachklausur zur Analysis 1, WiSe 2016/17 BERGISCHE UNIVERSITÄT WUPPERTAL 04.04.7 Fakultät 4 - Mathematik und Naturwissenschaften Prof. N. V. Shcherbina Dr. T. P. Pawlaschyk www.kana.uni-wuppertal.de Nachklausur zur Analysis, WiSe 06/7 Aufgabe

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 4. Übungsblatt

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 4. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 0/4 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 4. Übungsblatt Aufgabe

Mehr

Klausur Höhere Mathematik I für die Fachrichtung Physik

Klausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Institut für Technologie (KIT Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 4.3.3 Klausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((4+3+3 Punkte a Welche

Mehr

( ) ( ) < b k, 1 k n} (2) < x k

( ) ( ) < b k, 1 k n} (2) < x k Technische Universität Dortmund Fakultät für Mathematik Proseminar Analysis Prof. Dr. Röger Benjamin Czyszczon Satz von Heine Borel Gliederung 1. Zellen und offene Überdeckungen 2. Satz von Heine Borel

Mehr

Übungen zu Grundbegriffe der Topologie

Übungen zu Grundbegriffe der Topologie Übungen zu Grundbegriffe der Topologie A. Čap Wintersemester 2018 (1) Wiederholen Sie die Definition des Durchschnittes i I A i einer beliebigen Familie {A i : i I} von Mengen und zeigen Sie, dass für

Mehr

8 1. GEOMETRIE DIFFERENZIERBARER MANNIGFALTIGKEITEN

8 1. GEOMETRIE DIFFERENZIERBARER MANNIGFALTIGKEITEN 8 1. GEOMETRIE DIFFERENZIERBARER MANNIGFALTIGKEITEN (vi) Konvergenz von Folgen ist in topologischen Räumen folgendermaßen definiert: Ist (a n ) M eine Folge, so heißt sie konvergent gegen a M, wenn es

Mehr

Musterlösung der 1. Klausur zur Vorlesung

Musterlösung der 1. Klausur zur Vorlesung Prof. Dr. M. Röger Dipl.-Math. C. Zwilling Fakultät für Mathematik TU Dortmund Musterlösung der. Klausur zur Vorlesung Analysis II 6.7.6) Sommersemester 6 Aufgabe. i) Die Folge f n ) n N konvergiert genau

Mehr

Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik

Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik Lineare Algebra Analytische Geometrie I* Übungsaufgaben, Blatt Musterlösungen Aufgabe. Es seien A, B, C Teilmengen einer Menge X. Zeige: i A B C =

Mehr

Finite Elemente Methode für elliptische Differentialgleichungen

Finite Elemente Methode für elliptische Differentialgleichungen Finite Elemente Methode für elliptische Differentialgleichungen Michael Pokojovy 8. Oktober 2007 Das Ritzsche Verfahren Sei R n ein beschränktes offenes Gebiet mit abschnittsweise glattem Rand S. Betrachte

Mehr

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Kapitel 8 Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Wir hatten im Beispiel 5. gesehen, dass die Wärmeleitungsgleichung t u u = f auf Ω (0, ) (8.1) eine parabolische Differentialgleichung

Mehr

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi Funktionentheorie, Woche 7 Eigenschaften holomorpher Funktionen 7.1 Ganze Funktionen Definition 7.1 Eine Funktion f : C C, die holomorph ist auf C, nennt man eine ganze Funktion. Bemerkung 7.1.1 Als Folge

Mehr

13. Übungsblatt zur Mathematik I für Maschinenbau

13. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 3. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 00/ 07.0.-.0. Aufgabe G Stetigkeit) a) Gegeben

Mehr

Höhere Mathematik III für die Fachrichtung Physik Wintersemester 2016/17. Lösungsvorschlag zu Übungsblatt 5

Höhere Mathematik III für die Fachrichtung Physik Wintersemester 2016/17. Lösungsvorschlag zu Übungsblatt 5 Institut für Analysis Dr. Christoph Schmoeger M.Sc. Jonathan Wunderlich Höhere Mathematik III für die Fachrichtung Physik Wintersemester 6/7..7 Lösungsvorschlag zu Übungsblatt 5 Aufgabe 6: Zeigen Sie mit

Mehr

Übungsklausur Höhere Mathematik I für die Fachrichtung Physik

Übungsklausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Institut für Technologie (KIT) Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 6..3 Übungsklausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((3++5) Punkte)

Mehr

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Lösung 4

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Lösung 4 D-MATH, D-PHYS, D-CHAB Analysis I HS 017 Prof. Manfred Einsiedler Lösung 4 Hinweise 1. Zeigen Sie, dass inf X die kleinste obere Schranke von X ist.. Dass z 1, z Lösungen sind, kann man durch Einsetzen

Mehr

Übungsblatt 2 - Analysis 2, Prof. G. Hemion

Übungsblatt 2 - Analysis 2, Prof. G. Hemion Tutor: Martin Friesen, martin.friesen@gmx.de Übungsblatt 2 - Analysis 2, Prof. G. Hemion Um die hier gestellten Aufgaben zu lösen brauchen wir ein wenig Kentnisse über das Infimum bzw. Supremum einer Menge.

Mehr

Stetigkeit. Definitionen. Beispiele

Stetigkeit. Definitionen. Beispiele Stetigkeit Definitionen Stetigkeit Sei f : D mit D eine Funktion. f heißt stetig in a D, falls für jede Folge x n in D (d.h. x n D für alle n ) mit lim x n a gilt: lim f x n f a. Die Funktion f : D heißt

Mehr

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Wintersemester 2008/2009 Übung 11 Einleitung Es wird eine 15-minütige Mikroklausur geschrieben. i) Sei D R oderd C. Wann heißt

Mehr

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1 24 14 Metrische Räume 14.1 R n als euklidischer Vektorraum Die Menge R n = {(x 1,..., x n ) x i R} versehen mit der Addition und der skalaren Multiplikation x + y = (x 1 + y 1,..., x n + y n ) λx = (λx

Mehr

5 Stetigkeit und Differenzierbarkeit

5 Stetigkeit und Differenzierbarkeit 5 Stetigkeit und Differenzierbarkeit 5.1 Stetigkeit und Grenzwerte von Funktionen f(x 0 ) x 0 Graph einer stetigen Funktion. Analysis I TUHH, Winter 2006/2007 Armin Iske 127 Häufungspunkt und Abschluss.

Mehr

4 Fehlerabschätzungen und Konvergenz der FEM

4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 153 Es sei V der Lösungsraum und V N V ein endlich dimensionaler Unterraum. Weiters sei u V die exakte Lösung und

Mehr

Analysis der Eikonal-Gleichung Teil I

Analysis der Eikonal-Gleichung Teil I Analysis der Eikonal-Gleichung Teil I Seminararbeit zur angewandten Mathematik Matthäus Deutsch vorgelegt bei Prof Dr. Wolfgang Ring Institut für Mathematik und Wissenschaftliches Rechnen Universität Graz

Mehr

Ultrametrik. Christian Semrau Metrische Räume

Ultrametrik. Christian Semrau Metrische Räume Ultrametrik Christian Semrau 05.11.2002 Inhaltsverzeichnis 1 Metrische Räume 1 1.1 Definition der Metrik.................................. 1 1.2 Offene und abgeschlossene Mengen..........................

Mehr

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie KIT SS 2013 Institut für Analysis 06.05.2013 Prof. Dr. Tobias Lamm Dr. Patrick Breuning Höhere Mathematik II für die Fachrichtung Physik 4. Übungsblatt Aufgabe 1 Bestimmen

Mehr

Analysis I. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching Analysis I 7. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching April 26, 207 Erinnerung Satz. (Zwischenwertsatz) Sei f : [a, b] R stetig mit f(a) f(b). Dann gibt es zu jedem

Mehr

(c) (a) X ist abgeschlossen. X = A,wobeiderDurchschnittüberalleabgeschlossenenMengengebildet wird, die X enthalten. (d) (e)

(c) (a) X ist abgeschlossen. X = A,wobeiderDurchschnittüberalleabgeschlossenenMengengebildet wird, die X enthalten. (d) (e) 27 15. Metrische Räume Mit Hilfe einer Norm können wir den Abstand x y zweier Punkte x, y messen. Eine Metrik ist eine Verallgemeinerung dieses Konzepts: 15.1. Metriken. Es sei M eine beliebige Menge.

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz Dr P C Kunstmann Dipl-Math M Uhl Sommersemester 009 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl WS 008/09 Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge

Mehr

Regularitätsresultate für parabolische Gleichungen mit nichtlokalem Operator

Regularitätsresultate für parabolische Gleichungen mit nichtlokalem Operator Universität Bielefeld Regularitätsresultate für parabolische Gleichungen mit nichtlokalem Operator Matthieu Felsinger Universität Bielefeld Mathematisches Kolloquium, TU Clausthal 05. Februar 2014 1 Einleitung

Mehr

Probeklausur zur Analysis 2, SoSe 2017

Probeklausur zur Analysis 2, SoSe 2017 BERGISCHE UNIVERSITÄT WUPPERTAL 21717 Fakultät 4 - Mathematik und Naturwissenschaften Prof N V Shcherbina Dr T P Pawlaschyk wwwkanauni-wuppertalde Probeklausur zur Analysis 2, SoSe 217 Hinweis Die Lösungen

Mehr

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 91

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 91 Kapitel 4 Funktionen und Stetigkeit In diesem Kapitel beginnen wir Funktionen f : R R systematisch zu untersuchen. Dazu bauen wir auf den Begriff des metrischen Raumes auf und erhalten offene und abgeschlossene

Mehr

Kapitel 16 : Differentialrechnung

Kapitel 16 : Differentialrechnung Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

Scheinklausur zur Vorlesung Partielle Differentialgleichungen

Scheinklausur zur Vorlesung Partielle Differentialgleichungen Karlsruher Institut für Technologie (KIT) WS 2010/2011 Institut für Analysis 31.1.2011 Prof. Dr. Wolfgang Reichel Dipl.-Math. Dagmar Roth Scheinklausur zur Vorlesung Partielle Differentialgleichungen Name:

Mehr

Inverse Fourier Transformation

Inverse Fourier Transformation ETH Zürich HS 27 Departement Mathematik Seminararbeit Inverse Fourier Transformation Patricia Hinder Sandra König Oktober 27 Prof. M. Struwe Im Vortrag der letzten Woche haben wir gesehen, dass die Faltung

Mehr

9 Metrische und normierte Räume

9 Metrische und normierte Räume 9 Metrische und normierte Räume Idee: Wir wollen Abstände zwischen Punkten messen. Der Abstand soll eine reelle Zahl 0 sein (ohne Dimensionsangabe wie Meter...). 9.1 Definition Sei X eine Menge. Eine Metrik

Mehr

Komplexe Differenzierbarkeit und das Dirichlet-Problem

Komplexe Differenzierbarkeit und das Dirichlet-Problem RWTH Aachen Lehrstuhl A für Mathematik Komplexe Differenzierbarkeit und das Dirichlet-Problem Schriftliche Ausarbeitung im Rahmen des Seminars zur Fourieranalysis Betreuer: Prof. Dr. H. Führ Dipl.-Gyml.

Mehr

Lösungsvorschlag zu den Hausaufgaben der 3. Übung

Lösungsvorschlag zu den Hausaufgaben der 3. Übung Michael Winkler Johannes Lankeit 22.4.204 Lösungsvorschlag zu den Hausaufgaben der 3. Übung Hausaufgabe : 2 Punkte Bei welchen der folgenden Funktionen u: G R kann es sich um den Realteil einer in G holomorphen

Mehr

Analysis II. Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag

Analysis II. Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag Prof Dr H Garcke, D Depner SS 9 NWF I - Mathematik 1979 Universität Regensburg Aufgabe 1 Analysis II Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag i Erinnern Sie sich an die Konvergenzkriterien

Mehr

Stetigkeit, Konvergenz, Topologie

Stetigkeit, Konvergenz, Topologie Ferienkurs Seite 1 Technische Universität München Ferienkurs Analysis 1 Hannah Schamoni Wintersemester 2011/12 Stetigkeit, Konvergenz, Topologie 21.03.2012 Inhaltsverzeichnis 1 Stetigkeit und Konvergenz

Mehr

Analysis für Informatiker und Statistiker Nachklausur

Analysis für Informatiker und Statistiker Nachklausur Prof. Dr. Peter Otte Wintersemester 213/14 Tom Bachmann, Sebastian Gottwald 14.3.214 Analysis für Informatiker und Statistiker Nachklausur Lösungsvorschlag Name:.......................................................

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0 KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 03/4 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 0. Übungsblatt Aufgabe

Mehr

Satz von Rellich-Kondrachov

Satz von Rellich-Kondrachov Satz von Rellich-Kondrachov Xaver Hellauer LMU Munich, Germany Haslach, 17. Februar 2012 Xaver Hellauer Satz von Rellich-Kondrachov 1/13 Satz von Rellich Kondrachov Sei j : (X, X ) (Y, Y ) eine stetige

Mehr

(alternierendes Vorzeichen) a n := ( 1)n n + 1 a n := 3n 2 7n a n := n(n 1)(n 2), n 3

(alternierendes Vorzeichen) a n := ( 1)n n + 1 a n := 3n 2 7n a n := n(n 1)(n 2), n 3 ANALYSIS FÜR PHYSIK UND VERWANDTE FÄCHER I 43 2. Folgen und Reihen Folgen und Reihen werden in jedem Analysislehrbuch besprochen, siehe etwa [H, Kapitel III], [K, Kapitel 5], [J2, Kapitel 23] oder [M,

Mehr

Lösungen zur Übungsserie 9

Lösungen zur Übungsserie 9 Analysis 1 Herbstsemester 2018 Prof. Peter Jossen Montag,? November Lösungen zur Übungsserie 9 Aufgaben 1,2,3,5,6,8,9,11 Aufgabe 1. Sei a R. Berechnen Sie die folgenden Grenzwerte, falls sie existieren.

Mehr

Analysis II. Vorlesung 36. stark kontrahierend, wenn es eine nichtnegative reelle Zahl c < 1 gibt mit

Analysis II. Vorlesung 36. stark kontrahierend, wenn es eine nichtnegative reelle Zahl c < 1 gibt mit Prof. Dr. H. Brenner Osnabrück SS 2014 Analysis II Vorlesung 36 Weitere Stetigkeitsbegriffe Wir führen einige weitere Stetigkeitsbegriffe ein. Definition 36.1. Es sei eine Abbildung zwischen den metrischen

Mehr

Lösungsvorschlag zur Nachklausur zur Analysis

Lösungsvorschlag zur Nachklausur zur Analysis Prof Dr H Garcke, D Depner SS 09 NWF I - Mathematik 080009 Universität Regensburg Lösungsvorschlag zur Nachklausur zur Analysis Aufgabe Untersuchen Sie folgende Reihen auf Konvergenz und berechnen Sie

Mehr

Analysis I. Vorlesung 13. Gleichmäßige Stetigkeit

Analysis I. Vorlesung 13. Gleichmäßige Stetigkeit Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analysis I Vorlesung 13 Gleichmäßige Stetigkeit Die Funktion f: R + R +, x 1/x, ist stetig. In jedem Punkt x R + gibt es zu jedem ǫ > 0 ein δ > 0 mit f(u (x,δ))

Mehr

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 4

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 4 TUM, Zentrum Mathematik Lehrstuhl für Mathematische Physik WS 3/4 Prof. Dr. Silke Rolles Thomas Höfelsauer Felizitas Weidner Tutoraufgaben: Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge

Mehr

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist:

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist: Musterlösung Aufgabe a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [, ] R, die folgendermaßen definiert ist: f(x) := { für x R \ Q für x Q f ist offensichtlich beschränkt. Wir zeigen,

Mehr

Wiederholungsklausur zur Analysis I

Wiederholungsklausur zur Analysis I Wiederholungsklausur zur Analysis I Prof. Dr. C. Löh/M. Blank 5. Oktober 2011 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen Sie, ob Sie alle Seiten erhalten

Mehr

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt.

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Kapitel 3 Konvexität 3.1 Konvexe Mengen Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Definition 3.1 Konvexer Kegel. Eine Menge Ω R n heißt konvexer Kegel, wenn mit x

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Lösungshinweise zum Klausurvorbereitungsblatt (3

Mehr

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 92

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 92 Kapitel 4 Funktionen und Stetigkeit In diesem Kapitel beginnen wir Funktionen f : Ê Ê systematisch zu untersuchen. Dazu bauen wir auf den Begriff des metrischen Raumes auf und erhalten offene und abgeschlossene

Mehr

4 Messbare Funktionen

4 Messbare Funktionen 4 Messbare Funktionen 4.1 Definitionen und Eigenschaften Definition 4.1. Seien X eine beliebige nichtleere Menge, M P(X) eine σ-algebra in X und µ ein Maß auf M. Das Paar (X, M) heißt messbarer Raum und

Mehr

20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen

20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen 20 Gleichmäßige Konvergenz für Folgen und Reihen von Funktionen 20.1 Folgen und Reihen von Funktionen 20.3 Die Supremumsnorm 20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen 20.7 Das Cauchy-Kriterium

Mehr

7. Übungsblatt zur Mathematik II für Inf, WInf

7. Übungsblatt zur Mathematik II für Inf, WInf Fachbereich Mathematik Prof. Dr. Streicher Dr. Sergiy Nesenenko Pavol Safarik SS 2010 27.-31.05.10 7. Übungsblatt zur Mathematik II für Inf, WInf Gruppenübung Aufgabe G24 (Grundlegende Definitionen) Betrachten

Mehr

Topologische Grundbegriffe II. Inhaltsverzeichnis

Topologische Grundbegriffe II. Inhaltsverzeichnis Vortrag zum Seminar zur Analysis, 03.05.2010 Dennis Joswig, Florian Goy Aufbauend auf den Resultaten des Vortrages Topologische Grundbegriffe I untersuchen wir weitere topologische Eigenschaften von metrischen

Mehr

Merkblatt zur Funktionalanalysis

Merkblatt zur Funktionalanalysis Merkblatt zur Funktionalanalysis Literatur: Hackbusch, W.: Theorie und Numerik elliptischer Differentialgleichungen. Teubner, 986. Knabner, P., Angermann, L.: Numerik partieller Differentialgleichungen.

Mehr

Analysis 4. Lösungsvorschlag zum 12. Übungsblatt

Analysis 4. Lösungsvorschlag zum 12. Übungsblatt Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Andreas Geyer-Schulz SS 208. Juli 208 Analysis 4 Lösungsvorschlag zum 2. Übungsblatt Aufgabe 42 Wir untersuchen

Mehr

Das heißt, Γ ist der Graph einer Funktion von d 1 Veränderlichen.

Das heißt, Γ ist der Graph einer Funktion von d 1 Veränderlichen. Kapitel 2 Der Gaußsche Satz Partielle Differentialgleichung sind typischerweise auf beschränkten Gebieten des R d, d 1, zu lösen. Dabei sind die Eigenschaften dieser Gebiete von Bedeutung, insbesondere

Mehr

Lösungen der Übungsaufgaben von Kapitel 3

Lösungen der Übungsaufgaben von Kapitel 3 Analysis I Ein Lernbuch für den sanften Wechsel von der Schule zur Uni 1 Lösungen der Übungsaufgaben von Kapitel 3 zu 3.1 3.1.1 Bestimmen Sie den Abschluss, den offenen Kern und den Rand folgender Teilmengen

Mehr

Definition Eine Metrik d auf der Menge X ist eine Abbildung d : X X IR

Definition Eine Metrik d auf der Menge X ist eine Abbildung d : X X IR 0 Inhaltsverzeichnis 1 Metrik 1 1.1 Definition einer Metrik............................. 1 1.2 Abstand eines Punktes von einer Menge................... 1 1.3 Einbettung eines metrischen Raumes in einen

Mehr

1 0, x C X (A). = 1 χ A(x).

1 0, x C X (A). = 1 χ A(x). Aufgabe 1 a) Wir müssen nur zeigen, dass χ A B (x) = χ A (x) χ B (x) für alle x X gilt. (Dass χ A χ B Abbildung von X in {0, 1} ist, ist klar.) Sei also x X beliebig. Fall 1: x A B. Dies bedeutet x A und

Mehr

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08)

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) 1 Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) Kapitel 4: Konvergenz und Stetigkeit Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 22. November 2007) Folgen Eine Folge

Mehr

22 KAPITEL 1. GRUNDLAGEN. Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion

22 KAPITEL 1. GRUNDLAGEN. Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion KAPITEL 1. GRUNDLAGEN Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion 1 für 0 x < 1 g 0 (x) = 1 1 für < x 1. Natürlich gibt dies von

Mehr

12. Trennungssätze für konvexe Mengen 83

12. Trennungssätze für konvexe Mengen 83 12. Trennungssätze für konvexe Mengen 83 C_1 C_2 a Abbildung 12.4. Trennung konvexer Mengen durch eine Hyperebene mit Normalenvektor a Dann ist int(c) nicht leer (warum?) und [als Minkowski-Summe von C

Mehr

Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und Modellierung. Lösungen zur Probeklausur 2.

Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und Modellierung. Lösungen zur Probeklausur 2. Adµ Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und Modellierung Blatt Probeklausur 2 Lösungen zur Probeklausur 2 Aufgabe 1 1. Formulieren Sie den Satz von Taylor

Mehr

Beispiele zur Konvergenzuntersuchung bei Reihen.

Beispiele zur Konvergenzuntersuchung bei Reihen. Beispiele zur Konvergenzuntersuchung bei Reihen Beispiel: Wir untersuchen die Konvergenz der Exponentialreihe z k k! für z C Anwendung des Quotientenkriteriums ergibt z k+1 (k + 1! z k = z k+1 k! z k (k

Mehr

3. Übungsblatt - Lösungsskizzen. so, dass f tatsächlich eine Wahrscheinlichkeitsdichte

3. Übungsblatt - Lösungsskizzen. so, dass f tatsächlich eine Wahrscheinlichkeitsdichte Einführung in die Wahrscheinlichkeitstheorie und Statistik Prof. Dr. Jan Johannes Sandra Schluttenhofer Wintersemester 208/9 3. Übungsblatt - Lösungsskizzen Aufgabe 9 Stetige Verteilungen, 4 =.5 +.5 +

Mehr

Aufgabensammlung zur Analysis 1

Aufgabensammlung zur Analysis 1 Analysis 1 18.12.2017 Prof. Dr. H. Koch Dr. F. Gmeineder Abgabe: Keine Abgabe. Aufgabensammlung zur Analysis 1 Anmerkungen: Das vorliegende Blatt enthält eine Auswahl von Aufgaben, die auf Klausuren zur

Mehr

Partielle Differentialgleichungen, Übungsblatt 1. Fällig am 5. November 1999

Partielle Differentialgleichungen, Übungsblatt 1. Fällig am 5. November 1999 Partielle Differentialgleichungen, Übungsblatt 1 Fällig am 5. November 1999 1. Bestimmen sie die Laplacesche Gleichung in den parabolischen Zylinderkoordinaten (ξ, η, z) gegeben durch x = ξη, y = 1 2 (ξ2

Mehr

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i 3 Kompaktheit In der Analysis I zeigt man, dass stetige Funktionen f : [a, b] R auf abgeschlossenen, beschränkten Intervallen [a, b] gleichmäßig stetig und beschränkt sind und dass sie ihr Supremum und

Mehr