Andreas Scherer. Neuronale Netze. Grundlagen und Anwendungen. vieweg

Größe: px
Ab Seite anzeigen:

Download "Andreas Scherer. Neuronale Netze. Grundlagen und Anwendungen. vieweg"

Transkript

1 Andreas Scherer Neuronale Netze Grundlagen und Anwendungen vieweg

2 Inhaltsverzeichnis Vorwort 1 1 Einführung Was ist ein neuronales Netz? Eigenschaften neuronaler Netze Allgemeine Merkmale Neuronale Netze als Klassifikatoren Zur Historie Die Anfänge Die frühe Hochphase Die ruhigen Jahre Die Renaissance Problemklassen Das Forschungsgebiet neuronale Netze Neuronale Netze und angrenzende Gebiete Neuronale Netze und KI Buchüberblick Einige ausgewählte Lehrbücher Fragen zu Kapitel Mustererkennung Einführung Entscheidungsgrenzen Klassifikationstechniken Nearest Neighbour-Klassifikation Distanzmetriken Lineare Klassifikatoren Bayes-Klassifikation Fragen zu Kapitel Biologische Grundlagen Die Nervenzelle Erregung von Nerven Das Ruhepotential Das Aktionspotential Synaptische Übertragung Physiologie kleiner Nervenverbände Zusammenfassung Fragen zu Kapitel 3 44 V

3 4 Grundlagen neuronaler Netze Die "building blocks" Das Neuron Die Propagierungsfunktion Aktivierungsfunktion und -zustand Die Ausgabefunktion Der Netzwerkgraph FF-Netze FB-Netze Die Lernregel Hebbsche Lernregel Delta-Regel Erweiterte Delta-Regel Datenräume Einfluß der Aktivierungsfunktion auf die Entscheidungsfläche Einfluß der versteckten Neuronen auf die Entscheidungsfläche Zusammenfassung Fragen zu Kapitel Das Perzeptron Einführung Das Perzeptron-Lernverfahren Lineare Separierbarkeit Zusammenfassung Fragen zu Kapitel Überwachtes Lernen Einführung Backpropagation Einführung Das Lernverfahren Herleitung der allgemeinen Deltaregel Der Trainingsalgorithmus Kritische Aspekte zu Backpropagation Erweiterungen zu Backpropagation Der Momentum-Term Der "Gradient Reuse"-Algorithmus Zusammenfassung Quickprop Einführung Der Quickprop-Algorithmus 82 VI

4 6.5 Resilient Propagation Einführung Der RPROP-Algorithmus Verfahren zur Minimierung von Netzen Zusammenfassung Fragen zu Kapitel Kohonen-Netze Einleitung Topologische Karten Neurophysiologische Motivation Kohonens Modell Das Lernverfahren Nachbarschaftsfunktionen im Kohonen- Modell Der Algorithmus im Überblick Betrachtungen zur Konvergenz Eindimensionaler Fall Zweidimensionaler Fall Zusammenfassung Fragen zu Kapitel ART-Netze ART-1-Netze Einführung Funktionsweise und Architektur Die Komponenten von ART Arbeitsweise Informationsfluß Weitere ART-Netze Zusammenfassung Fragen zu Kapitel Hopfield-Netze Einführung Das Hopfield-Modell Lernen und Abrufen von Informationen Lernen im Hopfield-Modell Abrufen von Mustern Ergänzendes zu Hopfield-Netzen Zusammenfassung Fragen zu Kapitel VII

5 10 Die Boltzmann-Maschine Einführung Die stochastische Erweiterung Das Lernverfahren Zusammenfassung Fragen zu Kapitel Cascade-Correlation-Netze Einführung Das Verfahren Zusammenfassung Fragen zu Kapitel Counterpropagation Einführung Aufbau eines Counterpropagation-Netzes Die Kohonen-Schicht Die Grossberg-Schicht Zusammenfassung Fragen zu Kapitel Probabilistische Neuronale Netze Einführung Bayes' sehe Klassifikatoren Ein einführendes Beispiel Parzen-Fenster Anwendung auf multiple Kategorien Die Architektur von PNN Zusammenfassung Fragen zu Kapitel Radiale Basisfunktionsnetze Einführung Aufbaueines RBF-Netzes Training von RBF-Netzen Wahl der Zentren Der Parameter s Berechnung der Ausgabematrix W Zusammenfassung Fragen zu Kapitel VIII

6 15 Neuronale Netze und Fuzzy-Logik Einführung Grundlagen der Fuzzy-Logik Einige Definitionen Zugehörigkeitsfunktionen Operationen auf Fuzzy-Sets Linguistische Variablen Funktionsweise eines Fuzzy-Systems Neuro-Fuzzy-Systeme Fuzzy-ART Neuro-Fuzzy-Control Zusammenfassung Fragen zu Kapitel Neuronale Netze und genetische Algorithmen Grundlagen evolutionärer Prozesse Organisation des Erbmaterials Mutationen auf dem Genpool Die Evolution als Optimierung Genetische Algorithmen Kodierung Die Operatoren Selektionskriterien Neuro-genetische Verfahren GAs zur Optimierung der Gewichtsmatrix GAs zur Optimierung der Netztopologie Zusammenfassung Fragen zur Kapitel Entwicklung neuronaler Systeme Ein Phasenmodell für neuronale Systeme Datenmodellierung Erstellen des Klassifikators Performanz von Klassifikatoren Fehlerabschätzung Fehler, Kosten und Risiken Überspezialisierung von Klassifikatoren Testen des Klassifikators Optimieren von Klassifikatoren Zusammenfassung Fragen zu Kapitel IX

7 18 Anwendungsbeispiele Finanzwirtschaft Einführung Standardverfahren im Wechselkursgeschäft Ein hybrides Verfahren zum Wechselkursmanagement Computerunterstütze Fertigung Einführung Neuronale Netze im on-line Monitoring Qualitätssicherung Einführung Neuronale Netze in der Motordiagnose Produktionsplanung Literaturverzeichnis Index 247

Simulation Neuronaler Netze. Eine praxisorientierte Einführung. Matthias Haun. Mit 44 Bildern, 23 Tabellen und 136 Literatursteilen.

Simulation Neuronaler Netze. Eine praxisorientierte Einführung. Matthias Haun. Mit 44 Bildern, 23 Tabellen und 136 Literatursteilen. Simulation Neuronaler Netze Eine praxisorientierte Einführung Matthias Haun Mit 44 Bildern, 23 Tabellen und 136 Literatursteilen expert Inhaltsverzeichnis 1 Einleitung 1.1 Über das Projekt 1 1.2 Über das

Mehr

Inhaltsverzeichnis. Einführung

Inhaltsverzeichnis. Einführung Inhaltsverzeichnis Einführung 1 Das biologische Paradigma 3 1.1 Neuronale Netze als Berechnungsmodell 3 1.1.1 Natürliche und künstliche neuronale Netze 3 1.1.2 Entstehung der Berechenbarkeitsmodelle 5

Mehr

Künstliche neuronale Netze

Künstliche neuronale Netze Künstliche neuronale Netze Eigenschaften neuronaler Netze: hohe Arbeitsgeschwindigkeit durch Parallelität, Funktionsfähigkeit auch nach Ausfall von Teilen des Netzes, Lernfähigkeit, Möglichkeit zur Generalisierung

Mehr

Klassifikationsverfahren und Neuronale Netze

Klassifikationsverfahren und Neuronale Netze Klassifikationsverfahren und Neuronale Netze Hauptseminar - Methoden der experimentellen Teilchenphysik Thomas Keck 9.12.2011 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Neuronale Neize. Eine Einfuhrung in die Neuroinfomnatik selbstorganisierender Netzwerke ADDISON-WESLEY PUBLISHING COMPANY

Neuronale Neize. Eine Einfuhrung in die Neuroinfomnatik selbstorganisierender Netzwerke ADDISON-WESLEY PUBLISHING COMPANY Helge Ritter/Thomas Marrineiz/Klaus Schulten Neuronale Neize Eine Einfuhrung in die Neuroinfomnatik selbstorganisierender Netzwerke Technische Hochschule Darmstadt FACHBEREICH INFORMATIK B! B k±ojjtlus

Mehr

6.4 Neuronale Netze zur Verarbeitung von Zeitreihen

6.4 Neuronale Netze zur Verarbeitung von Zeitreihen 6.4 Neuronale Netze zur Verarbeitung von Zeitreihen Aufgabe: Erlernen einer Zeitreihe x(t + 1) = f(x(t), x(t 1), x(t 2),...) Idee: Verzögerungskette am Eingang eines neuronalen Netzwerks, z.b. eines m-h-1

Mehr

Künstliche Intelligenz

Künstliche Intelligenz Künstliche Intelligenz Bearbeitet von Uwe Lämmel, Jürgen Cleve 4., aktualisierte Auflage 2012. Buch. 336 S. ISBN 978 3 446 42758 7 Format (B x L): 18 x 24,5 cm Gewicht: 717 g Weitere Fachgebiete > EDV,

Mehr

Hannah Wester Juan Jose Gonzalez

Hannah Wester Juan Jose Gonzalez Neuronale Netze Supervised Learning Proseminar Kognitive Robotik (SS12) Hannah Wester Juan Jose Gonzalez Kurze Einführung Warum braucht man Neuronale Netze und insbesondere Supervised Learning? Das Perzeptron

Mehr

Der Backpropagation-Algorithmus als Beispiel für Lernalgorithmen künstlicher neuronaler Netze Reinhard Eck 1

Der Backpropagation-Algorithmus als Beispiel für Lernalgorithmen künstlicher neuronaler Netze Reinhard Eck 1 Der Backpropagation-Algorithmus als Beispiel für Lernalgorithmen künstlicher neuronaler Netze 2.04.2006 Reinhard Eck Was reizt Informatiker an neuronalen Netzen? Wie funktionieren Gehirne höherer Lebewesen?

Mehr

Mustererkennung: Neuronale Netze. D. Schlesinger ()Mustererkennung: Neuronale Netze 1 / 12

Mustererkennung: Neuronale Netze. D. Schlesinger ()Mustererkennung: Neuronale Netze 1 / 12 Mustererkennung: Neuronale Netze D. Schlesinger ()Mustererkennung: Neuronale Netze 1 / 12 Feed-Forward Netze y 1 y 2 y m...... x 1 x 2 x n Output Schicht i max... Zwischenschicht i... Zwischenschicht 1

Mehr

Kleines Handbuch Neuronale Netze

Kleines Handbuch Neuronale Netze Norbert Hoffmann Kleines Handbuch Neuronale Netze Anwendungsorientiertes Wissen zum Lernen und Nachschlagen - vieweg INHALTSVERZEICHNIS 1 Einleitung, 1.1 Begriff des neuronalen Netzes 1 11.1 Neurophysiologie

Mehr

Die Anwendung von Neuronalen Netzen in der Marketingforschung

Die Anwendung von Neuronalen Netzen in der Marketingforschung Diana Rittinghaus-Mayer Die Anwendung von Neuronalen Netzen in der Marketingforschung iiiiiiiiii:;: Akademischer Verlag München 1993 Abbildungsverzeichnis VIII Tabellenverzeichnis X Abkürzungsverzeichnis

Mehr

Auch wenn Prof. Helbig die Prüfung nicht mehr lange abnimmt, hier ein kurzer Eindruck:

Auch wenn Prof. Helbig die Prüfung nicht mehr lange abnimmt, hier ein kurzer Eindruck: Diplomprüfung Informatik Kurs 1830 Neuronale Netze Prüfer: Prof. Dr. Helbig Beisitzer: Prodekan Prof. Dr. Hackstein Datum: 01.10.08 Note: 2,7 Auch wenn Prof. Helbig die Prüfung nicht mehr lange abnimmt,

Mehr

Konzepte der AI Neuronale Netze

Konzepte der AI Neuronale Netze Konzepte der AI Neuronale Netze Franz Wotawa Institut für Informationssysteme, Database and Artificial Intelligence Group, Technische Universität Wien Email: wotawa@dbai.tuwien.ac.at Was sind Neuronale

Mehr

Martin Stetter WS 03/04, 2 SWS. VL: Dienstags 8:30-10 Uhr

Martin Stetter WS 03/04, 2 SWS. VL: Dienstags 8:30-10 Uhr Statistische und neuronale Lernverfahren Martin Stetter WS 03/04, 2 SWS VL: Dienstags 8:30-0 Uhr PD Dr. Martin Stetter, Siemens AG Statistische und neuronale Lernverfahren Behandelte Themen 0. Motivation

Mehr

B Backpropagation 21,64,107,109,120,123,137 Betragsoptimum 123, 140 Bildverarbeitungl - Erkennung 19, 59, 94, 107 Boltzmann-Maschine 27,28

B Backpropagation 21,64,107,109,120,123,137 Betragsoptimum 123, 140 Bildverarbeitungl - Erkennung 19, 59, 94, 107 Boltzmann-Maschine 27,28 176 Sachworlverzeichnis Sachwortverzeichnis A A-Netz, Actor-Netz, Aktionsnetz 107, 128, 130, 133, 136 Adaline 54 Adaptive Regelung 127 Adaptiver Regler 107,141 Aktivierungsfunktion 1,3,6,7,13,19,22,145

Mehr

Genetische Algorithmen. Uwe Reichel IPS, LMU München 8. Juli 2008

Genetische Algorithmen. Uwe Reichel IPS, LMU München 8. Juli 2008 Genetische Algorithmen Uwe Reichel IPS, LMU München reichelu@phonetik.uni-muenchen.de 8. Juli 2008 Inhalt Einführung Algorithmus Erweiterungen alternative Evolutions- und Lernmodelle Inhalt 1 Einführung

Mehr

Maschinelles Lernen I Einführung. Uwe Reichel IPS, LMU München 22. April 2008

Maschinelles Lernen I Einführung. Uwe Reichel IPS, LMU München 22. April 2008 Maschinelles Lernen I Einführung Uwe Reichel IPS, LMU München reichelu@phonetik.uni-muenchen.de 22. April 2008 Inhalt Einführung Lernen Maschinelle Lernverfahren im Überblick Phonetische Anwendungsbeispiele

Mehr

Finanzmarktprognose mit neuronalen Netzen

Finanzmarktprognose mit neuronalen Netzen Reihe: Quantitative Ökonomie Band 131 Herausgegeben von Prof. Dr. Eckart Bomsdorf, Köln, Prof. Dr. Wim Kösters, Bochum, und Prof. Dr. Winfried Matthes, Wuppertal Dr. Christoph A. Hövel Finanzmarktprognose

Mehr

10. Vorlesung Stochastische Optimierung

10. Vorlesung Stochastische Optimierung Soft Control (AT 3, RMA) 10. Vorlesung Stochastische Optimierung Genetische Algorithmen 10. Vorlesung im Aufbau der Vorlesung 1. Einführung Soft Control: Definition und Abgrenzung, Grundlagen "intelligenter"

Mehr

Konnektionismus und Kognition

Konnektionismus und Kognition Markus Pospeschill Konnektionismus und Kognition Ein Einführung Verlag W. Kohlhammer Inhalt 3 Inhalt Prolog 7 1 Kognitive Prozesse 9 1.1 Modellansätze zur Erforschung kognitiver Prozesse 9 1.1.1 Kognitionspsychologie

Mehr

Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs)

Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs) 6. Neuronale Netze Motivation Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs) Abstrakt betrachtet sind alle diese

Mehr

Künstliche Neuronale Netze

Künstliche Neuronale Netze Inhalt (Biologische) Neuronale Netze Schwellenwertelemente Allgemein Neuronale Netze Mehrschichtiges Perzeptron Weitere Arten Neuronaler Netze 2 Neuronale Netze Bestehend aus vielen Neuronen(menschliches

Mehr

Was bisher geschah Künstliche Neuronen: Mathematisches Modell und Funktionen: Eingabe-, Aktivierungs- Ausgabefunktion Boolesche oder reelle Ein-und

Was bisher geschah Künstliche Neuronen: Mathematisches Modell und Funktionen: Eingabe-, Aktivierungs- Ausgabefunktion Boolesche oder reelle Ein-und Was bisher geschah Künstliche Neuronen: Mathematisches Modell und Funktionen: Eingabe-, Aktivierungs- Ausgabefunktion Boolesche oder reelle Ein-und Ausgaben Aktivierungsfunktionen: Schwellwertfunktion

Mehr

Thema 3: Radiale Basisfunktionen und RBF- Netze

Thema 3: Radiale Basisfunktionen und RBF- Netze Proseminar: Machine Learning 10 Juli 2006 Thema 3: Radiale Basisfunktionen und RBF- Netze Barbara Rakitsch Zusammenfassung: Aufgabe dieses Vortrags war es, die Grundlagen der RBF-Netze darzustellen 1 Einführung

Mehr

Robert Stahlbock. Evolutionäre Entwicklung künstlicher neuronaler Netze zur Lösung betriebswirtschaftlicher Klassiflkationsprobleme

Robert Stahlbock. Evolutionäre Entwicklung künstlicher neuronaler Netze zur Lösung betriebswirtschaftlicher Klassiflkationsprobleme Robert Stahlbock Evolutionäre Entwicklung künstlicher neuronaler Netze zur Lösung betriebswirtschaftlicher Klassiflkationsprobleme Abbildungsverzeichnis Tabellenverzeichnis Abkürzungen, Akronyme Symbole

Mehr

Proseminar Machine Learning. Neuronale Netze: mehrschichtige Perzeptrone. Christina Schmiedl Betreuer: Christian Spieth, Andreas Dräger

Proseminar Machine Learning. Neuronale Netze: mehrschichtige Perzeptrone. Christina Schmiedl Betreuer: Christian Spieth, Andreas Dräger Proseminar Machine Learning Neuronale Netze: mehrschichtige Perzeptrone Christina Schmiedl Betreuer: Christian Spieth, Andreas Dräger 27.Mai 2006 Inhaltsverzeichnis 1 Biologische Motivation 2 2 Neuronale

Mehr

Kai Michels Frank Klawonn Rudolf Kruse Andreas Nürnberger. Fuzzy-Regelung. Grundlagen, Entwurf, Analyse. Mit 174 Abbildungen und 9 Tabellen.

Kai Michels Frank Klawonn Rudolf Kruse Andreas Nürnberger. Fuzzy-Regelung. Grundlagen, Entwurf, Analyse. Mit 174 Abbildungen und 9 Tabellen. Kai Michels Frank Klawonn Rudolf Kruse Andreas Nürnberger Fuzzy-Regelung Grundlagen, Entwurf, Analyse Mit 174 Abbildungen und 9 Tabellen Springer Inhaltsverzeichnis 1. Grundlagen der Fuzzy-Systeme 1 1.1

Mehr

Neuronale Netze, Fuzzy Control, Genetische Algorithmen. Prof. Jürgen Sauer. 12. Aufgabenblatt: Projektvorschläge für WS 2010/2011

Neuronale Netze, Fuzzy Control, Genetische Algorithmen. Prof. Jürgen Sauer. 12. Aufgabenblatt: Projektvorschläge für WS 2010/2011 Neuronale Netze, Fuzzy Control, Genetische Algorithmen Prof. Jürgen Sauer 12. Aufgabenblatt: Projektvorschläge für WS 2010/2011 Hinweis: Alle Projekte sind angemessen zu dokumentieren. Die Dokumentation

Mehr

verzeichnis Uwe Lämmel, Jürgen Cleve Künstliche Intelligenz ISBN: Weitere Informationen oder Bestellungen unter

verzeichnis Uwe Lämmel, Jürgen Cleve Künstliche Intelligenz ISBN: Weitere Informationen oder Bestellungen unter verzeichnis Uwe Lämmel, Jürgen Cleve Künstliche Intelligenz ISBN: 978-3-446-42758-7 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-42758-7 sowie im Buchhandel. Carl Hanser

Mehr

Training von RBF-Netzen. Rudolf Kruse Neuronale Netze 134

Training von RBF-Netzen. Rudolf Kruse Neuronale Netze 134 Training von RBF-Netzen Rudolf Kruse Neuronale Netze 34 Radiale-Basisfunktionen-Netze: Initialisierung SeiL fixed ={l,...,l m } eine feste Lernaufgabe, bestehend ausmtrainingsbeispielenl=ı l,o l. Einfaches

Mehr

Künstliche neuronale Netze

Künstliche neuronale Netze Künstliche neuronale Netze Sebastian Morr 4. Juni 2008 Worum geht es? Die Natur hat uns 3,7 Milliarden Jahre Forschungszeit voraus. Toby Simpson Vorbild: Strukturen des Gehirns Ziel: Lernfähige Künstliche

Mehr

Neuronale Netze zur Prognose und Disposition im Handel

Neuronale Netze zur Prognose und Disposition im Handel Sven F. Crone Neuronale Netze zur Prognose und Disposition im Handel Mit einem Geleitwort von Prof. Dr. Dr. h. c. Dieter B. Preßmar GABLER RESEARCH Inhalt XI Inhaltsverzeichnis Abbildungsverzeichnis Tabellenverzeichnis

Mehr

11. Neuronale Netze 1

11. Neuronale Netze 1 11. Neuronale Netze 1 Einführung (1) Ein künstliches neuronales Netz ist vom Konzept her eine Realisierung von miteinander verschalteten Grundbausteinen, sogenannter Neuronen, welche in rudimentärer Form

Mehr

Künstliche Neuronale Netze und Selbstorganisation

Künstliche Neuronale Netze und Selbstorganisation Künstliche Neuronale Netze und Selbstorganisation zur Bedeutung paralleler Informationsverarbeitung für die Sozialwissenschaften Ulrich Rein Inhaltsverzeichnis: INHALTSVERZEICHNIS: ABBILDUNGSVERZEICHNIS:

Mehr

Einfaches Framework für Neuronale Netze

Einfaches Framework für Neuronale Netze Einfaches Framework für Neuronale Netze Christian Silberbauer, IW7, 2007-01-23 Inhaltsverzeichnis 1. Einführung...1 2. Funktionsumfang...1 3. Implementierung...2 4. Erweiterbarkeit des Frameworks...2 5.

Mehr

Effiziente Näherungsverfahren 2

Effiziente Näherungsverfahren 2 Effiziente Näherungsverfahren 2 D. Rücker S. Major Hochschule Zittau-Görlitz 21. Juni 2009 Überblick DNA Computing evolutionäre Algorithmen Neuronale Netze Effiziente Näherungsverfahren 2 DNA Computing

Mehr

Neuronale Netze. Gehirn: ca Neuronen. stark vernetzt. Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor)

Neuronale Netze. Gehirn: ca Neuronen. stark vernetzt. Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor) 29 Neuronale Netze Gehirn: ca. 10 11 Neuronen stark vernetzt Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor) Mustererkennung in 0.1s 100 Schritte Regel 30 Was ist ein künstl. neuronales Netz? Ein

Mehr

Wissensbasierte Systeme

Wissensbasierte Systeme Analytisch lösbare Optimierungsaufgaben Das Chaos-Spiel gründet auf der folgenden Vorschrift: Man startet von einem beliebigen Punkt aus geht auf einer Verbindung mit einem von drei zufällig gewählten

Mehr

Einführung in neuronale Netze

Einführung in neuronale Netze Einführung in neuronale Netze Florian Wenzel Neurorobotik Institut für Informatik Humboldt-Universität zu Berlin 1. Mai 2012 1 / 20 Überblick 1 Motivation 2 Das Neuron 3 Aufbau des Netzes 4 Neuronale Netze

Mehr

Maschinelles Lernen Entwicklung und aktuelle Anwendungen

Maschinelles Lernen Entwicklung und aktuelle Anwendungen Maschinelles Lernen Entwicklung und aktuelle Anwendungen martin.loesch@kit.edu (0721) 608 45944 Forschungsrichtungen des ML Praxisorientiert Aufgabenorientierte, lernende Systeme Wissenserwerb (Knowledge

Mehr

3. Vorlesung Fuzzy Systeme

3. Vorlesung Fuzzy Systeme Soft Control (AT 3, RMA) 3. Vorlesung Fuzzy Systeme Fuzzy Mengen 3. Vorlesung im Aufbau der Vorlesung 1. Einführung Soft Control: Definition und Abgrenzung, Grundlagen "intelligenter" Systeme 2. Wissensrepräsentation

Mehr

Der Einsatz künstlicher neuronaler Netze in der industriellen Feuerversicherung

Der Einsatz künstlicher neuronaler Netze in der industriellen Feuerversicherung Tobias Nagel Der Einsatz künstlicher neuronaler Netze in der industriellen Feuerversicherung PETER LANG Frankfurt am Main Berlin Bern Bruxelles New York- Oxford Wien Inhaltsverzeichnis Inhaltsverzeichnis

Mehr

DISSERTATION. Nichtlineare Analyse und Klassifikation von instationären Biosignalen mit Anwendung in der Kognitionsforschung

DISSERTATION. Nichtlineare Analyse und Klassifikation von instationären Biosignalen mit Anwendung in der Kognitionsforschung Technische Universität Ilmenau DISSERTATION Nichtlineare Analyse und Klassifikation von instationären Biosignalen mit Anwendung in der Kognitionsforschung zur Erlangung des akademischen Grades Doktor-Ingenieur

Mehr

Neuronale Netze in der Phonetik: Grundlagen. Pfitzinger, Reichel IPSK, LMU München {hpt 24.

Neuronale Netze in der Phonetik: Grundlagen. Pfitzinger, Reichel IPSK, LMU München {hpt 24. Neuronale Netze in der Phonetik: Grundlagen Pfitzinger, Reichel IPSK, LMU München {hpt reichelu}@phonetik.uni-muenchen.de 24. Mai 2006 Inhalt Einführung Maschinelles Lernen Lernparadigmen Maschinelles

Mehr

auch: Konnektionismus; subsymbolische Wissensverarbeitung

auch: Konnektionismus; subsymbolische Wissensverarbeitung 10. Künstliche Neuronale Netze auch: Konnektionismus; subsymbolische Wissensverarbeitung informationsverarbeitende Systeme, bestehen aus meist großer Zahl einfacher Einheiten (Neuronen, Zellen) einfache

Mehr

Neuronale Netze (Konnektionismus)

Neuronale Netze (Konnektionismus) Einführung in die KI Prof. Dr. sc. Hans-Dieter Burkhard Daniel Göhring Vorlesung (Konnektionismus) sind biologisch motiviert können diskrete, reell-wertige und Vektor-wertige Funktionen berechnen Informationsspeicherung

Mehr

Vorwort zur dritten Auflage

Vorwort zur dritten Auflage Vorwort zur dritten Auflage In Kap. 8 gibt es nun zwei neue Abschnitte. Das wichtige Thema Kreuzvalidierung erhält in Abschn. 8.5 endlich den verdienten Raum. In Abschn. 8.8 über One-Class-Learning werden

Mehr

Selbstorganisierende Karten

Selbstorganisierende Karten Selbstorganisierende Karten Proseminar Ausgewählte Themen über Agentensysteme 11.07.2017 Institut für Informatik Selbstorganisierende Karten 1 Übersicht Motivation Selbstorganisierende Karten Aufbau &

Mehr

Inhaltsverzeichnis. 4 Statistik Einleitung Wahrscheinlichkeit Verteilungen Grundbegriffe 98

Inhaltsverzeichnis. 4 Statistik Einleitung Wahrscheinlichkeit Verteilungen Grundbegriffe 98 Inhaltsverzeichnis 1 Datenbehandlung und Programmierung 11 1.1 Information 11 1.2 Codierung 13 1.3 Informationsübertragung 17 1.4 Analogsignale - Abtasttheorem 18 1.5 Repräsentation numerischer Daten 20

Mehr

Das Perzeptron. Volker Tresp

Das Perzeptron. Volker Tresp Das Perzeptron Volker Tresp 1 Einführung Das Perzeptron war eines der ersten ernstzunehmenden Lernmaschinen Die wichtigsten Elemente Sammlung und Vorverarbeitung der Trainingsdaten Wahl einer Klasse von

Mehr

Claudia Borchard-Tuch. Computersysteme - Ebenbilder der Natur?

Claudia Borchard-Tuch. Computersysteme - Ebenbilder der Natur? Claudia Borchard-Tuch Computersysteme - Ebenbilder der Natur? Claudia Borchard-Tuch Computersysteme - Ebenbilder der Natur? Ein Vergleich der Informationsverarbeitung FACETTEN ai vleweg ISBN 978-3-663-09504-0

Mehr

Perzeptronen. Katrin Dust, Felix Oppermann Universität Oldenburg, FK II - Department für Informatik Vortrag im Rahmen des Proseminars 2004

Perzeptronen. Katrin Dust, Felix Oppermann Universität Oldenburg, FK II - Department für Informatik Vortrag im Rahmen des Proseminars 2004 Perzeptronen Katrin Dust, Felix Oppermann Universität Oldenburg, FK II - Department für Informatik Vortrag im Rahmen des Proseminars 2004 1/25 Gliederung Vorbilder Neuron McCulloch-Pitts-Netze Perzeptron

Mehr

Grundlagen Künstlicher Neuronaler Netze

Grundlagen Künstlicher Neuronaler Netze FernUniversität in Hagen Fachbereich Elektrotechnik und Informationstechnik Lehrgebiet Informationstechnik Seminar Computational Intelligence in der Prozessautomatisierung 7. Juli 2003 Grundlagen Künstlicher

Mehr

Künstliche Neuronale Netze. 2. Optimierung des Trainings 3. Optimierung der Topologie 4. Anwendungen in der Medizin 5.

Künstliche Neuronale Netze. 2. Optimierung des Trainings 3. Optimierung der Topologie 4. Anwendungen in der Medizin 5. Künstliche Neuronale Netze Wolfram Schiffmann FernUniversität Hagen Rechnerarchitektur 1. Einführung 2. Optimierung des Trainings 3. Optimierung der Topologie 4. Anwendungen in der Medizin 5. Zusammenfassung

Mehr

BACKPROPAGATION & FEED-FORWARD DAS MULTILAYER PERZEPTRON

BACKPROPAGATION & FEED-FORWARD DAS MULTILAYER PERZEPTRON BACKPROPAGATION & FEED-FORWARD DAS MULTILAYER PERZEPTRON EINFÜHRUNG IN KÜNSTLICHE NEURONALE NETZE Modul Leitung Technischer Datenschutz und Mediensicherheit Nils Tekampe Vortrag Jasmin Sunitsch Abgabe

Mehr

7. Vorlesung Neuronale Netze

7. Vorlesung Neuronale Netze Soft Control (AT 3, RMA) 7. Vorlesung Neuronale Netze Grundlagen 7. Vorlesung im Aufbau der Vorlesung 1. Einführung Soft Control: Definition und Abgrenzung, Grundlagen "intelligenter" Systeme 2. Wissensrepräsentation

Mehr

Automatische Spracherkennung

Automatische Spracherkennung Automatische Spracherkennung 3 Vertiefung: Drei wichtige Algorithmen Teil 3 Soweit vorhanden ist der jeweils englische Fachbegriff, so wie er in der Fachliteratur verwendet wird, in Klammern angegeben.

Mehr

Computational Intelligence I Künstliche Neuronale Netze

Computational Intelligence I Künstliche Neuronale Netze Computational Intelligence I Künstliche Neuronale Nete Universität Dortmund, Informatik I Otto-Hahn-Str. 6, 44227 Dortmund lars.hildebrand@uni-dortmund.de Inhalt der Vorlesung 0. Organisatorisches & Vorbemerkungen.

Mehr

Neuronale Netze. Einführung i.d. Wissensverarbeitung 2 VO UE SS Institut für Signalverarbeitung und Sprachkommunikation

Neuronale Netze. Einführung i.d. Wissensverarbeitung 2 VO UE SS Institut für Signalverarbeitung und Sprachkommunikation Neuronale Netze Einführung in die Wissensverarbeitung 2 VO 708.560+ 1 UE 442.072 SS 2012 Institut für Signalverarbeitung und Sprachkommunikation TU Graz Inffeldgasse 12/1 www.spsc.tugraz.at Institut für

Mehr

5. Lernregeln für neuronale Netze

5. Lernregeln für neuronale Netze 5. Lernregeln für neuronale Netze 1. Allgemeine Lokale Lernregeln 2. Lernregeln aus Zielfunktionen: Optimierung durch Gradientenverfahren 3. Beispiel: Überwachtes Lernen im Einschicht-Netz Schwenker NI1

Mehr

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform.

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform. kurze Wiederholung der letzten Stunde: Neuronale Netze martin.loesch@kit.edu (0721) 608 45944 Labor Wissensrepräsentation Aufgaben der letzten Stunde Übersicht Neuronale Netze Motivation Perzeptron Multilayer

Mehr

Künstliche neuronale Netze

Künstliche neuronale Netze Künstliche neuronale Netze Sibylle Schwarz Westsächsische Hochschule Zwickau Dr. Friedrichs-Ring 2a, RII 263 http://wwwstud.fh-zwickau.de/~sibsc/ sibylle.schwarz@fh-zwickau.de SS 2011 1 Softcomputing Einsatz

Mehr

Evolutionäre Algorithmen Einführung

Evolutionäre Algorithmen Einführung Evolutionäre Algorithmen Einführung Prof. Dr. Rudolf Kruse Pascal Held {kruse,pheld}@iws.cs.uni-magdeburg.de Otto-von-Guericke-Universität Magdeburg Fakultät für Informatik Institut für Wissens- und Sprachverarbeitung

Mehr

Neuronale Netze. Christian Böhm.

Neuronale Netze. Christian Böhm. Ludwig Maximilians Universität München Institut für Informatik Forschungsgruppe Data Mining in der Medizin Neuronale Netze Christian Böhm http://dmm.dbs.ifi.lmu.de/dbs 1 Lehrbuch zur Vorlesung Lehrbuch

Mehr

Neuronale Netze (Konnektionismus) Einführung in die KI. Beispiel-Aufgabe: Schrifterkennung. Biologisches Vorbild. Neuronale Netze.

Neuronale Netze (Konnektionismus) Einführung in die KI. Beispiel-Aufgabe: Schrifterkennung. Biologisches Vorbild. Neuronale Netze. Einführung in die KI Prof. Dr. sc. Hans-Dieter Burkhard Vorlesung (Konnektionismus) sind biologisch motiviert können diskrete, reell-wertige und Vektor-wertige Funktionen berechnen Informationsspeicherung

Mehr

6 Neuronale Modellierung: Der STAA-Ansatz

6 Neuronale Modellierung: Der STAA-Ansatz Bernd J. Kröger: Neuronale Sprachverarbeitung (Version 1.0.4) Seite 150 6 Neuronale Modellierung: Der STAA-Ansatz 6.1 Knoten: die STAA-Neuronensembles 6.1.1 Aktivierungslevel, Aktivierungsfunktion und

Mehr

I. II. I. II. III. IV. I. II. III. I. II. III. IV. I. II. III. IV. V. I. II. III. IV. V. VI. I. II. I. II. III. I. II. I. II. I. II. I. II. III. I. II. III. IV. V. VI. VII. VIII.

Mehr

Institut für Angewandte Mikroelektronik und Datentechnik Fachbereich Elektrotechnik und Informationstechnik Universität Rostock.

Institut für Angewandte Mikroelektronik und Datentechnik Fachbereich Elektrotechnik und Informationstechnik Universität Rostock. Seite 1 Implementierung Neuronaler Netze mittels Digit-Online Algorithmen Vortrag im Rahmen des 10. Symposium Maritime Elektronik 2001 M.Haase, A.Wassatsch, D.Timmermann Seite 2 Gliederung Was sind Neuronale

Mehr

IER. Systemtechnische Planungsmethoden in Wirtschaft und Technik. Vorlesungsskript. Prof. Dr.-Ing. A. Voß. Sommersemester Universität Stuttgart

IER. Systemtechnische Planungsmethoden in Wirtschaft und Technik. Vorlesungsskript. Prof. Dr.-Ing. A. Voß. Sommersemester Universität Stuttgart Universität Stuttgart IER Institut für Energiewirtschaft und Rationelle Energieanwendung Vorlesungsskript Systemtechnische Planungsmethoden in Wirtschaft und Technik Prof. Dr.-Ing. A. Voß. Sommersemester

Mehr

TEUBNER-TEXTE zur Informatik Band 9. J. Heistermann. Genetische Algorithmen

TEUBNER-TEXTE zur Informatik Band 9. J. Heistermann. Genetische Algorithmen TEUBNER-TEXTE zur Informatik Band 9 J. Heistermann Genetische Algorithmen TEUBNER-TEXTE zur Informatik Herausgegeben von Prof. Dr. Johannes Buchmann, Saarbrücken Prof. Dr. Udo Lipeck, Hannover Prof. Dr.

Mehr

Optimierung und Simulation

Optimierung und Simulation 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Optimierung und Simulation Von Dr. Jörg Biethahn O. Professor für

Mehr

Entscheidungs- und Spieltheorie

Entscheidungs- und Spieltheorie H. Bühlmann H. Loeffel E. Nievergelt Entscheidungs- und Spieltheorie Ein Lehrbuch für Wirtschaftswissenschaftler Mit 121 Figuren Springer-Verlag Berlin Heidelberg NewYork 1975 Inhaltsverzeichnis 1. Teil;

Mehr

Michael Hoßfeld (Autor) Klassifikationssystem für Prägebildaufnahmen von Münzen

Michael Hoßfeld (Autor) Klassifikationssystem für Prägebildaufnahmen von Münzen Michael Hoßfeld (Autor) Klassifikationssystem für Prägebildaufnahmen von Münzen https://cuvillier.de/de/shop/publications/2100 Copyright: Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg

Mehr

12. Vorlesung Stochastische Optimierung

12. Vorlesung Stochastische Optimierung Soft Control (AT 3, RMA) 12. Vorlesung Stochastische Optimierung Differential Evolution 12. Vorlesung im Aufbau der Vorlesung 1. Einführung Soft Control: Definition und Abgrenzung, Grundlagen "intelligenter"

Mehr

Künstliche Neuronale Netze

Künstliche Neuronale Netze Andreas Scherer Überarbeitung: Hermann Helbig, Wolfram Schiffmann Kurs 01834 Künstliche Neuronale Netze LESEPROBE Das Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, insbesondere das

Mehr

Aufbau und Auswertung von Nah- Infrarot (NIR)-Datenbanken zur Identifizierung von Arzneistoffen

Aufbau und Auswertung von Nah- Infrarot (NIR)-Datenbanken zur Identifizierung von Arzneistoffen A Aufbau und Auswertung von Nah- Infrarot (NIR)-Datenbanken zur Identifizierung von Arzneistoffen Dissertation der Fakultät für Chemie und Pharmazie der Eberhard-Karls-Universität Tübingen zur Erlangung

Mehr

Adaptive Systeme. Neuronale Netze: der Backward Propagation Algorithmus. Prof. Dr. rer. nat. Nikolaus Wulff

Adaptive Systeme. Neuronale Netze: der Backward Propagation Algorithmus. Prof. Dr. rer. nat. Nikolaus Wulff Adaptive Systeme Neuronale Netze: der Backward Propagation Algorithmus Prof. Dr. rer. nat. Nikolaus Wulff Neuronen Schicht x 1 x 2 x 3.. θ 1 θ 2. y 1 y 2 n y j = k =1 w jk x k j y j = n k =0 w jk x k x

Mehr

Quantitative Methoden in der Betriebswirtschaftslehre

Quantitative Methoden in der Betriebswirtschaftslehre Quantitative Methoden in der Betriebswirtschaftslehre von Dr. Dietrich Ohse Professor für Betriebswirtschaftslehre, insbesondere Quantitative Methoden an der Johann Wolfgang Goethe-Universität Frankfurt

Mehr

Künstliche Neuronale Netze

Künstliche Neuronale Netze Fakultät Informatik, Institut für Technische Informatik, Professur für VLSI-Entwurfssysteme, Diagnostik und Architektur Künstliche Neuronale Netze Hauptseminar Martin Knöfel Dresden, 16.11.2017 Gliederung

Mehr

Datenorientierte SA. Aufbau und Grundlagen. Aufbau und Grundlagen. Aufbau und Grundlagen. Was sind neuronale Netze?

Datenorientierte SA. Aufbau und Grundlagen. Aufbau und Grundlagen. Aufbau und Grundlagen. Was sind neuronale Netze? Datenorientierte SA Was sind neuronale Netze? Neuronale Netze: Grundlagen und Anwendungen Neuronale Netze bilden die Struktur eines Gehirns oder eines Nervensystems ab Andreas Rauscher 0651993 Damir Dudakovic

Mehr

Softcomputing Biologische Prinzipien in der Informatik. Neuronale Netze. Dipl. Math. Maria Oelinger Dipl. Inform. Gabriele Vierhuff IF TIF 08 2003

Softcomputing Biologische Prinzipien in der Informatik. Neuronale Netze. Dipl. Math. Maria Oelinger Dipl. Inform. Gabriele Vierhuff IF TIF 08 2003 Softcomputing Biologische Prinzipien in der Informatik Neuronale Netze Dipl. Math. Maria Oelinger Dipl. Inform. Gabriele Vierhuff IF TIF 08 2003 Überblick Motivation Biologische Grundlagen und ihre Umsetzung

Mehr

Fuzzy Control. Mit 304 Bildern und 46 Tabellen

Fuzzy Control. Mit 304 Bildern und 46 Tabellen Fuzzy Control Optimale Nachbildung und Entwurf optimaler Entscheidungen von Dr.-Ing. Mario Koch, Dr.-Ing. Thomas Kuhn und Professor Dr.-Ing. habil Jürgen Wernstedt Technische Universität Ilmenau Mit 304

Mehr

Neuronale Netze. Seminar aus Algorithmik Stefan Craß,

Neuronale Netze. Seminar aus Algorithmik Stefan Craß, Neuronale Netze Seminar aus Algorithmik Stefan Craß, 325656 Inhalt Theoretisches Modell Grundlagen Lernansätze Hopfield-Netze Kohonen-Netze Zusammenfassung 2 Inhalt Theoretisches Modell Grundlagen Lernansätze

Mehr

Lineare Regression. Volker Tresp

Lineare Regression. Volker Tresp Lineare Regression Volker Tresp 1 Die Lernmaschine: Das lineare Modell / ADALINE Wie beim Perzeptron wird zunächst die Aktivierungsfunktion gewichtete Summe der Eingangsgrößen x i berechnet zu h i = M

Mehr

Computational Intelligence 1 / 31. Computational Intelligence Künstliche Neuronale Netze Geschichte 3 / 31

Computational Intelligence 1 / 31. Computational Intelligence Künstliche Neuronale Netze Geschichte 3 / 31 1 / 31 Gliederung 1 Künstliche Neuronale Netze Geschichte Natürliches Neuron Künstliches Neuron Typen von Neuronen Geschichte Künstliche Neuronale Netze Geschichte 3 / 31 1943 Warren McCulloch (Neurologe),

Mehr

Produktionsplanung in der Automobilindustrie

Produktionsplanung in der Automobilindustrie Christoph Stich Produktionsplanung in der Automobilindustrie Optimierung des Ressourceneinsatzes im Serienanlauf KÖLNER WISSENSCHAFTSVERLAG Köln 2007 Inhaltsverzeichnis Vorwort Abbildungsverzeichnis Tabellenverzeichnis

Mehr

Wahrscheinlichkeitstheorie

Wahrscheinlichkeitstheorie Bruno de Finetti Wahrscheinlichkeitstheorie Einführende Synthese mit kritischem Anhang R. Oldenbourg Verlag Wien München 1981 Inhaltsverzeichnis Vorwort X I II III Einführung 1. Wozu ein neues Buch über

Mehr

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2016

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2016 Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 1 M. Sperber (matthias.sperber@kit.edu) S. Nguyen (thai.nguyen@kit.edu) Übungsblatt 3 Maschinelles Lernen und Klassifikation Abgabe online

Mehr

Wissensentdeckung in Datenbanken

Wissensentdeckung in Datenbanken Wissensentdeckung in Datenbanken Deep Learning Nico Piatkowski und Uwe Ligges Informatik Künstliche Intelligenz 20.07.2017 1 von 11 Überblick Künstliche Neuronale Netze Motivation Formales Modell Aktivierungsfunktionen

Mehr

Virtuelles Labor für Neuronale Netze

Virtuelles Labor für Neuronale Netze Universität Zürich / Wintersemester 2001/2002 Semesterarbeit Virtuelles Labor für Neuronale Netze vorgelegt von Rolf Hintermann, Dielsdorf, ZH, Schweiz, Matrikelnummer: 98-706-575 Angefertigt am Institut

Mehr

Numerische Methoden. Thomas Huckle Stefan Schneider. Eine Einführung für Informatiker, Naturwissenschaftler, Ingenieure und Mathematiker.

Numerische Methoden. Thomas Huckle Stefan Schneider. Eine Einführung für Informatiker, Naturwissenschaftler, Ingenieure und Mathematiker. Thomas Huckle Stefan Schneider Numerische Methoden Eine Einführung für Informatiker, Naturwissenschaftler, Ingenieure und Mathematiker 2. Auflage Mit 103 Abbildungen und 9 Tabellen 4Q Springer Inhaltsverzeichnis

Mehr

Hopfield-Netze. Rudolf Kruse Neuronale Netze 192

Hopfield-Netze. Rudolf Kruse Neuronale Netze 192 Hopfield-Netze Rudolf Kruse Neuronale Netze 192 Hopfield-Netze Ein Hopfield-Netz ist ein neuronales Netz mit einem Graphen G = (U, C), das die folgenden Bedingungen erfüllt: (i)u hidden =,U in =U out =U,

Mehr

Adaptive Systeme. Mehrere Neuronen, Assoziative Speicher und Mustererkennung. Prof. Dr. rer. nat. Nikolaus Wulff

Adaptive Systeme. Mehrere Neuronen, Assoziative Speicher und Mustererkennung. Prof. Dr. rer. nat. Nikolaus Wulff Adaptive Systeme Mehrere Neuronen, Assoziative Speicher und Mustererkennung Prof. Dr. rer. nat. Nikolaus Wulff Modell eines Neuron x x 2 x 3. y y= k = n w k x k x n Die n binären Eingangssignale x k {,}

Mehr

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform.

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform. kurze Wiederholung der letzten Stunde: Neuronale Netze martin.loesch@kit.edu (0721) 608 45944 Labor Wissensrepräsentation Neuronale Netze Motivation Perzeptron Übersicht Multilayer Neural Networks Grundlagen

Mehr