Predictive Modeling mit künstlich neuronalen Netzen

Größe: px
Ab Seite anzeigen:

Download "Predictive Modeling mit künstlich neuronalen Netzen"

Transkript

1 München, Juni 2015 Predictive Modeling mit künstlich neuronalen Netzen Technische Universität Bergakademie Freiberg (Sachsen) Institut für Wirtschaftsinformatik Silbermannstraße 2, Freiberg (Sachsen), Deutschland Der Dozent Univ. Prof. Dr. rer. oec. Carsten Felden Dekan Fakultät für Wirtschaftswissenschaften, insbes. Internationale Ressourcenwirtschaft Institut für Wirtschaftsinformatik an der Technischen Universität Bergakademie Freiberg (Sachsen). Geschäftsführer der Marmeladenbaum GmbH ( 2 TDWI

2 Agenda Einführung Data Mining Was ist Data Mining? Anwendungsgebiete Predictive Analytics Was ist Predictive Analytics? Methodisches Vorgehen Verfahren Modelle Neuronale Netze Was sind Neuronale Netze? Lernregeln Modellbildung Neuronale Netze in der Predictive Analytics Einsatz von in der Predictive Analytics besondere Rolle von Anwendungsbeispiele 3 Einführung Branche, Verkaufsobjekte, Betriebstyp, Lebensphase des Betriebs Bedingungslage determinieren typische Entscheidungen Werden durch entscheidungsunterstützende Methoden/Systeme vorbereitet Entscheidungsträger Pflichten aus Rollen Persönliche Präferenzen Determinieren Informationsbedarf Entscheidungsarchitektur Nach: Peter Mertens Legen Aufbereitungen nahe, z.b. Kennzahlen Bedingen Datenbedarf Beschaffung von innen Beschaffung von außen 4 TDWI

3 Einführung Entscheidungsunterstützungssysteme Systeme entwickelt für die Unterstützung der Entscheidungsfindung bei unstrukturierten Problemen. In jüngster Zeit fand eine nachdrückliche Entwicklung vom Input zum Output statt. Mechanismus für die Interaktion zwischen Benutzer und Bestandteilen. Normalerweise gebaut um Lösungen zu unterstützen oder Gelegenheiten einzuschätzen. 5 Einführung Data Mining 6 TDWI

4 Einführung Prozessmodelle Knowledge Discovery in Databases Data Mining Interpretation Wissen Vorverarbeitung Auswahl Transformation Muster Transformierte Daten Vorverarbeitete Daten 7 Einführung Aufgaben und Verfahren im Data Mining Aufgaben Verfahren Klassifikation/ Regression Clusterung Künstliche Neuronale Netze Clusterverfahren Datenbank Zieldatenbestand Abhängigkeitsanalyse Entscheidungsbäume Assoziationsanalyse 8 TDWI

5 Einführung Data Mining im Wandel 9 Einführung Typische Anwendungen des Data Mining Kundensegmentierung Kaufneigung Kundenmodelle erstellen Kundengewinnung Optimierung der Absatzkanäle Fraud Detection uvm. 10 TDWI

6 Agenda Einführung Data Mining Was ist Data Mining? Anwendungsgebiete Predictive Analytics Was ist Predictive Analytics? Methodisches Vorgehen Verfahren Modelle Neuronale Netze Was sind Neuronale Netze? Lernregeln Modellbildung Neuronale Netze in der Predictive Analytics Einsatz von in der Predictive Analytics besondere Rolle von Anwendungsbeispiele 11 Predictive Analytics Analytics, Predictive Analytics, Data Mining,...?? Analytics = der Prozess, um mathematische Methoden zur Erkennung von Mustern und Zusammenhängen anzuwenden mit dem Ziel, tiefere Einblicke zu gewinnen und Entscheidungen zu beeinflussen. andere Worte dafür sind: Data Mining, Data Science, Mustererkennung, Knowledge Discovery,... Auch Predictive Analytics beschäftigt sich mit der Entdeckung von interessanten und bedeutsamen Zusammenhängen in Daten und bildet damit eine Teilmenge der Analytics. Allerdings geht Predictive Analytics soweit, dass nicht bestehende Situation analysiert werden, sondern mit Hilfe von Datenmodellen Vorhersagen über (mögliche) Ereignisse (in der Zukunft) getroffen werden. 12 TDWI

7 Predictive Analytics Was unterscheidet Predictive Analytics von anderen Formen der Analytics? Methoden und Modelle des Data Mining spielen eine wesentliche Rolle bei der Predictive Analytics. Es werden aber noch zusätzliche Methoden genutzt, wie maschinelles Lernen, Elemente der Spieltheorie, Simulationsverfahren, Text Mining, statistische Verfahren,... Wesentliche weitere Merkmale der Predictive Analytics: Predictive Analytics wird auf einem höheren Granularitätslevel definiert, d.h. es werden Wahrscheinlichkeiten für individuelle Elemente vorhergesagt Predictive Analytics ist datengesteuert. Im Anschluss an die Ermittlung von Mustern wird mit Hilfe der Predictive Analytics der weitere Verlauf dieser Erkenntnisse mit Algorithmen und Modellen errechnet. 13 Predictive Analytics Methodisches Vorgehen Projekt definieren Datenanforderungen verstehen Datenvorbereiten Modellierung/ Statistiken Evaluation Anwendung 14 TDWI

8 Predictive Analytics Methodisches Vorgehen Geschäftseinheiten: Marketing Daten Predictive Analytics Predictive Models Sales Fraud Detection Core Business Kunden... Unternehmen 15 Predictive Analytics Methoden der Predictive Analytics lineare Regression Discrete Choice Modelle SVM Entscheidungs bäume Zeitreihen analyse linear Predictive Analytics Nicht linear Neuronale Netze k Nearest Neighbor logistische Regression... Clustering Naїve Bayes TDWI

9 Predictive Analytics Predictive Modeling vs. Descriptive Modeling Die Auswahl des richtigen Algorithmus hängt von dem angewandten Modell ab. Descriptive Modeling Ansätze werden auch als unüberwachtes Lernen bezeichnet. Der Algorithmus findet also eher Beziehungen zwischen den Input Variablen als zu den Zielvariablen. Immer dann von Interesse, wenn die Zielvariable nicht quantifiziert werden kann oder, wenn man nur Beziehungen zwischen den Input Variablen aufdecken möchte (z.b. Kundensegmente finden). Verfahren: Clustering, Principal Component Analysis. 17 Predictive Analytics Predictive Modeling vs. Descriptive Modeling Predictive Modeling wird auch als überwachtes Lernen bezeichnet. Die Algorithmen finden Beziehungen, die Input Variablen mit einer oder mehreren Zielvariablen verbinden. Die Zielvariable ist hierbei das Hauptaugenmerk: sie fasst das Ziel (Business Object) der Modellierung zusammen. Ein Vorhersagemodell ist eine mathematische Funktion, die in der Lage ist Beziehung zwischen Input Variablen und den Zielvariablen zu erlernen. Verfahren: Entscheidungsbäume, Nearest Neighbor, lineare Regression, neuronale Netze. 18 TDWI

10 Predictive Analytics Typische Anwendungen der Predictive Analytics Kundenbindung Medizin: Risikopatienten identifizieren (klinische EUS) Up und Cross Selling Fraud Detection Dispositionsplanung Online Preisgestaltung Risikomanagement Agenda Einführung Data Mining Was ist Data Mining? Anwendungsgebiete Predictive Analytics Was ist Predictive Analytics? Methodisches Vorgehen Verfahren Modelle Neuronale Netze Was sind Neuronale Netze? Lernregeln Modellbildung Neuronale Netze in der Predictive Analytics Einsatz von in der Predictive Analytics besondere Rolle von Anwendungsbeispiele 20 TDWI

11 Neuronale Netze Bei der Erstellung Künstlicher Neuronaler Netze wird versucht, die Arbeitsweise des menschlichen Gehirns nachzubilden. Ein Netz besteht aus künstlichen Neuronen und deren Verknüpfungen. Wesentliches Merkmal der Netze ist ihre Lernfähigkeit. 21 McCulloch Pitts Neuron Gesamtinput: ergibt sich als gewichtete Summe der Eingangssignale (Inputwerte) x 1,, x j,, x n Aktivierung: Die Aktivierung des Neurons geschieht über die Aktivierungsfunktion f, deren Wert von der Differenz aus Gesamtinput und Schwellenwert θ abhängt. Output: Je nach Aktivierung entsteht ein Outputwert y. 22 TDWI

12 McCulloch Pitt Neuron Der Ausgabewert y wird nach Aktivierung des Neurons durch die Funktion θ generiert. D.h.: Gesamtinput abzüglich des konstanten Schwellenwertes. Neuronen mit höherer Sensibilität haben einen niedrigeren Schwellenwert θ, werden also bei niedrigerem Input aktiviert. Meist wird als Aktivierungsfunktion eine Sigmoid Funktion gewählt, die am linken Rand des Definitionsbereiches den Wert 0 und am rechten Rand den Wert 1 annimmt. Je nach Modellspezifikation werden an die Aktivierungsfunktion zusätzliche Anforderungen gestellt (wie bspw. Stetigkeit). 23 Threshold Logic Unit Ein simples Modell zu diesen Überlegungen ist das einfache Perzeptron. Andere Bezeichnung: TLU (Threshold Logic Unit). Der Input besteht nur aus booleschen Werten (0 und 1). Die Aktivierung des Neurons erfolgt, wenn der Gesamtinput größer oder gleich dem Schwellenwert θ ist. Der Outputwert y ist der Indikatorwert der Aktivierung. 24 TDWI

13 Threshold Logic Unit Gewichte: w1 = w2 = 1 x 1 x 2 Σw i x i y θ = θ = Vorwärts gerichtete Neuronale Netze Multilayer Perzeptron Das Multilayer Perzeptron (MLP) ist ein Spezialfall eines vorwärts gerichteten KNNs, das zur Klassifikation eingesetzt werden kann. Es können drei Schichttypen differenziert werden: Inputschicht, Versteckte Schicht, Outputschicht. Es sind nur Neuronen verschiedener Schichten miteinander verbunden. Die Outputwerte vorgelagerter Neuronen werden über gewichtete Verbindungen an nachgelagerte Neuronen gesendet. Beim vorwärts gerichteten Netz werden Impulse nur in eine Richtung weitergegeben, es gibt keine Schleifen. 26 TDWI

14 Beispiel Multilayer Perzeptron (MLP) 27 Lernparadigmen Überwachtes Lernen (supervised learning) Klassifizierung [z.b. Back Propagation]. Bestärkendes Lernen (reinforcement learning). Unüberwachtes Lernen (unsupervised learning) Clusterung [z.b. Self Organizing Maps]. 28 TDWI

15 Lernregeln Ein neuronales Netz lernt, indem es sich eigenständig gemäß vorgegebener Vorschriften (Lernregeln) verändert. Diese Lernregeln können umfassen: Veränderung der Netztopologie; Modifikation der Parameter der Neuronen; Veränderung der Gewichte. 29 Back Propagation Die Werte eines Datensatzes werden in die Neuronen der Inputschicht eingegeben. Anschließend über die Neuronen und deren Verbindungen weitergeleitet, bis ein Wert in der Outputschicht erzeugt wurde, der die durch das Netz berechnete Klasse des Datensatzes angibt. (Forward Pass) Dieser Wert wird mit der tatsächlichen Klassenzugehörigkeit verglichen. (Fehlerbestimmung) Bei einer Abweichung von Soll und Ist Wert werden ausgehend von den Outputneuronen die zugehörigen Verbindungsgewichte sowie die Verbindungsgewichte der Neuronen vorgelagerter Schichten derart geändert, dass die Abweichung minimiert wird. (Backward Pass) 30 TDWI

16 Back Propagation Durch die vorwärts gerichteten Künstlichen Neuronalen Netze lassen sich sehr gute Klassifikationsergebnisse auf dem Trainingsdatenbestand erzielen. Wie bei den Entscheidungsbäumen liegt auch hier das Problem des Overfitting vor. Deshalb ist eine Güteabschätzung der Klassifikationsfähigkeit auf einer Testmenge etwa durch die Fehlklassifikationsquote notwendig. Ggf. müssen die Gewichte weiter angepasst werden. Weiterhin kann auch bei den Künstlichen Neuronalen Netzen ein Pruning stattfinden, indem Knoten oder Gewichte entfernt werden, um die Komplexität des Netzwerkes zu verringern. 31 Kritische Betrachtung Vorteile Vorwärts gerichtete Künstliche Neuronale Netze können sehr gute Ergebnisse bei der Klassifikation und Prognose erzeugen. Die offene Struktur macht das Modell sehr flexibel. Nachteile Es werden keine expliziten Regeln angegeben. Das Adaptieren der Gewichte geschieht mitunter sehr langsam. Netzstruktur & Gewichtsinitialisierung sind nicht vorgegeben. 32 TDWI

17 Agenda Einführung Data Mining Was ist Data Mining? Anwendungsgebiete Predictive Analytics Was ist Predictive Analytics? Methodisches Vorgehen Verfahren Modelle Neuronale Netze Was sind Neuronale Netze? Lernregeln Modellbildung Neuronale Netze in der Predictive Analytics Einsatz von in der Predictive Analytics besondere Rolle von Anwendungsbeispiele 33 in der Predictive Analytics Einsatz von in der Predictive Analytics Vorhersagen In vielen Fällen führen zur selben Lösung wie traditionelle statistische Ansätze. Bspw. ist der Output eines single layer, feed forward mit linearer Aktivierung äquivalent zum Output einer allgemeinen linearen Regression. Die meisten statistischen Modelle erfordern jedoch Annahmen über die Beziehung der in der Vorhersage verwendeten Variablen untereinander. Ebenso werden Annahmen über die Verteilung von Vorhersagefehlern benötigt. Daher gibt es manche Fälle, in denen statistischen Modelle in der Predictive Analytics nicht passend sind Bsp.: Zeitreihenanalyse versagt bei nicht stationären Daten mit einem hohen Rausch Anteil (bspw. biomedizinische Reihen), sowie wenn die Zeitreihe zu kurz ist. 34 TDWI

18 in der Predictive Analytics Einsatz von in der Predictive Analytics Neuronale Netze können sowohl lineare als auch nicht lineare Beziehungen in Daten repräsentieren. Sie verwenden wenige Annahmen, da sie nicht lineare Funktionen beim Modellaufbau approximieren. Kurze Zeitreihen, eventuell sogar mit einem hohen Anteil an Rauschen, stellen als Trainingsdatensatz kein Problem dar. Bei Verwendung neuer Daten werden die erlernten Beziehungen eingesetzt, um einen Output zu generieren. Diese Daten können auch nicht stationäre oder sein. 35 in der Predictive Analytics Einsatz von in der Predictive Analytics Mustererkennung und Klassifizierung werden auch in der Mustererkennung (unüberwachtes Lernen) eingesetzt. Nur einige Beispiele: Gesichtserkennung, Klassifizierung von Finanznachrichten, Natural Language Processing,... Vorrangig werden zu diesem Zweck Self Organizing Maps (Kohonen Netzwerke) oder Netzwerke mit Radial Basis Funktion eingesetzt. Die Klassifizierung von Beobachtungen unter der Verwendung früherer, gleichartiger Informationen ist eine der populärsten Anwendungen der. Entscheidungen auf Datenbasis können oft als Klassifizierungsproblem angesehen werden, da diese Algorithmen gute Vorhersagequalitäten erzielen. Bsp.: automatisiertes kaufen/verkaufen/behalten von Aktien. 36 TDWI

19 in der Predictive Analytics Die besondere Rolle der in der Predictive Analytics Für die Aufgaben der Predictive Analytics existieren eine Vielzahl von Methoden und Werkzeuge. können die Vielzahl dieser Methoden mit einer einzigen Methode ersetzen, bei gleichen oder sogar besseren Ergebnissen als denen statistischer Modelle. Weitere Vorteile von in der Predictive Analytics: höhere Genauigkeit gegenüber traditionellen statistischen Methoden, sogar bei erhöhtem Rauschen; einheitlicher Ansatz gegenüber einer Vielzahl von unterschiedlichen Problemen der Predictive Analytics; benötigen weniger statistische Annahmen und können komplexe Vorhersagen automatisieren. Nachteil von in der Predictive Analytics: die Vorhersagegüte könnte unter Umständen nur auf die Zeitperiode begrenzt sein, in welcher die Trainingsdaten gültig waren, mit denen das Modell trainiert wurde. 37 in der Predictive Analytics Anwendungsbeispiele 1) Bestimmung von Hospitalisierungswahrscheinlichkeiten (BARMER) Business Object Vorhersage derjenigen Versicherten mit der höchsten Wahrscheinlichkeit für einen Krankenhausaufenthalt. Daten Versicherteninformationen der BARMER im Jahr 2005 Ergebnisse eines Versichertenklassifikationssystems als zusätzliche Input Faktoren Modell Predictive Model Algorithmen Entscheidungsbaum und Ergebnis höchste Trefferquote der vorgestellten Modelle liegt bei 67 Prozent für ein Prozent der Versichertenpopulation mit der höchsten Hospitalisierungswahrscheinlichkeit (Vorhersagemodell mit Algorithmus) mehr als dreifach besseres Ergebnis im Vergleich zu einer Auswahl auf der Basis allgemeiner Diagnosefilter Evaluierung der Modelle hat gezeigt, dass diese stabil sind und daher auf Nachfolgejahre angewandt werden können. Dadurch können die Versicherten in Zukunft mit einer hohen Kosteneffizienz angesprochen und einer Steuerung zugewiesen werden. 38 TDWI

20 in der Predictive Analytics Anwendungsbeispiele 1) Bestimmung von Hospitalisierungswahrscheinlichkeiten (BARMER) Rolle der künstlichen neuronalen Netze bei diesem Business Case: Modellrestriktionen spielen kaum eine Rolle gute Vorhersagegüte da es sich um ein nicht lineares Verfahren handelt, können keine Regeln identifiziert werden und es muss weiterhin ein Entscheidungsbaum mitverwendet werden. die Prognosewerte des können aber als Inputfaktor für den Entscheidungsbaum verwendet werden und somit dessen Qualität verbessern. 39 in der Predictive Analytics Anwendungsbeispiele 2) Zusammenhänge in den Kundenzufriedenheit und Kundenloyalität zwischen Low Cost und Full Service Airlines mittels Predictive Analytics (Malaysian Airlines/Air Asia) Business Object Daten Modell Algorithmen Da eine gute Service Qualität zu höheren Profiten führt, wurden die Zusammenhänge bzgl. der Kundenzufriedenheit nach SERVQUAL Gap 5 Model untersucht Fragebogenuntersuchung mit einer Stichprobengröße von 350 Befragten Messung von 7 Variablen im Modell Strukturgleichungsmodell (latente Variablen: Kundenzufriedenheit und Kundenloyalität) Maximum Likelihood Analyse (MLE), (MLP mit feed forward Backpropagation) Ergebnis Der MLE Ansatz erkennt nur lineare Ansätze in den Daten, decken jedoch auch nicht lineare Zusammenhänge auf Hohe Vorhersagegüte des Ansatzes Die Verwendung des Ansatzes zusätzlich zur statistischen Betrachtung bietet ein ganzheitlicheres Verständnis Die Schwächen des statistischen Ansatzes werden durch die Verwendung von ausgeglichen 40 TDWI

21 Vielen Dank! Fragen? freiberg.de 41 TDWI

Anwendungen der Business Analytics TDWI 2011 München 112. Europäische TDWI Konferenz

Anwendungen der Business Analytics TDWI 2011 München 112. Europäische TDWI Konferenz Anwendungen der Business Analytics TDWI 2011 München 112. Europäische TDWI Konferenz Dipl.- Wirt.-Inf. Claudia Koschtial Univ.-Prof. Dr. Carsten Felden E-Mail: carsten.felden@bwl.tu-freiberg.de Die Dozenten

Mehr

Konzepte der AI Neuronale Netze

Konzepte der AI Neuronale Netze Konzepte der AI Neuronale Netze Franz Wotawa Institut für Informationssysteme, Database and Artificial Intelligence Group, Technische Universität Wien Email: wotawa@dbai.tuwien.ac.at Was sind Neuronale

Mehr

Anwendung der Predictive Analytics

Anwendung der Predictive Analytics TDWI Konferenz mit BARC@TDWI Track 2014 München, 23. 25. Juni 2014 Anwendung der Predictive Analytics Prof. Dr. Carsten Felden Dipl. Wirt. Inf. Claudia Koschtial Technische Universität Bergakademie Freiberg

Mehr

Neuronale Netze. Anna Wallner. 15. Mai 2007

Neuronale Netze. Anna Wallner. 15. Mai 2007 5. Mai 2007 Inhalt : Motivation Grundlagen Beispiel: XOR Netze mit einer verdeckten Schicht Anpassung des Netzes mit Backpropagation Probleme Beispiel: Klassifikation handgeschriebener Ziffern Rekurrente

Mehr

Anwendung der Business Analytics

Anwendung der Business Analytics Anwendung der Business Analytics TDWI 2013 München Prof. Dr. Carsten Felden Dipl.-Wirt.-Inf. Claudia Koschtial Technische Universität Bergakademie Freiberg (Sachsen) Institut für Wirtschaftsinformatik

Mehr

Computational Intelligence 1 / 20. Computational Intelligence Künstliche Neuronale Netze Perzeptron 3 / 20

Computational Intelligence 1 / 20. Computational Intelligence Künstliche Neuronale Netze Perzeptron 3 / 20 Gliederung / Künstliche Neuronale Netze Perzeptron Einschränkungen Netze von Perzeptonen Perzeptron-Lernen Perzeptron Künstliche Neuronale Netze Perzeptron 3 / Der Psychologe und Informatiker Frank Rosenblatt

Mehr

BACKPROPAGATION & FEED-FORWARD DAS MULTILAYER PERZEPTRON

BACKPROPAGATION & FEED-FORWARD DAS MULTILAYER PERZEPTRON BACKPROPAGATION & FEED-FORWARD DAS MULTILAYER PERZEPTRON EINFÜHRUNG IN KÜNSTLICHE NEURONALE NETZE Modul Leitung Technischer Datenschutz und Mediensicherheit Nils Tekampe Vortrag Jasmin Sunitsch Abgabe

Mehr

Praktikum Computational Intelligence 2 Ulrich Lehmann, Johannes Brenig, Michael Schneider

Praktikum Computational Intelligence 2 Ulrich Lehmann, Johannes Brenig, Michael Schneider Praktikum Computational Intelligence 2 Ulrich Lehmann, Johannes Brenig, Michael Schneider Versuch: Training eines Künstlich Neuronalen Netzes (KNN) zur Approximation einer Kennlinie in JavaNNS 28.01.2008

Mehr

Was sind Neuronale Netze?

Was sind Neuronale Netze? Neuronale Netze Universität zu Köln SS 2010 Seminar: Künstliche Intelligenz II Dozent: Stephan Schwiebert Referenten: Aida Moradi, Anne Fleischer Datum: 23. 06. 2010 Was sind Neuronale Netze? ein Netzwerk

Mehr

Prognose von Kostenschwankungen mit Predictive Analytics DOAG 2016

Prognose von Kostenschwankungen mit Predictive Analytics DOAG 2016 Prognose von Kostenschwankungen mit Predictive Analytics DOAG 2016 CGI Deutschland Ltd. & Co. KG (Sulzbach) Alfred Stelzl (Lead Consultant Big Data Analytics) November 2016 CGI Group Inc. Agenda 2 Agenda

Mehr

Hannah Wester Juan Jose Gonzalez

Hannah Wester Juan Jose Gonzalez Neuronale Netze Supervised Learning Proseminar Kognitive Robotik (SS12) Hannah Wester Juan Jose Gonzalez Kurze Einführung Warum braucht man Neuronale Netze und insbesondere Supervised Learning? Das Perzeptron

Mehr

Wissensentdeckung in Datenbanken

Wissensentdeckung in Datenbanken Wissensentdeckung in Datenbanken Deep Learning (II) Nico Piatkowski und Uwe Ligges Informatik Künstliche Intelligenz 25.07.2017 1 von 14 Überblick Faltungsnetze Dropout Autoencoder Generative Adversarial

Mehr

Künstliche neuronale Netze

Künstliche neuronale Netze Künstliche neuronale Netze Eigenschaften neuronaler Netze: hohe Arbeitsgeschwindigkeit durch Parallelität, Funktionsfähigkeit auch nach Ausfall von Teilen des Netzes, Lernfähigkeit, Möglichkeit zur Generalisierung

Mehr

Modellierung mit künstlicher Intelligenz

Modellierung mit künstlicher Intelligenz Samuel Kost kosts@mailbox.tu-freiberg.de Institut für Numerische Mathematik und Optimierung Modellierung mit künstlicher Intelligenz Ein Überblick über existierende Methoden des maschinellen Lernens 13.

Mehr

Entwicklung einer Entscheidungssystematik für Data- Mining-Verfahren zur Erhöhung der Planungsgüte in der Produktion

Entwicklung einer Entscheidungssystematik für Data- Mining-Verfahren zur Erhöhung der Planungsgüte in der Produktion Entwicklung einer Entscheidungssystematik für Data- Mining-Verfahren zur Erhöhung der Planungsgüte in der Produktion Vortrag Seminararbeit David Pogorzelski Aachen, 22.01.2015 Agenda 1 2 3 4 5 Ziel der

Mehr

SKOPOS Webinar 22. Mai 2018

SKOPOS Webinar 22. Mai 2018 SKOPOS Webinar 22. Mai 2018 Marktforschung 2020: Künstliche Intelligenz und automatische Text Analysen? Christopher Harms, Consultant Research & Development 2 So? Terminator Exhibition: T-800 by Dick Thomas

Mehr

Neuronale Netze in der Phonetik: Feed-Forward Netze. Pfitzinger, Reichel IPSK, LMU München {hpt 14.

Neuronale Netze in der Phonetik: Feed-Forward Netze. Pfitzinger, Reichel IPSK, LMU München {hpt 14. Neuronale Netze in der Phonetik: Feed-Forward Netze Pfitzinger, Reichel IPSK, LMU München {hpt reichelu}@phonetik.uni-muenchen.de 14. Juli 2006 Inhalt Typisierung nach Aktivierungsfunktion Lernen in einschichtigen

Mehr

Einführung in Neuronale Netze

Einführung in Neuronale Netze Wintersemester 2005/2006 VO 181.138 Einführung in die Artificial Intelligence Einführung in Neuronale Netze Oliver Frölich Abteilung für Datenbanken und Artificial Intelligence Institut für Informationssysteme

Mehr

Künstliche Neuronale Netze

Künstliche Neuronale Netze Fakultät Informatik, Institut für Technische Informatik, Professur für VLSI-Entwurfssysteme, Diagnostik und Architektur Künstliche Neuronale Netze Hauptseminar Martin Knöfel Dresden, 16.11.2017 Gliederung

Mehr

Künstliche Intelligenz im Maschinen- und Anlagenbau Heilsbringer oder Hypebringer?

Künstliche Intelligenz im Maschinen- und Anlagenbau Heilsbringer oder Hypebringer? ASQF Automation Day 2018 - Predictive Analytics Künstliche Intelligenz im Maschinen- und Anlagenbau Heilsbringer oder Hypebringer? Vasilij Baumann Co-Founder/Co-CEO vasilij.baumann@instrunext.com +49 931

Mehr

Künstliche Neuronale Netze

Künstliche Neuronale Netze Künstliche Neuronale Netze als Möglichkeit, einer Maschine das Lesen beizubringen Anja Bachmann 18.12.2008 Gliederung 1. Motivation 2. Grundlagen 2.1 Biologischer Hintergrund 2.2 Künstliche neuronale Netze

Mehr

Der Sprung in die Zukunft! Einführung in neuronale Netzwerke

Der Sprung in die Zukunft! Einführung in neuronale Netzwerke Der Sprung in die Zukunft! Einführung in neuronale Netzwerke Inhalt 1. Warum auf einmal doch? 2. Welche Einsatzgebiete gibt es? 3. Was sind neuronale Netze und wie funktionieren sie? 4. Wie lernen neuronale

Mehr

Neuronale Netze (Konnektionismus)

Neuronale Netze (Konnektionismus) Einführung in die KI Prof. Dr. sc. Hans-Dieter Burkhard Daniel Göhring Vorlesung (Konnektionismus) sind biologisch motiviert können diskrete, reell-wertige und Vektor-wertige Funktionen berechnen Informationsspeicherung

Mehr

Machine Learning - Maschinen besser als das menschliche Gehirn?

Machine Learning - Maschinen besser als das menschliche Gehirn? Machine Learning - Maschinen besser als das menschliche Gehirn? Seminar Big Data Science Tobias Stähle 23. Mai 2014 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der

Mehr

Der Backpropagation-Algorithmus als Beispiel für Lernalgorithmen künstlicher neuronaler Netze Reinhard Eck 1

Der Backpropagation-Algorithmus als Beispiel für Lernalgorithmen künstlicher neuronaler Netze Reinhard Eck 1 Der Backpropagation-Algorithmus als Beispiel für Lernalgorithmen künstlicher neuronaler Netze 2.04.2006 Reinhard Eck Was reizt Informatiker an neuronalen Netzen? Wie funktionieren Gehirne höherer Lebewesen?

Mehr

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform.

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform. kurze Wiederholung der letzten Stunde: Neuronale Netze martin.loesch@kit.edu (0721) 608 45944 Labor Wissensrepräsentation Aufgaben der letzten Stunde Übersicht Neuronale Netze Motivation Perzeptron Multilayer

Mehr

Mustererkennung: Neuronale Netze. D. Schlesinger ()Mustererkennung: Neuronale Netze 1 / 12

Mustererkennung: Neuronale Netze. D. Schlesinger ()Mustererkennung: Neuronale Netze 1 / 12 Mustererkennung: Neuronale Netze D. Schlesinger ()Mustererkennung: Neuronale Netze 1 / 12 Feed-Forward Netze y 1 y 2 y m...... x 1 x 2 x n Output Schicht i max... Zwischenschicht i... Zwischenschicht 1

Mehr

MS SQL Server 2012 (4)

MS SQL Server 2012 (4) MS SQL Server 2012 (4) Data Mining, Analyse und multivariate Verfahren Marco Skulschus Jan Tittel Marcus Wiederstein Webseite zum Buch: http://vvwvv.comelio-medien.com/buch-kataiog/ms sql_server/ms sql

Mehr

Machine Learning. Dr. Bartholomäus Wissmath 3. Swiss Innovation Day

Machine Learning. Dr. Bartholomäus Wissmath 3. Swiss Innovation Day Machine Learning Dr. Bartholomäus Wissmath 3. Swiss Innovation Day Artificial Intelligence (AI) Teilgebiet der Informatik, welches sich mit der Automatisierung von intelligenten Verhalten und dem Maschinenlernen

Mehr

DOKUMENTENKLASSIFIKATION MIT MACHINE LEARNING

DOKUMENTENKLASSIFIKATION MIT MACHINE LEARNING DOKUMENTENKLASSIFIKATION MIT MACHINE LEARNING Andreas Nadolski Softwareentwickler andreas.nadolski@enpit.de Twitter: @enpit Blogs: enpit.de/blog medium.com/enpit-developer-blog 05.10.2018, DOAG Big Data

Mehr

6 Neuronale Modellierung: Der STAA-Ansatz

6 Neuronale Modellierung: Der STAA-Ansatz Bernd J. Kröger: Neuronale Sprachverarbeitung (Version 1.0.4) Seite 150 6 Neuronale Modellierung: Der STAA-Ansatz 6.1 Knoten: die STAA-Neuronensembles 6.1.1 Aktivierungslevel, Aktivierungsfunktion und

Mehr

Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs)

Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs) 6. Neuronale Netze Motivation Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs) Abstrakt betrachtet sind alle diese

Mehr

Neuronale Netze in der Phonetik: Grundlagen. Pfitzinger, Reichel IPSK, LMU München {hpt 24.

Neuronale Netze in der Phonetik: Grundlagen. Pfitzinger, Reichel IPSK, LMU München {hpt 24. Neuronale Netze in der Phonetik: Grundlagen Pfitzinger, Reichel IPSK, LMU München {hpt reichelu}@phonetik.uni-muenchen.de 24. Mai 2006 Inhalt Einführung Maschinelles Lernen Lernparadigmen Maschinelles

Mehr

Praktische Optimierung

Praktische Optimierung Wintersemester 27/8 Praktische Optimierung (Vorlesung) Prof. Dr. Günter Rudolph Fakultät für Informatik Lehrstuhl für Algorithm Engineering Metamodellierung Inhalt Multilayer-Perceptron (MLP) Radiale Basisfunktionsnetze

Mehr

6.2 Feed-Forward Netze

6.2 Feed-Forward Netze 6.2 Feed-Forward Netze Wir haben gesehen, dass wir mit neuronalen Netzen bestehend aus einer oder mehreren Schichten von Perzeptren beispielsweise logische Funktionen darstellen können Nun betrachten wir

Mehr

Neuronale Netze. Christian Böhm.

Neuronale Netze. Christian Böhm. Ludwig Maximilians Universität München Institut für Informatik Forschungsgruppe Data Mining in der Medizin Neuronale Netze Christian Böhm http://dmm.dbs.ifi.lmu.de/dbs 1 Lehrbuch zur Vorlesung Lehrbuch

Mehr

Analytic im Einsatz! Betrugserkennung auf Basis von Big Data. Karol Sobiech

Analytic im Einsatz! Betrugserkennung auf Basis von Big Data. Karol Sobiech Analytic im Einsatz! Betrugserkennung auf Basis von Big Data Karol Sobiech 2 ACCENTURE GLOBAL DELIVERY NETWORK 3 4 AGENDA 1 MOTIVATION & ZIEL 2 METHODEN FRAUD MANAGEMENT SYSTEM 4 ARCHITEKTUR & TOOLS 3

Mehr

Promotoren des Data Mining im betrieblichen Umfeld

Promotoren des Data Mining im betrieblichen Umfeld Gliederung MSS. Einführung in die Management Support Systeme (MSS) 2. Data Warehouse als Basis-Konzept aktueller MSS 3. Business Intelligence (BI) als Weiterführung des DW-Ansatzes 4. XML und BI 5. Grundlagen

Mehr

Künstliche Neuronale Netze

Künstliche Neuronale Netze Inhalt (Biologische) Neuronale Netze Schwellenwertelemente Allgemein Neuronale Netze Mehrschichtiges Perzeptron Weitere Arten Neuronaler Netze 2 Neuronale Netze Bestehend aus vielen Neuronen(menschliches

Mehr

Grundlagen Neuronaler Netze

Grundlagen Neuronaler Netze Grundlagen Neuronaler Netze Neuronen, Aktivierung, Output, Netzstruktur, Lernziele, Training, Grundstruktur Der Begriff neuronales Netz(-werk) steht immer für künstliche neuronale Netzwerke, wenn nicht

Mehr

Neuroinformatik. Übung 1

Neuroinformatik. Übung 1 Neuroinformatik Übung 1 Fabian Bürger Raum: BC419, Tel.: 0203-379 - 3124, E-Mail: fabian.buerger@uni-due.de Fabian Bürger (fabian.buerger@uni-due.de) Neuroinformatik: Übung 1 1 / 27 Organisatorisches Neuroinformatik:

Mehr

Mustererkennung und Klassifikation

Mustererkennung und Klassifikation Mustererkennung und Klassifikation WS 2007/2008 Fakultät Informatik Technische Informatik Prof. Dr. Matthias Franz mfranz@htwg-konstanz.de www-home.htwg-konstanz.de/~mfranz/heim.html Grundlagen Überblick

Mehr

Die Datenmatrix für Überwachtes Lernen

Die Datenmatrix für Überwachtes Lernen Die Datenmatrix für Überwachtes Lernen X j j-te Eingangsvariable X = (X 0,..., X M 1 ) T Vektor von Eingangsvariablen M Anzahl der Eingangsvariablen N Anzahl der Datenpunkte Y Ausgangsvariable x i = (x

Mehr

Vergleich von SVM und Regel- und Entscheidungsbaum-Lernern

Vergleich von SVM und Regel- und Entscheidungsbaum-Lernern Vergleich von SVM und Regel- und Entscheidungsbaum-Lernern Chahine Abid Bachelor Arbeit Betreuer: Prof. Johannes Fürnkranz Frederik Janssen 28. November 2013 Fachbereich Informatik Fachgebiet Knowledge

Mehr

Vorlesung Digitale Bildverarbeitung Sommersemester 2013

Vorlesung Digitale Bildverarbeitung Sommersemester 2013 Vorlesung Digitale Bildverarbeitung Sommersemester 2013 Sebastian Houben (Marc Schlipsing) Institut für Neuroinformatik Inhalt Crash-Course in Machine Learning Klassifikationsverfahren Grundsätzliches

Mehr

DATA SCIENCE GEBEN SIE IHREN DATEN BEDEUTUNG

DATA SCIENCE GEBEN SIE IHREN DATEN BEDEUTUNG DATA SCIENCE GEBEN SIE IHREN DATEN BEDEUTUNG ... DAMIT DATA SCIENCE FÜR DEN ANWENDER KEINE WISSENSCHAFT, SONDERN EINFACH FASZINIEREND IST! INFONEA ist die erste Self-Service Data-Science-Lösung, mit der

Mehr

Maschinelles Lernen. mit und. Effizienz steigern in Massenprozessen. Jan Schinnerling. eworld 2019 Maschinelles Lernen

Maschinelles Lernen. mit und. Effizienz steigern in Massenprozessen. Jan Schinnerling. eworld 2019 Maschinelles Lernen Maschinelles Lernen mit und Effizienz steigern in Massenprozessen Jan Schinnerling eworld 2019 Maschinelles Lernen Was ist maschinelles Lernen? 2 Grundidee: einem System durch Beispieldaten eine Fähigkeit

Mehr

Mathematische Grundlagen III

Mathematische Grundlagen III Mathematische Grundlagen III Maschinelles Lernen III: Clustering Vera Demberg Universität des Saarlandes 7. Juli 202 Vera Demberg (UdS) Mathe III 7. Juli 202 / 35 Clustering vs. Klassifikation In den letzten

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Niels Landwehr, Jules Rasetaharison, Christoph Sawade, Tobias Scheffer

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Niels Landwehr, Jules Rasetaharison, Christoph Sawade, Tobias Scheffer Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Maschinelles Lernen Niels Landwehr, Jules Rasetaharison, Christoph Sawade, Tobias Scheffer Organisation Vorlesung/Übung, praktische

Mehr

Echtzeitfähige Algorithmen für markerloses Tracking und Umfelderkennung , Dr.-Ing. Steffen Herbort, A.R.T. GmbH

Echtzeitfähige Algorithmen für markerloses Tracking und Umfelderkennung , Dr.-Ing. Steffen Herbort, A.R.T. GmbH Echtzeitfähige Algorithmen für markerloses Tracking und Umfelderkennung 26.10.2016, TP 2: Arbeiten von A.R.T. TP2: Tracking und Umfelderkennung Markerloses Tracking texturierte Objekte Umfelderkennung

Mehr

Perzeptronen. Katrin Dust, Felix Oppermann Universität Oldenburg, FK II - Department für Informatik Vortrag im Rahmen des Proseminars 2004

Perzeptronen. Katrin Dust, Felix Oppermann Universität Oldenburg, FK II - Department für Informatik Vortrag im Rahmen des Proseminars 2004 Perzeptronen Katrin Dust, Felix Oppermann Universität Oldenburg, FK II - Department für Informatik Vortrag im Rahmen des Proseminars 2004 1/25 Gliederung Vorbilder Neuron McCulloch-Pitts-Netze Perzeptron

Mehr

Andreas Scherer. Neuronale Netze. Grundlagen und Anwendungen. vieweg

Andreas Scherer. Neuronale Netze. Grundlagen und Anwendungen. vieweg Andreas Scherer Neuronale Netze Grundlagen und Anwendungen vieweg Inhaltsverzeichnis Vorwort 1 1 Einführung 3 1.1 Was ist ein neuronales Netz? 3 1.2 Eigenschaften neuronaler Netze 5 1.2.1 Allgemeine Merkmale

Mehr

Neural Networks: Architectures and Applications for NLP

Neural Networks: Architectures and Applications for NLP Neural Networks: Architectures and Applications for NLP Session 02 Julia Kreutzer 8. November 2016 Institut für Computerlinguistik, Heidelberg 1 Overview 1. Recap 2. Backpropagation 3. Ausblick 2 Recap

Mehr

Automatische Erkennung und Klassifikation von Körperhaltungen und Aktivitäten

Automatische Erkennung und Klassifikation von Körperhaltungen und Aktivitäten Automatische Erkennung und Klassifikation von Körperhaltungen und Aktivitäten Dipl.-Ing. Daniel Tantinger Fraunhofer Institut für Integrierte Schaltungen IIS, Erlangen, Deutschland Automatische Erkennung

Mehr

Logistische Regression

Logistische Regression Logistische Regression Markus Kalisch 30.09.2014 1 Big Picture: Statistisches Lernen Supervised Learning (X,Y) Unsupervised Learning X VL 7, 11, 12 Regression Y kontinuierlich VL 1, 2, 4, 5, 6 Klassifikation

Mehr

Einführung in das Maschinelle Lernen I

Einführung in das Maschinelle Lernen I Einführung in das Maschinelle Lernen I Vorlesung Computerlinguistische Techniken Alexander Koller 26. Januar 2015 Maschinelles Lernen Maschinelles Lernen (Machine Learning): äußerst aktiver und für CL

Mehr

Maschinelles Lernen und Data Mining

Maschinelles Lernen und Data Mining Semestralklausur zur Vorlesung Maschinelles Lernen und Data Mining Prof. J. Fürnkranz / Dr. G. Grieser Technische Universität Darmstadt Wintersemester 2004/05 Termin: 14. 2. 2005 Name: Vorname: Matrikelnummer:

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Maschinelles Lernen

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Maschinelles Lernen Universität Potsdam Institut für Informatik Lehrstuhl Niels Landwehr, Silvia Makowski, Christoph Sawade, Tobias Scheffer Organisation Vorlesung/Übung, praktische Informatik. 4 SWS. Übung: Di 10:00-11:30

Mehr

Einführung in die Computerlinguistik

Einführung in die Computerlinguistik Einführung in die Computerlinguistik Neuronale Netze WS 2014/2015 Vera Demberg Neuronale Netze Was ist das? Einer der größten Fortschritte in der Sprachverarbeitung und Bildverarbeitung der letzten Jahre:

Mehr

Institut für angewandte Datenanalyse GmbH

Institut für angewandte Datenanalyse GmbH Institut für angewandte Datenanalyse GmbH Überblick Vorstellung Marktforschung oder Data Mining? Database Enrichment Machine-Learning-Verfahren Zwei Fallstudien Ausblick und Fazit Vorstellung IfaD Institut

Mehr

Aufbau und Beschreibung Neuronaler Netzwerke

Aufbau und Beschreibung Neuronaler Netzwerke Aufbau und Beschreibung r 1 Inhalt Biologisches Vorbild Mathematisches Modell Grundmodelle 2 Biologisches Vorbild Das Neuron Grundkomponenten: Zellkörper (Soma) Zellkern (Nukleus) Dendriten Nervenfaser

Mehr

Maschinelles Lernen I Einführung. Uwe Reichel IPS, LMU München 22. April 2008

Maschinelles Lernen I Einführung. Uwe Reichel IPS, LMU München 22. April 2008 Maschinelles Lernen I Einführung Uwe Reichel IPS, LMU München reichelu@phonetik.uni-muenchen.de 22. April 2008 Inhalt Einführung Lernen Maschinelle Lernverfahren im Überblick Phonetische Anwendungsbeispiele

Mehr

Predictive Analytics. Warum datenbasierte Vorhersagen kein Hexenwerk sind. ASQF Automation Day Dr. Stefano Signoriello

Predictive Analytics. Warum datenbasierte Vorhersagen kein Hexenwerk sind. ASQF Automation Day Dr. Stefano Signoriello Predictive Analytics Warum datenbasierte Vorhersagen kein Hexenwerk sind Dr. Stefano Signoriello Seite 1 Inhalte des Vortrags Analytics Von Daten zu Wissen Von Nachsicht über Einsicht zu Voraussicht Descriptive,

Mehr

LDA-based Document Model for Adhoc-Retrieval

LDA-based Document Model for Adhoc-Retrieval Martin Luther Universität Halle-Wittenberg 30. März 2007 Inhaltsverzeichnis 1 2 plsi Clusterbasiertes Retrieval 3 Latent Dirichlet Allocation LDA-basiertes Retrieval Komplexität 4 Feineinstellung Parameter

Mehr

Neuronale Netze. Gehirn: ca Neuronen. stark vernetzt. Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor)

Neuronale Netze. Gehirn: ca Neuronen. stark vernetzt. Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor) 29 Neuronale Netze Gehirn: ca. 10 11 Neuronen stark vernetzt Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor) Mustererkennung in 0.1s 100 Schritte Regel 30 Was ist ein künstl. neuronales Netz? Ein

Mehr

Mann-Whitney-U-Test: Tiefenstufen

Mann-Whitney-U-Test: Tiefenstufen Mann-Whitney-U-Test: Tiefenstufen Variable Al Ca Cl DOC Fe K Mg Mn Na NO3 ph Si SO4 El. Leitfähigkeit Mann-Whitney U-Test (Piezometer.sta) Nach Var.: Tiefe Markierte Tests signifikant ab p

Mehr

Neuronale Netze (I) Biologisches Neuronales Netz

Neuronale Netze (I) Biologisches Neuronales Netz Neuronale Netze (I) Biologisches Neuronales Netz Im menschlichen Gehirn ist ein Neuron mit bis zu 20.000 anderen Neuronen verbunden. Milliarden von Neuronen beteiligen sich simultan an der Verarbeitung

Mehr

Jürgen Lesti. Analyse des Anbieterwechsels. mit Hidden-Markov-Modellen. Empirische Untersuchung im Retail Banking. Verlag Dr.

Jürgen Lesti. Analyse des Anbieterwechsels. mit Hidden-Markov-Modellen. Empirische Untersuchung im Retail Banking. Verlag Dr. Jürgen Lesti Analyse des Anbieterwechsels mit Hidden-Markov-Modellen Empirische Untersuchung im Retail Banking Verlag Dr. Kovac Hamburg 2015 XIII Inhaltsverzeichnis Geleitwort Vorwort Danksagung Abbildungsverzeichnis

Mehr

Entscheidungsbäume aus großen Datenbanken: SLIQ

Entscheidungsbäume aus großen Datenbanken: SLIQ Entscheidungsbäume aus großen Datenbanken: SLIQ C4.5 iteriert häufig über die Trainingsmenge Wie häufig? Wenn die Trainingsmenge nicht in den Hauptspeicher passt, wird das Swapping unpraktikabel! SLIQ:

Mehr

Analytics Der Weg zu datengetriebenen Geschäftsprozessen

Analytics Der Weg zu datengetriebenen Geschäftsprozessen Analytics Der Weg zu datengetriebenen Geschäftsprozessen Dr.-Ing. Philipp Gölzer 1 Ziel der Digitalisierung ist die Realisierung datengetriebener Geschäfts-/Entscheidungsprozesse Ziele Höhere Qualität

Mehr

Künstliche Neuronale Netze und Data Mining

Künstliche Neuronale Netze und Data Mining Künstliche Neuronale Netze und Data Mining Catherine Janson, icasus GmbH Heidelberg Abstract Der Begriff "künstliche Neuronale Netze" fasst Methoden der Informationstechnik zusammen, deren Entwicklung

Mehr

Wissensentdeckung in Datenbanken

Wissensentdeckung in Datenbanken Wissensentdeckung in Datenbanken Deep Learning Nico Piatkowski und Uwe Ligges Informatik Künstliche Intelligenz 20.07.2017 1 von 11 Überblick Künstliche Neuronale Netze Motivation Formales Modell Aktivierungsfunktionen

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB

INTELLIGENTE DATENANALYSE IN MATLAB INTELLIGENTE DATENANALYSE IN MATLAB Einführungsveranstaltung Überblick Organisation Literatur Inhalt und Ziele der Vorlesung Beispiele aus der Praxis 2 Organisation Vorlesung/Übung + Projektarbeit. 4 Semesterwochenstunden.

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB. Einführungsveranstaltung

INTELLIGENTE DATENANALYSE IN MATLAB. Einführungsveranstaltung INTELLIGENTE DATENANALYSE IN MATLAB Einführungsveranstaltung Überblick Organisation. Literatur. Inhalt und Ziele der Vorlesung. Beispiele aus der Praxis. 2 Organisation Vorlesung/Übung + Projektarbeit.

Mehr

Intelligente Algorithmen Einführung in die Technologie

Intelligente Algorithmen Einführung in die Technologie Intelligente Algorithmen Einführung in die Technologie Dr. KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Natürlich sprachliche

Mehr

11. Neuronale Netze 1

11. Neuronale Netze 1 11. Neuronale Netze 1 Einführung (1) Ein künstliches neuronales Netz ist vom Konzept her eine Realisierung von miteinander verschalteten Grundbausteinen, sogenannter Neuronen, welche in rudimentärer Form

Mehr

Modellbildung und Simulation

Modellbildung und Simulation Modellbildung und Simulation 6. Vorlesung Wintersemester 2007/2008 Klaus Kasper Value at Risk (VaR) Gaußdichte Gaußdichte der Normalverteilung: f ( x) = 1 2π σ x e 2 2 x ( x µ ) / 2σ x Gaußdichte der Standardnormalverteilung:

Mehr

Rekurrente / rückgekoppelte neuronale Netzwerke

Rekurrente / rückgekoppelte neuronale Netzwerke Rekurrente / rückgekoppelte neuronale Netzwerke Forschungsseminar Deep Learning 2018 Universität Leipzig 12.01.2018 Vortragender: Andreas Haselhuhn Neuronale Netzwerke Neuron besteht aus: Eingängen Summenfunktion

Mehr

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Maschinelles Lernen: Neuronale Netze Ideen der Informatik Kurt Mehlhorn Adrian Neumann 16. Januar 2014 Übersicht Biologische Inspiration Stand der Kunst in Objekterkennung auf Bildern Künstliche Neuronale

Mehr

DISSERTATION. Nichtlineare Analyse und Klassifikation von instationären Biosignalen mit Anwendung in der Kognitionsforschung

DISSERTATION. Nichtlineare Analyse und Klassifikation von instationären Biosignalen mit Anwendung in der Kognitionsforschung Technische Universität Ilmenau DISSERTATION Nichtlineare Analyse und Klassifikation von instationären Biosignalen mit Anwendung in der Kognitionsforschung zur Erlangung des akademischen Grades Doktor-Ingenieur

Mehr

Kapitel 10. Maschinelles Lernen Lineare Regression. Welche Gerade? Problemstellung. Th. Jahn. Sommersemester 2017

Kapitel 10. Maschinelles Lernen Lineare Regression. Welche Gerade? Problemstellung. Th. Jahn. Sommersemester 2017 10.1 Sommersemester 2017 Problemstellung Welche Gerade? Gegeben sind folgende Messungen: Masse (kg) 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 Kraft (N) 1.6 2.2 3.2 3.0 4.9 5.7 7.1 7.3 8.1 Annahme: Es gibt eine Funktion

Mehr

Neuronale Netze Aufgaben 3

Neuronale Netze Aufgaben 3 Neuronale Netze Aufgaben 3 martin.loesch@kit.edu (0721) 608 45944 MLNN IN FLOOD3 2 Multi Layer Neural Network (MLNN) Netzaufbau: mehrere versteckte (innere) Schichten Lernverfahren: Backpropagation-Algorithmus

Mehr

Projektgruppe. Text Labeling mit Sequenzmodellen

Projektgruppe. Text Labeling mit Sequenzmodellen Projektgruppe Enes Yigitbas Text Labeling mit Sequenzmodellen 4. Juni 2010 Motivation Möglichkeit der effizienten Verarbeitung von riesigen Datenmengen In vielen Bereichen erwünschte automatisierte Aufgabe:

Mehr

Datenorientierte SA. Aufbau und Grundlagen. Aufbau und Grundlagen. Aufbau und Grundlagen. Was sind neuronale Netze?

Datenorientierte SA. Aufbau und Grundlagen. Aufbau und Grundlagen. Aufbau und Grundlagen. Was sind neuronale Netze? Datenorientierte SA Was sind neuronale Netze? Neuronale Netze: Grundlagen und Anwendungen Neuronale Netze bilden die Struktur eines Gehirns oder eines Nervensystems ab Andreas Rauscher 0651993 Damir Dudakovic

Mehr

KNN-Methode zur Einschätzung von Veränderungen des Salzgehaltes in Ästuaren

KNN-Methode zur Einschätzung von Veränderungen des Salzgehaltes in Ästuaren KNN-Methode zur Einschätzung von Veränderungen des Salzgehaltes in Ästuaren Holger Rahlf; Reiner Schubert www.baw.de Künstlich Neuronales Netz Gliederung Einleitung Grundlagen Möglichkeit und Grenzen Anwendung

Mehr

EFME Aufsätze ( Wörter) Der Aufbau von Entscheidungsbäumen...1

EFME Aufsätze ( Wörter) Der Aufbau von Entscheidungsbäumen...1 EFME Aufsätze (150 200 Wörter) Der Aufbau von Entscheidungsbäumen...1 PCA in der Gesichtserkennung... 2 Bias, Varianz und Generalisierungsfähigkeit... 3 Parametrische und nicht-parametrische Lernverfahren:

Mehr

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform.

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform. kurze Wiederholung der letzten Stunde: Neuronale Netze martin.loesch@kit.edu (0721) 608 45944 Labor Wissensrepräsentation Neuronale Netze Motivation Perzeptron Übersicht Multilayer Neural Networks Grundlagen

Mehr

(hoffentlich kurze) Einführung: Neuronale Netze. Dipl.-Inform. Martin Lösch. (0721) Dipl.-Inform.

(hoffentlich kurze) Einführung: Neuronale Netze. Dipl.-Inform. Martin Lösch. (0721) Dipl.-Inform. (hoffentlich kurze) Einführung: martin.loesch@kit.edu (0721) 608 45944 Überblick Einführung Perzeptron Multi-layer Feedforward Neural Network MLNN in der Anwendung 2 EINFÜHRUNG 3 Gehirn des Menschen Vorbild

Mehr

Kann SAS Ihre Handschrift lesen? Machine Learning am Beispiel von Stacked Denoising Autoencoders

Kann SAS Ihre Handschrift lesen? Machine Learning am Beispiel von Stacked Denoising Autoencoders Kann SAS Ihre Handschrift lesen? Machine Learning am Beispiel von Stacked Denoising Autoencoders Gerhard Svolba SAS Austria Mariahilfer Straße 116 A-1070 Wien Sastools.by.gerhard@gmx.net Zusammenfassung

Mehr

Case-Based Reasoning und anderen Inferenzmechanismen

Case-Based Reasoning und anderen Inferenzmechanismen Case-Based Reasoning und anderen Inferenzmechanismen Daniel Müller 21 April 2006 DM () CBR und Inferenz 21 April 2006 1 / 31 Contents 1 Einleitung 2 Inferenzmechanismen Statistische Verfahren Data Mining

Mehr

Objekt Attributwerte Klassifizierung X Y

Objekt Attributwerte Klassifizierung X Y AUFGABE : Entscheidungsbäume Betrachten Sie das folgende Klassifizierungsproblem: bjekt Attributwerte Klassifizierung X Y A 3 B 2 3 + C 2 D 3 3 + E 2 2 + F 3 G H 4 3 + I 3 2 J 4 K 2 L 4 2 ) Bestimmen Sie

Mehr

Weitere Untersuchungen hinsichtlich der Anwendung von KNN für Solvency 2. Tom Schelthoff

Weitere Untersuchungen hinsichtlich der Anwendung von KNN für Solvency 2. Tom Schelthoff Weitere Untersuchungen hinsichtlich der Anwendung von KNN für Solvency 2 Tom Schelthoff 30.11.2018 Inhaltsverzeichnis Deep Learning Seed-Stabilität Regularisierung Early Stopping Dropout Batch Normalization

Mehr

Neuronale Netze (Konnektionismus) Einführung in die KI. Beispiel-Aufgabe: Schrifterkennung. Biologisches Vorbild. Neuronale Netze.

Neuronale Netze (Konnektionismus) Einführung in die KI. Beispiel-Aufgabe: Schrifterkennung. Biologisches Vorbild. Neuronale Netze. Einführung in die KI Prof. Dr. sc. Hans-Dieter Burkhard Vorlesung (Konnektionismus) sind biologisch motiviert können diskrete, reell-wertige und Vektor-wertige Funktionen berechnen Informationsspeicherung

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Maschinelles Lernen. Tobias Scheffer Michael Brückner

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Maschinelles Lernen. Tobias Scheffer Michael Brückner Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Maschinelles Lernen Tobias Scheffer Michael Brückner Organisation Vorlesung/Übung, praktische Informatik. 4 SWS. Übung: Mo 10:00-11:30

Mehr

Data Mining und Statistik: Gemeinsamkeiten und Unterschiede. Daniel Meschenmoser

Data Mining und Statistik: Gemeinsamkeiten und Unterschiede. Daniel Meschenmoser Data Mining und Statistik: Gemeinsamkeiten und Unterschiede Daniel Meschenmoser Übersicht Gemeinsamkeiten von Data Mining und Statistik Unterschiede zwischen Data Mining und Statistik Assoziationsregeln

Mehr

Vorlesung. Data und Web Mining. Kurzinformation zur. Univ.-Prof. Dr. Ralph Bergmann. Lehrstuhl für Wirtschaftsinformatik II

Vorlesung. Data und Web Mining. Kurzinformation zur. Univ.-Prof. Dr. Ralph Bergmann.  Lehrstuhl für Wirtschaftsinformatik II Kurzinformation zur Vorlesung Data und Web Mining Univ.-Prof. Dr. Ralph Bergmann www.wi2.uni-trier.de - I - 1 - Die Ausgangssituation (1) Unternehmen und Organisationen haben enorme Datenmengen angesammelt

Mehr

Globale und Individuelle Schmerz-Klassifikatoren auf Basis relationaler Mimikdaten

Globale und Individuelle Schmerz-Klassifikatoren auf Basis relationaler Mimikdaten Globale und Individuelle Schmerz-Klassifikatoren auf Basis relationaler Mimikdaten M. Siebers 1 U. Schmid 2 1 Otto-Friedrich-Universität Bamberg 2 Fakultät für Wirtschaftsinformatik und Angewandte Informatik

Mehr

Perzeptronen. Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg

Perzeptronen. Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg Perzeptronen Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl Informatik 8) Perzeptronen 1 / 22 Gliederung 1 Schwellwert-Logik (MCCULLOCH-PITTS-Neuron)

Mehr