Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit

Größe: px
Ab Seite anzeigen:

Download "Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit"

Transkript

1 Mengen! Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor)! Notation 1. Aufzählung aller Elemente: { 1, { 2 }, { 3, 4 }, { 5 } } 1. Beschreibung der Eigenschaften der Elemente: { x x mod 2 = 0 } Informell wird auch geschrieben: { 2, 4, 6, 8, }! (Nicht-) Elemente einer Menge { 3, 4 } " { 1, { 2 }, { 3, 4 }, { 5 } } 3! { 1, { 2 }, { 3, 4 }, { 5 } }! Grundprinzipien Axiom der Extensionalität: Zwei Mengen A und B sind genau dann gleich, wenn sie die gleichen Elemente enthalten. A = B ) ( 'x : x " A ) x " B ) Beispiel: { 1, 2, 3 } = { n n "! # n < 4 } Axiom der Komprehension: Für jede Eigenschaft können wir eine Menge bilden, die genau die Elemente enthält, die diese Eigenschaft haben. Eigenschaften! Mengenzugehörigkeit! Teilmengen 'x : ( x " { a 1, a n } ) x = a 1 % % x = a n ) 'x : ( x " { y P(y) } ) P(x) ) Die Menge T heisst eine (unechte) Teilmenge der Menge A, wenn jedes Element, das in der Teilmenge T liegt, auch in der Menge A liegt: T ( A ) ( 'x : x " T * x " A ) Beispiele: { 2 } ( { 1, 2 } { 1, 2 } ( { 1, 2 } Die Menge T heisst eine echte Teilmenge der Menge A, wenn T eine Teilmenge von A, aber nicht gleich A ist: T + A ) ( 'x : x " T * x " A ) # T " A Beispiel: { 2 } + { 1, 2 } Mengen, Relationen, Funktionen 1 Mengen, Relationen, Funktionen 2 Prominente Mengen!! = Menge der natürlichen Zahlen ohne 0! = { 1, 2, 3, }!! 0 = Menge der natürlichen Zahlen mit 0! 0 = { 0, 1, 2, 3, }! " = Menge der ganzen Zahlen " = { 0, 1, -1, 2, -2, 3, -3, }! # = Menge der rationalen Zahlen # = { a / b a " " # b "! }! $ = Menge der reellen Zahlen! % = Menge der komplexen Zahlen Spezielle Mengen (1)! Durchschnittsmenge Der Durchschnitt zweier Mengen A und B ist die Menge aller Elemente, die sowohl in A als auch in B enthalten sind.! Vereinigungsmenge A! B = { x x " A # x " B } Die Vereinigung zweier Mengen A und B ist die Menge aller Elemente, die in A oder in B enthalten sind.! Leere Menge A $ B = { x x " A % x " B } Die leere Menge ist die Menge, die kein Element enthält. Sie wird & oder {} geschrieben:! Komplementärmenge & = { x x! x } oder'x : x! & Ist eine Grundmenge G und eine Menge A mit A ( G gegeben, so ist die Komplementärmenge A c definiert durch: A c = { x x! A # x " G } Mengen, Relationen, Funktionen 3 Mengen, Relationen, Funktionen 4

2 Spezielle Mengen (2)! Potenzmenge Sei A eine Menge. Die Potenzmenge einer beliebigen Menge A ist die Menge P(A) aller Teilmengen von A. P(A) = { U U ( A } Beispiel: P( { 1, 2 } ) = { &, { 1 }, { 2 }, { 1, 2 } }! Differenzmenge Seien A und B beliebige Mengen. Die Differenz A B, gesprochen A minus B, ist die Menge aller Elemente, die in A aber nicht in B liegen. A - B = { x x " A # x! B } Beispiel: { 1, 2, 3 } - { 3, 4 } = { 1, 2 }! Symmetrische Differenzmenge Die symmetrische Differenz zweier Mengen A und B ist die Menge A - B aller Elemente, die genau in einer der beiden Mengen liegen. A - B = ( A $ B ) ( A! B ) Beispiel: { 1, 2, 3 } - { 3, 4 } = { 1, 2, 4 } Weitere Eigenschaften! Kardinalität einer Menge Sei A eine Menge mit endlich vielen Elementen. Die Anzahl A nennt man die Mächtigkeit oder Kardinalität der Menge. Zwei endliche Mengen haben dieselbe Kardinalität, wenn die Anzahl Elemente in beiden Mengen gleich ist. Die Kardinalität von unendlichen Mengen wird später definiert.! Disjunktheit Zwei Mengen A und B heissen disjunkt, wenn ihr Durchschnitt leer ist.! Paarweise Disjunktheit A! B = & Eine Menge X von Mengen heisst paarweise disjunkt, wenn der Durchschnitt von jedem Paar von Mengen leer ist. 'A, B " X : A! B * A! B = & Mengen, Relationen, Funktionen 5 Mengen, Relationen, Funktionen 6 Familien von Mengen Mengengesetze! Familie von Mengen Menge M von Mengen A i, die durch eine Indexmenge I indiziert sind: 'i : i " I *.A i " M! Vereinigung $ M = $ i " I A i = { x.i " I : x " A i }! Durchschnitt! M =! i " I A i = { x 'i " I : x " A i } Idempotenz A! A = A A $ A = A Kommutativität A! B = B! A A $ B = B $ A Assoziativität (A! B)! C = A! (B! C) (A $ B) $ C = A $ (B $ C) Distributivität A! (B $ C) = (A! B) $ (A! C) A $ (B! C) = (A $ B)! (A $ C) Absorption A! (A $ B) = A A $ (A! B) = A Reflexivität A ( A A, A Kontraktion (A! B) ( A (A $ B), A Monotonie A ( B * A! C ( B! C A, B * A $ C, B $ C Existiert eine Grundmenge G mit A,B ( G, so gelten ferner: Neutrale Elemente A! G = A A $ & = A Invariable Elemente A! & = & A $ G = G Extremalität & ( A G, A De Morgansche (A! B) c = A c $ B c (A$ B) c = A c! B c Regeln Komplement A c $ A = G A c! A = & Mengen, Relationen, Funktionen 7 Mengen, Relationen, Funktionen 8

3 Beweise in der Mengenlehre! Venn Diagramme: graphische Veranschaulichung; allenfalls mit Fallunterscheidungen! Direkter Beweis durch Anwendung von Definitionen, Axiomen und Gesetzen.! Indirekter Beweis durch Negation der Aussage und Angabe eines Gegenbeispiels.! Um A = B zu beweisen, beweise man A ( B und B ( A.! Transfer Methode: Eine mengentheoretische Formel wird in eine äquivalente aussagenlogische Formel umgewandelt, die dann bewiesen wird. Diese Methode beruht auf der Verwandtschaft zwischen Aussagenlogik und Mengenlehre, die damit zu tun hat, dass beide Systeme Boole sche Algebren sind. Mengenlehre Aussagenlogik $ % ( *! #, 0 Direkter Beweis: & ist Teilmenge jeder Menge! Gegeben: 1. T ( A ) 'x : x " T * x " A 2. 'x : x! &! Zu beweisen: & ( A! Beweis: & ( A ) 'x : x " & * x " A (1) & ( A ) 'x : " * x " A (2) & ( A )/ (3) (" ist die immer falsche Aussage, / die immer wahre) (1) Definition von (, (2) Axiom für &, x " & ist für jedes x falsch, (3) " * Q ist für jede Aussage Q wahr Mengen, Relationen, Funktionen 9 Mengen, Relationen, Funktionen 10 Indirekter Beweis: & ist nicht echte Teilmenge jeder Menge! Gegeben: 1. T # A ) ( 'x : x " T * x " A ) # T " A 2. 'x : x! &! Zu beweisen:! Beweis: ( & # A ) Annahme des Gegenteils: & # A Gegenbeispiel: A = & Einsetzen in der Definition: & # & ) ( 'x : x " & * x " & ) # & " & ( 'x : x " & * x " & ) # & " & ist ein Widerspruch. Direkter Beweis: ( A $ B ) ( A! B ) = ( A B ) $ ( B A )! Gegeben: Die Definitionen von!, $,,!, "! Beweis: ( A $ B ) ( B! A ) = { x x 1 A % x 1 B } { x x 1 A # x 1 B } = (1) { x ( x 1 A % x 1 B ) # ( x 1 A # x 1 B ) } = (2) { x ( x 1 A % x 1 B ) # ( x! A % x! B ) } = (3) { x ( x 1 A # x! A ) % ( x 1 A # x! B ) % ( x 1 B # x! A ) % ( x 1 B # x! B ) } = (4) { x ( x 1 A # x! B ) % ( x 1 B # x! A ) } = (5) ( A B ) $ ( B A ) (1) Definitionen!, $, (2) Definition, (3) Definition! und 1, de Morgan, (4) Distributivität, (5) Vereinfachung, Definitionen $,. Mengen, Relationen, Funktionen 11 Mengen, Relationen, Funktionen 12

4 Geordnete Paare und n-tupel! Geordnete Paare ( a, b ) heisst das geordnete Paar der Elemente a und b.! Gleichheit von Paaren Die Paare (a 1, b 1 ) und (a 2, b 2 ) sind genau dann gleich, wenn a 1 = a 2 # b 1 = b 2! n-tupel (a 1,, a n ) heisst das geordnete n-tupel der Elemente a 1 bis a n.! Gleichheit von n-tupeln Die n-tupel ( a 1,, a n ) und ( b 1,, b n ) sind genau dann gleich, wenn a 1 = b 1 # # a n = b n. Relationen! Kartesisches Produkt Das kartesische Produkt der beiden Mengen A und B ist die Menge A 2 B aller geordneten Paare (a, b) mit a " A, b " B. A 2 B = { ( a, b ) a " A # b " B } Man schreibt A 2 = A 2 A, A 3 = A 2 A 2 A, usw.! Binäre Relationen Sei A eine Menge. Eine binäre Relation R auf A ist eine Teilmenge des kartesischen Produkts der Menge A mit sich selbst. R ( A 2 A Seien A 1 und A 2 Mengen. Eine binäre Relation R auf A 1 und A 2 ist eine Teilmenge des kartesischen Produkts A 1 2 A 2. R ( A 1 2 A 2 Infixnotation: Für (a, b) " R schreibt man auch arb.! n-stellige Relationen Seien A 1, A 2,, A n Mengen. Eine n-stellige Relation R auf A 1, A 2,, A n ist eine Teilmenge des kartesischen Produkts der Mengen A 1, A 2,, A n. R ( A 1 2 A A n Mengen, Relationen, Funktionen 13 Mengen, Relationen, Funktionen 14 Die 16 binären Relationen auf A = {1,2} R i ( {1,2} 2 {1,2} R 1 & R 9 {(1,2),(2,1)} R 2 {(1,1)} R 10 {(1,2),(2,2)} R 3 {(1,2)} R 11 {(2,1),(2,2)} R 4 {(2,1)} R 12 {(1,1),(1,2),(2,1)} R 5 {(2,2)} R 13 {(1,1),(1,2),(2,2)} R 6 {(1,1),(1,2)} R 14 {(1,1),(2,1),(2,2)} R 7 {(1,1),(2,1)} R 15 {(1,2),(2,1),(2,2)} R 8 {(1,1),(2,2)} R 16 {(1,1),(1,2),(2,1),(2,2)} Spezielle Relationen! Umkehrrelation Sei R ( A 2 B eine Relation. Die Umkehrrelation zur Relation R ist die Relation R -1 ( B 2 A mit! Komposition von Relationen R -1 = { ( b, a ) ( a, b ) " R } Seien R 1 ( A 2 B und R 2 ( B 2 C Relationen. Die Komposition R 1 3 R 2 ( A 2 C von R 1 und R 2 wird definiert durch ' a " A, c " C : ( a, c ) " R 1 3 R 2 ). b " B : ( a, b ) " R 1 # ( b, c ) " R 2! Beispiel für Komposition von Relationen Programme können als Relationen ihrer Eingabe- und Ausgabewerte verstanden werden. Die Hintereinanderausführung von zwei Programmen entspricht dann der Komposition der entsprechenden Relationen. Mengen, Relationen, Funktionen 15 Mengen, Relationen, Funktionen 16

5 Eigenschaften von Relationen Eine Relation R ( A 2 B ist Linkstotal: Jedes Element a " A tritt in mindestens einem Paar ( a, b ) " R links auf. 'a " A :. b " B : ( a, b ) " R Rechtstotal: Jedes Element b " B tritt in mindestens einem Paar ( a, b ) " R rechts auf. ' b " B :. a " A : ( a, b ) " R Linkseindeutig: Für ein b " B zu dem es ein a " A gibt mit ( a, b ) " R ist dieses linke a eindeutig. 'a 1, a 2 " A : (. b " B : ( a 1, b ) " R # ( a 2, b ) " R ) * Beispiel: Ein/Ausgabe Relation von Programmen INTEGER A READ (A) WHILE (A <> 0) DO { A := A - 2 } WRITE (A)! Datentyp INTEGER: beliebig grosse ganze Zahlen! Ein/Ausgabe Relation: R ( " 2 " mit ( x, y ) " R genau dann, wenn das Programm auf die Eingabe von x mit der Ausgabe von y reagiert. Ist das Programm linkstotal, rechtstotal, linkseindeutig, rechtseindeutig? a 1 = a 2 Rechtseindeutig: Für ein a " A zu dem es ein b " B gibt mit ( a, b ) " R ist dieses rechte b eindeutig. 'b 1, b 2 " B : (. a " A : ( a, b 1 ) " R # ( a, b 2 ) " R ) * b 1 = b 2 Mengen, Relationen, Funktionen 17 Mengen, Relationen, Funktionen 18 Eigenschaften von binären Relationen Eine binäre Relation R ( X 2 X heisst Reflexiv: Jedes Element x steht zu sich selber in Relation. 'x " X : ( x, x ) " R Irreflexiv: Kein Element steht zu sich selber in Relation. 'x " X : ( x, x )! R Symmetrisch: Zu jedem Paar in der Relation ist auch das gespiegelte Paar in der Relation. 'x, y " X : ( x, y ) " R * ( y, x ) " R Antisymmetrisch (identitiv): Zu jedem Paar in der Relation ist das gespiegelte Paar nur dann in der Relation, wenn die Elemente gleich sind. 'x, y " X : ( x, y ) " R # ( y, x ) " R * x = y Asymmetrisch: Zu jedem Paar in der Relation ist das gespiegelte Paar nicht in der Relation. Transitiv: 'x, y " X : ( x, y ) " R * ( y, x )! R 'x, y, z " X : ( x, y ) " R # ( y, z ) " R * ( x, z ) " R Äquivalenzrelationen! Eine Äquivalenzrelation auf einer Menge M ist eine binäre Relation 4( M 2 M die reflexiv, symmetrisch und transitiv ist.! Gleichheit ("=") ist die prototypische Äquivalenzrelation.! Partition: Sei M eine Menge. Eine Partition von M ist eine Menge P von Teilmengen von M, also P ( P (M), für die die folgenden Eigenschaften gelten: 1. Keine Teilmenge der Partition ist leer. 2. Die Teilmengen der Partition sind paarweise disjunkt. 3. Die Vereinigung aller Teilmengen der Partition ist die Menge M.! Äquivalenzklassen: Sei 4 ( M 2 M eine Äquivalenzrelation. Zu jedem Element m " M heisst die Menge (m) 4 = { x " M x 4 m } die von m erzeugte Äquivalenzklasse.! Für jede Äquivalenzrelation 4 auf einer Menge X bildet die Menge der Äquivalenzklassen von 4 eine Partition P 4 von X. Mengen, Relationen, Funktionen 19 Mengen, Relationen, Funktionen 20

6 Beispiel einer Äquivalenzrelation! a $ b modulo n d.h. a " " und b " " geben bei der Division durch n "! den gleichen Rest r "! 0 definiert eine Äquivalenzrelation 4 m auf der Menge " a = k 1 * n + r b = k 2 * n + r (k i " ", r = 0,..., n-1) a 4 m b ) a b = k * n! Reflexivität 'a " " : a 4 m a (a a = 0 * n)! Symmetrie 'a, b " " : a 4 m b * b 4 m a (a b = k * n, b a = - k * n)! Transitivität 'a, b, c " " : a 4 m b # b 4 m c * a 4 m c (a b = k 1 * n, b c = k 2 * n, a - c = (k 1 + k 2 )* n) Beispiel einer Äquivalenzrelation! Die Menge aller Zahlen a " ", die bei der Division durch n "! den gleichen Rest r "! 0 ergeben, bilden eine Äquivalenzklasse (r) 4m. Da r = 0,..., n-1, gibt es n Äquivalenzklassen. Für n = 5 erhalten wir (0) 4m = { a " " a 4 m 0} = {..., -10, -5, 0, 5, 10,...} (1) 4m = { a " " a 4 m 1} = {..., -9, -4, 1, 6, 11,...} (2) 4m = { a " " a 4 m 2} = {..., -8, -3, 2, 7, 12,...} (3) 4m = { a " " a 4 m 3} = {..., -7, -2, 3, 8, 13,...} (4) 4m = { a " " a 4 m 4} = {..., -6, -1, 4, 9, 14,...}! Die Menge der Äquivalenzklassen von 4 m bildet eine Partition von ", denn keine Äquivalenzklasse ist leer die Äquivalenzklassen sind paarweise disjunkt (0) 4m $ (1) 4m $ (2) 4 $ (3) 4m $ (4) 4m = " Mengen, Relationen, Funktionen 21 Mengen, Relationen, Funktionen 22 Weitere Beispiele von Äquivalenzrelationen Gegeben sei die Menge aller Menschen. Welche der folgenden Relationen sind Äquivalenzrelationen? x steht zu y in Relation, falls x und y die gleiche Sprache sprechen. x steht zu y in Relation, falls x älter oder genauso alt wie y ist. x steht zu y in Relation, falls x und y sich gegenseitig kennen. Hüllen Sei M eine Menge und R ( M 2 M eine Relation. Wir suchen nun nach der kleinsten Anzahl von geordneten Paaren aus M 2 M, die wir zu R hinzufügen müssen, damit die so erweiterte Relation Hülle genannt bestimmte Eigenschaften besitzt. 1. Die transitive Hülle von R ist die Relation <R> t ( M 2 M definiert durch: ( x, y ) " <R> t ) ( x, y ) " R %. n "! :. t 1, t 2,, t n : (x, t 1 ), ( t 1, t 2 ),, ( t n-1, t n ), ( t n, y ) " <R> t 2. Die symmetrische Hülle von R ist die Relation <R> s ( M 2 M definiert durch: ( x, y ) " <R> s ) (( x, y ) " R % ( y, x ) " R) <R> s = R % R -1 Mengen, Relationen, Funktionen 23 Mengen, Relationen, Funktionen 24

7 Hüllen 3. Die reflexiv-transitive Hülle von R ist die Relation <R> rt ( M 2 M definiert durch: ( x, y ) " <R> rt ) (( x, y ) " <R> t % x = y) 4. Die reflexiv-symmetrisch-transitive Hülle von R ist die Relation <R> rst ( M 2 M definiert durch: <R> rst = <<R> s > rt <R> rst ist die kleinste Erweiterung von R zu einer Äquivalenzrelation. Funktionen! Eine Funktion f ist eine binäre Relation f ( A 2 B, die linkstotal und rechtseindeutig ist: Zu jedem a " A gibt es genau ein b " B mit (a, b) " f.! Bei Funktionen schreibt man f : A 5 B anstatt f ( A 2 B und f(a) = b anstatt (a, b) " f.! Terminologie 1. A heisst der Definitionsbereich von f. 2. B heisst der Wertebereich von f. 3. Die Menge f(a) = { f(a) a " A } heisst das Bild von f.! Eigenschaften von Funktionen 1. Eine Funktion ist surjektiv, wenn sie rechtstotal ist. 2. Eine Funktion ist injektiv, wenn sie linkseindeutig ist. 3. Eine Funktionen ist bijektiv, wenn sie surjektiv und injektiv ist.! Sind f : A 5 B und g : B 5 C Funktionen, so bezeichnet g 3 f : A 5 C die Komposition von f und g, die durch (g 3 f)(a) = g(f(a)) definiert ist. Mengen, Relationen, Funktionen 25 Mengen, Relationen, Funktionen 26 Spezielle Funktionen! Identität Die Funktion id A : A 5 A, die durch id A (a) = a definiert ist, heisst die Identität.! Konstante Funktion Eine Funktion c : A 5 B, die für alle Werte des Arguments denselben Wert hat, heisst konstant.! Umkehrfunktion Eine Funktion g : B 5 A heisst eine Umkehrfunktion einer Funktion f : A 5 B, wenn g 3 f : A 5 A gleich id A ist, und f 3 g : B 5 B gleich id B ist. Eine Funktion hat genau dann eine Umkehrfunktion, wenn sie bijektiv ist. Diese Umkehrfunktion ist eindeutig. Charakteristische Funktion Gegen sei eine Menge A und ein Element a" A. Die Funktion x a : A 5 {0,1} Kardinalität von Mengen! Anzahl von Elementen (informell) Sei A eine Menge mit endlich vielen Elementen. Die Anzahl A nennt man die Mächtigkeit oder Kardinalität der Menge.! Zwei endliche Mengen haben dieselbe Kardinalität, wenn die Anzahl Elemente in beiden Mengen gleich ist. Nimmt man je ein Element aus beiden Mengen heraus, bleiben am Ende zwei leere Mengen.! Cantor hat diese Idee für unendliche Mengen weiterentwickelt: Zwei unendliche Mengen haben dieselbe Kardinalität, wenn sich die Elemente beider Mengen paaren lassen: ist definiert als x a (a) = 1 und x a (b) = 0 für b " a und heisst die charakterische Funktion von a.. Mengen, Relationen, Funktionen 27 Mengen, Relationen, Funktionen 28

8 Kardinalität von Mengen (2)! Formaler: X = Y ) es gibt eine Bijektion zwischen X und Y X 8 Y ) es gibt eine injektive Funktion von X nach Y! Die Relation 4 definiert durch X 4 Y ) es gibt eine Bijektion zwischen X und Y ist eine Äquivalenzrelation.! Wir definieren nun X als die Äquivalenzklasse (X) 4! Die Kardinalität von! ist 7 0 (Aleph null). 7 0 ist die kleinste unendliche Kardinalzahl. Mengen mit der Kardinalzahl 7 0 werden abzählbar unendlich genannt.! Eine weitere Kardinalzahl ist c. Dies ist die Kardinalität von P(!) und $. Mengen mit der Kardinalzahl c werden überabzählbar genannt.! Cantors Diagonalisierungsargument beweist c <> 7 0. Cantors Diagonalisierungsargument für P(!) >! Beweis durch Widerspruch. Wir nehmen an, dass P(!) 8!. D.h., man kann jeder Teilmenge von! eine Zahl aus! so zuordnen, dass jede Zahl aus! höchstens einmal benutzt wird. Uns interessieren die Paare, bei denen die Teilmenge von! die Zahl aus! nicht enthält, mit der sie gepaart wird. Beim Paar (1, {2}) z.b. enthält die Teilmenge die Zahl nicht, jedoch beim Paar (2, {2, 3}) enthält sie sie. Wir definieren eine Teilmenge M (! so, dass M die Zahlen enthält, die entweder nicht gepaart sind oder mit einer Teilmenge von! gepaart sind, die die Zahl nicht enthalten. M ist eine Teilmenge von!. Also muss es ein Paar (z, M) geben. Ist z ein Element von M? Ja: Dann ist z gepaart mit einer Menge, die z enthält. Das ist ein Widerspruch zur Definition von M. Nein: Dann ist z gepaart mit einer Menge aus P(!) (nämlich M), die z nicht enthält. Nach der Definition von M muss z dann aber ein Element von M sein. Widerspruch. Also muss P(!) >! gelten. Mengen, Relationen, Funktionen 29 Mengen, Relationen, Funktionen 30 Russelsches Paradox in der naiven Mengenlehre! Axiom der Komprehension: Für jede Eigenschaft können wir eine Menge bilden, die genau die Elemente enthält, die diese Eigenschaft haben.! Der Begriff der Eigenschaft muss eingeschränkt werden, sonst entsteht ein Widerspruch.! Beispiel: Man definiere M als die Mengen aller Mengen, die sich selbst nicht enthalten: Frage: Enthält M sich selber? M = { X X! X } Ja. Wenn M sich selbst enthält, dann darf M sich selbst nicht enthalten Nein. Wenn M sich selbst nicht enthält, dann muss M sich selbst enthalten Wir wissen aber aus der Logik, dass aus einem Widerspruch alles abgeleitet werden kann. Rechnen mit Kardinalitäten Für endliche Mengen gilt:! A $ B = A + B A! B! A $ B $ C = A + B + C A! B A! C B! C + A! B! C! A - B = A - B, falls B ( A! A 2 B = A B Für abzählbar unendliche Mengen gilt:! = 7 0! = 7 0! Was ist mit ? Mengen, Relationen, Funktionen 31 Mengen, Relationen, Funktionen 32

Mengen. (Nicht-) Elemente einer Menge { 3, 4 } { 1, { 2 }, { 3, 4 }, { 5 } } 3 { 1, { 2 }, { 3, 4 }, { 5 } }

Mengen. (Nicht-) Elemente einer Menge { 3, 4 } { 1, { 2 }, { 3, 4 }, { 5 } } 3 { 1, { 2 }, { 3, 4 }, { 5 } } Mengen Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor) Notation 1. Aufzählung aller Elemente: { 1,

Mehr

Gliederung. Mengen und operationen. Relationen. Funktionen. Kardinalität von Mengen. Formale Grundlagen der Informatik Knorr/Fuchs SS 2000

Gliederung. Mengen und operationen. Relationen. Funktionen. Kardinalität von Mengen. Formale Grundlagen der Informatik Knorr/Fuchs SS 2000 Gliederung Mengen und operationen Relationen Funktionen Kardinalität von Mengen Mengen, Relationen, Funktionen 1 Mengen Definition (Naive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer

Mehr

Mengenlehre. Begriff der Mengenzugehörigkeit x M, x Ê M >x : x { a 1. e e x = a n. } 2 x = a 1. >x : x { y P(y) } 2 P(x) Begriff der leeren Menge

Mengenlehre. Begriff der Mengenzugehörigkeit x M, x Ê M >x : x { a 1. e e x = a n. } 2 x = a 1. >x : x { y P(y) } 2 P(x) Begriff der leeren Menge Mengenlehre Grundbegriff ist die Menge Definition (Naive Mengenlehre). Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor) Notation 1. Aufzählung

Mehr

Kapitel 1. Grundlagen Mengen

Kapitel 1. Grundlagen Mengen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

3 Werkzeuge der Mathematik

3 Werkzeuge der Mathematik 3.1 Mengen (18.11.2011) Definition 3.1 Die Menge heißt leere Menge. :=»x M x x Definition 3.2 Es seien N und M Mengen. Wir definieren: und analog M N : (x M x N). N M : (x N x M). Wir sagen M ist Teilmenge

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Mathematische Grundbegriffe Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr,

Mehr

4. Mathematische und notationelle Grundlagen. Beispiel Mengen. Bezeichnungen:

4. Mathematische und notationelle Grundlagen. Beispiel Mengen. Bezeichnungen: 4. Mathematische und notationelle Grundlagen 4.1 Mengen Beispiel 3 A 1 = {2, 4, 6, 8}; A 2 = {0, 2, 4, 6,...} = {n N 0 ; n gerade} Bezeichnungen: x A A x x A B A B A { } x Element A x nicht Element A B

Mehr

Einführung in die Semantik, 2./3. Sitzung Mengen / Relatione

Einführung in die Semantik, 2./3. Sitzung Mengen / Relatione Eigenschaften von Einführung in die Semantik, 2./3. Sitzung Mengen / / Göttingen 2. November 2006 Eigenschaften von Mengenlehre Eigenschaften von Eigenschaften von Das Konzept Menge Eine Menge ist eine

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. 21. März 2011.

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. 21. März 2011. Technische Universität München Ferienkurs Lineare Algebra 1 Mengenlehre, Aussagen, Relationen und Funktionen 21. März 2011 Tanja Geib Inhaltsverzeichnis 1 Aussagen 1 2 Mengenlehre 3 2.1 Grundlegende Definitionen

Mehr

2 Mengen, Abbildungen und Relationen

2 Mengen, Abbildungen und Relationen Vorlesung WS 08 09 Analysis 1 Dr. Siegfried Echterhoff 2 Mengen, Abbildungen und Relationen Definition 2.1 (Mengen von Cantor, 1845 1918) Eine Menge M ist eine Zusammenfassung von wohlbestimmten und wohl

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2015 Mengen und Relationen

Vorbereitungskurs Mathematik zum Sommersemester 2015 Mengen und Relationen Vorbereitungskurs Mathematik zum Sommersemester 2015 Mengen und Relationen Susanna Pohl Vorkurs Mathematik TU Dortmund 10.03.2015 Mengen und Relationen Mengen Motivation Beschreibung von Mengen Mengenoperationen

Mehr

2 Mengen, Relationen, Funktionen

2 Mengen, Relationen, Funktionen Grundlagen der Mathematik für Informatiker 1 2 Mengen, Relationen, Funktionen 2.1 Mengen Definition 2.1 [Georg Cantor 1895] Eine Menge ist eine Zusammenfassung bestimmter, wohlunterschiedener Dinge unserer

Mehr

2 Mengen, Relationen, Funktionen

2 Mengen, Relationen, Funktionen Grundlagen der Mathematik für Informatiker Grundlagen der Mathematik für Informatiker Mengen, Relationen, Funktionen. Mengen Definition. [Georg Cantor 895] Eine Menge ist eine Zusammenfassung bestimmter,

Mehr

Formale Sprachen und Automaten

Formale Sprachen und Automaten Mengen Eine Menge ist eine Gruppe von Elementen, die eine Einheit bilden (siehe z.b. Halmos 1976). Formale Sprachen und Automaten Mathematisches Rüstzeug Mengen können verschiedene Typen von Elementen

Mehr

Kapitel 1. Mengen und Abbildungen. 1.1 Mengen

Kapitel 1. Mengen und Abbildungen. 1.1 Mengen Kapitel 1 Mengen und Abbildungen 1.1 Mengen Die Objekte der modernen Mathematik sind die Mengen. Obwohl die Logik einen axiomatischen Zugang zur Mengenlehre bietet, wollen wir uns in dieser Vorlesung auf

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen)

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws13/14

Mehr

Logische Grundlagen der Mathematik, WS 2014/15

Logische Grundlagen der Mathematik, WS 2014/15 Logische Grundlagen der Mathematik, WS 0/ Thomas Timmermann 8. Januar 0 Kardinalzahlen und die Mächtigkeit von Mengen Gleichmächtigkeit von Menge Zur Erinnerung: Wir wollen unendlich große Mengen hinsichtlich

Mehr

Mengenlehre. Ist M eine Menge und x ein Element von M, so schreiben wir x M. Ist x kein Element von M, so schreiben wir x M.

Mengenlehre. Ist M eine Menge und x ein Element von M, so schreiben wir x M. Ist x kein Element von M, so schreiben wir x M. Mengenlehre Eine Menge ist eine Zusammenfassung bestimmter und unterschiedlicher Objekte. Für jedes Objekt lässt sich eindeutig sagen, ob es zu der Menge gehört. Die Objekte heißen Elemente der Menge.

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Mengen)

Diskrete Strukturen Kapitel 2: Grundlagen (Mengen) WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Mengen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Logik und Künstliche Intelligenz

Logik und Künstliche Intelligenz Logik und Künstliche Intelligenz Kurze Zusammenfassung (Stand: 14. Januar 2010) Prof. Dr. V. Stahl Copyright 2007 by Volker Stahl. All rights reserved. V. Stahl Logik und Künstliche Intelligenz Zusammenfassung

Mehr

Grundlagen. Kapitel Mengen

Grundlagen. Kapitel Mengen Kapitel 1 Grundlagen 1.1 Mengen Grundobjekte mathematischer Theorien sind Mengen. Zwar stellt man sich darunter Gesamtheiten von gewissen Dingen (den Elementen der Menge) vor, doch führt die uneingeschränkte

Mehr

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Formale Methoden 2 Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Teil 1: Wiederholung 1 Mengen 2 Abbildungen 3 Exkurs Beweistechniken 4 Relationen Definition Operationen Eigenschaften Äquivalenzrelationen

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kapitel 2: Mengenlehre. Referenzen zum Nacharbeiten:

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kapitel 2: Mengenlehre. Referenzen zum Nacharbeiten: DM2 Slide 1 Diskrete Mathematik Sebastian Iwanowski FH Wedel Kapitel 2: Mengenlehre Referenzen zum Nacharbeiten: Lang 3 Meinel 2, 4, 5, 10.2-10.4 (zur Vertiefung: Meinel 10.5-10.8 und Beutelspacher 10)

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kapitel 2: Mengenlehre

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kapitel 2: Mengenlehre Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kapitel 2: Mengenlehre Lang 3 Meinel 2, 4, 5, 10.2-10.4 (zur Vertiefung: Meinel 10.5-10.8 und Beutelspacher 10) Dean 2, 5-7

Mehr

mathematische Grundlagen der Modelltheorie: Mengen, Relationen, Funktionen

mathematische Grundlagen der Modelltheorie: Mengen, Relationen, Funktionen Einführung in die Logik - 6 mathematische Grundlagen der Modelltheorie: Mengen, Relationen, Funktionen Modelltheoretische / Denotationelle Semantik der Prdikatenlogik Ein Modell ist ein künstlich geschaffenes

Mehr

Tutorium: Diskrete Mathematik

Tutorium: Diskrete Mathematik Tutorium: Diskrete Mathematik Vorbereitung der Bonusklausur am 24.11.2016 (Teil 2) 23. November 2016 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler 23. November 2016

Mehr

WS 20013/14. Diskrete Strukturen

WS 20013/14. Diskrete Strukturen WS 20013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015 Formale Methoden 2 Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015 1 Mengen 2 Relationen Definition Operationen Eigenschaften Äquivalenzrelationen Mehrstellige Relationen 3 Abbildungen 4

Mehr

Formale Methoden 1. Gerhard Jäger 24. Oktober Uni Bielefeld, WS 2007/2008 1/22

Formale Methoden 1. Gerhard Jäger 24. Oktober Uni Bielefeld, WS 2007/2008 1/22 1/22 Formale Methoden 1 Gerhard Jäger Gerhard.Jaeger@uni-bielefeld.de Uni Bielefeld, WS 2007/2008 24. Oktober 2007 2/22 Mengen Georg Cantor (1845-1918) Eine Menge ist eine Zusammenfassung von wohlunterschiedenen

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Mathematische Strukturen

Mathematische Strukturen Mathematische Strukturen Lineare Algebra I Kapitel 3 16. April 2013 Kartesisches Produkt Das kartesische Produkt (benannt nach René Descartes) von n Mengen M 1,..., M n ist M 1 M n := {(x 1,..., x n )

Mehr

Übung: Teilmengen. Beweis: Für alle Elemente einer Menge, die Teilmenge einer Menge ist, gilt, dass auch Element von ist. (Definition der Teilmenge)

Übung: Teilmengen. Beweis: Für alle Elemente einer Menge, die Teilmenge einer Menge ist, gilt, dass auch Element von ist. (Definition der Teilmenge) 15 Übung: Teilmengen seien Mengen. Zu zeigen ist: wenn Beweis: dann auch Für alle Elemente einer Menge, die Teilmenge einer Menge ist, gilt, dass auch Element von ist. (Definition der Teilmenge) für alle

Mehr

4 Mengentheorie. 4.1 Mengen

4 Mengentheorie. 4.1 Mengen 4 Mengentheorie 4.1 Mengen Die Mengentheorie ist entwickelt worden, um eine elementare Basis für den Aufbau der gesamten Mathematik zu haben. Ihr Begründer ist Georg Cantor (1845-1918). Die Standard-Semantik

Mehr

Teil 4. Mengen und Relationen

Teil 4. Mengen und Relationen Teil 4 Mengen und Relationen KAPITEL 10 Äquivalenzrelationen und Faktormengen 1. Äquivalenzrelationen Wir nennen eine Relation von A nach A auch eine Relation auf A. DEFINITION 10.1. SeiΡeine Relation

Mehr

Grundlagen der linearen Algebra und analytischen Geometrie

Grundlagen der linearen Algebra und analytischen Geometrie Grundlagen der linearen Algebra und analytischen Geometrie Sascha Trostorff 27. Oktober 2017 Inhaltsverzeichnis I. Einführung in die Mengenlehre 3 1. Grundlagen der Aussagenlogik 4 2. Naive Mengenlehre

Mehr

Analyis I - Grundlagen

Analyis I - Grundlagen Elementare Aussagenlogik October 23, 2008 Elementare Aussagenlogik Definition Eine Aussage im Sinne der Aussagenlogik ist eine sprachliche Aussage, bei der klar entschieden werden kann, ob sie wahr oder

Mehr

2 Mengen und Abbildungen

2 Mengen und Abbildungen 2.1 Mengen Unter einer Menge verstehen wir eine Zusammenfassung von Objekten zu einem Ganzen. Die Objekte heiÿen Elemente. Ist M eine Menge und x ein Element von M so schreiben wir x M. Wir sagen auch:

Mehr

Funktionen, Mächtigkeit, Unendlichkeit

Funktionen, Mächtigkeit, Unendlichkeit Funktionen, Mächtigkeit, Unendlichkeit Nikolai Nowaczyk http://math.nikno.de, Lars Wallenborn http://www.wallenborn.net/ Frühjahrsakademie 12.04. - 14.04.2013 Inhaltsverzeichnis

Mehr

3. Relationen Erläuterungen und Schreibweisen

3. Relationen Erläuterungen und Schreibweisen 3. Relationen Eine Relation ist allgemein eine Beziehung, die zwischen Dingen bestehen kann. Relationen im Sinne der Mathematik sind ausschließlich diejenigen Beziehungen, bei denen stets klar ist, ob

Mehr

Warum Mathe? IG/StV-Mathematik der KFU-Graz. 1 Mengen Mengenoperationen Rechenregeln Mengen 4. Funktionen 7

Warum Mathe? IG/StV-Mathematik der KFU-Graz. 1 Mengen Mengenoperationen Rechenregeln Mengen 4. Funktionen 7 Warum Mathe? IG/StV-Mathematik der KFU-Graz März 2011 Inhalt 1 Mengen 1 1.1 Mengenoperationen.............................. 2 1.2 Rechenregeln.................................. 3 2 Übungsbeispiele zum

Mehr

1. Mengentheoretische Grundbegriffe. naiver Mengenbegriff : Eine Menge ist eine Zusammenfassung M von bestimmten, wohlunterschiedenen

1. Mengentheoretische Grundbegriffe. naiver Mengenbegriff : Eine Menge ist eine Zusammenfassung M von bestimmten, wohlunterschiedenen 1. Mengentheoretische Grundbegriffe Cantors (1845 1918) naiver Mengenbegriff : Slide 1 Eine Menge ist eine Zusammenfassung M von bestimmten, wohlunterschiedenen Objekten unserer Anschauung oder unseres

Mehr

7 Äquivalenzrelationen

7 Äquivalenzrelationen 71 7 Äquivalenzrelationen 7.1 Äquivalenzrelationen und Klassen Definition Eine Relation R auf einer Menge oder einem allgemeineren Objektbereich heißt eine Äquivalenzrelation, falls sie reflexiv, symmetrisch

Mehr

(1.18) Def.: Eine Abbildung f : M N heißt

(1.18) Def.: Eine Abbildung f : M N heißt Zurück zur Mengenlehre: Abbildungen zwischen Mengen (1.17) Def.: Es seien M, N Mengen. Eine Abbildung f : M N von M nach N ist eine Vorschrift, die jedem x M genau ein Element f(x) N zuordnet. a) M = N

Mehr

Eine Relation R in einer Menge M ist eine Teilmenge von M x M. Statt (a,b) R schreibt man auch arb.

Eine Relation R in einer Menge M ist eine Teilmenge von M x M. Statt (a,b) R schreibt man auch arb. 4. Relationen 4.1 Grundlegende Definitionen Relation R in einer Menge M: Beziehung zwischen je 2 Elementen von M. Beispiel

Mehr

WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER. Diskrete Strukturen. wissen leben WWU Münster

WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER. Diskrete Strukturen. wissen leben WWU Münster MÜNSTER Diskrete Strukturen Dietmar Lammers Vorlesung SoSe 2010 > Relationen MÜNSTER Diskrete Strukturen 41/101 Seien A und B und für n N seien A 1 A 2...A n Mengen > Relationen MÜNSTER Diskrete Strukturen

Mehr

Aussagenlogik. Mengenlehre. Relationen. Funktionen. Zahlentheorie. Vollständige Induktion. Reihen. Zahlenfolgen. WS 2016/17 Torsten Schreiber

Aussagenlogik. Mengenlehre. Relationen. Funktionen. Zahlentheorie. Vollständige Induktion. Reihen. Zahlenfolgen. WS 2016/17 Torsten Schreiber Mengenlehre Aussagenlogik Relationen Zahlentheorie Funktionen Vollständige Induktion Zahlenfolgen Reihen 193 Definition einer Menge: Beziehungsjunktoren: ist Element, d.h. Wert und Format stimmen überein

Mehr

Abschnitt 3: Mathematische Grundlagen

Abschnitt 3: Mathematische Grundlagen Abschnitt 3: Mathematische Grundlagen 3. Mathematische Grundlagen 3.1 Mengen und Abbildungen 3.2 Induktion und Rekursion 3.3 Ausdrücke 3 Mathematische Grundlagen Einf. Progr. (WS 08/09) 102 Überblick 3.

Mehr

2 Lösungen zu Kapitel 2

2 Lösungen zu Kapitel 2 2 Lösungen zu Kapitel 2 2. Lösung. Die Funktion f ist nicht injektiv. So gibt es (unendlich) viele Paare (x, y) mit f(x, y) = 0, etwa (0, 0) und (/2, ). Die Funktion f ist surjektiv. Zum Beispiel gilt

Mehr

Abschnitt 3: Mathematische Grundlagen

Abschnitt 3: Mathematische Grundlagen Abschnitt 3: Mathematische Grundlagen 3. Mathematische Grundlagen 3.1 3.2 Induktion und Rekursion 3.3 Boolsche Algebra Peer Kröger (LMU München) Einführung in die Programmierung WS 14/15 48 / 155 Überblick

Mehr

Vorlesung 3: Logik und Mengenlehre

Vorlesung 3: Logik und Mengenlehre 28102013 Erinnerung: Zeilen-Stufen-Form (ZSF) eines LGS 0 0 1 c 1 0 0 0 1 0 0 1 c r 0 0 0 c r+1 0 0 0 0 0 0 0 0 0 c m Erinnerung: Information der Zeilen-Stufen-Form Aus der ZSF liest man ab: Folgerung

Mehr

0 Mengen und Abbildungen, Gruppen und Körper

0 Mengen und Abbildungen, Gruppen und Körper 0 Mengen und Abbildungen, Gruppen und Körper In diesem Paragrafen behandeln wir einige für die Lineare Algebra und für die Analysis wichtige Grundbegriffe. Wir beginnen mit dem Begriff der Menge. Auf Cantor

Mehr

Brückenkurs Mathematik 2015

Brückenkurs Mathematik 2015 Technische Universität Dresden Fachrichtung Mathematik, Institut für Analysis Dr.rer.nat.habil. Norbert Koksch Brückenkurs Mathematik 2015 1. Vorlesung Logik, Mengen und Funktionen Ich behaupte aber, dass

Mehr

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015 Formale Methoden 2 Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015 Teil 1: Mengenlehre 1 Mengen Einleitung Beschreibung und Beispiele Operationen Verhältnisse Kartesisches Produkt 2 Relationen

Mehr

Vorlesung Diskrete Strukturen Relationen

Vorlesung Diskrete Strukturen Relationen Vorlesung Diskrete Strukturen Relationen Bernhard Ganter WS 2009/10 Relationen Es seien A und B Mengen. Eine (binäre) Relation zwischen A und B ist eine Teilmenge von A B. Ein wichtiger Spezialfall ist

Mehr

, 5;8 7,6 8;15;21 4/2,3/1,4 2; 4 3;15 7;7 3,2;3; 32 5,6,7 ; 8,2,1

, 5;8 7,6 8;15;21 4/2,3/1,4 2; 4 3;15 7;7 3,2;3; 32 5,6,7 ; 8,2,1 Mathematik (BG27) 2 3 { Objekt} { Menge } { Element } { } Reihenfolge spielt keine Rolle Unterscheidbarkeit der Objekte (redundanzfrei) 4 Objekt, 58 7,6 Beschreibung 81521 4/2,3/1,4 2 4 315 77 3,23 32

Mehr

5.9 Permutationsgruppen. Sei nun π S n. Es existiert folgende naive Darstellung: Kürzer schreibt man auch

5.9 Permutationsgruppen. Sei nun π S n. Es existiert folgende naive Darstellung: Kürzer schreibt man auch 5.9 Permutationsgruppen Definition 103 Eine Permutation ist eine bijektive Abbildung einer endlichen Menge auf sich selbst; o. B. d. A. sei dies die Menge U := {1, 2,..., n}. S n (Symmetrische Gruppe für

Mehr

Grundlagen: 1. Logik. Aussagen und Aussagenformen Wahrheitstabellen; Tautologien und Kontradiktionen Logische Äquivalenz. Prädikate und Quantoren

Grundlagen: 1. Logik. Aussagen und Aussagenformen Wahrheitstabellen; Tautologien und Kontradiktionen Logische Äquivalenz. Prädikate und Quantoren Zusammenfassung Grundlagen Logik, Mengen, Relationen, Folgen & Mengenfamilien, Kardinalitäten Techniken Mathematisches Beweisen, Induktion, Kombinatorische Beweise Strukturen Graphen 1 Grundlagen: 1. Logik

Mehr

Die Mengenlehre ist ein Grundelement der Sprache der Mathematik und geht als

Die Mengenlehre ist ein Grundelement der Sprache der Mathematik und geht als Kapitel 1 Naive Mengenlehre 1.1 Mengen (Mengenalgebra; kartesisches Produkt) Die Mengenlehre ist ein Grundelement der Sprache der Mathematik und geht als naive Mengenlehre (im Gegensatz zur strengen Axiomatik)

Mehr

Kapitel 2 Mathematische Grundlagen

Kapitel 2 Mathematische Grundlagen Kapitel 2 Mathematische Grundlagen Ziel: Einführung/Auffrischung einiger mathematischer Grundlagen 2.1 Mengen, Relationen, Ordnungen Definition: Eine Menge ist eine Zusammenfassung von wohlbestimmten und

Mehr

Ordnungsrelationen auf Mengen. Beispiel einer Ordnungsrelation. Spezielle Elemente von Ordnungen. Spezielle Elemente von Ordnungen

Ordnungsrelationen auf Mengen. Beispiel einer Ordnungsrelation. Spezielle Elemente von Ordnungen. Spezielle Elemente von Ordnungen Ordnungsrelationen auf Mengen! Eine (partielle) Ordnungsrelation oder kurz Ordnung O auf einer Menge M ist eine Relation, die reflexiv, antisymmetrisch und transitiv ist. Beispiel: M = { 1, 2, 3 }, O =

Mehr

Ordnungsrelationen auf Mengen

Ordnungsrelationen auf Mengen Ordnungsrelationen auf Mengen Eine (partielle) Ordnungsrelation oder kurz Ordnung O auf einer Menge M ist eine Relation, die reflexiv, antisymmetrisch und transitiv ist. Beispiel: M = { 1, 2, 3 }, O =

Mehr

Bemerkungen zur Notation

Bemerkungen zur Notation Bemerkungen zur Notation Wir haben gerade die Symbole für alle und es gibt gebraucht. Dies sind so genannte logische Quantoren, und zwar der All- und der Existenzquantor. Die Formel {a A; ( b B)[(a, b)

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik 1 Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg Wintersemester 2014/15 2 Notation für Wörter w a is die Anzahl der Vorkommen von

Mehr

1.3 Relationen und Funktionen

1.3 Relationen und Funktionen 1.3. RELATIONEN UND FUNKTIONEN 1 1.3 Relationen und Funktionen Es gibt eine Konstruktion (Übungsaufgabe!) einer Klasse (a, b) mit der Eigenschaft (a, b) = (c, d) a = c b = d. Diese Klasse (a, b) heißt

Mehr

Übersichtsblatt Hertrampf/Bahrdt. 1 Mathematische Aussagen. Theoretische Informatik I WS2018/19

Übersichtsblatt Hertrampf/Bahrdt. 1 Mathematische Aussagen. Theoretische Informatik I WS2018/19 Theoretische Informatik I WS2018/19 Übersichtsblatt Hertrampf/Bahrdt Institut für Formale Methoden der Informatik Theoretische Informatik Universität Stuttgart 1 Mathematische Aussagen Um mathematische

Mehr

Der Kalkül der Mengen 1 / 64

Der Kalkül der Mengen 1 / 64 Der Kalkül der Mengen 1 / 64 Präzise beschreiben und argumentieren: Aber wie? In welcher Sprache sollten wir versuchen, komplexe Sachverhalte vollständig und eindeutig zu beschreiben? Natürliche Sprachen

Mehr

1.1 Mengen und Abbildungen

1.1 Mengen und Abbildungen Lineare Algebra I WS 2015/16 c Rudolf Scharlau 3 1.1 Mengen und Abbildungen In diesem Abschnitt stellen wir die grundlegende mathematische Sprache und Notation zusammen, die für jede Art von heutiger Mathematik

Mehr

Einführung in die Mengenlehre

Einführung in die Mengenlehre Einführung in die Mengenlehre D (Menge von Georg Cantor 845-98) Eine Menge ist eine Zusammenfassung bestimmter wohlunterschiedener Objekte unseres Denkens oder unserer Anschauung zu einem Ganzen wobei

Mehr

Zusatzmaterial zur Mathematik I für E-Techniker Übung 1

Zusatzmaterial zur Mathematik I für E-Techniker Übung 1 Mathematik I für E-Techniker C. Erdmann WS 011/1, Universität Rostock, 1. Vorlesungswoche Zusatzmaterial zur Mathematik I für E-Techniker Übung 1 Wiederholung - Theorie: Mengen Der grundlegende Begriff

Mehr

Mathematik für Informatiker I Mitschrift zur Vorlesung vom

Mathematik für Informatiker I Mitschrift zur Vorlesung vom Mathematik für Informatiker I Mitschrift zur Vorlesung vom 18.11.2004 Zur Wiederholung: Das Kartesische Produkt dient dem Ordnen von Mengen. A B = {(a, b) : a A, b B)} Spezialfall A = Äquivalenzrelation

Mehr

Lösungen zur Übungsserie 1

Lösungen zur Übungsserie 1 Analysis 1 Herbstsemester 2018 Prof. Peter Jossen Montag, 24. September Lösungen zur Übungsserie 1 Aufgaben 1, 3, 4, 5, 6, 8 Aufgabe 1. Sei X eine endliche Menge mit n Elementen, und sei Y eine endliche

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Grundlagen der Mathematik Übungsaufgaben zu Kapitel 1 Einführung 1.1.1 Für reelle Zahlen a und b gilt (a+b) (a-b) = a 2 -b 2. Was ist die Voraussetzung? Wie lautet die Behauptung? Beweisen Sie die Behauptung.

Mehr

Kapitel 2. Mathematische Grundlagen. Skript zur Vorlesung Einführung in die Programmierung

Kapitel 2. Mathematische Grundlagen. Skript zur Vorlesung Einführung in die Programmierung LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS DATABASE Kapitel 2 Mathematische Grundlagen Skript zur Vorlesung Einführung in die Programmierung im Wintersemester 2012/13 Ludwig-Maximilians-Universität

Mehr

Vorlesung Diskrete Strukturen Relationen

Vorlesung Diskrete Strukturen Relationen Vorlesung Diskrete Strukturen Relationen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2009/10 1 Bernhard Ganter, TU Dresden Modul Einführung in die Mathematik

Mehr

Lösungen zu Kapitel 2

Lösungen zu Kapitel 2 Lösungen zu Kapitel 2 Lösung zu Aufgabe 1: Wir zeigen die Behauptung durch vollständige Induktion über n. Die einzige Menge mit n = 0 Elementen ist die leere Menge. Sie besitzt nur sich selbst als Teilmenge,

Mehr

Mathematische Strukturen Sommersemester Vorlesung. Mengen. Mengen. Prof. Janis Voigtländer Übungsleitung: Dennis Nolte

Mathematische Strukturen Sommersemester Vorlesung. Mengen. Mengen. Prof. Janis Voigtländer Übungsleitung: Dennis Nolte Vorlesung Mathematische Strukturen Sommersemester 207 Prof Janis Voigtländer Übungsleitung: Dennis Nolte Menge Menge M von Elementen, oft beschrieben als Aufzählung M = {0, 2, 4, 6, 8, } oder als Menge

Mehr

Lösungen zur Übungsserie 2

Lösungen zur Übungsserie 2 Analysis 1 Herbstsemester 2018 rof. eter Jossen Montag, 8. Oktober Lösungen zur Übungsserie 2 Aufgaben 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14 Aufgabe 1. Sei X eine Menge. Wie behandeln in dieser Aufgabe

Mehr

Mathematik für Ökonomen 1

Mathematik für Ökonomen 1 Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Herbstemester 2008 Mengen, Funktionen und Logik Inhalt: 1. Mengen 2. Funktionen 3. Logik Teil 1 Mengen

Mehr

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund Lineare Algebra 1 Detlev W. Hoffmann WS 2013/14, TU Dortmund 1 Mengen und Zahlen 1.1 Mengen und Abbildungen Eine Menge ist eine Zusammenfassung wohlunterscheidbarer Objekte unserer Anschauung/unseres Denkens/unserer

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 19. Oktober 2017 1/27 Zu der Vorlesung gibt es ein Skript, welches auf meiner Homepage

Mehr

Grundbegriffe Mengenlehre und Logik

Grundbegriffe Mengenlehre und Logik Grundbegriffe Mengenlehre und Logik Analysis für Informatiker und Lehramt Mathematik MS/GS/FS WS 2016/2017 Agnes Radl Mengen Georg Cantor (1895) Unter einer Menge verstehen wir jede Zusammenfassung M von

Mehr

Grundbegriffe der Informatik Kapitel 3: Mengen, Alphabete, Abbildungen

Grundbegriffe der Informatik Kapitel 3: Mengen, Alphabete, Abbildungen Grundbegriffe der Informatik Kapitel 3: Mengen, Alphabete, Abbildungen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für

Mehr

Relationen und Funktionen

Relationen und Funktionen Vorkurs Mathematik Dr. Regula Krapf Sommersemester 018 Relationen und Funktionen Definition. Seien M und N Mengen. Eine Relation auf M N ist eine Teilmenge R M N. Falls (x,y) R, so schreibt man auch x

Mehr

Mengen, Funktionen und Logik

Mengen, Funktionen und Logik Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Mengen, Funktionen und Logik Literatur Referenz: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Mathematische Grundlagen der Computerlinguistik Relationen und Funktionen

Mathematische Grundlagen der Computerlinguistik Relationen und Funktionen Mathematische Grundlagen der Computerlinguistik Relationen und Funktionen Dozentin: Wiebke Petersen 2. Foliensatz Wiebke Petersen math. Grundlagen 20 n-tupel und Cartesisches Produkt Mengen sind ungeordnet,

Mehr

Naive Mengenlehre. ABER: Was ist eine Menge?

Naive Mengenlehre. ABER: Was ist eine Menge? Naive Mengenlehre Im Wörterbuch kann man unter dem Begriff Menge etwa die folgenden Bestimmungen finden : Ansammlung, Konglomerat, Haufen, Klasse, Quantität, Bündel,... usf. Die Mengenlehre ist der (gegenwärtig)

Mehr

Diskrete Strukturen. Vorlesung 3: Naive Mengenlehre. 30. Oktober 2018

Diskrete Strukturen. Vorlesung 3: Naive Mengenlehre. 30. Oktober 2018 Diskrete Strukturen Vorlesung 3: Naive Mengenlehre 30. Oktober 2018 2 Organisation Prüfung: vorauss. am Freitag, den 22. Februar 2019 von 10 11 Uhr im AudiMax, HS 3, HS 9 Abmeldungen noch bis zum 12. Januar

Mehr

Algebra. Eine Menge A heißt abzählbar, wenn A gilt. Insbesondere sind, und abzählbar, und sind nicht abzählbar (überabzählbar).

Algebra. Eine Menge A heißt abzählbar, wenn A gilt. Insbesondere sind, und abzählbar, und sind nicht abzählbar (überabzählbar). Algebra 1 Mengen 1.1 Operationen A Anzahl der Elemente von A (Mächtigkeit, Betrag, Kardinalität) (A) Potenzmenge von X ( (A) = 2 A ) A B wenn jedes Element von A auch Element von B ist. A = B (A B und

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 1: Grundlagen, Sprachen, Automaten schulz@eprover.org Software Systems Engineering Definition Eine Definition ist eine genaue Beschreibung eines Objektes

Mehr

Lineare Algebra I. - 1.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Monday 12 September 16

Lineare Algebra I. - 1.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Monday 12 September 16 Lineare Algebra I - 1.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß 1. Mengen und Abbildungen: Mengen gehören zu den Grundlegendsten Objekten in der Mathematik Kurze Einführung in die (naive) Mengelehre

Mehr

Vorlesung. Prof. Janis Voigtländer Übungsleitung: Dennis Nolte. Mathematische Strukturen Sommersemester 2017

Vorlesung. Prof. Janis Voigtländer Übungsleitung: Dennis Nolte. Mathematische Strukturen Sommersemester 2017 Vorlesung Mathematische Strukturen Sommersemester 2017 Prof Janis Voigtländer Übungsleitung: Dennis Nolte Mengen Menge Menge M von Elementen, oft beschrieben als Aufzählung M = {0, 2, 4, 6, 8, } oder als

Mehr