Klasse 9b. Mathematische Überlegungen zum Fußball

Größe: px
Ab Seite anzeigen:

Download "Klasse 9b. Mathematische Überlegungen zum Fußball"

Transkript

1 Klasse 9b Mathematische Überlegungen zum Fußball Was hat Mathe mit einem Fußball zu tun? Diese Frage beschäftigt nicht gerade viele Menschen, ausgenommen Mathelehrer und die Schüler der 9b. So zum Einstieg falls ihr nicht wisst, wie ein Fußball aussieht: In der Nähe müsste übrigens einer herumliegen. Schaut ihn euch doch mal genauer an! Natürlich sind heute auch andere Formen für den Fußball gebräuchlich, der Aufbau aus Fünfecken und Sechsecken war jedoch lange Zeit der einzig verwendete. Der Ball ist rund und ein Spiel dauert 90 Minuten. (Sepp Herberger) Dieses Sprichwort kennt wohl jeder, doch ist es auch richtig? Rechnet man die Nachspielzeit mit, übersteigt die Spielzeit 90 Minuten. Und ist der Ball auch wirklich rund? Wir haben uns mal näher mit diesem Thema beschäftigt und herausgefunden, dass ein Fußball gar nicht so rund ist! Tatsächlich besteht der Ball aus zahlreichen ebenen Flächen. In der Mathematik sagt man dazu Polyeder.

2 Die Schwierigkeit beim Herstellen eines kugelrunden Balles liegt ganz einfach in der Tatsache, dass eine ebene Fläche, in unserem Fall das Leder, zwar um eine Kugel herumgelegt werden kann, dieses dann aber stets Falten schlägt. Der Fußball besteht deshalb aus 12 Fünfecken und 20 Sechsecken, die miteinander vernäht werden. Dabei grenzen jeweils drei Fünfecke und drei Sechsecke an ein Sechseck und fünf Sechsecke grenzen an ein Fünfeck. Wenn man sich einigermaßen geschickt anstellt, kann man dies leicht durch Nachzählen bestätigen. Und wie siehts mit der Anzahl an Kanten und Ecken aus? Könnt ihr die auch zählen? und? Hab ihr s?? Oder war es euch zu mühsam? Also, wir hatten mächtig Schwierigkeiten und eigentlich waren wir auch zu faul. Deswegen haben wir nach Alternativen gesucht. Tatsächlich lässt sich die Zahl der Ecken mit Hilfe einer leichten Überlegung finden. Da die zwölf Fünfecke keine Ecken miteinander gemeinsam haben, ergibt sich die Gesamtzahl der Ecken zu 12 5 = 60. Auf der Suche nach der Kantenzahl stießen wir auf einen Mathematiker namens Leonhard Euler ( ), der bestimmt nicht faul war wie wir, aber dafür genial. Mit der berühmten Eulerschen Polyederformel können wir die Kantenzahl ohne Schwierigkeiten bestimmen.

3 Diese lautet: Seien E die Anzahl der Ecken, F die Anzahl der Flächen und K die Anzahl der Kanten eines konvexen Polyeders, dann gilt: E+F-K= 2 Mit E = 60 und F = 32 ergibt sich F zu 90. Der Ball hat somit 90 Kanten. Für den aufmerksamen Leser stellt sich natürlich die Frage, warum man für die Herstellung von Fußbällen Fünf- und Sechsecke verwendete. Es wären doch theoretisch auch Dreiecke, Quadrate, u.ä. möglich. Tatsächlich finden sich viele Körper, die einer Kugel sehr nahe kommen. Bei unserer Suche nach ballähnlichen Formen stießen wir auf die Platonischen und Archimedischen Körper. Im Folgenden ein kurzer Überblick: Die fünf Platonischen Körper:

4 Schneidet man von diesen die Ecken ab, erhält man bereits kugelähnliche Körper: Weitere für uns interessante Formen sind die Folgenden:

5 Unter diesen Körpern wählt man nun die aus, die möglichst rund sind, oder, genauer gesagt, bei denen das Verhältnis von Inkugelradius zu Umkugelradius möglichst groß ist. Dann sind sich die beiden Kugeln am ähnlichsten, der Körper erscheint dann am rundesten. Die Inkugel ist dabei die größte Kugel, die in den jeweiligen Körper passt, die Umkugel, die kleinste Kugel, in die der Körper passt. Man erhält folgende Tabelle: Körper Inkugelradius/ Anzahl der Flächen Umkugelradius pro Ecke Rhombenikosidodekaeder % 4 abgeschrägtes Dodekaeder % 5 abgestumpftes Ikosaeder % 3 abgestumpftes Ikosidodekaeder % 3 Bei allen anderen aufgeführten Körpern werden die Verhältnisse noch kleiner. Es ist nachteilig, viele Flächen an einer Ecke zusammennähen zu müssen. Daher wird man unter den rundesten Körper diejenigen bevorzugen, bei denen nur drei Flächen an einer Ecke zusammentreffen. Außerdem ist es vorteilhaft, wenn der Körper nicht zu viele Flächen und Kanten besitzt. Durch die Zahl der Kanten wird ja die Zahl der benötigten Nähte bestimmt. Unter Berücksichtigung dieser Randbedingungen fällt die Wahl auf das abgestumpfte Ikosaeder mit seinen 12 regelmäßigen Fünfecken und 20 regelmäßigen Sechsecken. Dieser Fußball wurde zum ersten Mal bei der WM 1970 in Mexico eingesetzt.

6 Tatsächlich haben auch fast alle Fußbälle die Grundform eines abgestumpften Ikosaeders. Selten kann man auch einen Fußball in Form eines Rhombenikosidodekaeders mit seinen 20 regelmäßigen Dreiecken, 30 Quadraten und 12 regelmäßigen Fünfecken antreffen. Fazit: Lieber Sepp Herberger, damit ist bewiesen: Der Ball ist eckig und das Spiel dauert keine 90 Minuten! Wissenswertes über die Produktion heutiger Fußbälle Fußbälle bestehen überwiegend aus Kunstleder, das mit einem Stoffbelag unterklebt wird. Die Kunstlederstücke werden in fünfeckige und sechseckige Panels gestanzt. Für einen Fußball benötigt man 12 Fünfecken und 20 Sechsecken. Ein Sechseck bekommt ein Loch für das Ventil. Das Zusammennähen der Panels ist mühsame Arbeit und kann nicht mit Maschinen erledigt werden. Zuerst werden Löcher mit der Hand in die Panels gestochen, durch die später Nadel und Faden gezogen werden. Insgesamt werden 1000 Löcher gestochen. Wenn noch ein Panel übrig bleibt, wird der Ball nach außen gewendet, sodass man die richtige Seite sieht. Dies ist sehr kompliziert zu nähen, denn man darf die Naht nicht sehen (blinder Stich).

7 Zum Schluss werden die Bälle aufgepumpt und kontrolliert, das heißt, dass sie gewogen werden und der Durchmesser überprüft wird. Er muss zwischen 420g und 445g wiegen und der Durchmesser muss zwischen 68,5cm und 69,5 cm liegen. Seit kurzem drängen neue Fußballformen auf den Markt: Erstmals ersetzen zungenförmige und propellerähnliche Elemente die seit Jahrzehnten bekannten Fünf- und Sechsecke. Zudem wurden die Einzelflächen von 32 auf 14 reduziert. Weniger Schnittkanten und mehr Rundungen bedeuten auch weniger Nahtstellen und Ecken in der Außenhaut, die Spieler treffen häufiger eine glatte Fläche. Diese neue Form hat nur noch eine Abweichung von 1 zur perfekten Kugel. Quellen: u.ä.

11: Die Euler sche Polyederformel für planare Graphen

11: Die Euler sche Polyederformel für planare Graphen Chr.Nelius: Graphentheorie (WS 2016/17) 38 11: Die Euler sche Polyederformel für planare Graphen (11.1) BEM: a) Ein Polyeder (auch Vielflach oder Vielflächner) ist ein geometrischer Körper, der nur von

Mehr

Polyeder, Konvexität, Platonische und archimedische Körper

Polyeder, Konvexität, Platonische und archimedische Körper Unter einem Polyeder verstehen wir einen zusammenhängenden Teil des dreidimensionalen Raumes der durch Polygone begrenzt wird. Seine Oberfläche besteht also aus Punkten (Ecken genannt), Strecken (Kanten

Mehr

REGULÄRE UND SEMIREGULÄRE POLYTOPE

REGULÄRE UND SEMIREGULÄRE POLYTOPE REGULÄRE UND SEMIREGULÄRE POLYTOPE regulare und semireguläre polytope ANDREAS PAFFENHOLZ FU Berlin Germany Eulersche Polyederformel Theorem Für ein Polytop mit Ecken Eulersche Polyederformel Kanten und

Mehr

Platonische Körper. 1 Die fünf platonischen Körper

Platonische Körper. 1 Die fünf platonischen Körper Platonische Körper Vortrag von Annamaria Jahn Im Proseminar Lehramt am 11.1.006 Kontakt: annamaria.jahn@online.de 1 Die fünf platonischen Körper Ein platonischer Körper ist ein Polyeder mit zueinander

Mehr

Fußbälle, platonische und archimedische Körper

Fußbälle, platonische und archimedische Körper Fußbälle, platonische und archimedische Körper Prof. Dr. Wolfram Koepf http://www.mathematik.uni-kassel.de/~koepf Was ist ein Fußball? Sepp Herberger: Der Ball ist rund. Ist also ein Fußball eine Kugel?

Mehr

Über die regelmäßigen Platonischen Körper

Über die regelmäßigen Platonischen Körper Hermann König, Mathematisches Seminar Studieninformationstage an der Universität Kiel Über die regelmäßigen Platonischen Körper Winkelsumme im n-eck Zerlegung eines ebenen n-ecks in (n-2) Dreiecke, oben

Mehr

Eulerscher Polyedersatz

Eulerscher Polyedersatz Eigenschaften als reguläre Parkettierungen der Sphäre Seien E die der Ecken, F die der Flächen und K die der Kanten eines konvexen Polyeders, dann gilt: K E = F 2 als reguläre Parkettierungen der Sphäre

Mehr

Die Herstellung eines Fußballs

Die Herstellung eines Fußballs Die Herstellung eines Fußballs Zusammengestellt von A. Hösele 2008 Herstellung eines Fußballs 1 Das hier wird mal ein Fußball, auch wenn das zunächst gar nicht so aussieht: Auf eine Lage Schaumstoff wird

Mehr

Polyeder und Platonische Körper

Polyeder und Platonische Körper Polyeder und Platonische Körper Ausarbeitung zum 30.11.2016 Linus Leopold Boes Matrikelnummer: 2446248 Algorithmen für planare Graphen Institut für Informatik HHU Düsseldorf Inhaltsverzeichnis 1 Einleitung

Mehr

Mathematische Probleme, SS 2013 Montag $Id: convex.tex,v /10/22 15:58:28 hk Exp $

Mathematische Probleme, SS 2013 Montag $Id: convex.tex,v /10/22 15:58:28 hk Exp $ $Id: convex.tex,v 1.12 2013/10/22 15:58:28 hk Exp $ 3 Konvexgeometrie 3.1 Konvexe Polyeder Wir hatten einen konvexen Polyeder P im R n als die konvexe Hülle von endlich vielen Punkten definiert, wobei

Mehr

Körper kennen lernen Station 1

Körper kennen lernen Station 1 Körper kennen lernen Station 1 Aufgabe 1.1) Der kleine Lars hat mit Bauklötzen eine Stadt nachgebaut. Welche Teile (geometrische Körper) hat er dabei verwendet? Fertigt eine Liste an. Aufgabe 1.2) Viele

Mehr

Körper zum Selberbauen Polydron

Körper zum Selberbauen Polydron Körper zum Selberbauen Polydron Was versteht man unter Polydron? Polydron ist ein von Edward Harvey erfundenes intelligentes Spielzeug, mit dem man verschiedene geometrische Figuren bauen kann. Es ist

Mehr

Johnson Polyeder J 1 J 2

Johnson Polyeder J 1 J 2 Polyeder -Polyeder sind konvexe Polyeder, welche ausschließlich regelmäßige n-ecke als Seitenflächen besitzen. Davon ausgenommen werden die 5 regelmäßigen Platonischen Körper und die 13 halbregulären Archimedischen

Mehr

2.4A. Reguläre Polyeder (Platonische Körper)

2.4A. Reguläre Polyeder (Platonische Körper) .A. Reguläre Polyeder (Platonische Körper) Wie schon in der Antike bekannt war, gibt es genau fünf konvexe reguläre Polyeder, d.h. solche, die von lauter kongruenten regelmäßigen Vielecken begrenzt sind:

Mehr

Bastelbogen platonische Körper

Bastelbogen platonische Körper E s gibt in der Geometrie einige wenige Körper, die die größtmögliche Symmetrie besitzen. Sie wurden nach dem griechischen Philosophen Platon (428-348 v. Chr.) benannt und heißen deswegen platonische Körper.

Mehr

Fulleren fädeln. Einführung

Fulleren fädeln. Einführung Fulleren fädeln. Wikipedia: Als Fullerene (Einzahl: Fulleren) werden sphärische Moleküle aus Kohlenstoffatomen (mit hoher Symmetrie, z. B. IhSymmetrie für C60) bezeichnet. Dieser Fädellehrgang ist ein

Mehr

Das Ikosaeder. 1 Grundlagen: Das gleichseitige Dreieck

Das Ikosaeder. 1 Grundlagen: Das gleichseitige Dreieck Das Ikosaeder Walter Fendt 27. Februar 2005 1 Grundlagen: Das gleichseitige Dreieck Satz 1 Für ein gleichseitiges Dreieck mit Seitenlänge a gelten folgende Formeln: Höhe h = a 3 2 Umkreisradius r = a 3

Mehr

Reguläre Polyeder. im Wissenschaftssommer Leipzig, 1. Juli

Reguläre Polyeder. im Wissenschaftssommer Leipzig, 1. Juli Reguläre Polyeder Vortrag von Dr. Hans-Gert Gräbe, apl. Professor für Informatik, Univ. Leipzig, und Leipziger Schülergesellschaft für Mathematik (LSGM) e.v. im Wissenschaftssommer Leipzig, 1. Juli 2008

Mehr

Eulerscher Polyedersatz

Eulerscher Polyedersatz Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Eulerscher Polyedersatz Beweis durch planare Graphen und Anwendung auf platonische Körper Die oben abgebildete Briefmarke wurde

Mehr

Mathematische Probleme, SS 2015 Donnerstag $Id: convex.tex,v /06/18 11:41:08 hk Exp $

Mathematische Probleme, SS 2015 Donnerstag $Id: convex.tex,v /06/18 11:41:08 hk Exp $ $Id: convex.tex,v 1.25 2015/06/18 11:41:08 hk Exp $ 3 Konvexgeometrie 3.3 Automorphismengruppen platonischer Körper Wir behandeln gerade die Symmetrien platonischer Körper, ist P ein platonischer Körper

Mehr

2 Eulersche Polyederformel und reguläre Polyeder

2 Eulersche Polyederformel und reguläre Polyeder 6 2 Eulersche Polyederformel und reguläre Polyeder 2.1 Eulersche Polyederformel Formal besteht ein Graph aus einer Knotenmenge X und einer Kantenmenge U. Jede Kante u U ist eine zweielementige Teilmenge

Mehr

Dodekaeder Simum als Sphäre

Dodekaeder Simum als Sphäre Eine Gemeinschaftsarbeit von Schülerinnen und Schülern der 12. und 11. Klassen der Atelierschule Zürich im September 2009 Im Grundlagen-Wahlfach haben wir mit 11.- und 12.-KlässlerInnen einen luftigen,

Mehr

IV. BUCH RAUM MIT. 9b. STERNDELTAEDER. Titelbild:

IV. BUCH RAUM MIT. 9b. STERNDELTAEDER. Titelbild: IV. BUCH RAUM MIT n-dimensionen 9b. STERNDELTAEDER Titelbild: http://imaginary.org/gallery/polyhedron-models Sterndeltaeder Wie viele Deltaeder mit 18 Dreiecken gibt es? Viele, zu viele! Von den endlich

Mehr

Das Dodekaeder. 1 Grundlagen: Das regelmäßige Fünfeck

Das Dodekaeder. 1 Grundlagen: Das regelmäßige Fünfeck Das Dodekaeder Walter Fendt. Februar 005 1 Grundlagen: Das regelmäßige Fünfeck Satz 1 Für ein regelmäßiges Fünfeck mit Seitenlänge a gelten folgende Formeln: Höhe h = a 5 + 5 Umkreisradius r = a 10(5 +

Mehr

Teilgebiete der Abbildungsgeometrie

Teilgebiete der Abbildungsgeometrie Teilgebiete der Abbildungsgeometrie In der Abbildungsgeometrie wird zur Klassifizierung von Eigenschaften des Raumes (bzw. der Ebene) und der in ihm enthaltenen Objekte (Geraden, Kreise, Polytope, usw.)

Mehr

Herstellung eines Fussballs

Herstellung eines Fussballs Herstellung eines Fussballs Das hier wird mal ein Fußball, auch wenn das zunächst gar nicht so aussieht: Auf eine Lage Schaumstoff wird eine Lage längsgestreiftes Gewebe gelegt, und beides wird mit Latexkleber

Mehr

IV. BUCH: RAUM MIT. 8a. Die ARCHIMEDISCHEN. 1

IV. BUCH: RAUM MIT. 8a. Die ARCHIMEDISCHEN.  1 IV. BUCH: RAUM MIT n-dimensionen 8a. Die ARCHIMEDISCHEN www.udo-rehle.de 1 Archimedische Körper Zu den archimedischen Körpern gelangt man durch diverses Abschneiden der Ecken bei den platonischen Körpern.

Mehr

Eulerscher Polyedersatz

Eulerscher Polyedersatz Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Eulerscher Polyedersatz Beweis durch planare Graphen und Anwendung auf platonische Körper Die oben abgebildete Briefmarke wurde

Mehr

Problem des Monats ( Januar 2012 )

Problem des Monats ( Januar 2012 ) Schülerzirkel Mathematik Problem des Monats ( Januar 2012 ) Sauff-Zahlen Eine natürliche Zahl größer als 1 heiße Sauff-Zahl, wenn sie sich als Summe aufeinander folgender natürlicher Zahlen schreiben lässt.

Mehr

Hans Walser, [ a] Polyedermodelle aus rechteckigen Karten

Hans Walser, [ a] Polyedermodelle aus rechteckigen Karten Hans Walser, [20090829a] Polyedermodelle aus rechteckigen Karten 1 Die Idee Wir schrägen bei einem Polyeder die Ecken ab und anschließend die ursprünglichen Kanten. Dadurch entsteht aus jeder ursprünglichen

Mehr

HTL Niet Fullerene, Fußball Seite 1 von 8. Vektorrechnung in 3D: Skalarprodukt, Vektorprodukt, Gerade, Schnittpunkt...

HTL Niet Fullerene, Fußball Seite 1 von 8. Vektorrechnung in 3D: Skalarprodukt, Vektorprodukt, Gerade, Schnittpunkt... HTL Niet Fullerene, Fußball Seite von 8 Name und e-mail-adresse Nietrost Bernhard, bernhard.nietrost@htl-steyr.ac.at Fullerene, Fußball Mathematische / Fachliche Inhalte in Stichworten: Vektorrechnung

Mehr

Darstellung dreidimensionaler Figuren in der Ebene. Schrägbild

Darstellung dreidimensionaler Figuren in der Ebene. Schrägbild Mathematik Bl Darstellung dreidimensionaler Figuren in der Ebene Schrägbild Das Bild bei einer schrägen Parallelprojektion heisst Schrägbild und wird durch folgende Merkmale bestimmt: - Zur Zeichenebene

Mehr

Elementare Mathematik

Elementare Mathematik Elementare Mathematik Skript zum Workshop Platonische Körper -1- 1 Einleitung Das Thema des vorliegenden Workshops hat einen Schwerpunkt in der Geometrie des dreidimensionalen Raums, genauer: in der Mathematik

Mehr

Tag der Mathematik 2006 in Karlsruhe

Tag der Mathematik 2006 in Karlsruhe Tag der Mathematik 2006 in Karlsruhe Gruppenwettbewerb Aufgabe G1 (8 Punkte) Ein Fußball besteht aus 12 Fünfecken und 20 Sechsecken. Wie viele Ecken und Kanten hat der Fußball? Wie viele Diagonalen hat

Mehr

Fußbälle, platonische und archimedische Körper

Fußbälle, platonische und archimedische Körper Fußbälle, platonische und archimedische Körper Prof. Dr. Wolfram Koepf http://www.mathematik.uni-kassel.de/~koepf Was ist ein Fußball? Sepp Herberger: Der Ball ist rund. Ist also ein Fußball eine Kugel?

Mehr

Bemerkung zu den Johnsonkörpern

Bemerkung zu den Johnsonkörpern Bemerkung zu den Johnsonkörpern Ein Gebiet, in dem praktische Nutzanwendungen idealer Körperformen Sinn machen kann, ist die Gebäudearchitektur. Klassen idealer Körper, deren Studium dem Anwender Ideen

Mehr

Mathematik für die Sekundarstufe 1

Mathematik für die Sekundarstufe 1 Hans Walser Mathematik für die Sekundarstufe 1 Modul 207 Die fünf platonischen Körper Hans Walser: Modul 207, Die fünf platonischen Körper ii Inhalt 1 Definition der fünf platonischen Körper... 1 2 Tabelle...

Mehr

Der Eulersche Polyedersatz

Der Eulersche Polyedersatz Der Eulersche Polyedersatz Def Die Anzahl der k Seiten eines konvexen Polytops P bezeichnen wir mit f k (P) oder kurz mit f k. Das n Tupel (f 0,f 1,...,f n 1 ) Z n heißt dann der f Vektor des (n dimensionalen)

Mehr

Elementare Mathematik

Elementare Mathematik Elementare Mathematik Skript zum Workshop Platonische Körper - 1 - RF + KP 1/2012 1 Einleitung Das Thema des vorliegenden Workshops hat einen Schwerpunkt in der Geometrie des dreidimensionalen Raums, genauer:

Mehr

Wir beginnen das zweite Kapitel mit einer Faltarbeit (nach Mitchell 1997, S. 36f). Dazu benötigen wir 12 Blätter des DIN-Formates A, z.b. A 4.

Wir beginnen das zweite Kapitel mit einer Faltarbeit (nach Mitchell 1997, S. 36f). Dazu benötigen wir 12 Blätter des DIN-Formates A, z.b. A 4. 47 Polyeder.1 Einstiegsproblem Wir beginnen das zweite Kapitel mit einer Faltarbeit (nach Mitchell 1997, S. 36f). Dazu benötigen wir 1 Blätter des DIN-Formates A, z.b. A 4. H.-J. Gorski, S. Müller-Philipp,

Mehr

16. Platonische Körper kombinatorisch

16. Platonische Körper kombinatorisch 16. Platonische Körper kombinatorisch Ein Würfel zeigt uns, daß es Polyeder gibt, wo in jeder Ecke gleich viele Kanten zusammenlaufen, und jede Fläche von gleich vielen Kanten berandet wird. Das Tetraeder

Mehr

BUCH IV: RAUM MIT. 10a. Die JOHNSON

BUCH IV: RAUM MIT. 10a. Die JOHNSON BUCH IV: RAUM MIT n-dimensionen 10a. Die JOHNSON Johnsonkörper Neben den 5 Platonischen Körpern und den 13 Archimedischen Körpern sind es die 92 aus nur regelmäßigen Vielecken aufgebaute konvexe sog. Johnson-Körper,

Mehr

BUCH III: PYRAMIDEN. 1. DieE U L E R KATHETENQUADRAT-WEHRLE KATHETEN-WEHRLE

BUCH III: PYRAMIDEN. 1. DieE U L E R KATHETENQUADRAT-WEHRLE KATHETEN-WEHRLE BUCH III: PYRAMIDEN 1. DieE U L E R KATHETENQUADRAT-WEHRLE KATHETEN-WEHRLE Euler-Pyramiden Wenn wir nun zu den drei Ecken des Dreiecks eine vierte hinzufügen, dann erhalten wir entweder ein Viereck 1,

Mehr

5 Graphen und Polyeder

5 Graphen und Polyeder 5 Graphen und Polyeder 5.1 Graphen und Eulersche Polyederformel Ein Graph besteht aus einer Knotenmenge V (engl. vertex) und einer Kantenmenge E (engl. edge). Anschaulich verbindet eine Kante zwei Knoten,

Mehr

Das Bastelbogenproblem

Das Bastelbogenproblem Das Bastelbogenproblem JProf. Dr. Petra Schwer Tag der Mathematik, 7. März 2015, KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

Philipps-Universität Marburg Fachbereich 12: Mathematik und Informatik Platonische Körper

Philipps-Universität Marburg Fachbereich 12: Mathematik und Informatik Platonische Körper Philipps-Universität Marburg Fachbereich 12: Mathematik und Informatik PS: Klassische Probleme der Mathematik Leitung: Prof. Harald Upmeier, Benjamin Schwarz Referentin: Irina Kaiser WS 2009/2010 Platonische

Mehr

Ein System zum Bau von geometrischen Körpern

Ein System zum Bau von geometrischen Körpern Die Entdeckung des Prinzips der Verschränkung von geschlitzten, ebenen Kunststoffbauelementen eröffnete die Möglichkeit fast beliebig komlizierte geometrische Modelle zu bauen. Das System verwendet keinen

Mehr

Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006. Alexander Bobenko und Ivan Izmestiev. Geometrie

Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006. Alexander Bobenko und Ivan Izmestiev. Geometrie Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin Geometrie Aufgabe G.1 Berechne die Innenwinkelsumme eines n-ecks. Aufgabe G.2 Zeige, dass

Mehr

Tag der Mathematik 2006

Tag der Mathematik 2006 Tag der Mathematik 2006 Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner

Mehr

Strategien für Aufbauspiele mit Mosaik-Polyominos. Jens-P. Bode

Strategien für Aufbauspiele mit Mosaik-Polyominos. Jens-P. Bode Strategien für Aufbauspiele mit Mosaik-Polyominos Jens-P. Bode Vom Fachbereich für Mathematik und Informatik der Technischen Universität Braunschweig genehmigte Dissertation zur Erlangung des Grades eines

Mehr

Mathematische Probleme, SS 2016 Freitag $Id: convex.tex,v /05/13 14:42:55 hk Exp $

Mathematische Probleme, SS 2016 Freitag $Id: convex.tex,v /05/13 14:42:55 hk Exp $ $Id: convex.tex,v.28 206/05/3 4:42:55 hk Exp $ 3 Konvexgeometrie 3. Konvexe Polyeder In der letzten Sitzung haben wir begonnen uns mit konvexen Polyedern zu befassen, diese sind die Verallgemeinerung der

Mehr

Begleitmaterial zur Ausstellung Rund um den Ball

Begleitmaterial zur Ausstellung Rund um den Ball Begleitmaterial zur Ausstellung Rund um den Ball Eine Mitmachausstellung für Kinder von 6 bis 12 Jahren 5. März bis 29. Juni 2008 2. Teil: Ballphysik In diesem Kapitel sind mehrere Artikel zum Thema Ballphysik

Mehr

Musteraufgaben zum Mathematikwettbewerb der Einführungsphase 2013 am

Musteraufgaben zum Mathematikwettbewerb der Einführungsphase 2013 am MW-E Mathematikwettbewerb der Einführungsphase 0. Februar 03 Musteraufgaben zum Mathematikwettbewerb der Einführungsphase 03 am 0.0.03 Hinweis: Beim Mathematikwettbewerb MW-E der Eingangsstufe werden Aufgaben

Mehr

a) b) Abb. 1: Würfel und Kantenmittenkugel

a) b) Abb. 1: Würfel und Kantenmittenkugel Hans Walser, [0180511] Drachenkörper Anregung: Werner Blum, Braunschweig 1 Worum es geht Ausgehend vom Würfel werden mit der immer gleichen Technik zuerst das Rhombendodekaeder und anschließend der Deltoidvierundzwanzigflächner

Mehr

Von Sternen und allerlei anderen Körpern

Von Sternen und allerlei anderen Körpern In der Mathematik ist das Fragen wichtiger als das Rechnen. Georg Cantor (1845 1918) Mathematik-Professor in Halle Von Sternen und allerlei anderen Körpern Diese drei Abbildungen stellen Modelle von Polyedern

Mehr

MB 10. Seiten im Materialblock: Wissensspeicher ab Seite MB 11 Methodenspeicher Seite MB 14 Arbeitsmaterial ab Seite MB 15 Checkliste Seite MB 23

MB 10. Seiten im Materialblock: Wissensspeicher ab Seite MB 11 Methodenspeicher Seite MB 14 Arbeitsmaterial ab Seite MB 15 Checkliste Seite MB 23 MB 10 Seiten im Materialblock: Wissensspeicher ab Seite MB 11 Methodenspeicher Seite MB 14 ab Seite MB 15 Checkliste Seite MB 23 Wissensspeicher Körper und Flächen MB 11 Wissensspeicher Fachwörter zu Körpern

Mehr

Winkeldefizite bei konvexen Polyedern

Winkeldefizite bei konvexen Polyedern 44 Hans Walser Winkeldefizite bei konvexen Polyedern Die Summe der ebenen Winkel an einer konvexen Polyederecke ist kleiner als 360. Zu jeder Polyederecke gibt es also ein Winkeldefizit als Ergänzung auf

Mehr

Geometrische Körper bauen

Geometrische Körper bauen www.erfolgreicheslernen.de April 2009 Geometrische Körper bauen Michael Schmitz Zusammenfassung Aus dünner Pappe oder stabilem Kopierpapier (z.b. 200 g/m 2 ) und Gummiringen kann man ebenflächig begrenzte

Mehr

Lösungsskizzen zur Präsenzübung 08

Lösungsskizzen zur Präsenzübung 08 Lösungsskizzen zur Präsenzübung 08 Hilfestellung zur Vorlesung Anwendungen der Mathematik im Wintersemester 015/016 Fakultät für Mathematik Universität Bielefeld Veröffentlicht am 07. Februar 016 von:

Mehr

Reguläre Polyeder. Vortrag von Prof. Hans-Gert Gräbe, Uni Leipzig. im Mathespezialistencamp der LSGM 22. Juli 2006, Ilmenau

Reguläre Polyeder. Vortrag von Prof. Hans-Gert Gräbe, Uni Leipzig. im Mathespezialistencamp der LSGM 22. Juli 2006, Ilmenau Reguläre Polyeder Vortrag von Prof. Hans-Gert Gräbe, Uni Leipzig im Mathespezialistencamp der LSGM 22. Juli 2006, Ilmenau export(plot): Die fünf Platonischen Körper plot(canvas(layout=horizontal,width=16*unit::cm,

Mehr

Die Platonischen Körper

Die Platonischen Körper Wie viele Platonische Körper gibt es? Der griechische Philosoph Platon (427-348/347 v. Chr.) beschrieb die regelmässigen, geometrischen Körper im Dialog Timaios. Es ist leicht nachzuweisen, dass es nur

Mehr

Wie gross ist der Flächeninhalt A eines Quadrats mit der Seitenlänge a? A = a 2

Wie gross ist der Flächeninhalt A eines Quadrats mit der Seitenlänge a? A = a 2 Stereometrie-Formeln Quadrat eines Quadrats mit der Seitenlänge a? A = a Quadrat Wie lang ist die Diagonale d eines Quadrats mit der Seitenlänge a? d = a Rechteck eines Rechtecks mit den Seitenlängen a

Mehr

! % Note: mit P. ! "#$% &' (#$ (#$ )* #$ +,' $-. / 01#$#$ '.2

! % Note: mit P. ! #$% &' (#$ (#$ )* #$ +,' $-. / 01#$#$ '.2 ! % Note: mit P.! "#$% &' (#$ (#$ )* #$ +,' $-. / 01#$#$ '. 4+ Körperberechnung: Die Übungsarbeit dient der gezielten Vorbereitung auf die Arbeit. Die Übungsarbeit hat insgesamt 10 Aufgaben mit einigen

Mehr

Polyeder in der Anorganischen Chemie

Polyeder in der Anorganischen Chemie Polyeder in der Anorganischen Chemie Melanie Koschinat AC-F Seminar 28.11.2005 Gliederung Einleitung: Geschichtliches Größendimensionen Allgemein Polyeder Dualitätsprinzip Abstumpfen von Polyedern Beispiele

Mehr

Die Proportionen der regelmässigen Vielecke und die

Die Proportionen der regelmässigen Vielecke und die geometricdesign Die Proportionen der regelmässigen Vielecke und die Platonischen Körper Die Proportionen der regelmässigen Vielecke und die Platonischen Körper Rechtecke gebildet aus Seite und Diagonale

Mehr

Schönheit in der Mathematik Teil II GIANCARLO COPETTI

Schönheit in der Mathematik Teil II GIANCARLO COPETTI kanti-news Schönheit in der Mathematik Teil II GIANCARLO COPETTI Von der Vermutung zur Gewissheit Geschätzte Leserinnen und Leser! Erinnern Sie sich noch? An die in der letzten Ausgabe aufgeworfene Frage,

Mehr

1.1. Aussagen, Beweise, vollständige Induktion 15

1.1. Aussagen, Beweise, vollständige Induktion 15 11 Aussagen, Beweise, vollständige Induktion 15 Man kann die Methode der vollständigen Induktion auch auf vielfältige Weise einsetzen, um geometrische Aussagen zu beweisen Hier ein prominentes Beispiel

Mehr

GRUPPENTHEORIE AUFGABEN ZUR PRÜFUNGSVORBEREITUNG II

GRUPPENTHEORIE AUFGABEN ZUR PRÜFUNGSVORBEREITUNG II Universität Bielefeld WS 2012/13 GRUPPENTHEORIE AUFGABEN ZUR PRÜFUNGSVORBEREITUNG II DR. PHILIPP LAMPE Rat sucht man deshalb, weil man die einzige Lösung kennt, aber nichts davon wissen will. Erica Jong

Mehr

4.13 Euklid (um 300 v.chr.) und seine Werke

4.13 Euklid (um 300 v.chr.) und seine Werke 4.13 Euklid (um 300 v.chr.) und seine Werke wurde (vermutlich nach Studium in Athen) von einem frühen Vertreter der Dynastie der Ptolemäer nach Alexandria berufen, wo er die dortige mathematische Schule

Mehr

Station Figurierte Zahlen Teil 3. Arbeitsheft. Teilnehmercode

Station Figurierte Zahlen Teil 3. Arbeitsheft. Teilnehmercode Station Figurierte Zahlen Teil 3 Arbeitsheft Teilnehmercode Mathematik-Labor Station Figurierte Zahlen Liebe Schülerinnen und Schüler! Schon die alten Griechen haben Zahlen mit Hilfe von Zählsteinen dargestellt:

Mehr

Fußball, Euroball und andere Polyeder

Fußball, Euroball und andere Polyeder - Zentralabteilung Technologie Fußball, Euroball und andere Polyeder H. Kämmerling P. Jansen Jülich-Mersch~ Jülich-Kostar ; 44 55 Jülich\\ Bergheim/Eisdorf1 Berichte des Forschungszentrums Jülich ; 2849

Mehr

Aus dem binomischen Lehrsatz ergeben sich sofort interessante Beziehungen zwischen den Binomialkoeffizienten.

Aus dem binomischen Lehrsatz ergeben sich sofort interessante Beziehungen zwischen den Binomialkoeffizienten. 11 Aussagen, Beweise, vollständige Induktion 13 Aus dem binomischen Lehrsatz ergeben sich sofort interessante Beziehungen zwischen den Binomialkoeffizienten 114 Folgerung n ( ) n = (1+1) n = 2 n und k

Mehr

Zopf-Loch-Mütze stricken

Zopf-Loch-Mütze stricken Zopf-Loch-Mütze stricken Folge uns! Diese Mütze passt perfekt, wenn ihr lange Haare habt und in eurer Mütze zu wenig Platz dafür ist. Das coole daran ist, dass sie nicht nur angenehm warm und super praktisch

Mehr

Die historische Betrachtung der Platonischen Körper

Die historische Betrachtung der Platonischen Körper Die historische Betrachtung der Platonischen Körper Prof. Dr. Herbert Henning, Christian Hartfeldt Otto-von-Guericke-Universität Magdeburg Fakultät für Mathematik Institut für Algebra und Geometrie email:

Mehr

Mathematik II Prüfung für den Übertritt aus der 9. Klasse

Mathematik II Prüfung für den Übertritt aus der 9. Klasse Aufnahmeprüfung 2017 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik II Prüfung für den Übertritt aus der 9. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle

Mehr

3D-Druck Feriencamp OpenSCAD - Der Schlüsselanhänger

3D-Druck Feriencamp OpenSCAD - Der Schlüsselanhänger Hier werdet ihr die Grundlagen von OpenSCAD lernen, um damit euer erstes 3D- Objekt zu erstellen. Dazu werdet ihr lernen Kugeln, Zylinder, Quader und Text: zu erstellen, zu verschieben, und zu kombinieren.

Mehr

Stereometrie. Rainer Hauser. Dezember 2010

Stereometrie. Rainer Hauser. Dezember 2010 Stereometrie Rainer Hauser Dezember 2010 1 Einleitung 1.1 Beziehungen im Raum Im dreidimensionalen Euklid schen Raum sind Punkte nulldimensionale, Geraden eindimensionale und Ebenen zweidimensionale Unterräume.

Mehr

Übersicht 2.1 Polyeder Schrägbilder Abwicklungen und Auffaltungen Zylinder und Kegel Kugeln...

Übersicht 2.1 Polyeder Schrägbilder Abwicklungen und Auffaltungen Zylinder und Kegel Kugeln... 2 Geometrie im Raum Übersicht 21 Polyeder 59 22 Schrägbilder 64 23 Abwicklungen und Auffaltungen 70 24 Zylinder und Kegel 72 25 Kugeln 76 21 Polyeder Eine begrenzte (beschränkte, endliche) Fläche nennt

Mehr

Serie 6: Lösungen Wir erinnern uns daran, dass für die Anzahl Elemente konvexer Polyeder die folgenden dualen Beziehungen gelten: e j, f =

Serie 6: Lösungen Wir erinnern uns daran, dass für die Anzahl Elemente konvexer Polyeder die folgenden dualen Beziehungen gelten: e j, f = Serie 6: Lösungen Wir erinnern uns daran, dass für die Anzahl Elemente konvexer Polyeder die folgenden dualen Beziehungen gelten: e = e j, f = j=3 j e j = 2k = j=3 f j (1) j=3 j f j (2) j=3 e k + f = 2

Mehr

A Bildsequenzen zur Evaluation

A Bildsequenzen zur Evaluation A Bildsequenzen zur Evaluation A.1 Bildsequenz 2D-Verpackungskarton (a) Bild 1 (b) Bild 16 (c) Bild 31 (d) Bild 42 (e) Bild 79 (f) Bild 122 (g) Bild 182 (h) Bild 224 Abbildung A.1: Acht Beispielbilder

Mehr

Mathematische Probleme, SS 2016 Dienstag $Id: convex.tex,v /05/24 15:01:13 hk Exp $

Mathematische Probleme, SS 2016 Dienstag $Id: convex.tex,v /05/24 15:01:13 hk Exp $ $Id: convex.tex,v 1.29 2016/05/24 15:01:13 hk Exp $ 3 Konvexgeometrie 3.2 Die platonischen Körper Am Ende der letzten Sitzung hatten wir die sogenannten platonische Körper eingeführt, ein platonischer

Mehr

Kantonale Fachmittelschulen Aufnahmeprüfung 2017

Kantonale Fachmittelschulen Aufnahmeprüfung 2017 Kantonale Fachmittelschulen Aufnahmeprüfung 2017 Mathematik Beachten Sie bitte folgende Rahmenbedingungen: Zum Lösen der Aufgaben stehen Ihnen 120 Minuten zur Verfügung. Schreiben Sie auf jedes Blatt Ihren

Mehr

Die Platonischen Körper

Die Platonischen Körper Die Platonischen Körper Ablauf: 1. Die Studenten erklären den Schülern kurz, wer Platon war, wann und wo er gelebt hat und womit er sich beschäftigt hat. 2. Anschließend wird den Schülern erklärt was Platonische

Mehr

2. Platonische Körper

2. Platonische Körper 2 Platonische Körper 27 2. Platonische Körper Dieses Kapitel legt den Schwerpunkt auf die Geometrie. Geometrie in der Grundschule befasst sich mit zwei zentralen Gebieten: Symmetrie und Raumvorstellung.

Mehr

Die Platonischen und Archimedischen Körper aus dem Tetraeder entwickelt

Die Platonischen und Archimedischen Körper aus dem Tetraeder entwickelt Ueli Wittorf 101 Die Platonischen und Archimedischen Körper aus dem Tetraeder entwickelt Ausgehend vom Tetraeder ist es möglich mit sieben beweglichen Torsions-Doppelpolyeder- Modellen alle Platonischen

Mehr

Mathematik II Prüfung für den Übertritt aus der 9. Klasse

Mathematik II Prüfung für den Übertritt aus der 9. Klasse Aufnahmeprüfung 2017 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik II Prüfung für den Übertritt aus der 9. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle

Mehr

Mathematisches Kaleidoskop 2014 Materialien Teil 6. Dr. Hermann Dürkop

Mathematisches Kaleidoskop 2014 Materialien Teil 6. Dr. Hermann Dürkop Mathematisches Kaleidoskop 2014 Materialien Teil 6 Dr. Hermann Dürkop E-Mail: info@ermanus.de 1 3.3 Der Eulersche Polyedersatz Wir wollen kurz das Gebiet der Graphen verlassen und uns gewissen 3- dimensionalen

Mehr

Zentrale Prüfungen 2015 Mathematik

Zentrale Prüfungen 2015 Mathematik Zentrale Prüfungen 2015 Mathematik Hauptschule (Klasse 10 Typ A) / Gesamtschule (Grundkurs) Prüfungsteil I Aufgabe 1 Ordne die Zahlen nach ihrer Größe. Beginne mit der kleinsten Zahl. 0,44 3 0,5 2,5 Aufgabe

Mehr

4.22 Buch XI der Elemente

4.22 Buch XI der Elemente 4.22 Buch XI der Elemente In Buch XI werden die Grundbegriffe der räumlichen Geometrie eingeführt und für viele Propositionen aus den Büchern I und VI die entsprechende dreidimensionale Aussagen bewiesen.

Mehr

Beispiellösungen zu Blatt 55

Beispiellösungen zu Blatt 55 µathematischer κorrespondenz- zirkel Mathematisches Institut Georg-August-Universität Göttingen Aufgabe 1 Beispiellösungen zu Blatt 55 Karsten hat zehn Zahnräder, je eines mit 7, 1,, 10, 179, 2, 299, 0,

Mehr

Warum sind Gullydeckel rund und Pflastersteine viereckig?

Warum sind Gullydeckel rund und Pflastersteine viereckig? Warum sind Gullydeckel rund und Pflastersteine viereckig? Jörn Steuding Heilbronn, 11. März 2015 Rund - Eckig 1. Runde Warum sind Gullydeckel rund? Was wäre wenn...? Wieso braucht man Gullydeckel überhaupt?

Mehr

Von Null bis Zett Eine Einführung

Von Null bis Zett Eine Einführung ! Einführung Von Null bis Zett Eine Einführung Für wen und wozu? Der Titel dieses Nachschlagebuches lautet Von Null bis Zett. Die Null steht für die Mathematik, die ihr darin nachschlagen könnt, und das

Mehr

»Elemente«eingetragen. In seinem Hauptwerk fasste er die mathematischen Erkenntnisse der Zeit zusammen, systematisierte und perfektionierte sie,

»Elemente«eingetragen. In seinem Hauptwerk fasste er die mathematischen Erkenntnisse der Zeit zusammen, systematisierte und perfektionierte sie, »Elemente«eingetragen. In seinem Hauptwerk fasste er die mathematischen Erkenntnisse der Zeit zusammen, systematisierte und perfektionierte sie, sodass erstmals ein Überblick über die meisten der damals

Mehr

Download. Körperberechnungen an Stationen. Übungsmaterial zu den Bildungsstandards. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel:

Download. Körperberechnungen an Stationen. Übungsmaterial zu den Bildungsstandards. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel: Download Marco Bettner, Erik Dinges an Stationen Übungsmaterial zu den Bildungsstandards Downloadauszug aus dem Originaltitel: an Stationen Übungsmaterial zu den Bildungsstandards Dieser Download ist ein

Mehr

3D-Druck Feriencamp OpenSCAD - Der Schlüsselanhänger

3D-Druck Feriencamp OpenSCAD - Der Schlüsselanhänger Hier werdet ihr die Grundlagen von OpenSCAD lernen, um damit euer erstes 3D- Objekt zu erstellen. Dazu werdet ihr lernen Kugeln, Zylinder, Quader und Text: zu erstellen, zu verschieben, und zu kombinieren.

Mehr

Was ist ein Kaleidozyklus?

Was ist ein Kaleidozyklus? Polyeder und ihre Euler-Charakteristik Unter einem Polyeder verstehen wir einen zusammenhängenden Teil des dreidimensionalen Raumes der durch Polygone begrenzt wird. Seine Oberfläche besteht also aus Punkten

Mehr

Herstellen von Modellen für den Raumgeometrieunterricht

Herstellen von Modellen für den Raumgeometrieunterricht Herstellen von Modellen für den Raumgeometrieunterricht Workshop auf dem 12. Bayreuther Mathematikwochenende Freitag, 15. Oktober 2010 15.30 17.00 h Birgit Brandl, Universität Augsburg 1 Warum sind Schülermodelle

Mehr

Körper Lösungen. 1) Welche idealisierten Grundformen entsprechen den Bildern? Ordne die Bezeichnungen den Bildern zu. vierseitiges Prisma

Körper Lösungen. 1) Welche idealisierten Grundformen entsprechen den Bildern? Ordne die Bezeichnungen den Bildern zu. vierseitiges Prisma 1) Welche idealisierten Grundformen entsprechen den Bildern? Ordne die Bezeichnungen den Bildern zu. vierseitiges Prisma regelmäßige dreiseitige Pyramide regelmäßiges sechsseitiges Prisma regelmäßige vierseitige

Mehr