Höhere Mathematik für Ingenieure

Save this PDF as:

Größe: px
Ab Seite anzeigen:

Download "Höhere Mathematik für Ingenieure"

Transkript

1 Burg/Haf/Wille Höhere Mathematik für Ingenieure Band IV Vektoranalysis und Funktionentheorie Von Prof. Dr. rer. nat. Herbert Haf und Prof. Dr. rer. nat. Friedrich Wille Universität Kassel, Gesamthochschule f Mit 256 Figuren, zahlreichen Beispielen und 157 Übungen, zumhteil mit Lösungen il3f!'!.?i 3 aiir A J. H?.s)\ B. G. Teubner Stuttgart 1990

2 Inhalt Vektoranalysis (F. Wille) 1 Kurven 1.1 Wege, Kurven, Bogenlängen Einführung: Ebene Kurven Kurven im R n Glatte und stückweise glatte Kurven Bogenlänge Parametertransformation, Orientierung Theorie ebener Kurven Bogenlänge und umschlossene Fläche Krümmung und Krümmungsradius Tangenteneinheitsvektor, Normalenvektor, natürliche Gleichung Evolute und Evolvente Beispiele ebener Kurven I: Kegelschnitte Kreis Ellipse Hyperbel Parabel Allgemeine Kegelschnittgleichung, Hauptachsentransformation Beispiele ebener Kurven II: Rollkurven, Blätter, Spiralen Zykloiden Epizykloiden Anwendung: Wankelmotor 66 1:4.4 Hypozykloide, Blattartige Kurven Kurbelgetriebe Spiralen Theorie räumlicher Kurven Krümmung, Torsion und begleitendes Dreibein Berechnung von Krümmung, Torsion und Dreibein in beliebiger Parameterdarstellung Natürliche Gleichungen und Frenetsche Formeln 89

3 1.6 Vektorfelder, Potentiale, Kurvenintegrale Vektorfelder und Skalarfelder Kurvenintegrale Der Kurvenhauptsatz Potentialkriterium Berechnung von Potentialen Beweis des Potentialkriteriums Flächen 2.1 Flächenstücke und Flächen Flächenstücke Tangentenebenen, Normalenvektoren Parametertransformation, Orientierung Flächen Flächenintegrale Flächeninhalt Flächenintegrale erster und zweiter Art Transformationsformel für Flächenintegrale zweiter Art Integralsätze 3.1 Der Gaußsche Integralsatz Ergiebigkeit, Divergenz Der Gaußsche Integralsatz für Bereiche mit stückweise glattem Rand Die Kettenregel der Divergenz Beweis des Gaußschen Integralsatzes für Bereiche mit stückweise glattem Rand Gaußscher und Greenscher Integralsatz in der Ebene Der Gaußsche Integralsatz für Skalarfelder Der Stokessche Integralsatz Einfache Flächenstücke.' Zirkulation, Wirbelstärke, Rotation Idee des Stokesschen Integralsatzes Stokesscher Integralsatz im dreidimensionalen Raum Zirkulation und Stokesscher Satz in der Ebene Weitere Differential- und Integralformeln Nabla-Operator...' Formeln über Zusammensetzungen mit grad, div und rot. 167

4 3.3.3 Gaußscher und Stokesscher Satz in div-, grad-, rot- und Nabla-Form Partielle Integration Die beiden Greenschen Integralformeln Krummlinige orthogonale Koordinaten Die Differentialoperatoren grad, div, rot, A in krummlinigen orthogonalen Koordinaten Wirbelfreiheit, Quellfreiheit, Potentiale Wirbelfreiheit: rot V=0, skalare Potentiale Laplace-Gleichung, harmonische Funktionen Poissongleichung Quellenfreiheit: div V=0, Vektorpotentiale Quellfreie Vektorpotentiale Helmholtzscher Zerlegungssatz Alternierende Differentialformen 4.1 Alternierende Differentialformen im K Integralsätze in Komponentenschreibweise... f Differentialformen und totale Differentiale Rechenregeln für Differentialformen Integration von Differentialformen, Integralsätze Alternierende Differentialformen im IR" Definition, Rechenregeln Integrale über p-dimenionalen Flächen Transformationsformel für Integrale Der allgemeine Stokessche Satz Kartesische Tensoren 5.1 Tensoralgebra Motivation: Spannungstensor., Definition kartesischer Tensoren Rechenregeln für Tensoren Invariante Tensoren.... : Diagonalisierung symmetrischer Tensoren und das Tensorellipsoid 233 t 5.2 Tensoranalysis { Differenzierbare Tensorfelder, Fundamentalsatz der Feldtheorie 237

5 5.2.2 Zusammenhang zwischen Tensorgradienten und grad, div, rot, A Der Gaußsche Satz für Tensorfelder zweiter Stufe Anwendungen 243 Funktionentheorie (H. Haf) 6 Grundlagen 6.1 Komplexe Zahlen Wiederholung und Ergänzung Die Riemannsche Zahlenkugel Topologische Hilfsmittel Folgen von komplexen Zahlen Reihen von komplexen Zahlen Kurven und Gebiete in C Funktionen einer komplexen Variablen Funktionsbegriff Stetigkeit Elementare Funktionen Holomorphe Funktionen 7.1 Differenzierbarkeit im Komplexen, Holomorphie Ableitungsbegriff, Holomorphie Rechenregeln für holomorphe Funktionen Die Cauchy-Riemannschen Differentialgleichungen Umkehrung der elementaren Funktionen Die Potentialgleichung Komplexe Integration Integralbegriff, Der Cauchysche Integralsatz Folgerungen aus dem Cauchyschen Integralsatz Umkehrung des Cauchyschen Integralsatzes Anwendungen der komplexen Integralrechnung Erzeugung holomorpher Funktionen durch Grenzprozesse Folgen von Funktionen { Reihen von Funktionen Potenzreihen 359

6 XI Charakterisierung holomorpher Funktionen Analytische Fortsetzung Asymptotische Abschätzungen Asymptotische Entwicklungen Die Sattelpunktmethode 384 Isolierte Singularitäten, Laurententwicklung 8.1 Laurentreihen Holomorphe Funktionen in Ringgebieten Singularitäten Residuensatz und Anwendungen Der Residuensatz Das Prinzip vom Argument Anwendungen: (a) Berechnung von reellen uneigentlichen Integralen 411 (b) Die Eulersche Gammafunktion 420 Konforme Abbildungen 9.1 Einführung in die Theorie konformer Abbildungen Geometrische Kennzeichnung holomorpher Funktionen Der Riemannsche Abbildungssatz Spezielle konforme Abbildungen Anwendungen auf die Potentialtheorie Dirichletsche Randwertprobleme Neumannsche Randwertprobleme Potential von Punktladungen Ebene stationäre Strömungen 476 i 10 Anwendungen der Funktionentheorie auf die Besselsche Differentialgleichung 10.1 Die Besselsche Differentialgleichung.' Motivierung i Die Hankeischen Funktionen Allgemeine Lösung der Besselschen Differentialgleichung 496

7 10.2 Die Besselschen und Neumannschen Funktionen Definitionen und grundlegende Eigenschaften Integraldarstellungen der Besselschen Funktionen Reihenentwicklung und asymptotisches Verhalten der Besselschen Funktionen Orthogonalität und Nullstellen der Besselschen Funktionen Die Nemannschen Funktionen Verhalten der Lösung der Besselschen Differentialgleichung Anwendungen Radialsymmetrische Lösungen der Schwingungsgleichung Schwingungen einer Membran 521 Anhang 528 Lösungen zu den Übungen 1 ) 531 Symbole 549 Literatur 552 Sachverzeichnis 558 ') Zu den mit * versehenen Übungen werden Lösugen angegeben oder Lösungswege skizziert

Klemens Burg, Herbert Haf, Friedrich Wille. Vektoranalysis

Klemens Burg, Herbert Haf, Friedrich Wille. Vektoranalysis Klemens Burg, Herbert Haf, Friedrich Wille Vektoranalysis Klemens Burg, Herbert Haf, Friedrich Wille Vektoranalysis Höhere Mathematik für Ingenieure, Naturwissenschaftler und Mathematiker Verfasst von

Mehr

Vektoranalysis, Funktionentheorie, Transformationen

Vektoranalysis, Funktionentheorie, Transformationen Rainer Schark Theo Overhagen Vektoranalysis, Funktionentheorie, Transformationen Verlag Harri Deutsch Inhaltsverzeichnis I Vektoranalysis 9 1 Vektorfunktionen und Raumkurven 11 1.1 Vektorfunktionen 11

Mehr

Inhaltsverzeichnis. I Vektoranalysis g

Inhaltsverzeichnis. I Vektoranalysis g I Vektoranalysis g 1 Vektorfunktionen und Raumkurven JJ 1.1 Vektorfunktionen n 1.2 Ableitung einer Vektorfunktion 12 1.3 Bogenlänge und Tangenteneinheitsvektor 16 1.4 Hauptnormale und Krümmung 19 1.5 Binormale

Mehr

Mathematischer Einführungskurs für die Physik

Mathematischer Einführungskurs für die Physik Siegfried Großmann Mathematischer Einführungskurs für die Physik 9., überarbeitete und erweiterte Auflage Mit 123 Figuren, über 110 Beispielen und 233 Selbsttests mit Lösungen STUDIUM VIEWEG+ TEUBNER Inhalt

Mehr

Inhaltsverzeichnis Grundlagen Analysis von Funktionen einer Veränderlichen Reihen 189

Inhaltsverzeichnis Grundlagen Analysis von Funktionen einer Veränderlichen Reihen 189 Inhaltsverzeichnis 1 Grundlagen 1 1.1 Logische Grundlagen........................... 2 1.2 Grundlagen der Mengenlehre...................... 8 1.3 Abbildungen................................ 15 1.4 Die

Mehr

Inhaltsverzeichnis Grundlagen Analysis von Funktionen einer Veränderlichen Reihen 191

Inhaltsverzeichnis Grundlagen Analysis von Funktionen einer Veränderlichen Reihen 191 Inhaltsverzeichnis 1 Grundlagen 1 1.1 Logische Grundlagen........................... 2 1.2 Grundlagen der Mengenlehre...................... 8 1.3 Abbildungen................................ 15 1.4 Die

Mehr

Höhere Mathematik für Ingenieure

Höhere Mathematik für Ingenieure Burg / Haf / Wille Höhere Mathematik für Ingenieure Band III Gewöhnliche Differentialgleichungen, Distributionen, Integraltransformationen Von Prof. Dr. rer. nat. Herbert Haf Universität Kassel, Gesamthochschule

Mehr

Höhere Mathematik für Ingenieure

Höhere Mathematik für Ingenieure Burg/Haf/Wille Höhere Mathematik für Ingenieure Band V Funktionalanalysis und Partielle Differentialgleichungen Von Prof. Dr. rer. nat. Herbert Haf Universität Kassel, Gesamthochschule 2., durchgesehene

Mehr

Einführung in die höhere Mathematik 2

Einführung in die höhere Mathematik 2 Herbert Dallmann und Karl-Heinz Elster Einführung in die höhere Mathematik 2 Lehrbuch für Naturwissenschaftler und Ingenieure ab 1. Semester Mit 153 Bildern Friedr. Vieweg & Sohn Braunschweig /Wiesbaden

Mehr

REPETITORIUM DER HÖHEREN MATHEMATIK. Gerhard Merziger Thomas Wirth

REPETITORIUM DER HÖHEREN MATHEMATIK. Gerhard Merziger Thomas Wirth REPETITORIUM DER HÖHEREN MATHEMATIK Gerhard Merziger Thomas Wirth 6 INHALTSVERZEICHNIS Inhaltsverzeichnis Fl Formelsammlung F2 Formelsammlung Alphabete 11 Zeichenindex 12 1 Grundbegriffe 14 1.1 Logische

Mehr

Höhere Mathematik für Naturwissenschaftler und Ingenieure

Höhere Mathematik für Naturwissenschaftler und Ingenieure Günter Bärwolff Höhere Mathematik für Naturwissenschaftler und Ingenieure unter Mitarbeit von Gottfried Seifert ELSEVIER SPEKTRUM AKADEMISCHER VERLAG Spekt rum K-/1. AKADEMISCHER VERLAG AKADEMISC Inhaltsverzeichnis

Mehr

Inhaltsverzeichnis INHALTSVERZEICHNIS. Fl Formelsammlung F2 Formelsammlung. Alphabete 11. Zeichenindex 12

Inhaltsverzeichnis INHALTSVERZEICHNIS. Fl Formelsammlung F2 Formelsammlung. Alphabete 11. Zeichenindex 12 Inhaltsverzeichnis Fl Formelsammlung F2 Formelsammlung Alphabete 11 Zeichenindex 12 1 Grundbegriffe 14 1.1 Logische Grundlagen, Aussagen 14 1.2 Mathematische Grundlagen, Mengen 17 1.3 Vollständige Induktion

Mehr

Inhaltsverzeichnis Grundlagen 2 Analysis von Funktionen einer Veränderlichen 3 Reihen 191

Inhaltsverzeichnis Grundlagen 2 Analysis von Funktionen einer Veränderlichen 3 Reihen 191 Inhaltsverzeichnis 1 Grundlagen 1 1.1 Logische G rundlagen... 2 1.2 Grundlagen der M engenlehre... 8 1.3 Abbildungen... 15 1.4 Die natürlichen Zahlen und die vollständige Induktion... 16 1.5 Ganze, rationale

Mehr

Mathematische Hilfsmittel der Physik

Mathematische Hilfsmittel der Physik * Walter Kuhn/Helmut Stöckel/Hans Glaßl Mathematische Hilfsmittel der Physik Mit 186 Abbildungen 5., erweiterte Auflage Johann Ambrosius Barth Verlag Heidelberg Leipzig i Inhalt 1 Komplexe Zahlen 11 1.1

Mehr

Partielle Differentialgleichungen und funktionalanalytische Grundlagen

Partielle Differentialgleichungen und funktionalanalytische Grundlagen Klemens Burg Herbert Haf Friedrich Wille I Andreas Meister Partielle Differentialgleichungen und funktionalanalytische Grundlagen Höhere Mathematik für Ingenieure, Naturwissenschaftler und Mathematiker

Mehr

Höhere Mathematik für Ingenieure

Höhere Mathematik für Ingenieure Burg/Haf/Wille Höhere Mathematik für Ingenieure Band I Analysis Von Dr. rer. nat. Friedrich Wille Professor an der Universität Kassel, Gesamthochschule 2., durchgesehene Auflage Mit 209 Figuren, zahlreichen

Mehr

Christian B. Lang / Norbert Pucker. Mathematische Methoden in der Physik

Christian B. Lang / Norbert Pucker. Mathematische Methoden in der Physik Christian B. Lang / Norbert Pucker Mathematische Methoden in der Physik Spektrum Akademischer Verlag Heidelberg Berlin Inhaltsverzeichnis Einleitung xv 1 Unendliche Reihen 1 1.1 Folgen und Reihen 1 1.1.1

Mehr

Zweiter Abschnitt. Elliptische Funktionen.

Zweiter Abschnitt. Elliptische Funktionen. VIII Inhaltsverzeichnis. Viertes Kapitel. Untersuchung einiger spezieller analytischer Funktionen. 1. Die Exponentialfunktion..... 67 2. Die trigonometrischen Funktionen. 69 3. Der Logarithmus.. 73 4.

Mehr

Stoffplan für die Vorlesung Mathematik für Studierende der Physik

Stoffplan für die Vorlesung Mathematik für Studierende der Physik Stoffplan für die Vorlesung Mathematik für Studierende der Physik 1. Semester *) I. Vektoren (8) I.1 Zahlen ( N, Q, R, C ) I.2 R n, Zahlen und skalare Multiplikation, Skalarprodukt. I.3 Vektorräume. II.

Mehr

Inhaltsverzeichnis Unendliche Reihen Komplexe Zahlen

Inhaltsverzeichnis Unendliche Reihen Komplexe Zahlen Inhaltsverzeichnis 1 Unendliche Reihen... 1 1.1 Folgen und Reihen... 1 1.1.1 Achill und die Schildkröte... 1 1.1.2 Rechnen mit Grenzwerten... 7 1.1.3 Anwendungen von unendlichen Reihen... 13 1.2 Konvergenz

Mehr

Funktionentheorie erkunden mit Maple

Funktionentheorie erkunden mit Maple Springer-Lehrbuch Funktionentheorie erkunden mit Maple Bearbeitet von Wilhelm Forst, Dieter Hoffmann 1. Auflage 2012. Taschenbuch. xviii, 328 S. Paperback ISBN 978 3 642 29411 2 Format (B x L): 15,5 x

Mehr

Mathematik für die ersten Semester

Mathematik für die ersten Semester Mathematik für die ersten Semester von Prof. Dr. Wolfgang Mückenheim 2., verbesserte Auflage Oldenbourg Verlag München Inhaltsverzeichnis I Grundlagen 1 1 Logik 3 2 Mengen 7 3 Relationen 15 3.1 Abbildungen

Mehr

Wochenaufgaben: Teil 1

Wochenaufgaben: Teil 1 Fachrichtung Mathematik Wochenaufgaben: Teil 1 Wiederholen Sie Kapitel 13 und Abschnitt 14.1. (Fernstudenten: Teil 3, A1, A3, A5.1 bzw. Kapitel 12 und Abschnitt 13.1. meines Skriptes). 1. Was ist eine

Mehr

B-P 11: Mathematik für Physiker

B-P 11: Mathematik für Physiker B-P 11: Mathematik für Physiker Status: freigegeben Modulziele Erwerb der Grundkenntnisse der Analysis, der Linearen Algebra und Rechenmethoden der Physik Modulelemente Mathematik für Physiker I: Analysis

Mehr

Mathematik. für die ersten Semester von Prof. Dr. Wolfgang Mückenheim. OldenbourgVerlag München

Mathematik. für die ersten Semester von Prof. Dr. Wolfgang Mückenheim. OldenbourgVerlag München Mathematik für die ersten Semester von Prof. Dr. Wolfgang Mückenheim OldenbourgVerlag München Inhaltsverzeichnis I 1 2 3 3.1 11 4 4.1 4.2 4.3 5 5.1 5.2 5.3 5.4 5.5 5.6 Grundlagen Logik 3 Mengen 7 Relationen

Mehr

Mathematik I+II. für FT, LOT, PT, WT im WS 2015/2016 und SS 2016

Mathematik I+II. für FT, LOT, PT, WT im WS 2015/2016 und SS 2016 Mathematik I+II für FT, LOT, PT, WT im WS 2015/2016 und SS 2016 I. Wiederholung Schulwissen 1.1. Zahlbereiche 1.2. Rechnen mit reellen Zahlen 1.2.1. Bruchrechnung 1.2.2. Betrag 1.2.3. Potenzen 1.2.4. Wurzeln

Mehr

Mathematische Methode. in der Physi k. 2. Auflage

Mathematische Methode. in der Physi k. 2. Auflage Christian B. Lang Norbert Pucke r Mathematische Methode n in der Physi k 2. Auflage Einleitung xix 1 Unendliche Reihen 1 1.1 Folgen und Reihen 1 1.1.1 Achill und die Schildkröte 1 1.1.2 Rechnen mit Grenzwerten

Mehr

Höhere Mathematik für Ingenieure

Höhere Mathematik für Ingenieure Burg I Haf I Wille Höhere Mathematik für Ingenieure Band 11 Lineare Algebra Von Dr. rer. nat. Friedrich Wille, Dr. rer. nat. Herbert Haf und Dr. rer. nat. Klemens Burg Professoren an der Universität Kassel,

Mehr

Mathematik für Ingenieure A III Wintersemester 2008

Mathematik für Ingenieure A III Wintersemester 2008 1 / 35 Mathematik für Ingenieure A III Wintersemester 28 J. Michael Fried Lehrstuhl Angewandte Mathematik III 21.11.28 2 / 35 Wiederholung Divergenz und Rotation Gradient und Laplace-Operator Merkregeln

Mehr

für öummies Mathematik für Ingenieure II J. Michael Fried Fachkorrektur Von ör. Marianne Hammer-Attmann, Mona öentier,

für öummies Mathematik für Ingenieure II J. Michael Fried Fachkorrektur Von ör. Marianne Hammer-Attmann, Mona öentier, J. Michael Fried Mathematik für Ingenieure II für öummies Fachkorrektur Von ör. Marianne Hammer-Attmann, Mona öentier, Ei/a Förster, Robert Herre und ör. Patrick Kühnet WILEY- VCH WILEY-VCH Verlag GmbH

Mehr

5 Der Gaußsche und Stokes sche Integralsatz

5 Der Gaußsche und Stokes sche Integralsatz HM III = MATH III FT 2013 50 5 Der Gaußsche und Stokes sche Integralsatz Der Gaußsche Integralsatz umgangssprachlich am eispiel strömender Flüssigkeiten: Die Flüssigkeitsmenge, die durch die Oberfläche

Mehr

v. Mangoldt Knopp Höhere Mathematik Eine Einführung für Studierende und zum Selbststudium DRITTER BAND

v. Mangoldt Knopp Höhere Mathematik Eine Einführung für Studierende und zum Selbststudium DRITTER BAND v. Mangoldt Knopp Höhere Mathematik Eine Einführung für Studierende und zum Selbststudium DRITTER BAND Integralrechnung und ihre Anwendungen Funktionentheorie Di fferentialgleichungen 15. Auflage Mit 107

Mehr

Höhere Mathematik für Ingenieure

Höhere Mathematik für Ingenieure Burg / Haf / Wille Höhere Mathematik für Ingenieure Band 11 Lineare Algebra Von Prof. Dr. rer. nato Friedrich Wille t Prof. Dr. rer. nato Herbert Haf Prof. Dr. rer. nato Klemens Burg Universität Kassel,

Mehr

Rotation, Divergenz und das Drumherum

Rotation, Divergenz und das Drumherum Rotation, Divergenz und das Drumherum Eine Einführung in die elektromagnetische Feldtheorie Von Akad. Direktor i. R. Dr.-Ing. Gottlieb Strassacker Universität Fridericiana (TH) Karlsruhe 4., vollständig

Mehr

Mathematik für Physiker

Mathematik für Physiker Mathematik für Physiker Band 2 Gewöhnliche und partielle Differentialgleichungen, mathematische Grundlagen der Quantenmechanik Von Dr. rer. nat. Helmut Fischer und Prof. Dr. rer. nat. Helmut Kaul Universität

Mehr

Rechenmethoden der Physik

Rechenmethoden der Physik May-Britt Kallenrode Rechenmethoden der Physik Mathematischer Begleiter zur Experimentalphysik Mit 47 Abbildungen, 297 Aufgaben und Lösungen Springer Teil I Erste Schritte Rechnen in der Mechanik Rechnen

Mehr

JoachimlRisius. Vektorrechnung. Koordinaten, Vektoren, Matrizen, Tensoren und Grundlagen der Vektoranalysis. VOGEL-VERU^G

JoachimlRisius. Vektorrechnung. Koordinaten, Vektoren, Matrizen, Tensoren und Grundlagen der Vektoranalysis. VOGEL-VERU^G JoachimlRisius Vektorrechnung Koordinaten, Vektoren, Matrizen, Tensoren und Grundlagen der Vektoranalysis. VOGEL-VERU^G Inhaltsverzeichnis 1. Darstellung von Punkten durch Koordinatensysteme 11 1.1. Die

Mehr

Differentialgleichungen der Geometrie und der Physik

Differentialgleichungen der Geometrie und der Physik Friedrich Sauvigny Partie I le Differentialgleichungen der Geometrie und der Physik Grundlagen und Integraldarstellungen Unter Berücksichtigung der Vorlesungen von E. Heinz Springer Inhaltsverzeichnis

Mehr

Grundzüge der Vektoranalysis

Grundzüge der Vektoranalysis KAPITEL 7 Grundzüge der Vektoranalysis 7. Satz von Green................................... 2 7.2 Satz von Stokes................................... 22 7.2. Zirkulation und Wirbelstärke..........................

Mehr

Mathematik I/II für Verkehrsingenieurwesen 2007/08/09

Mathematik I/II für Verkehrsingenieurwesen 2007/08/09 Prof. Dr. habil. M. Ludwig Mathematik I/II für Verkehrsingenieurwesen 2007/08/09 Inhalt der Vorlesung Mathematik I Schwerpunkte: 0 Vorbetrachtungen, Mengen 1. Lineare Algebra 1.1 Matrizen 1.2 Determinanten

Mehr

Kurt Meyberg Peter Vachenauer. Höhere Mathematik 1. Differential- und Integralrechnung Vektor- und Matrizenrechnung

Kurt Meyberg Peter Vachenauer. Höhere Mathematik 1. Differential- und Integralrechnung Vektor- und Matrizenrechnung Kurt Meyberg Peter Vachenauer Höhere Mathematik 1 Differential- und Integralrechnung Vektor- und Matrizenrechnung Vierte, korrigierte Auflage Mit 450 Abbildungen Springer Inhaltsverzeichnis Kapitel 1.

Mehr

Inhaltsverzeichnis. vii

Inhaltsverzeichnis. vii Inhaltsverzeichnis 1 Riemann-Integrale... 1 1.1 Eigentliche und uneigentliche Riemann-Integrale... 1 1.2 Aufgaben... 7 Die Integration wichtiger Sprungfunktionen... 7 Eigentliche und uneigentliche Riemann-Integrale...

Mehr

Analysis für Ingenieurstudenten Band 2

Analysis für Ingenieurstudenten Band 2 * Horst Stöcker (Hrsg.) Siegfried Fuchs Jens Konopka Manfred Schneider Analysis für Ingenieurstudenten Band 2 Mit 177 Aufgaben und Lösungen sowie 138 Abbildungen Verlag Harri Deutsch Thun und Frankfurt

Mehr

Rand der Fläche = Linie. suggestive Notation. "Zirkulation pro gerichteter Fläche" Vorschau: Eine komplexe Funktion sei nur von der Kombination

Rand der Fläche = Linie. suggestive Notation. Zirkulation pro gerichteter Fläche Vorschau: Eine komplexe Funktion sei nur von der Kombination Zusammenfassung: Satz von Stokes Satz v. Stokes: Flussintegral der Rotation = Linienintegral Fläche Rand der Fläche = Linie Symbolisch: suggestive Notation Geometrische Definition der Rotation: "Zirkulation

Mehr

Konrad Königsberger. Analysis 1. Fünfte, neu bearbeitete Auflage mit 161 Abbildungen und 250 Aufgaben samt ausgearbeiteten Lösungen.

Konrad Königsberger. Analysis 1. Fünfte, neu bearbeitete Auflage mit 161 Abbildungen und 250 Aufgaben samt ausgearbeiteten Lösungen. Konrad Königsberger Analysis 1 Fünfte, neu bearbeitete Auflage mit 161 Abbildungen und 250 Aufgaben samt ausgearbeiteten Lösungen Springer Inhaltsverzeichnis J 1 Natürliche Zahlen und vollständige Induktion

Mehr

Ifi. Lehrgang der höheren Mathematik. Teill. von W. I. Smirnow. Mit 190 Abbildungen. Elfte, berichtigte Auflage

Ifi. Lehrgang der höheren Mathematik. Teill. von W. I. Smirnow. Mit 190 Abbildungen. Elfte, berichtigte Auflage Lehrgang der höheren Mathematik Teill von W. I. Smirnow Mitglied der Akademie der Wissenschaften der UdSSR Mit 190 Abbildungen Elfte, berichtigte Auflage Ifi H VEB Deutscher Verlag der Wissenschaften Berlin

Mehr

Mathematik für Naturwissenschaftler

Mathematik für Naturwissenschaftler Mathematik für Naturwissenschaftler von Prof. Dr. Bartel Leendert van der Waerden Universität Zürich Wissenschaftsverlag Mannheim/Wien/Zürich INHALTSVERZEICHNIS 1. Teil: Analytische Geometrie und Vektorrechnung

Mehr

Kapitel 22. Einführung in die Funktionentheorie

Kapitel 22. Einführung in die Funktionentheorie Kapitel 22 Einführung in die Funktionentheorie In Kapitel 17 wurde die Differentialrechnung von Funktionen f: R m R n mehrerer Veränderlicher besprochen. Der Ableitungsbegriff war dabei nicht als Verallgemeinerung

Mehr

Integrieren Das bestimmte Integral einer Funktion f f(x) in einer Variable über das Intervall [a,b] schreiben wir

Integrieren Das bestimmte Integral einer Funktion f f(x) in einer Variable über das Intervall [a,b] schreiben wir Klassische Theoretische Physik TP-L - WS 2013/14 Mathematische Methoden 8.1.2014 Frank Bertoldi (Version 2) Abbildungen und Beispiele aus F. Embacher "Mathematische Grundlagen..." und "Elemente der theoretischen

Mehr

AUFGABEN ZUR FUNKTIONENTHEORIE. von. Prof. Dr. H.-W. Burmann

AUFGABEN ZUR FUNKTIONENTHEORIE. von. Prof. Dr. H.-W. Burmann AUFGABEN ZUR FUNKTIONENTHEORIE von Prof. Dr. H.-W. Burmann Bei den folgenden Aufgaben handelt es sich um Reste, die bei der Erstellung der Aufgabenblätter übriggeblieben sind. Der Schwierigkeitsgrad der

Mehr

Mathematische Ergänzungen zur Einführung in die Physik. Dritte, überarbeitete und ergänzte Auflage. H. J. Korsch

Mathematische Ergänzungen zur Einführung in die Physik. Dritte, überarbeitete und ergänzte Auflage. H. J. Korsch Mathematische Ergänzungen zur Einführung in die Physik Dritte, überarbeitete und ergänzte Auflage H. J. Korsch Fachbereich Physik, Universität Kaiserslautern 3. Februar 2004 ULB Darmstadt iiniiiiiiiiiiiii

Mehr

Elektromagnetische Felder

Elektromagnetische Felder Elektromagnetische Felder Prof. Dr.-Ing. habil. Gerhard Wunsch Dr. sc. techn. Hans-Georg Schulz u VEB VERLAG TECHNIK BERLIN Inhaltsverzeichnis Schreibweise und Formelzeichen der wichtigsten Größen 10.1.

Mehr

Rotation, Divergenz und Gradient

Rotation, Divergenz und Gradient Gottlieb Strassacker, Roland Süße Rotation, Divergenz und Gradient Einführung in die elektromagnetische Feldtheorie 6. durchgesehene und ergänzte Auflage Mit 151 Abbildungen, 17 Tabellen und 70 Beispielen

Mehr

Mathematische Methoden der Physik

Mathematische Methoden der Physik Andreas Schadschneider Mathematische Methoden der Physik Version: 8. Februar 2008 Wintersemester 2007/08 1 Vorbemerkungen Das vorliegende Skript zu Vorlesung Mathematische Methoden ersetzt nicht den regelmässigen

Mehr

VORLESUNGEN ÜBER DIFFERENTIAL-UND INTEGRALRECHNUNG

VORLESUNGEN ÜBER DIFFERENTIAL-UND INTEGRALRECHNUNG Un s Q ü uhig ö 23038 aer J.T'-rawersität Giefsen j p tat VORLESUNGEN ÜBER DIFFERENTIAL-UND INTEGRALRECHNUNG VON R. COURANT ZWEITER BAND FUNKTIONEN MEHRERER VERÄNDERLICHER DRITTE, VERBESSERTE AUFLAGE NEUDRUCK

Mehr

Mathematik 2. 4y Springer Vieweg. Lehrbuch für ingenieurwissenschaftliche Studiengänge. Albert Fetzer Heiner Fränkel. 7. Auflage

Mathematik 2. 4y Springer Vieweg. Lehrbuch für ingenieurwissenschaftliche Studiengänge. Albert Fetzer Heiner Fränkel. 7. Auflage Albert Fetzer Heiner Fränkel Mathematik 2 Lehrbuch für ingenieurwissenschaftliche Studiengänge 7. Auflage Mit Beiträgen von Akad. Dir. Dr. rer. nat. Dietrich Feldmann Prof. Dr. rer. nat. Albert Fetzer

Mehr

Klemens Burg Herbert Haf Friedrich Wille Andreas Meister. Partielle Differentialgleichungen und funktionalanalytische Grundlagen

Klemens Burg Herbert Haf Friedrich Wille Andreas Meister. Partielle Differentialgleichungen und funktionalanalytische Grundlagen Klemens Burg Herbert Haf Friedrich Wille Andreas Meister Partielle Differentialgleichungen und funktionalanalytische Grundlagen Klemens Burg Herbert Haf Friedrich Wille Andreas Meister Partielle Differentialgleichungen

Mehr

S.L. Salas/Einar Hille. Calculus. Einführung in die Differential- und Integralrechnung

S.L. Salas/Einar Hille. Calculus. Einführung in die Differential- und Integralrechnung * S.L. Salas/Einar Hille Calculus Einführung in die Differential- und Integralrechnung Aus dem Amerikanischen von Michael Basler, Thomas Lange und Karl-Heinz Lotze Mit 670 Abbildungen Spektrum Akademischer

Mehr

Springers Mathematische Formeln

Springers Mathematische Formeln Lennart Rade Bertil Westergren Springers Mathematische Formeln Taschenbuch für Ingenieure, Naturwissenschaftler, Informatiker, Wirtschaftswissenschaftler Übersetzt und bearbeitet von Peter Vachenauer Dritte,

Mehr

Springers Mathematische Formeln

Springers Mathematische Formeln г Lennart Rade Bertil Westergren Springers Mathematische Formeln Taschenbuch für Ingenieure, Naturwissenschaftler, Wirtschaftswissenschaftler Übersetzt und bearbeitet von Peter Vachenauer Inhaltsverzeichnis

Mehr

Inhalt K apitel I Grundlagen 1 Natürliche, ganze, rationale und reelle Zahlen 2 D ie Vollständigkeit von IR, konvergente Folgen

Inhalt K apitel I Grundlagen 1 Natürliche, ganze, rationale und reelle Zahlen 2 D ie Vollständigkeit von IR, konvergente Folgen Inhalt Kapitel I Grundlagen 1 Natürliche, ganze, rationale und reelle Zahlen 1 Vorläufiges über Mengen und Aussagen... 13 2 Vorläufiges über die reellen Zahlen... 15 3 Rechengesetze für reelle Zahlen...

Mehr

MATHEMATIK. Lehr- und Übungsbuch. Fachbuchverlag Leipzig im Carl Hanser Verlag. Band 2. Analysis

MATHEMATIK. Lehr- und Übungsbuch. Fachbuchverlag Leipzig im Carl Hanser Verlag. Band 2. Analysis i Lehr- und Übungsbuch MATHEMATIK Band 2 Analysis Mit 164 Bildern, 265 Beispielen und 375 Aufgaben mit Lösungen Fachbuchverlag Leipzig im Carl Hanser Verlag Inhaltsverzeichnis 1 Grundlagen 11 1.1 Abbildungen

Mehr

"Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab"

Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab V4.2 - V4.3: Integralsätze der Vektoranalysis [Notation in diesem Kapitel: Vorausschau/Überblick: alle Indizes unten!] "Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab" Hauptsatz

Mehr

Mathematik- Vorkurs. Übungs- und Arbeitsbuch für Studienanfänger

Mathematik- Vorkurs. Übungs- und Arbeitsbuch für Studienanfänger Mathematik- Vorkurs Übungs- und Arbeitsbuch für Studienanfänger Von Prof. Dr. rer. nat. habil. Wolfgang Schäfer Oberstudienrat Kurt Georgi und Doz. Dr. rer. nat. habil. Gisela Trippier Unter Mitarbeit

Mehr

Wolfgang L Wendland, Olaf Steinbach. Analysis. Integral- und Differentialrechnung, gewöhnliche Differentialgleichungen, komplexe Funktionentheorie

Wolfgang L Wendland, Olaf Steinbach. Analysis. Integral- und Differentialrechnung, gewöhnliche Differentialgleichungen, komplexe Funktionentheorie Wolfgang L Wendland, Olaf Steinbach Analysis Integral- und Differentialrechnung, gewöhnliche Differentialgleichungen, komplexe Funktionentheorie Teubner Inhaltsverzeichnis Einleitung 17 Reelle Zahlen 22

Mehr

VORLESUNGEN ÜBER DIFFERENTIAL- UND INTEGRALRECHNUNG

VORLESUNGEN ÜBER DIFFERENTIAL- UND INTEGRALRECHNUNG VORLESUNGEN ÜBER DIFFERENTIAL- UND INTEGRALRECHNUNG A. OSTROWSKI PROFESSOR AN DER UNIVERSITÄT BASEL Zum Gebrauch bei akademischen Vorträgen sowie zum Selbststudium ZWEITER BAND Differentialrechnung auf

Mehr

"Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab"

Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab V4.2 - V4.3: Integralsätze der Vektoranalysis [Notation in diesem Kapitel: Vorausschau/Überblick: alle Indizes unten!] "Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab" Hauptsatz

Mehr

Aufgabensammlung der höheren Mathematik

Aufgabensammlung der höheren Mathematik W. P. Minorski Aufgabensammlung der höheren Mathematik 13. Auflage Mit 92 Bildern und 2570 Aufgaben mit Lösungen Fachbuchverlag Leipzig-Köln * Inhaltsverzeichnis 1. Analytische Geometrie der Ebene 11 1.1.

Mehr

Lehrgang der höheren Mathematik

Lehrgang der höheren Mathematik Lehrgang der höheren Mathematik Teil 1V/2 von W. I. Smirnow Mit 16 Abbildungen /-. \ D W VEB Deutscher Verlag der Wissenschaften Berlin 1989 Inhalt I. Allgemeine Theorie der partiellen Differentialgleichungen

Mehr

24: Vektoranalysis und die Integralsätze von Gauß, Green und Stokes

24: Vektoranalysis und die Integralsätze von Gauß, Green und Stokes 24: Vektoranalysis und die Integralsätze von Gauß, Green und Stokes Zur Integration reeller Funktionen wurden folgende Regeln behandelt (f,g : [a,b] R seien stetig differenzierbar): Einsetzen der Intervall-Grenzen

Mehr

Grundstudium Mathematik. Analysis III. Bearbeitet von Herbert Amann, Joachim Escher

Grundstudium Mathematik. Analysis III. Bearbeitet von Herbert Amann, Joachim Escher Grundstudium Mathematik Analysis III Bearbeitet von Herbert Amann, Joachim Escher Neuausgabe 2008. Taschenbuch. xii, 480 S. Paperback ISBN 978 3 7643 8883 6 Format (B x L): 17 x 24 cm Gewicht: 960 g Weitere

Mehr

GRUNDZUGE DER MATHEMATIK

GRUNDZUGE DER MATHEMATIK . * % GRUNDZUGE DER MATHEMATIK FÜR LEHRER AN GYMNASIEN SOWIE FÜR MATHEMATIKER IN INDUSTRIE UND WIRTSCHAFT BAND III ANALYSIS Mit zahlreichen Abbildungen 2., durchgesehene Auflage GÖTTINGEN VANDENHOECK &

Mehr

Mathematischer Einführungskurs für die Physik

Mathematischer Einführungskurs für die Physik Teubner Studienbücher Physik Mathematischer Einführungskurs für die Physik Bearbeitet von Prof. em. Dr. Siegfried Großmann erweitert, überarbeitet 2012. Taschenbuch. xvii, 407 S. Paperback ISBN 978 3 8351

Mehr

2.5.5 Fundamentalsatz der Algebra, Folgen und Reihen, stetige Funktionen im Komplexen

2.5.5 Fundamentalsatz der Algebra, Folgen und Reihen, stetige Funktionen im Komplexen Inhaltsverzeichnis 1 Grundlagen 1 1.1 Reelle Zahlen..................................... 1 1.1.1 Die Zahlengerade................................. 1 1.1.2 Rechnen mit reellen Zahlen...........................

Mehr

"Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab"

Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab V4.2 - V4.3: Integralsätze der Vektoranalysis [Notation in diesem Kapitel: Vorausschau/Überblick: alle Indizes unten!] "Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab" Hauptsatz

Mehr

Mathematik für Physiker Band 1

Mathematik für Physiker Band 1 Mathematik für Physiker Band 1 Helmut Fischer Helmut Kaul Mathematik für Physiker Band 1 Analysis, Lineare Algebra, Vektoranalysis, Funktionentheorie 8. Auflage Helmut Fischer Tübingen, Deutschland Helmut

Mehr

Gert Bär. Geometrie. Eine Einführung für Ingenieure und Naturwissenschaftler. 2., überarbeitete und erweiterte Auflage

Gert Bär. Geometrie. Eine Einführung für Ingenieure und Naturwissenschaftler. 2., überarbeitete und erweiterte Auflage Gert Bär Geometrie Eine Einführung für Ingenieure und Naturwissenschaftler 2., überarbeitete und erweiterte Auflage Teubner B.G.Teubner Stuttgart Leipzig Wiesbaden Inhalt 1 Aus der analytischen Geometrie

Mehr

Klemens Burg, Herbert Haf, Friedrich Wille. Höhere Mathematik für Ingenieure

Klemens Burg, Herbert Haf, Friedrich Wille. Höhere Mathematik für Ingenieure Klemens Burg, Herbert Haf, Friedrich Wille Höhere Mathematik für Ingenieure Klemens Burg, Herbert Haf, Friedrich Wille Höhere Mathematik für Ingenieure Band II: Lineare Algebra 5., überarbeitete und erweiterte

Mehr

Inhaltsverzeichnis.

Inhaltsverzeichnis. Inhaltsverzeichnis Vorwort v 1 Grundlagen 1 1.1 Mengenlehre 1 1.1.1 Mengenbegriff 2 1.1.2 Mengenoperationen 4 1.1.3 Abbildungen 7 1.2 Logik 12 1.2.1 Aussagenlogik 12 1.2.2 Prädikatenlogik 18 1.2.3 Beweise

Mehr

EINFÜHRUNG IN DIE HÖHERE MATHEMATIK

EINFÜHRUNG IN DIE HÖHERE MATHEMATIK H. v. MANGOLDT'S EINFÜHRUNG IN DIE HÖHERE MATHEMATIK FÜR STUDIERENDE UND ZUM SELBSTSTUDIUM SEIT DER SECHSTEN AUFLAGE NEU HERAUSGEGEBEN UND ERWEITERT VON KONRAD KNOPP E. 0. PROFESSOR DER MATHEMATIK AN DER

Mehr

Höhere Mathematik für Ingenieure Band I

Höhere Mathematik für Ingenieure Band I Höhere Mathematik für Ingenieure Band I Klemens Burg Herbert Haf Friedrich Wille Andreas Meister Höhere Mathematik für Ingenieure Band I Analysis 11., aktualisierte und erweiterte Auflage Bearbeitet von

Mehr

Inhaltsverzeichnis. Kapitel 1. Zahlen und Vektoren... 1

Inhaltsverzeichnis. Kapitel 1. Zahlen und Vektoren... 1 Inhaltsverzeichnis Kapitel 1. Zahlen und Vektoren... 1 1. Mengen und Abbildungen... 1 1.1 Mengen 1.2 Mengenoperationen 1.3 Abbildungen 2. Die reellen Zahlen... 3 2.1 Bezeichnungen 2.2 Ungleichungen 2.3

Mehr

Vorlesungen über Partielle und Pfaffsche Differentialgleichungen

Vorlesungen über Partielle und Pfaffsche Differentialgleichungen Vorlesungen über Partielle und Pfaffsche Differentialgleichungen von WOLFGANG HAACK em. o. Professor an der Technischen Universität Berlin WOLFGANG WENDLAND Priv.-Doz. an der Technischen Universität Berlin

Mehr

Inhaltsverzeichnis. Teil I Eindimensionale Analysis 27. Einleitung 21. Kapitel 1 Grundtagen der Analysis 29. Über die Autoren 10 Danksagung 10

Inhaltsverzeichnis. Teil I Eindimensionale Analysis 27. Einleitung 21. Kapitel 1 Grundtagen der Analysis 29. Über die Autoren 10 Danksagung 10 Inhaltsverzeichnis Über die Autoren 10 Danksagung 10 Einleitung 21 Zweiter Teil für Naturwissenschaftler oder höhere Mathematik 21 Ein leicht verständlicher Einstieg in die höhere Mathematik anhand von

Mehr

Ziel (langfristig): wie lassen sich diese Eigenschaften mathematisch charakterisieren?

Ziel (langfristig): wie lassen sich diese Eigenschaften mathematisch charakterisieren? V4 Vektorfelder Vektorfelder haben oft Struktur: quellfrei, wirbelfrei Quellfeld Wirbelfeld Ziel (langfristig): wie lassen sich diese Eigenschaften mathematisch charakterisieren? Zunächst brauchen wir

Mehr

Differentialgeometrie

Differentialgeometrie Alfred Gray Differentialgeometrie Klassische Theorie in moderner Darstellung Aus dem Amerikanischen übersetzt und bearbeitet von Hubert Gollek Mit 277 Abbildungen Spektrum Akademischer Verlag Heidelberg

Mehr

Teubners Mathematische Leitfäden Band 23 R. R 0 T H E HÖHERE MATHEMATIK FÜR MATHEMATIKER, PHYSIKER, INGENIEURE TEIL III

Teubners Mathematische Leitfäden Band 23 R. R 0 T H E HÖHERE MATHEMATIK FÜR MATHEMATIKER, PHYSIKER, INGENIEURE TEIL III Teubners Mathematische Leitfäden Band 23 R. R 0 T H E HÖHERE MATHEMATIK FÜR MATHEMATIKER, PHYSIKER, INGENIEURE TEIL III Flächen im Räume Linienintegrale und mehrfache Integrale Gewöhnliche und partielle

Mehr

2 Algebra AlgebraderreellenZahlen Zahlentheorie KomplexeZahlen Algebraische Gleichungen...63

2 Algebra AlgebraderreellenZahlen Zahlentheorie KomplexeZahlen Algebraische Gleichungen...63 Inhaltsverzeichnis 1 Grundlagen. Diskrete Mathematik...9 1.1 Logik...9 1.2 Mengenlehre...14 1.3 BinäreRelationenundFunktionen...17 1.4 AlgebraischeStrukturen...21 1.5 Graphentheorie...33 1.6 Codierung...37

Mehr