A.5.1 Die Matrix und elementare wirtschaftsrelevante Anwendungen

Größe: px
Ab Seite anzeigen:

Download "A.5.1 Die Matrix und elementare wirtschaftsrelevante Anwendungen"

Transkript

1 A.5.1 Die Matrix und elementare wirtschaftsrelevante Anwendungen Eine Matrix vom Typ M mxn (oder eine (m x n)-matrix) ist ein rechteckiges Zahlenschema mit m Zeilen und n Spalten. Im folgenden Beispiel ist A eine 4 x 4-Matrix, B eine 2 x 3 Matrix und C eine 2 x 2 Matrix, d.h. A M 4x4, B M 2x3 und C M 2x2 : A = B = c 11 c12 C = c 21 c22 Ein Element oder eine Komponente einer Matrix wird mit der entsprechenden Zeilennummer zuerst gefolgt von der Spaltennummer indiziert, so ist A 42 = -12. r d d 1 = d 2 d 3 Wenn die Zeilen in Spalten umgewandelt werden entsteht die Transponierte Matrix, so z.b. ist B T die Transponierte Matrix von B T B = 2-3 Eine Matrix mit nur einer Spalte, wie z.b. d r, oder nur mit einer Zeile, wird als Vektor gedeutet und stets in dieser besonderen Notation, d.h. mit Pfeil oben, geführt. Operationen mit Matrizen Die Addition erfolgt elementweise hier vorgestellt in einem Beispiel: = Die Multiplikation mit einem Skalar: = 4 8 Die Matrixmultiplikation: (4.1) a 11 a12 b 11 b12 a11b11 + a12b 21 a11b12 + a12b21 a a b b = a b + a b a b + a b Erkenntnis: Die Matrixmultiplikation ist nicht (vertauschbar)kommutativ, d.h. A B B A. 22

2 Die Multiplikation mit der Inversen Matrix, d.h. die Matrixdivision: Bei Zahlen ist das neutrale Element bezüglich der Multiplikation die Zahl 1, d.h. 4 1 =4 Analog gibt es auch für quadratische Matrizen die Einheitsmatrix E, d.h. A E = A Analog wie bei den Zahlen (Skalaren) ist die Division mit der Matrix A als die Multiplikation mit ihrem Kehrwert A -1 und dieser wird als die Inverse Matrix bezeichnet. A A -1 = E Sei die 2x2 Matrix wenn a11a 22 a 21a12 0 ist. A a a, dann ist A = 1 a a = a 21 a 22 a11a 22 a21a12 a 21 a 11, Matrizen haben eine Große Vielfalt von Anwendungsbereiche. Im wirtschaftlichen Bereich kommen insbesondere zunächst einstufige oder mehrstufige gerichtete Prozesse mit verteiltem Output und Input in Betracht. Im folgenden Beispiel wird im Rahmen der Aufgabenstellungen B.0 bis B.4 eine Rohstoffmengen- und Kosten-Preis- Kalkulation durchgeführt und dabei als Kommentar einige zusätzliche Begriffe erläutert. B.0 Ein Betrieb erhält einen Auftrag für den 4 verschiedene Rohstoffe R 1, R 2, R 3 und R 4 zunächst zu 3 Zwischenprodukte Z 1, Z 2, und Z 3 verarbeitet werden müssen um daraus letztendlich zwei verschiedene Endprodukte E 1 und E 2 zu erzeugen. Das Verflechtungsdiagramm (Gozintograph) aus der Abb. 1 liefert in Mengeneinheiten (ME) die Mengen an Rohstoffen, die für jeweils eine ME der Zwischenprodukte benötigt werden und anschließend wie viele ME an Zwischenprodukte für eine ME der Endprodukte notwendig sind. Abb. 1 23

3 Kommentar: Die Abb. 1 zeigt ein zweistufiges Verflechtungsdiagramm, das aus zwei einstufigen Verflechtungsdiagrammen besteht, und zwar Rohstoff-Zwischenprodukt (RZ) und Zwischenprodukt-Endprodukt (ZE). Einstufige Verflechtungsdiagramme sind stets gerichtet und können auch mit Hilfe von Übergangstabellen (Output-Input-Tabellen) dargestellt werden. Merkregel: In diesen Übergangstabellen wird der Output zeilenweise und der Input spaltenweise gelesen. Es ist sinnvoll mit der Bezeichnung der Übergangstabellen die Konkordanz zu der Matrixnotation herzustellen, denn Übergangstabellen sind eigentlich nicht anderes als Matrizen. Für das obige zweistufige Verflechtungsdiagramm ergeben sich dann folgende Übergangstabellen: RZ: Z 1 Z 2 Z 3 R R R R ZE: E 1 E 2 Z Z Z B.1 Berechnen Sie die Rohstoffmengen, die für diesen Auftrag benötigt werden. Mathematisch können die Menge an ME für den Übergang Rohstoff- Zwischenprodukte in der Matrix RZ (Kurzfassung der Übergangstabelle RZ) und für den Übergang Zwischenprodukte-Endprodukte in der Matrix ZE (Übergangstabelle ZE) erfasst werden: 24

4 ME RZ = ME ZE = 2 1 ME RE = Die Mengen für den direkten Übergang, wie in der Aufgabe gefordert, liefert die Matrix RE, die sich als Produkt der beiden Matrizen berechnen lässt: (4.2) RE = RZ ZE Aus RE ist abzulesen, dass für die Herstellung von E 1 es 18 ME von R 1, 58 ME von E 2, 32 ME von R 3 und 31 ME von R 4 benötigt werden. B.2 Welche Mengen R ur an Rohstoffen und welche Mengen Z ur an Zwischenprodukten sind notwendig, wenn 25 ME von E 1 und 40 ME von E 2 bestellt wurden? r 25 Der Produktionsvektor lautet: x = 40 ME, dann ist (4.3) R ur = RE x r bzw. Z ur = ZE x r ; 1210 ur 3610 R = ME bzw ur Z = 90 ME 275 Es werden 1210 ME von R 1, 3610 ME von R 2 usw. bzw. 235 ME vom Zwischenprodukt Z 1, 90 ME von Z 2 usw. B.3 Berechnen Sie die variablen Kosten für den Auftrag VAK, wenn die Kosten KR je ME für Rohstoffe, die Kosten (Herstellungskosten) KZ je ME für die Zwischenprodukte und die die Kosten (Herstellungskosten) KE je ME für die Endprodukte festgelegt sind: = ( ) ; K R = ( ) ; KZ KE = ( ) Die Auftragskosten für Rohstoffe AKR = KR R ur = Die Auftragskosten für die Zwischenprodukte AKZ = KZ Z ur = Die Auftragskosten für die Endprodukte AKE = KE x r = VAK = AKR + AKZ + AKE =

5 B.4 Berechnen Sie die Gesamten Auftragkosten GAK, wenn die Fixkosten als 0,1 der variablen Kosten anzusetzen sind. Berechnen Sie den resultieren Mengenpreis der Endprodukte, wenn der Mengenpreis P 1 des erstes Endproduktes das 1,2 des zweiten Endproduktes P 2 sein soll. GAK = VAK + 0,1 VAK = 1,1 VAK = GAK = 25 1,2 P P 2 ; P 2 = 771,62 ; P 1 = 925,94 A.5.2 Lineare Gleichungssysteme (LGS) 1 3 r x r 2 Es sei A = ; x= ; b= 2 4 y 5 Die Matrixgleichung r r A x = b liefert ausgeschrieben folgendes LGS mit 2 Gleichungen und 2 Unbekannte: x + 3y = 2 2x 4y = 5 Die einzelnen Gleichungen des LGS können als Geraden in der Ebene Q x Q gedeutet werden und die Lösung des LGS als die Koordinaten (x 1 y 1 ) des Schnittpunktes der beiden Geraden. Es gibt zwei Lösungsalgorithmen für LGS: Der Gauß-Algorithmus Die Cramer-Regel Der Gauß-Algorithmus Die erweiterte Matrix Ab = 2 4 5, bestehend aus der Koeffizienten Matrix A und die 1-Spaltenmatrix des freien Gliedes, wird mit Hilfe von Äquivalenzumformungen in die Diagonalform, d.h. nur die Elemente auf der Diagonale sind ungleich Null, gebracht. Äquivalenzumformung: Wenn einer Zeile einer Erweiterungsmatrix eines LGS das Vielfache einer anderen Zeile addiert wird, dann ändern sich die Lösungen des LGS nicht. 26

6 Die Ab Matrix wird in Diagonalform gebracht und danach gibt es einfach die Lösungen: Ab , x = 0,7; y = 0,9 Die Cramer-Regel Einer quadratischen Matrix A wird mit Hilfe der entsprechenden Determinante Det(A) eine Maßzahl zugeordnet. Wenn die Matrix eine 2x2 Matrix ist wie die Koeffizienten Matrix A aus dem obigen Beispiel, dann ist Berechnung ihrer Determinante recht einfach: Det(A) = Das Produkt auf der Hauptdiagonale das Produkt auf der Nebendiagonale 1 3 Det(A) = = 1 ( 4) 2 3 = Mit der Cramer-Regel werden die Lösungen eines LGS sofort berechnet gemäß der Formeln: Det(x) Det(y) (4.4) x = ; y = Det(A) Det(A) x = = = 0, Allgemein gilt für die Cramer-Regel: i (4.4a) x = i= { 1;2;3;... } i Det(x ) Det(A) y = = = 0, A5 Übungen (5.Ü) 5.Ü.1.1 Wandeln Sie folgende Matrizen in ihre Transponierten um: A = ; B= ( ) 5.Ü.2.1 Führen Sie folgende Operationen mit Matrizen bzw. Vektoren durch: ; ( ) 5.Ü.3.1 Multiplizieren die Matrizen A und B zunächst A B und danach B A 27

7 5.Ü = T A ; B= Berechnen Sie für folgende Matrizen jewils die Inverse Matrix: 5.Ü Ü.6.0 Berechnen Sie folgende Determinanten: Det(A) = Det(B)= Det(C)= R 1 und R 2 sind die wesentlichen Rohstoffe, die das Werk eines Unternehmens wöchentlich für seine Produktion benötigt. Die Übergangstabelle WR lautet (Angaben in ME) : WR R 1 R 2 Woche Woche Woche Woche Diese Rohstoffe werden direkt ans Werk von vier verschiedenen Lieferanten zu annähernd gleichen Kosten geliefert. Die Übergangstabelle RK in GE lautet: RK K 1 K 2 K 3 K 4 R 1 8,5 8,7 8,4 8,6 R 2 25, Ü Ü.7.0 Welcher Lieferant ist über ein ganzes Monat günstiger? Hinweis: Multiplizieren Sie die Matrizen WR RK Aus zwei verschiedenen Rohstoffen R 1 und R 2 werden 3 verschiedene Zwischenprodukte Z 1, Z 2 und Z 3 erzeugt. Die benötigten Mengen an Rohstoffen pro Mengeneinheit Zwischenprodukt werden in ME (Mengeneinheiten) angegeben. Die entsprechende Übergangstabelle RZ lautet: RZ Z 1 Z 2 Z 3 R R

8 5.Ü.7.1 Berechnen Sie die benötigten Mengen an Rohstoffe R ur, die für die Produktion von T Z ur = ( ) ME Zwischenprodukte geordert werden müssen. Ergebnis: R = ( ) ME 5.Ü.7.2 Aus den Zwischenprodukten Z 1, Z 2 und Z 3 sollen 4 verschiedene Endprodukte E 1, E 2, E 3 und E 4 hergestellt werden. Die Übergangstabelle ZE ist in ME angegeben. ZE E 1 E 2 E 3 E 4 Z Z Z Berechnen Sie die Mengen an Rohstoffen, die für die jeweilige ME an Endprodukten notwendig sind. Welche Mengen an Rohstoffen R ur sind für eine 5.Ü.7.3 Produktion von E = ( ) ME Endprodukten notwendig? Berechnen Sie den Verkaufsertrag VE der obigen Produktion E, wenn der Preisvektor je Endprodukteinheit lautet: P = (26,89 44,99 32,79 12,69 ) 5.Ü.8.0 Eine Großkonditorei erreicht am Wochenende ein dringender Auftrag für Sonntag drei verschiedene Torten E 1, E 2 und E 3 zu Backen, und zwar 12 Stück der Sorte E 1, 18 Stück vom Typ E 2 und 25 Stück vom Typ E 3. ( E =( ) Dafür ist es notwendig aus den vier Zutaten R1, R2, R3 und R4, d.h. Ei, Mehl, Butter, und Zucker, zwei verschiedene Teige und zwei verschiedene Cremes herzustellen, d.h. die Zwischenprodukte Z 1, Z 2, Z 3 und Z 4. Die ME für Eier ist Stück für Mehl, Butter und Zucker sind 100g. Den Materialbedarf in Mengeneinheiten ME zeigen folgende Übergangstabellen: RZ Z 1 Z 2 Z 3 Z 4 R R R R Die ME für die Zwischenprodukte sind auch jeweils 100g. 29

9 5.Ü.8.1 ZE E 1 E 2 E 3 Z Z Z Z Berechnen Sie die Matrix RE, d.h. die Mengen an Eier, Mehl, Butter und Zucker, die jeweils für jede der 3 Tortensorten benötigt werden. 5.Ü.8.2 Berechnen Sie die Mengen an Zutaten R ur, die benötigt werden. 5.Ü Ü Ü.9.1 Es wird der Lagervorrat an Zutaten mit folgendem Ergebnis überprüft, d.h. der Lagervektor lautet: ur = ( ) T L Leider reicht der Lagervorrat an Eiern nicht aus. Es wird Entschieden mit dem vorhandenen Eiern zu backen und nur die Anzahl an Torten vom Typ E3 zu reduzieren. Berechnen Sie wie viele Torten E 3 gebacken werden können. Lösen Sie folgende LGS: a) 2x + 3y = 4 b) 2x + y = 3 c) 1,5x 3y = 2 3x 5y = 2 4x + 3y = 1 2x + 4y = 3 5.Ü.10.1 Eine zweiziffrige Zahl ist viermal so groß wie ihre Quersumme. Vertauscht man ihre Ziffern und addiert die dadurch entstehende neue Zahl zu der ursprünglichen Zahl, so erhält man 132. Wie heißt die ursprüngliche Zahl? 5.Ü.11.1 Jemand stellt einen Arbeiter für 30 Tage an. Wenn er arbeitet, bekommt er 7 Pfennig am Tag; wenn er nicht arbeitet, muss er 5 Pfennig am Tag bezahlen. Nach 30 Tagen ist keiner dem anderen etwas schuldig. Wie viele Tage hat der Arbeiter gearbeitet und wie viele frei gehabt? (Adam Ries, 16. Jh.) Ergebnis: 12,5 Arbeitstage und 17,5 Freitage 5.Ü.12.1 Ein Hotel verfügt über 455 Betten in 290 Ein- bzw. Zweibettzimmern. Wie viele Einzelzimmer und wie viele Doppelzimmer sind vorhanden? 5.Ü.13.1 Lösen Sie folgende LGS: a) x y + 8z = 25 b) 5x y + 2z = 20 6x + 7y + 8z = 4 2x + 6y + 2z = 2 x + 7y 9z = 40 4x +2y 8z = 2 30

Bundeswehrfachschule München

Bundeswehrfachschule München LA.1 Lineare Gleichungssysteme Lineare Gleichungssysteme (LGS) spielen nicht nur in der Linearen Algebra sondern auch vielen anderen alltäglichen Aufgaben eine wesentliche Rolle. So z.b. müssen bei einer

Mehr

Matrizen Definition: Typ einer Matrix

Matrizen Definition: Typ einer Matrix Matrizen Definition: Eine Matrix ist ein rechteckiges Zahlenschema. Die Matrix (Mehrzahl: Matrizen) besteht aus waagerecht verlaufenden Zeilen und senkrecht verlaufenden Spalten. Verdeutlichung am Beispiel:

Mehr

7.1 Matrizen und Vektore

7.1 Matrizen und Vektore 7.1 Matrizen und Vektore Lineare Gleichungssysteme bestehen aus einer Gruppe von Gleichungen, in denen alle Variablen nur in der 1. Potenz vorkommen. Beispiel Seite 340 oben: 6 x 2 = -1 + 3x 2 = 4 mit

Mehr

5 Lineare Gleichungssysteme und Determinanten

5 Lineare Gleichungssysteme und Determinanten 5 Lineare Gleichungssysteme und Determinanten 51 Lineare Gleichungssysteme Definition 51 Bei einem linearen Gleichungssystem (LGS) sind n Unbekannte x 1, x 2,, x n so zu bestimmen, dass ein System von

Mehr

MLAN1 1 MATRIZEN 1 0 = A T =

MLAN1 1 MATRIZEN 1 0 = A T = MLAN1 1 MATRIZEN 1 1 Matrizen Eine m n Matrix ein rechteckiges Zahlenschema a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n a m1 a m2 a m3 amn mit m Zeilen und n Spalten bestehend aus m n Zahlen Die Matrixelemente

Mehr

Lineare Gleichungssysteme und Matrizen

Lineare Gleichungssysteme und Matrizen Kapitel 11 Lineare Gleichungssysteme und Matrizen Ein lineares Gleichungssystem (lgs) mit m linearen Gleichungen in den n Unbekannten x 1, x 2,..., x n hat die Gestalt: Mit a 11 x 1 + a 12 x 2 + a 13 x

Mehr

B =(b1,1. + b 1,2. + b 1,3 1,3. + b 2,4 + b 3,1. + b 2,2. + b 2,3. + b 3,2. + b 3,3

B =(b1,1. + b 1,2. + b 1,3 1,3. + b 2,4 + b 3,1. + b 2,2. + b 2,3. + b 3,2. + b 3,3 Matrizen Matrizen sind zunächst einmal einfach eine rechteckige Anordnung von Zahlen, Elementen oder mathematischen Operationen, die lineare Zusammenhänge zwischen verschiedenen Größen übersichtlich darstellen.

Mehr

Tutorium/Klausurvorbereitung. Finanzmathematik

Tutorium/Klausurvorbereitung. Finanzmathematik Tutorium/Klausurvorbereitung Finanzmathematik Gesundheits- und Tourismusmanagement Hochschule für Wirtschaft und Umwelt Dozent Dipl. Mathematiker (FH) Roland Geiger Aufgabe : Folgende Matrizen sind gegeben:

Mehr

1 Bestimmung der inversen Matrix

1 Bestimmung der inversen Matrix Inhaltsverzeichnis 1 Bestimmung der inversen Matrix Die inverse Matrix A 1 zu einer Matrix A kann nur bestimmt werden, wenn die Determinante der Matrix A von Null verschieden ist. Im folgenden wird die

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya

Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya Inverse Matrix -E Ma Lubov Vassilevskaya Inverse Matrix Eine n-reihige, quadratische Matrix heißt regulär, wenn ihre Determinante einen von Null verschiedenen Wert besitzt. Anderenfalls heißt sie singulär.

Mehr

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2 Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra 1 Vektoralgebra 1 Der dreidimensionale Vektorraum R 3 ist die Gesamtheit aller geordneten Tripel (x 1, x 2, x 3 ) reeller Zahlen Jedes geordnete

Mehr

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten Einheitsmatrix Die quadratische Einheitsmatrix I n M n,n ist definiert durch I n = 1 0 0 0 1 0 0 0 1 (Auf der Hauptdiagonalen stehen Einsen, außerhalb Nullen Durch Ausmultiplizieren sieht man I n A = A

Mehr

1 Definition. 2 Besondere Typen. 2.1 Vektoren und transponieren A = 2.2 Quadratische Matrix. 2.3 Diagonalmatrix. 2.

1 Definition. 2 Besondere Typen. 2.1 Vektoren und transponieren A = 2.2 Quadratische Matrix. 2.3 Diagonalmatrix. 2. Definition Die rechteckige Anordnung von m n Elementen a ij in m Zeilen und n Spalten heißt m n- Matrix. Gewöhnlich handelt es sich bei den Elementen a ij der Matrix um reelle Zahlen. Man nennt das Paar

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

3 Invertierbare Matrizen Die Inverse einer (2 2)-Matrix Eigenschaften invertierbarer Matrizen... 18

3 Invertierbare Matrizen Die Inverse einer (2 2)-Matrix Eigenschaften invertierbarer Matrizen... 18 Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik 2 Dr. Thomas Zehrt Vektoren und Matrizen Inhaltsverzeichnis Vektoren(Wiederholung bzw. Selbststudium 2. Linearkombinationen..............................

Mehr

3 Lineare Gleichungen

3 Lineare Gleichungen Aufgabe 3. Man löse die lineare Gleichung a 2 x b 2 a a(b ax) b + b2 a = a, a b nach der Unbekannten x auf und diskutiere die möglichen Fälle. a 2 x b 2 a a(b ax) b + b2 a = a a b a 2 bx b 3 a 2 b + a

Mehr

Copyright, Page 1 of 5 Die Determinante

Copyright, Page 1 of 5 Die Determinante wwwmathematik-netzde Copyright, Page 1 of 5 Die Determinante Determinanten sind ein äußerst wichtiges Instrument zur Untersuchung von Matrizen und linearen Abbildungen Außerhalb der linearen Algebra ist

Mehr

Lineare Algebra. Beni Keller SJ 16/17

Lineare Algebra. Beni Keller SJ 16/17 Lineare Algebra Beni Keller SJ 16/17 Matritzen Einführendes Beispiel Ein Betrieb braucht zur Herstellung von 5 Zwischenprodukten 4 verschiedene Rohstoffe und zwar in folgenden Mengen: Z 1 Z 2 Z Z 4 Z 5

Mehr

IV. Matrizenrechnung. Gliederung. I. Motivation. Lesen mathematischer Symbole. III. Wissenschaftliche Argumentation. i. Rechenoperationen mit Matrizen

IV. Matrizenrechnung. Gliederung. I. Motivation. Lesen mathematischer Symbole. III. Wissenschaftliche Argumentation. i. Rechenoperationen mit Matrizen Gliederung I. Motivation II. Lesen mathematischer Symbole III. Wissenschaftliche Argumentation IV. Matrizenrechnung i. Rechenoperationen mit Matrizen ii. iii. iv. Inverse einer Matrize Determinante Definitheit

Mehr

Basiswissen Matrizen

Basiswissen Matrizen Basiswissen Matrizen Mathematik GK 32 Definition (Die Matrix) Eine Matrix A mit m Zeilen und n Spalten heißt m x n Matrix: a a 2 a 4 A a 2 a 22 a 24 a 4 a 42 a 44 Definition 2 (Die Addition von Matrizen)

Mehr

a) Geben Sie die zugehörigen Matrizen A RZ, A ZE und A RE. Berechnen Sie die fehlenden Werte der Rohstoff-Zwischenprodukt-Matrix.

a) Geben Sie die zugehörigen Matrizen A RZ, A ZE und A RE. Berechnen Sie die fehlenden Werte der Rohstoff-Zwischenprodukt-Matrix. Lineare lgebra / nalytische Geometrie Leistungskurs ufgabe 4 Kosten und Gewinne Ein Betrieb stellt aus den Rohstoffen R 1, R 2, R 3 und R 4 die Zwischenprodukte Z 1, Z 2, Z 3 und Z 4 her und aus diesen

Mehr

Nützliches Hilfsmittel (um Schreiberei zu reduzieren): 'Erweiterte Matrix': Gauß- Verfahren

Nützliches Hilfsmittel (um Schreiberei zu reduzieren): 'Erweiterte Matrix': Gauß- Verfahren L5.4 Inverse einer Matrix Ausgangsfrage: Wie löst man ein lineares Gleichungsystem (LSG)? Betrachte n lineare Gleichungen für n Unbekannte: Ziel: durch geeignete Umformungen bringe man das LSG in folgende

Mehr

(A T ) T = A. Eigenschaft:

(A T ) T = A. Eigenschaft: Elementare Matrizenrechnung m n-matrix von Zahlen A m n a 1,1 a 1,n a m,1 a m,n rechteckige Tabelle m n Dimension der Matrix Sprechweise: m Kreuz n wobei m Anzahl Zeilen, n Anzahl Spalten a i,j Element

Mehr

a ij i - te Gleichung (Zeile), i = 1,2,3,..., m

a ij i - te Gleichung (Zeile), i = 1,2,3,..., m I) MATRIZEN Der Start: Lineare Gleichungen y ax+ a2x2 + a3x3 y2 a2x+ a22x2 + a23x3... Koeffizienten a ij i - te Gleichung (Zeile), i,2,3,..., m j - te Variable (Spalte), j,2,3,..., n Definition m x n Matrix

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Matrizen und Determinanten

Matrizen und Determinanten Matrizengleichungen Matrizen und Determinanten In Abschnitt 3.3 wird gezeigt, wie man ein lineares Gleichungssystem in Form einer Matrixgleichung anschreiben und anschließend mithilfe der Matrizenrechnung

Mehr

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können

Mehr

In allen Fällen spielt die 'Determinante' einer Matrix eine zentrale Rolle.

In allen Fällen spielt die 'Determinante' einer Matrix eine zentrale Rolle. Nachschlag:Transposition von Matrizen Sei Explizit: Def: "Transponierte v. A": (tausche Zeilen mit Spalten d.h., spiegle in der Diagonale) m Reihen, n Spalten n Reihen, m Spalten z.b. m=2,n=3: Eigenschaft:

Mehr

3 Determinanten, Eigenwerte, Normalformen

3 Determinanten, Eigenwerte, Normalformen Determinanten, Eigenwerte, Normalformen.1 Determinanten Beispiel. Betrachte folgendes Parallelogramm in der Ebene R 2 : y (a + c, b + d) (c, d) (a, b) x Man rechnet leicht nach, dass die Fläche F dieses

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Christian Serpé Universität Münster 14. September 2011 Christian Serpé (Universität Münster) 14. September 2011 1 / 56 Gliederung 1 Motivation Beispiele Allgemeines Vorgehen 2 Der Vektorraum R n 3 Lineare

Mehr

Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor)

Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor) Matrizenrechnung. Matrizen Matrizen sind bereits im Kapitel Lineare Gleichungssysteme aufgetreten. Unter einer (m n) -Matrix A verstehen wir ein rechteckiges Zahlenschema mit m Zeilen und n Spalten. Der.

Mehr

Matrizen und Determinanten

Matrizen und Determinanten Matrizen und Determinanten 1 Matrizen und Determinanten 1 Einführung in den Matrizenbegriff Zur Beschreibung und Lösung vieler physikalischer Probleme ist die Vektorrechnung vonnöten Durch Verwendung von

Mehr

Medikamentenherstellung

Medikamentenherstellung Aufgabennummer: B_36 Medikamentenherstellung Technologieeinsatz: möglich erforderlich T Ein Pharmaunternehmen stellt ein Medikament E aus den Rohstoffen R 1, und R 3 her, die bei der Produktion zu Zwischenprodukten

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

Demoseiten für

Demoseiten für Matrizenrechnung Anwendungsaufgaben Teil Themenheft Demoseiten für Arbeiten mit Bedarfsmatrizen Herstellung von Zwischen- und Endprodukten aus Rohstoffen Kostenberechnungen Datei 623 Stand: 5. August 2

Mehr

Lineare Gleichungssysteme I (Matrixgleichungen)

Lineare Gleichungssysteme I (Matrixgleichungen) Lineare Gleichungssysteme I (Matrixgleichungen Eine lineare Gleichung mit einer Variablen x hat bei Zahlen a, b, x die Form ax = b. Falls hierbei der Kehrwert von a gebildet werden darf (a 0, kann eindeutig

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Matrizen ç 2030 II. Quartal æ98766ö. R = ç. B P Preise R R

Matrizen ç 2030 II. Quartal æ98766ö. R = ç. B P Preise R R Das Doppelelement a ik gibt an, dass das betreffende Element in der i-ten Zeile und k-ten Spalte steht (Wenn nicht anders vereinbart, gilt i,k ³ 0) Bereits das Aufstellen von Tabellen und aus oftmals komplizierten

Mehr

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Inhaltsverzeichnis Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Auf dieser Seite werden Matrizen und Vektoren fett gedruckt, um sie von Zahlen zu unterscheiden. Betrachtet wird das

Mehr

Matrix: Eine rechteckige Anordnung reeller Zahlen a ij (i = 1,..., n i ; j = 1,..., m) in Zeilen und Spalten. Die a ij heiÿen Elemente von A.

Matrix: Eine rechteckige Anordnung reeller Zahlen a ij (i = 1,..., n i ; j = 1,..., m) in Zeilen und Spalten. Die a ij heiÿen Elemente von A. Matrizenrechnung Matrix: Eine rechteckige Anordnung reeller Zahlen a ij i = 1,..., n i ; j = 1,..., m in Zeilen und Spalten. Die a ij heiÿen Elemente von A. a 11 a 12... a ij... a 1m a 21 a 22.........

Mehr

Kapitel 2. Matrixalgebra. Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49

Kapitel 2. Matrixalgebra. Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49 Kapitel 2 Matrixalgebra Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49 Ein sehr einfaches Leontief-Modell Eine Stadt betreibt die Unternehmen ÖFFENTLICHER VERKEHR, ELEKTRIZITÄT und GAS.

Mehr

Kapitel 2. Matrixalgebra. Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49

Kapitel 2. Matrixalgebra. Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49 Kapitel 2 Matrixalgebra Josef Leydold Mathematik für VW WS 207/8 2 Matrixalgebra / 49 Ein sehr einfaches Leontief-Modell Eine Stadt betreibt die Unternehmen ÖFFENTLICHER VERKEHR, ELEKTRIZITÄT und GAS.

Mehr

Matrixalgebra. Kapitel 2. Ein sehr einfaches Leontief-Modell. Matrix. Ein sehr einfaches Leontief-Modell. Vektor. Spezielle Matrizen I

Matrixalgebra. Kapitel 2. Ein sehr einfaches Leontief-Modell. Matrix. Ein sehr einfaches Leontief-Modell. Vektor. Spezielle Matrizen I Ein sehr einfaches Leontief-Modell Eine Stadt betreibt die Unternehmen ÖFFENTLICHER VERKEHR, ELEKTRIZITÄT und GAS Kapitel 2 Matrixalgebra Technologiematrix und wöchentliche Nachfrage (in Werteinheiten):

Mehr

Grundsätzliches Rechnen mit Matrizen Anwendungen. Matrizenrechnung. Fakultät Grundlagen. Juli 2015

Grundsätzliches Rechnen mit Matrizen Anwendungen. Matrizenrechnung. Fakultät Grundlagen. Juli 2015 Matrizenrechnung Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Matrizenrechnung Übersicht Grundsätzliches 1 Grundsätzliches Matrixbegriff Rechenregeln Spezielle Matrizen 2 Matrizenrechnung Determinanten

Mehr

3 Matrizen und Lineare Gleichungssysteme

3 Matrizen und Lineare Gleichungssysteme 3 Matrizen und LGS Pink: Lineare Algebra HS 2014 Seite 38 3 Matrizen und Lineare Gleichungssysteme 3.1 Definitionen Sei K ein Körper, und seien m,n,l natürliche Zahlen. Definition: Eine Matrix mit m Zeilen

Mehr

Nützliches Hilfsmittel (um Schreiberei zu reduzieren): 'Erweiterte Matrix': Gauß- Verfahren

Nützliches Hilfsmittel (um Schreiberei zu reduzieren): 'Erweiterte Matrix': Gauß- Verfahren L5.4 Inverse einer Matrix Ausgangsfrage: Wie löst man ein lineares Gleichungsystem (LSG)? Betrachte n lineare Gleichungen für n Unbekannte: Ziel: durch geeignete Umformungen bringe man das LSG in folgende

Mehr

Matrizen und Determinanten, Aufgaben

Matrizen und Determinanten, Aufgaben Matrizen und Determinanten, Aufgaben Inhaltsverzeichnis 1 Multiplikation von Matrizen 1 11 Lösungen 3 2 Determinanten 6 21 Lösungen 7 3 Inverse Matrix 8 31 Lösungen 9 4 Matrizengleichungen 11 41 Lösungen

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 1 Einführung Lineare Gleichungen Definition

Mehr

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte Mathematik I Matrizen In diesem Kapitel werden wir lernen was Matrizen sind und wie man mit Matrizen rechnet. Matrizen ermöglichen eine kompakte Darstellungsform vieler mathematischer Strukturen. Zum Darstellung

Mehr

Vektoren und Matrizen

Vektoren und Matrizen Universität Basel Wirtschaftswissenschaftliches Zentrum Vektoren und Matrizen Dr. Thomas Zehrt Inhalt: 1. Vektoren (a) Einführung (b) Linearkombinationen (c) Länge eines Vektors (d) Skalarprodukt (e) Geraden

Mehr

Kurs Grundlagen der Linearen Algebra und Analysis

Kurs Grundlagen der Linearen Algebra und Analysis Aufgabe B0513 Lineare Optimierung Ein Unternehmen stellt drei Endprodukte P 1,P und P 3 her. Die jeweils zur Produktion einer Mengeneinheit des jeweiligen Endproduktes benötigten Mengeneinheiten des Zwischenproduktes

Mehr

Cramersche Regel. Satz Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei. A j := (a 1,...,a j 1,b,a j+1,...

Cramersche Regel. Satz Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei. A j := (a 1,...,a j 1,b,a j+1,... Cramersche Regel Satz 2.4. Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei A j := (a,...,a j,b,a j+,...,a n ) also die Matrix, die entsteht, wenn in A die j-spalte durch den

Mehr

Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.2 Determinanten

Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.2 Determinanten Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.2 Determinanten www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

4. Übungsblatt zur Mathematik II für Inf, WInf

4. Übungsblatt zur Mathematik II für Inf, WInf Fachbereich Mathematik Prof Dr Streicher Dr Sergiy Nesenenko Pavol Safarik SS 010 11 15 Mai 4 Übungsblatt zur Mathematik II für Inf, WInf Gruppenübung Aufgabe G13 (Basistransformation) ( ) 15 05 Die lineare

Mehr

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema:

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema: Matrizen Betrachten wir das nachfolgende Rechteckschema: a 12 a 1(m 1 a 1m a n1 a n2 a n(m 1 a nm Ein solches Schema nennt man (n m-matrix, da es aus n Zeilen und m Spalten besteht Jeder einzelne Eintrag

Mehr

Kapitel 6: Matrixrechnung (Kurzeinführung in die Lineare Algebra)

Kapitel 6: Matrixrechnung (Kurzeinführung in die Lineare Algebra) Kapitel 6: Matrixrechnung (Kurzeinführung in die Lineare Algebra) Matrix: (Plural: Matrizen) Vielfältige Anwendungen in der Physik: - Lösung von linearen Gleichungsystemen - Beschreibung von Drehungen

Mehr

Mathematik. Lernbaustein 6

Mathematik. Lernbaustein 6 BBS Gerolstein Mathematik Mathematik für die Berufsoberschule II Lernbaustein 6 Lineare Algebra www.p-merkelbach.de/bos2/mathe/matheskript-bos-2 Lernbaustein 6.pdf Erstellt von: Herrn St Percy Merkelbach

Mehr

L5.2 Inverse einer Matrix Betrachte im Folgenden lineare Abbildungen der Form: dann ist die Matrix, durch die A dargestellt wird, 'quadratisch', d.h.

L5.2 Inverse einer Matrix Betrachte im Folgenden lineare Abbildungen der Form: dann ist die Matrix, durch die A dargestellt wird, 'quadratisch', d.h. L5.2 Inverse einer Matrix Betrachte im Folgenden lineare Abbildungen der Form: gleich viel Zeilen wie Spalten dann ist die Matrix, durch die A dargestellt wird, 'quadratisch', d.h. 'Identitätsabbildung':

Mehr

Nur Matrizen gleicher Dimension können addiert oder subtrahiert werden. Zur Berechnung werden zwei Matrizen A und B in den Matrix-Editor eingegeben.

Nur Matrizen gleicher Dimension können addiert oder subtrahiert werden. Zur Berechnung werden zwei Matrizen A und B in den Matrix-Editor eingegeben. R. Brinkmann http://brinkmann-du.de Seite 1 14.02.2014 Casio fx-cg20 Operationen mit Matrizen Bei nachfolgend beschriebenen Matrizenoperationen wird davon ausgegangen, dass die Eingabe von Matrizen in

Mehr

Übungsblatt 5 : Lineare Algebra

Übungsblatt 5 : Lineare Algebra Mathematik I Übungsblatt 5 WS 7/8 Prof.Dr.W. Konen Dr. A. Schmitter Bereiten Sie die Aufgaben parallel zur Vorlesung so vor dass Sie in der Lage sind Ihre Lösungen vorzutragen. Übungsblatt 5 : Lineare

Mehr

mit "Skalarprodukt" aus i-tem "Zeilenvektor" und j-tem "Spaltenvektor"

mit Skalarprodukt aus i-tem Zeilenvektor und j-tem Spaltenvektor Zusammenfassung Matrizen Transponierte: Addition: mit Skalare Multiplikation: Matrixmultiplikation: m x p m x n n x p mit ES "Skalarprodukt" aus i-tem "Zeilenvektor" und j-tem "Spaltenvektor" "Determinante"

Mehr

1 Lineare Unabhängigkeit Äquivalente Definition Geometrische Interpretation Vektorräume und Basen 6

1 Lineare Unabhängigkeit Äquivalente Definition Geometrische Interpretation Vektorräume und Basen 6 Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik Dr. Thomas Zehrt Vektorräume und Rang einer Matrix Inhaltsverzeichnis Lineare Unabhängigkeit. Äquivalente Definition.............................

Mehr

1 Transponieren, Diagonal- und Dreiecksmatrizen

1 Transponieren, Diagonal- und Dreiecksmatrizen Technische Universität München Thomas Reifenberger Ferienkurs Lineare Algebra für Physiker Vorlesung Mittwoch WS 2008/09 1 Transponieren, Diagonal- und Dreiecksmatrizen Definition 11 Transponierte Matrix

Mehr

36 2 Lineare Algebra

36 2 Lineare Algebra 6 Lineare Algebra Quadratische Matrizen a a n sei jetzt n m, A, a ij R, i, j,, n a n a nn Definition Eine quadratische Matrix A heißt invertierbar genau dann, wenn es eine quadratische Matrix B gibt, so

Mehr

Hilfsblätter Lineare Algebra

Hilfsblätter Lineare Algebra Hilfsblätter Lineare Algebra Sebastian Suchanek unter Mithilfe von Klaus Flittner Matthias Staab c 2002 by Sebastian Suchanek Printed with L A TEX Inhaltsverzeichnis 1 Vektoren 1 11 Norm 1 12 Addition,

Mehr

Klausurvorbereitung. Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Tutorium. Folgende Matrizen sind gegeben:

Klausurvorbereitung. Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Tutorium. Folgende Matrizen sind gegeben: Klausurvorbereitung Aufgabe : Folgende Matrizen sind gegeben: A = ( 3 3 ) ; B = ( 4 4 0 ) Führen Sie folgende Rechenoperation durch: A + B Aufgabe : Folgende Matrizen sind gegeben: A = ( 3 3 ) ; B = (

Mehr

Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya

Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya Inverse Matrix -E Ma Lubov Vassilevskaya Inverse Matrix: Beispiel 0 2 3 0 Um die inverse der Matrix A mit Gauß-Jordan-Algorithmus zu bestimmen, wird eine Folge von elementaren Zeilenoperationen durchgeführt.

Mehr

Kapitel 3 Lineare Algebra

Kapitel 3 Lineare Algebra Kapitel 3 Lineare Algebra Inhaltsverzeichnis VEKTOREN... 3 VEKTORRÄUME... 3 LINEARE UNABHÄNGIGKEIT UND BASEN... 4 MATRIZEN... 6 RECHNEN MIT MATRIZEN... 6 INVERTIERBARE MATRIZEN... 6 RANG EINER MATRIX UND

Mehr

Lineare Gleichungssystem

Lineare Gleichungssystem Lineare Gleichungssystem 8. Juli 07 Inhaltsverzeichnis Einleitung Der Gauß-Algorithmus 4 3 Lösbarkeit von Gleichungssystemen 6 Einleitung Wir haben uns bisher hauptsächlich mit dem Finden von Nullstellen

Mehr

Lineare Algebra. Gymnasium Immensee SPF PAM. Bettina Bieri

Lineare Algebra. Gymnasium Immensee SPF PAM. Bettina Bieri Lineare Algebra Gymnasium Immensee SPF PAM Bettina Bieri 6. Oktober 2011 Inhaltsverzeichnis 1 Matrizen 1 1.1 Einleitung............................. 1 1.2 Der Begriff Matrix........................ 1 1.2.1

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 3 und lineare Gleichungssysteme und

Mehr

Ökonometrische Analyse

Ökonometrische Analyse Institut für Statistik und Ökonometrie, Freie Universität Berlin Ökonometrische Analyse Dieter Nautz, Gunda-Alexandra Detmers Rechenregeln für Matrizen Notation und Matrixeigenschaften: Eine Matrix A der

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom Übungsaufgaben 11. Übung: Woche vom 9. 1.-13. 1. 2017 (Numerik): Heft Ü 1: 12.28.a,b; 12.29.b,c (jeweils mit Fehlerabschätzung); 6.26; 6.27.a (auch mit Lagrange-Interpolationspolynom); 6.25; 6.28 (auch

Mehr

Mathematik I Herbstsemester 2018 Kapitel 8: Lineare Algebra 8.2 Determinanten

Mathematik I Herbstsemester 2018 Kapitel 8: Lineare Algebra 8.2 Determinanten Mathematik I Herbstsemester 2018 Kapitel 8: Lineare Algebra 8.2 Determinanten Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 44 8. Lineare Algebra: 2. Determinanten Ein einführendes

Mehr

a ij i - te Gleichung (Zeile), i = 1, 2,3,..., m I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen

a ij i - te Gleichung (Zeile), i = 1, 2,3,..., m I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen y 1 = a 11 x 1 + a 12 x 2 + a 13 x3 y 2 = a 21 x 1 + a 22 x 2 + a 23 x3... Koeffizienten a ij i - te Gleichung

Mehr

Lineare Algebra I 3. Tutorium Inverse Matrizen und Gruppen

Lineare Algebra I 3. Tutorium Inverse Matrizen und Gruppen Lineare Algebra I Tutorium Inverse Matrizen und Gruppen Fachbereich Mathematik WS / Prof Dr Kollross November Dr Le Roux Dipl-Math Susanne Kürsten Aufgaben Aufgabe G (Die zweite Variante des Gauß-Algorithmus)

Mehr

Zweistufige Produktion

Zweistufige Produktion Aufgabennummer: B_163 Zweistufige Produktion Technologieeinsatz: möglich erforderlich T In einem Unternehmen werden 3 Endprodukte E 1, E 2 und E 3 über 3 Zwischenprodukte Z 1, Z 2 und aus 2 verschiedenen

Mehr

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung Kapitel 2: Matrizen 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung 2.1 Matrizen M = n = 3 m = 3 n = m quadratisch M ij : Eintrag von M in i-ter

Mehr

Basistext Determinanten

Basistext Determinanten Basistext Determinanten Definition In der Linearen Algebra ist die Determinante eine Funktion die einer quadratischen Matrix eine Zahl zuordnet. Die Funktion wird mit det abgekürzt. Die runden Matrixklammern

Mehr

Das Lösen linearer Gleichungssysteme

Das Lösen linearer Gleichungssysteme Das Lösen linearer Gleichungssysteme Lineare Gleichungen Die Gleichung a 1 x 1 + a 2 x 2 +... + a n x n = b ist eine lineare Gleichung in den n Variablen x 1, x 2,..., x n. Die Zahlen a 1, a 2,..., a n

Mehr

4 Vorlesung: 21.11. 2005 Matrix und Determinante

4 Vorlesung: 21.11. 2005 Matrix und Determinante 4 Vorlesung: 2111 2005 Matrix und Determinante 41 Matrix und Determinante Zur Lösung von m Gleichungen mit n Unbekannten kann man alle Parameter der Gleichungen in einem rechteckigen Zahlenschema, einer

Mehr

Ax = b besitzt unendlich viele Lösungen, die allgemeine Lösung lautet: 2-2x3 x = x x = -2 ;x x

Ax = b besitzt unendlich viele Lösungen, die allgemeine Lösung lautet: 2-2x3 x = x x = -2 ;x x Übung Lsg.doc Mathematik I für WiWi s (Kurs 5) Lösungen Übungsblatt, Nr. a) b) Ax = b besitzt keine Lösung, da Widerspruch in der. Zeile Ax = b besitzt unendlich viele Lösungen, die allgemeine Lösung lautet:

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Technische Universität München Christoph Niehoff Ferienkurs Lineare Algebra für Physiker Vorlesung Mittwoch WS 009/00 Die beiden Hauptthemen von diesem Teil des Ferienkurses sind Lineare Gleichungssysteme

Mehr

Hauptprüfung Fachhochschulreife Baden-Württemberg

Hauptprüfung Fachhochschulreife Baden-Württemberg Baden-Württemberg: Fachhochschulreife 203 www.mathe-aufgaben.com Hauptprüfung Fachhochschulreife 203 Baden-Württemberg Aufgabe 5 Wirtschaftliche Anwendungen Hilfsmittel: grafikfähiger Taschenrechner Berufskolleg

Mehr

05. Lineare Gleichungssysteme

05. Lineare Gleichungssysteme 05 Lineare Gleichungssysteme Wir betrachten ein System von m Gleichungen in n Unbestimmten (Unbekannten) x 1,, x n von der Form a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + a

Mehr

FachschaftsInitiative Physik HU Berlin. Brückenkurs WiSe Matrizen, Determinanten und lineare Gleichungssysteme. Julien Kluge. 30.

FachschaftsInitiative Physik HU Berlin. Brückenkurs WiSe Matrizen, Determinanten und lineare Gleichungssysteme. Julien Kluge. 30. FachschaftsInitiative Physik HU Berlin Brückenkurs Brückenkurs WiSe 15-16 Matrizen, Determinanten und lineare Gleichungssysteme Julien Kluge Oktober 15 Inhaltsverzeichnis 1 Was ist eine Matrix? 1 11 Begriff

Mehr

I) MATRIZEN. 1) Speichern geometrischer Daten: Punkte, Vektoren. j - te Variable (Spalte), j = 1,2,3,..., n

I) MATRIZEN. 1) Speichern geometrischer Daten: Punkte, Vektoren. j - te Variable (Spalte), j = 1,2,3,..., n I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen y1 = a11x1+ a12x2 + a13x3 y2 = a21x1+ a22x2 + a23x3... Koeffizienten a ij i - te Gleichung (Zeile), i

Mehr

Ba-Wü: BG Neuer Lehrplan Mathematik Modul-5: Prozesse Teil 2b: Zweistufige Prozesse mit Kosten- u. Bedarfsermittlung. Februar und März

Ba-Wü: BG Neuer Lehrplan Mathematik Modul-5: Prozesse Teil 2b: Zweistufige Prozesse mit Kosten- u. Bedarfsermittlung. Februar und März Ba-Wü: BG Neuer Lehrplan Mathematik Modul-5: Prozesse Teil 2b: mit Kosten- u. Bedarfsermittlung Februar und März 2016 1 Stoffverteilungsplan 1 Woche Inhalte 1 + 2 Einstufige Prozesse Darstellung mit Tabellen,

Mehr

Universität Stuttgart Physik und ihre Didaktik PD Dr. Holger Cartarius. Matrizen. a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A = a m,1 a m,2 a m,n

Universität Stuttgart Physik und ihre Didaktik PD Dr. Holger Cartarius. Matrizen. a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A = a m,1 a m,2 a m,n Universität Stuttgart Physik und ihre Didaktik PD Dr Holger Cartarius Matrizen Matrizen: Ein rechteckiges Zahlenschema der Form a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A a m,1 a m,2 a m,n (a) nennt man eine

Mehr

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2012/13 Hochschule Augsburg Lineare : Einführung Beispiele linearer a) b) c) 2x 1 3x 2 = 1 x 1 +

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Lineare Gleichungssysteme Das System a x + a x +... + a n x n = b a x + a x +... + a n x n = b. +. +... +. =. a m x + a m x +... + a mn x n = b m heißt lineares Gleichungssystem

Mehr

Wirtschaftsmathematik - Übungen SS 2019

Wirtschaftsmathematik - Übungen SS 2019 Wirtschaftsmathematik - Übungen SS 9 Blatt : Lineare Algebra. Gegeben ist eine eine 3 3 Matrix C = (c ij ) mit und eine Matrix B = ( a) Schreiben Sie die Matrix C an! j i für i < j c ij = () i j für i

Mehr

Ferienkurs Mathematik für Physiker I Blatt 3 ( )

Ferienkurs Mathematik für Physiker I Blatt 3 ( ) Ferienkurs Mathematik für Physiker I WS 6/7 Ferienkurs Mathematik für Physiker I Blatt 3 (9.3.7) Aufgabe : Matrizenrechung 3 (a) Ermitteln Sie für die Matrix A = 3 4 den Ausdruck A + A + A + 6 A3. 3 4

Mehr

Blockmatrizen. Beispiel 1 Wir berechnen das Produkt von A R 4 6 mit B R 6 4 :

Blockmatrizen. Beispiel 1 Wir berechnen das Produkt von A R 4 6 mit B R 6 4 : Blockmatrizen Beispiel 1 Wir berechnen das Produkt von A R 4 6 mit B R 6 4 : 2 1 3 1 1 0 1 0 1 0 0 2 1 1 11 1 1 4 0 1 0 1 0 1 4 1 0 2 1 0 1 0 1 0 3 1 2 1 = 2 4 3 5 11 1 1 4 0 1 0 1 0 1 5 1 2 1 2 4 3 5

Mehr

Tutorium: Analysis und Lineare Algebra

Tutorium: Analysis und Lineare Algebra Tutorium: Analysis und Lineare Algebra Vorbereitung der Bonusklausur am 14.5.218 (Teil 2) 9. Mai 218 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 218 Steven Köhler 9. Mai 218 3 c 218

Mehr