Die einleitend angesprochenen Zusammenhänge sind in der folgenden Tabelle zusammengestellt:

Größe: px
Ab Seite anzeigen:

Download "Die einleitend angesprochenen Zusammenhänge sind in der folgenden Tabelle zusammengestellt:"

Transkript

1 Ein konstantes Abstandsrodukt Eckart Schmidt Zu zwei fest vorgegebenen Punkten sind die Ortslinien für Punkte mit konstanten Abstandssummen, Abstandsdifferenzen oder Abstandsverhältnissen Kegelschnitte; zu konstanten Abstandsrodukten ergeben sich Cassinische Kurven mit dem Sonderfall der Lemniskaten. Betrachtet man die Abstände zu vorgegebenem Punkt und vorgegebener Geraden, so erhält man in den ersten drei Fällen wieder Kegelschnitte, zu konstantem Abstandsrodukt aber einen anderen Kurventy, der hier näher untersucht wird. - Diese Ausarbeitung ist eine Ergänzung zu einer Jahresarbeit, eingereicht von Herrn Jürgen Kühl zum Abitur Ostern Vorbemerkungen Die einleitend angesrochenen Zusammenhänge sind in der folgenden Tabelle zusammengestellt: Abstände Punkt-Punkt Punkt-Gerade konst. Summe Ellisen Parabeln konst. Differenz Hyerbeln Parabeln konst. Produkt Cassini-Kurven??? konst. Quotient Kreise Kegelschnitte

2 Punkte, deren Abstandssumme bzw. Differenz bzgl. zweier fester Punkte konstant ist, liegen bekanntlich auf einer Ellise bzw. Hyerbel. Die vorgegebenen Punkte sind die Brennunkte und die halbe Abstandssumme bzw. -differenz ergibt die große Halbachse. Punkte, deren Abstandsverhältnis bzgl. zweier fester Punkte konstant ist, liegen auf einem Kreis, dem Aollonius-Kreis der Dreiecke über der Verbindungsstrecke mit dem entsrechenden Seitenverhältnis. Punkte, deren Abstandssumme bzgl. eines vorgegebenen Punktes und einer vorgegebenen Geraden konstant ist, liegen auf zwei Parabelsegmenten. Brennunkt der beiden Parabeln ist der vorgegebene Punkt; Leitlinien sind die Parallelen zu der vorgegebenen Geraden im Abstand der Abstandssumme. Dies ist darin begründet, dass Parabelunkte vom Brennunkt und von der Leitlinie den gleichen Abstand haben. Punkte, deren Abstandsdifferenz bzgl. eines vorgegebenen Punktes und einer vorgegebenen Geraden konstant ist, liegen auf einer Parabel oder zwei Parabelsegmenten, je nachdem die Abstandsdifferenz kleiner gleich oder größer als der Abstand des vorgegebenen Punktes von der Geraden ist. Brennunkt ist wieder der vorgegebene Punkt, Leitlinien sind die Parallelen zur vorgegebenen Geraden im Abstand der Abstandsdifferenz. Punkte, deren Abstandsverhältnis bzgl. eines vorgegebenen Punktes und einer vorgegebenen Geraden konstant ist, liegen

3 auf einem Kegelschnitt. Ist das Abstandsverhältnis <1, 1 oder >1, so erhält man eine Ellise, eine Parabel oder eine Hyerbel. In jedem Fall ist der vorgegebene Punkt Brennunkt und die vorgegebene Gerade Leitlinie (Polare des Brennunktes) ([1], S19). Cassini-Kurven Zu zwei festen Punkten im Abstand ist die Ortslinie der Punkte mit einem Abstandsrodukt bekanntlich eine Lemniskate. Legt man den Ursrung eines kartesischen Koordinatensystems in den Mittelunkt der beiden vorgegebenen Punkte, so erhält man die Gleichung ([], S.77) ( x² + y²)² ²( x² y²), bzw. in Polarkoordinaten r ² ² cos(ϕ ). Wählt man ein konstantes Abstandsrodukt q² ², so erhält man die Gleichung ([], S.89) ( x² + y²)² ²( x² y²) q bzw. in Polarkoordinaten r ² r² cos(ϕ ) q. Für q < erhält man zwei symmetrische Ovale, für < q < ergibt sich eine geschlossene Kurve mit Sattel, der für q verschwindet. Für weitere Eigenschaften dieser Cassini-Kurven sei auf die zitierte Literatur verwiesen. Erwähnt sei noch, dass die Cassini-Kurven, sofern es sich um die beiden Ovale handelt, anallagmatische Kurven sind.

4 Konstantes Abstandsrodukt bzgl. Punkt und Gerade Fest vorgegeben sei jetzt ein Punkt P im Abstand von einer Geraden g und ein konstantes Abstandsrodukt q. Arbeitet man in Polarkoordinaten bzgl. P und der zugehörigen Senkrechten zu g, so lässt sich die Gleichung der Kurve unmittelbar in der folgenden Form angeben: r r cosϕ q². Damit können auf einer Geraden durch P zwei bis vier Punkte liegen. Beschränkt man sich auf Argumente π ϕ π unter Zulassung negativer Radien, so können diese wie folgt angegeben werden: ² + q² cosϕ ² q² cosϕ r1 cosϕ, r cosϕ + ² q² cosϕ + ² + q² cosϕ r3 cosϕ, r cosϕ. Von den zugehörigen Punkten existieren R 1 und R immer. R 1 und R bzw. R und R 3 liegen symmetrisch zu einem Punkt Q( ; tanϕ) im Schnitt der Trägergeraden mit einer Parallelen zu g im halben Abstand zu P. Diese Parallele sei als Mittelarallele angesrochen.

5 Die Punkte R 1 und R lassen sich dann wie folgt konstruieren: q² Zeichnet man um P einen Hilfskreis mit dem Radius, der die Verbindungsgerade PQ in den Punkten S 1 und S schneidet, so erhält man die konstruierbaren geometrischen Mittelwerte: ϕ ϕ cos( ) sin( ) QR 1 QP QS1 und QR QP QS cosϕ cosϕ QR ϕ mit tan( ) QR1. Damit sind die Strecken QR 1 QR und QR QR 3 die Radien von Inversionskreisen um den Punkt Q (siehe auch unten), die den Punkt P in die Schnittunkte der Trägergeraden mit dem Hilfskreis überführen. Bezeichnet man den Schnitt der Geraden g und der Trägergeraden mit R, so gilt: PR 1 RR, PR R3R, PR3 RR, PR R1R. Der Sezialfall Eine sezielle Kurve erhält man für Punkte mit dem ² Abstandsrodukt q ², d.h. das Abstandsrodukt ist das Quadrat des halben Abstands von Punkt P zur Geraden g. Diese Kurve besteht aus zwei asymtotischen Zweigen, von denen einer eine Schleife mit Knotenunkt ist. Arbeitet man in kartesischen Koordinaten mit dem Ursrung im Punkt P, so hat diese Kurve die Gleichung ( x ² + y²)( x )². 16 Die Nullstellen N 1 und N und der Knoten K ergeben sich zu ( (1 m ) N1, ;0) und K( ;0). Die Steigungen im Knoten betragen ±. Auf den Tangenten im Knoten liegen auch die Wendeunkte

6 7 W (, ± ) ( Steigungen m11 ). 6 3 Arbeitet man in Polarkoordinaten mit der Gleichung r r cosϕ ², so lassen sich Hoch- bzw. Tiefunkt E als auch die Wendeunkte W wie folgt erfassen: 3 ϕe ε re, sin ±, ( ε + 1) mit ε ; 3 ϕw 1 rw, sin ±. 3 Genauer untersucht seien die Tangenten in den Punkten R 1 bis R einer Trägergeraden PQ; sie haben die Gleichungen: 3 ϕ ϕ t1 : (cosϕ + cos ) x + (sinϕ + sin ) y + 0, 3 ϕ ϕ t : (cosϕ sin ) x (sinϕ + cos ) y + 0, 3 ϕ ϕ t3 : (cosϕ + sin ) x + (sinϕ sin ) y + 0, 3 ϕ ϕ t : (cosϕ cos ) x (sinϕ sin ) y + 0. Die Tangenten in den bzgl. Q symmetrisch liegenden Punkten R 1 und R bzw. R und R 3 schneiden sich in den Punkten ϕ ϕ S1( ( + cosϕ); cos cot ),

7 ϕ ϕ S3( ( cosϕ); sin tan ). Auf eine exlizite Darstellung der weiteren Schnittunkte wird hier verzichtet, jedoch seien folgende geometrischen Eigenschaften erwähnt: S 1 und S 13 liegen symmetrisch zu R 1, S 1 und S symmetrisch zu R, S 13 und S 3 symmetrisch zu R 3 sowie S und S 3 symmetrisch zu R. Die Schnittunkte S 1 und S 3 bzw. S 13 und S liegen auf Parallelen der Trägergeraden im Abstand. Zur Konstruktion der Tangenten sei von einer Trägergeraden PQ mit den Kurvenunkten R 1 bis R ausgegangen, die den Hilfskreis um P mit dem Radius in den Punkten ( S1, m cosϕ; m sinϕ) schneidet. Verbindet man z.b. S 1 mit dem Knoten K und betrachtet den Schnittunkt sinϕ T ( ; ) 1+ cosϕ dieser Verbindungsgeraden mit der an P gesiegelten Mittelarallelen, so ergibt die Siegelung von T an der Mitte der Sehne S 1 K den Tangentenschnitt S 3. Entsrechend erhält man mit dem Punkt S den Tangentenschnitt S 1. Die Verbindungsgeraden R 1 S 1, R S 3, R 3 S 3, R S 1 sind dann die Tangenten in den Punkten R 1 bis R. Die Tangenten in den Punkten R 1 bis R bilden ein vollständiges Vierseit. Die Newton-Gerade des Vierseits, d.h. die Gerade der Diagonalenmitten, ist die Verbindungsgerade der Tangentenschnitte S 3 und S 1, auf der auch der Punkt Q liegt. Der Miquel-Punkt F, d.h. der gemeinsame Punkt der Umkreise der Teildreiseite, hat die Koordinaten (1 + 3cos(ϕ )) 3 sin(ϕ ) F( ; ) 5 + 3cos(ϕ ) 5 + 3cos(ϕ ).

8 Ortslinie der Miquel-Punkte ist ein Kreis um ( ;0) mit dem 3 Radius. Sind Knoten K, R und der Miquel-Punkt F kollinear, so ist R das Maximum bzw. Minimum E. Zu der Konstellation der Tangenten in den Punkten R 1 bis R kann eine Hyerbel aufgezeigt werden, die die Tangentenschnitte S 1, S 13, S, S 3 als auch die Punkte P und R der Trägergeraden enthält. Die Gerade g ist Tangente in R, die Trägergerade Normale in P. Das Zentrum Z( (3 cos(ϕ )); sin(ϕ )) ist der vierte harmonische Punkt, mit dem Q die Strecke S 1 S 3 harmonisch teilt. Verschiebt man den Ursrung des Koordinatensystems in den Punkt Z und dreht es um den Winkel 9sinϕ + sin(3ϕ ) δ mit tan(δ ) 9cosϕ + cos(3ϕ ), dann erhält diese Hyerbel die Gleichung sec ²( ϕ) sec ²( ϕ) 3 u² v² 1. ² ² Polaren von Punkten der Geraden S 1 S 3 bzgl. dieser Hyerbel sind arallel zur Trägergeraden PQ; dabei liegt S 1 auf der Polaren von S 3 und umgekehrt. Der Mittelunkt von S 1 und S 3, der auf der Geraden g liegt, ist Pol der Trägergeraden. Betrachtet man abschließend zu einem Punkt Q der Mittelarallelen die im vorigen Abschnitt angesrochenen

9 Inversionskreise um Q durch R 1 und R bzw. R und R 3, so sei ohne Herleitung erwähnt, dass diese Kreise eine Lemniskate einhüllen, für die das Abstandsrodukt bzgl. P und dem ² Siegelunkt an der Mittelarallelen den Wert hat. Literatur [1] H. S. M. Coxeter: Unvergängliche Geometrie Birkhäuser Verlag, Basel-Boston-Stuttgart. S. 19. [] H. Schmidt: Ausgewählte höhere Kurven. Kesselringsche Verlagsbuchhandlung Wiesbaden,199. Eckart Schmidt - Holstenstraße - D 3 Raisdorf htt://eckartschmidt.de eckart_schmidt@t-online.de

Strophoiden. Eckart Schmidt

Strophoiden. Eckart Schmidt Strophoiden Eckart Schmidt Strophoiden sind als anallagmatische Kurven invariant gegenüber einer Kreisspiegelung; sie sind weiterhin das Inverse einer gleichseitigen Hyperbel, die Fußpunktkurve einer Parabel

Mehr

Sehnenvierecke mit Brocard-Punkten. Eckart Schmidt. Sehnenvierecke, die in den Summen ihrer Gegenseiten übereinstimmen ( a + c = b + d)

Sehnenvierecke mit Brocard-Punkten. Eckart Schmidt. Sehnenvierecke, die in den Summen ihrer Gegenseiten übereinstimmen ( a + c = b + d) Sehnenvierecke mit Brocard-Punkten Eckart Schmidt Sehnenvierecke, die in den Summen ihrer Gegenseiten übereinstimmen ( a c = b d, sind Sehnen-Tangenten-Vierecke Sehnenvierecke mit produktgleichen Gegenseitenpaaren

Mehr

Zissoide zu Gerade und Kreis. Eckart Schmidt

Zissoide zu Gerade und Kreis. Eckart Schmidt Zissoide zu Gerade und Kreis Eckart Schmidt ei einer Zissoide denkt man zunächst an die nach Diokles benannte Form [Sch;7]. llgemeiner wird zu zwei Kurven und einem Punkt eine Zissoide erklärt [Loc;131].

Mehr

Eine anallagmatische Kurve. Eckart Schmidt

Eine anallagmatische Kurve. Eckart Schmidt Eine anallagmatische Kurve Eckart Schmidt Man bezeichnet eine Kurve als anallagmatisch, wenn sie durch eine Inversion auf sich abgebildet werden kann. Eine anallagmatische Kurve kann als Inverses eines

Mehr

Um-Strophoiden eines Dreiecks

Um-Strophoiden eines Dreiecks Um-Strophoiden eines Dreiecks Eckart Schmidt Es wird konstruktiv und analytisch untersucht, wie zu vorgegebenem Doppelpunkt einem Dreieck eine Strophoide umbeschrieben werden kann. Geometrie der Strophoide

Mehr

Sehnen-Tangenten-Vierecke kartesisch. Eckart Schmidt

Sehnen-Tangenten-Vierecke kartesisch. Eckart Schmidt Sehnen-Tangenten-Vierecke kartesisch Eckart Schmidt Schon die Schulgeometrie zeigt für Sehnen- Tangenten-Vierecke, dass die diagonalen Berühr- Sehnen orthogonal sind Diese Eigenschaft wird hier für eine

Mehr

Eine kubische Kurve des Sehnenvierecks. Eckart Schmidt

Eine kubische Kurve des Sehnenvierecks. Eckart Schmidt Eine kubische Kurve des Sehnenvierecks Eckart Schmidt Zu einem Sehnenviereck liegt es nahe, den Kegelschnitt durch die Ecken und die Umkreismitte zu betrachten Spiegelt man diesen Kegelschnitt am Umkreis,

Mehr

Lemniskaten und eine Strophoide des Dreiecks

Lemniskaten und eine Strophoide des Dreiecks Lemniskaten und eine Strophoide des Dreiecks Eckart Schmidt Spiegelt man Umkegelschnitte eines Dreiecks am Umkreis, so erhält man im allgemeinen Kurven vierter Ordnung. Hier werden nur gleichseitige Umhyperbeln

Mehr

Parabeln. Text Nr INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. FRIEDRICH W. BUCKEL. Stand: 2. Juni 2016

Parabeln. Text Nr INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.  FRIEDRICH W. BUCKEL. Stand: 2. Juni 2016 Parabeln Tet Nr. 5080 Stand:. Juni 06 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 5080 Parabeln Vorwort Parabeln gehören zu den ersten Kurven, die man im Unterricht besricht. Sie sind als

Mehr

Seminar: Ausgewählte höhere Kurven

Seminar: Ausgewählte höhere Kurven Seminar: Ausgewählte höhere Kurven Janine Scholtes 6. März 2017 Die Pascalsche Schnecke und die Kartesische Ovale 1 Pascalsche Schnecke 1.1 Etienne Pascal Etienne Pascal war ein französischer Mathematiker

Mehr

Kurven. Mathematik-Repetitorium

Kurven. Mathematik-Repetitorium Kurven 7.1 Vorbemerkungen, Koordinatensysteme 7.2 Gerade 7.3 Kreis 7.4 Parabel 7.5 Ellipse 7.6 Hyperbel 7.7 Allgemeine Gleichung 2. Grades Kurven 1 7. Kurven 7.1 Vorbemerkungen, Koordinatensysteme Koordinatensystem

Mehr

Sehnenvierecke mit Inkreismittenquadrat. 1. Vorbemerkung. 2. Inkreismitten

Sehnenvierecke mit Inkreismittenquadrat. 1. Vorbemerkung. 2. Inkreismitten Sehnenvierecke mit Inkreismittenquadrat Eckart Schmidt 1. Vorbemerkung Betrachtet werden konvexe Sehnenvierecke ABCD mit den Inkreismitten I 1, I, I 3, I 4 der Teildreiecke ABC, BCD, CDA, DAB. Es ist bekannt,

Mehr

Mathematische Probleme, SS 2015 Donnerstag $Id: quadratisch.tex,v /06/29 12:18:47 hk Exp $

Mathematische Probleme, SS 2015 Donnerstag $Id: quadratisch.tex,v /06/29 12:18:47 hk Exp $ $Id: quadratisch.tex,v 1.13 15/6/9 1:18:47 hk Ex $ 4 Kegelschnitte 4. Die Parabel Wir sind gerade dabei die Leitgeraden und Brennunkte einer Parabel zu bestimmen. Ist P eine Parabel, so nannten wir ein

Mehr

1. Da die A-Inversion die Punkte B und C vertauscht, hat

1. Da die A-Inversion die Punkte B und C vertauscht, hat Dreiecksbezogene Inversionen Eckart Schmidt Zu einem Dreieck ABC werden Inversionen betrachtet, die eine Ecke als Zentrum haben und die beiden anderen Ecken vertauschen. Sie seien nach ihren Zentren als

Mehr

Zu den Kegelschnitten

Zu den Kegelschnitten Zum Skizzenverständnis: In der nebenstehenden Figur 1 sieht man die den Kegel schneidende Ebene in Projektionsdarstellung als Gerade durch die Punkte P und F. Mit eingezeichnet ist die obere Dandelinsche

Mehr

eines Tangentenvierecks Eckart Schmidt

eines Tangentenvierecks Eckart Schmidt Die rennpunktkurve eines Tangentenvierecks Eckart Schmidt Die rennpunkte einbeschriebener Kegelschnitte eines Vierecks liegen auf einer Kurve dritter Ordnung [Gib412] Diese Kurve wird hier für Tangentenvierecke

Mehr

Pol-Polaren-Beziehung am Dreieck. Eckart Schmidt

Pol-Polaren-Beziehung am Dreieck. Eckart Schmidt Pol-Polaren-Beziehung am Dreieck Eckart Schmidt Zu einem Punkt P der Ebene eines Bezugsdreiecks ABC wird das Ceva-Dreieck P a P b P c betrachtet Die Perspektivachse dieser beiden Dreiecke sei die Polare

Mehr

10.6. Implizite ebene Kurven und Tangenten

10.6. Implizite ebene Kurven und Tangenten 0.6. Implizite ebene Kurven und Tangenten Im Gegensatz zu expliziten Darstellungen sind weder implizite noch Parameterdarstellungen einer Kurve eindeutig. Der Übergang von impliziten zu expliziten Darstellungen

Mehr

Thema: Das Dreieck und seine Kreise. (Kapitel IV aus: Koecher, Krieg; Ebene Geometrie Seite )

Thema: Das Dreieck und seine Kreise. (Kapitel IV aus: Koecher, Krieg; Ebene Geometrie Seite ) Universität Paderborn Fakultät für Elektrotechnik, Informatik und Mathematik Institut für Mathematik Seminar zur Geometrie PD Dr. Martin Ekenhans Wintersemester 005/006 Thema: Das Dreieck und seine Kreise

Mehr

Kreis - Tangente. 2. Vorbemerkung: Satz des Thales Eine Möglichkeit zur Bestimmung der Tangente benutzt den Satz des Thales.

Kreis - Tangente. 2. Vorbemerkung: Satz des Thales Eine Möglichkeit zur Bestimmung der Tangente benutzt den Satz des Thales. Kreis - Tangente 1. Allgemeines 2. Satz des Thales 3. Tangente an einem Punkt auf dem Kreis 4. Tangente über Analysis (an einem Punkt eines Ursprungkreises) 5. Tangente von einem Punkt (Pol) an den Kreis

Mehr

Übungen mit dem Applet Kurven in Polarkoordinaten

Übungen mit dem Applet Kurven in Polarkoordinaten Kurven in Polarkoordinaten 1 Übungen mit dem Applet Kurven in Polarkoordinaten 1 Ziele des Applets...2 2 Wie entsteht eine Kurve in Polarkoordinaten?...3 3 Kurvenverlauf für ausgewählte r(ϕ)...4 3.1 r

Mehr

D-ERDW, D-HEST, D-USYS Mathematik II FS 16 Dr. Ana Cannas. MC-Serie 3. Kurven in der Ebene Einsendeschluss: 18. März 2016, 16 Uhr (MEZ)

D-ERDW, D-HEST, D-USYS Mathematik II FS 16 Dr. Ana Cannas. MC-Serie 3. Kurven in der Ebene Einsendeschluss: 18. März 2016, 16 Uhr (MEZ) D-ERDW, D-HEST, D-USYS Mathematik II FS 16 Dr. Ana Cannas MC-Serie 3 Kurven in der Ebene Einsendeschluss: 18. März 216, 16 Uhr (MEZ) Bei allen Aufgaben ist genau eine Antwort richtig. Sie dürfen während

Mehr

Einige Bemerkungen zu den verallgemeinerten Kegelschnitten von Zvonimir Durčević

Einige Bemerkungen zu den verallgemeinerten Kegelschnitten von Zvonimir Durčević Definition 1. Es seien B, D Punkte und c eine Gerade oder ein Kreis in einer Ebene ε siehe Abb. 1 bzw.. Lässt man einen Punkt auf c laufen, dann durchläuft der Schnittpunkt X der Geraden g : D mit der

Mehr

Übungen zur Vorlesung Elementare Geometrie

Übungen zur Vorlesung Elementare Geometrie Westfälische Wilhelms-Universität Münster Mathematisches Institut al. Prof. Dr. Lutz Hille Dr. Karin Haluczok Übungen zur Vorlesung Elementare Geometrie Sommersemester 00 Musterlösung zu Blatt 3 vom 6.

Mehr

Von Newton über Hamilton zu Kepler

Von Newton über Hamilton zu Kepler Von Newton über Hamilton zu Kepler Eine Variante von Ein Newton ergibt 3 Kepler, basierend auf einer Arbeit von Erich Ch. Wittman und den bis jetzt publizierten Beiträgen von Kepler_0x.pdf. 1. Bahnen in

Mehr

Die Cassinischen Kurven und insbesondere die Lemniskate von Bernoulli

Die Cassinischen Kurven und insbesondere die Lemniskate von Bernoulli Aus dem Seminar Ausgewählte höhere Kurven WS 016/17 Bei Prof.Dr. Duco van Straten Die Cassinischen Kurven und insbesondere die Lemniskate von Bernoulli von Marwin Wirtz 1 Cassinische Kurven Betrachten

Mehr

Mathematik I (MATHE1) Klausuren lineare Algebra & analytische Geometrie

Mathematik I (MATHE1) Klausuren lineare Algebra & analytische Geometrie Mathematik I (MATHE1) Klausuren lineare Algebra & analytische Geometrie Prof. Dr. Thomas Risse www.weblearn.hs-bremen.de/risse/mai www.weblearn.hs-bremen.de/risse/mai/docs Fakultät Elektrotechnik & Informatik

Mehr

Perspektive Dreiecke zwischen zwei Kegelschnitten. Eckart Schmidt

Perspektive Dreiecke zwischen zwei Kegelschnitten. Eckart Schmidt Perspektive Dreiecke zwischen zwei Kegelschnitten Eckart chmidt Einleitend werden perspektive Dreiecke mit gleichem In- und Umkreis angesprochen Dabei erweisen sich die Grundpunkte des hyperbolischen Kreisbüschels

Mehr

Geometrie: Inversion am Kreis / Zykloiden. Lernziele Lerninhalte Erläuterungen

Geometrie: Inversion am Kreis / Zykloiden. Lernziele Lerninhalte Erläuterungen Geometrie: Inversion am Kreis / Zykloiden 15 Stunden Lernziele Lerninhalte Erläuterungen Zu einem Inversionskreis k i ( M ; R ) und einem Punkt P (P M) den Bildpunkt P konstruieren können und wissen, dass

Mehr

Inversion an Kegelschnitten mit CINDERELLA

Inversion an Kegelschnitten mit CINDERELLA Inversion an Kegelschnitten mit CINDERELLA Hermann Vogel, TU-München In diesem Vortrag wird aufgezeigt, wie man mit Hilfe des Programms CINDERELLA die bekannte Inversion am Kreis auf die Inversion an Kegelschnitten

Mehr

4. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 12 Saison 1964/1965 Aufgaben und Lösungen

4. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 12 Saison 1964/1965 Aufgaben und Lösungen 4. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 1 Saison 1964/1965 Aufgaben und Lösungen 1 OJM 4. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 1 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

Lösung KSR GF Lösung Aufgabe Nr. 1. = 2x. D f = R \ {0} a) Gegeben: Nullstellen: Asymptoten: = 0. + ohne VZW x = 0 Gl. der vertikalen Asymptote

Lösung KSR GF Lösung Aufgabe Nr. 1. = 2x. D f = R \ {0} a) Gegeben: Nullstellen: Asymptoten: = 0. + ohne VZW x = 0 Gl. der vertikalen Asymptote Lösung KSR GF 008 Lösung Aufgabe Nr. a) Gegeben: + f() + + D f R \ {0} Nullstellen: + 0 ( )( ) 0 N (/ 0), N ( / 0) Asymtoten: für 0, < 0 gilt :f() + Polstelle 0 für 0, > 0 gilt :f() + ohne VZW 0 Gl. der

Mehr

Gleichseitige Hyperbeln zu Dreieck und Viereck. Eckart Schmidt

Gleichseitige Hyperbeln zu Dreieck und Viereck. Eckart Schmidt Gleichseitige Hyperbeln zu Dreieck und Viereck Eckart chmidt Zu Dreiecken werden Büschel gleichseitiger Umhyperbeln als auch gleichseitiger Berührhyperbeln betrachtet Gearbeitet wird in baryzentrischen

Mehr

Simson-Geraden eines Kreisvierecks. Eckart Schmidt

Simson-Geraden eines Kreisvierecks. Eckart Schmidt Simson-Geraden eines Kreisvierecks Eckart Schmidt Die Fußpunktdreiecke von Umkreispunkten eines Dreiecks entarten bekanntlich kollinear auf der Simson- (oder Wallace-) Geraden (zb [1] []) Hier wird die

Mehr

Thema: Das Dreieck und seine Kreise - Der Kreis. (Kapitel IV aus: Koecher, Krieg; Ebene Geometrie Seite )

Thema: Das Dreieck und seine Kreise - Der Kreis. (Kapitel IV aus: Koecher, Krieg; Ebene Geometrie Seite ) Universität Paderborn Fakultät für Elektrotechnik, Informatik und Mathematik Institut für Mathematik Seminar zur Geometrie PD Dr. Martin Ekenhans Wintersemester 005/006 Thema: Das Dreieck und seine Kreise

Mehr

Kreise. 1. Kreise in der Ebene ( 2 ) Dr. Fritsch, FGG Kernfach Mathematik Klasse 12-A18

Kreise. 1. Kreise in der Ebene ( 2 ) Dr. Fritsch, FGG Kernfach Mathematik Klasse 12-A18 Wiederholung (Klasse 11) zur Analytischen Geometrie (Abi 2007 Gk)..\..\..\Firma\Nachhilfe\Abituraufgaben\Mathematikabitur 2007 (13k-GK-A).pdf..\..\..\Firma\Nachhilfe\Abituraufgaben\Mathematikabitur 2007

Mehr

Mathematik II: Übungsblatt 01: Lösungen

Mathematik II: Übungsblatt 01: Lösungen N.Mahnke Mathematik II: Übungsblatt 01: Lösungen Verständnisfragen: 1. Was versteht man unter einer parametrisierten ebenen Kurve? Eine parametrisierte ebene Kurve ist eine auf dem offenen Intervall ]t

Mehr

Kegelschnitte - Teil 7

Kegelschnitte - Teil 7 7.1 Kegelschnitte - Gemeinsame Gleichung Kegelschnitte - Teil 7 Die verschiedenen Kegelschnitte entstehen, indem die Schnittebene eine verschiedene Neigung zur Hauptachse des Kreiskegels hat. Von senkrecht

Mehr

Zum Einstieg. Mittelsenkrechte

Zum Einstieg. Mittelsenkrechte Zum Einstieg Mittelsenkrechte 1. Zeichne einen Kreis um A mit einem Radius r, der größer ist, als die Länge der halben Strecke AB. 2. Zeichne einen Kreis um B mit dem gleichen Radius. 3. Die Gerade durch

Mehr

Lösung - Serie 7. D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. 1. MC-Aufgaben (Online-Abgabe)

Lösung - Serie 7. D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. 1. MC-Aufgaben (Online-Abgabe) D-MAVT/D-MATL Analysis I HS 016 Dr. Andreas Steiger Lösung - Serie 7 1. MC-Aufgaben Online-Abgabe 1. Gegeben sind die Kurven K 1 links und K rechts, die beide für wachsenden Parameter t von aussen nach

Mehr

1 Einleitung. 2 Sinus. Trigonometrie

1 Einleitung. 2 Sinus. Trigonometrie 1 Einleitung Die Trigonometrie (trigonon - griechisch für Dreieck) und die trigonometrischen Funktionen sind wichtige mathematische Werkzeuge zur Beschreibung der Natur. In der Physik werden trigonometrische

Mehr

Kantonsschule Reussbühl Maturitätsprüfung 1999, Typus AB Be/Sw Mathematik Lösungen Sw / 2003

Kantonsschule Reussbühl Maturitätsprüfung 1999, Typus AB Be/Sw Mathematik Lösungen Sw / 2003 Lösung der Aufgabe a) Nullstelle: : = Ableitungen: f () = : - = : = a f (a) = - e < : ist Stelle eines Maimums f () = : = : = a f (a) = e - : ist Wendestelle b) = e unabhängig von a tan = e ; = 69,8...

Mehr

Tutorium Mathematik I, M Lösungen

Tutorium Mathematik I, M Lösungen Tutorium Mathematik I, M Lösungen 9. Oktober 202 *Aufgabe. Ein Fischauge ist ein Objektiv in der Photographie, welches einen sehr großen Bildwinkel (gewöhnlich 80 ) abbilden kann. Hierfür muss das Bild

Mehr

Mathematische Probleme, SS 2015 Montag $Id: quadratisch.tex,v /06/22 12:08:41 hk Exp $

Mathematische Probleme, SS 2015 Montag $Id: quadratisch.tex,v /06/22 12:08:41 hk Exp $ Mathematische Probleme, SS 15 Montag 6 $Id: quadratischtex,v 111 15/06/ 1:08:41 hk Exp $ 4 Kegelschnitte 41 Quadratische Gleichungen In der letzten Sitzung hatten wir die Normalform (1 ɛ )x + y pɛx p =

Mehr

Mathematische Probleme, SS 2015 Donnerstag $Id: quadratisch.tex,v /06/18 15:11:12 hk Exp $

Mathematische Probleme, SS 2015 Donnerstag $Id: quadratisch.tex,v /06/18 15:11:12 hk Exp $ Mathematische Probleme, SS 25 Donnerstag 8.6 $Id: quadratisch.tex,v. 25/6/8 5::2 hk Exp $ 4 Kegelschnitte Am Ende der letzten Sitzung haben wir mit der Diskussion der Kegelschnitte begonnen. Gegeben sind

Mehr

Eine Projektionsaufgabe und eine Kugelaufgabe.

Eine Projektionsaufgabe und eine Kugelaufgabe. Eine Projektionsaufgabe und eine Kugelaufgabe. Von A. KIEFER (Zürich). (Als Manuskript eingegangen am 1. September 1921.) I. Gesucht im Raum der Ort eines Punktes 0, von dem aus die Zentralprojektion eines

Mehr

Unterrichtsreihe zur Parabel

Unterrichtsreihe zur Parabel Unterrichtsreihe zur Parabel Übersicht: 1. Einstieg: Satellitenschüssel. Konstruktion einer Parabel mit Leitgerade und Brennpunkt 3. Beschreibung dieser Punktmenge 4. Konstruktion von Tangenten 5. Beweis

Mehr

Einige Aufgaben über extreme Werte.

Einige Aufgaben über extreme Werte. Einige Aufgaben über extreme Werte. Von A. KIEFER (Zürich). (Als Manuskript eingegangen am 5. August 1926.) I. Gesucht auf einer Regelfläche zweiten Grades von der einen Regelschar diejenigen Erzeugenden,

Mehr

WS 2010/ Januar Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch

WS 2010/ Januar Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch WS 2010/2011 14. Januar 2011 Geometrie mit Übungen Übungsblatt 9, Musterlösungen Aufgabe 33. Es werden Kreise in der Euklidischen

Mehr

Die wichtigsten Ergebnisse seien in der folgenden Abbildung vorweggenommen.

Die wichtigsten Ergebnisse seien in der folgenden Abbildung vorweggenommen. EULER-GERADE EINES VIERECKS Eckart Schmidt Vorbemerkung Zu einem Viereck ABCD lassen sich die Teildreiecke ABC, BCD, CDA und DAB betrachten. Wählt man erstens - einen merkwürdigen Dreieckspunkt, z.b. den

Mehr

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte Geometrie Geometrie W. Kuhlisch Brückenkurs 206. Vektorrechnung und analytische Geometrie der Ebene, Kegelschnitte 2. Vektorrechnung und analytische Geometrie des Raumes, Anwendungen in der Geometrie,

Mehr

Vektoren, Skalarprodukt, Ortslinien

Vektoren, Skalarprodukt, Ortslinien .0 Gegeben sind die Punkte A(0/-4), C(0/4), sowie die Pfeile mit α [ 90 ; 90 ]. 4cosα AB = 4sinα+ 4. Zeichne die drei Punkte B, B und B 3 mit α { 30;0;30 } in ein KOS.. Zeige: 4cosα CB =. 4sinα 4.3 Zeige,

Mehr

Jürgen Roth Didaktik der Linearen Algebra und Analytischen Geometrie

Jürgen Roth Didaktik der Linearen Algebra und Analytischen Geometrie Jürgen Roth Didaktik der Linearen Algebra und Analytischen Geometrie Modul 12a: Fachdidaktische Bereiche juergen-roth.de/lehre/did_linalg_anageo/ Kapitel 4: Kegelschnitte 4.1 Inhalte Didaktik der Linearen

Mehr

Durch Ausmultiplizieren von Gleichung (1) erhält man eine Gleichung der Form

Durch Ausmultiplizieren von Gleichung (1) erhält man eine Gleichung der Form 49 9. Der Kreis 9.1 Die Koordinaten- und Parameterform der Kreisgleichung Def. Unter dem Kreis k mit Mittelpunkt M(u,v) und Radius R versteht man die Menge aller Punkte P(x,y) die von M den Abstand R haben,

Mehr

Zwischen In- und Umkreis. Eckart Schmidt

Zwischen In- und Umkreis. Eckart Schmidt Zwischen In- und Umkreis Eckart Schmidt Dreiecke mit gleichem In- und Umkreis sind eingangs Gegenstand dieser Ausarbeitung Perspektive Zwischendreiecke erhält man für die Büschelpunkte von In- und Umkreis

Mehr

EQF-Punkte für Kreisvierecke. Eckart Schmidt

EQF-Punkte für Kreisvierecke. Eckart Schmidt EQF-Punkte für Kreisvierecke Eckart chmidt Mit EQF wird ezug genommen auf die Encyclopedia of Quadri-Figures von hris van Tienhoven [1], in der Viereckpunkte aufgelistet und in ihrem geometrischen Zusammenhang

Mehr

Schwerpunktfach AM/PH, 2011 KEGELSCHNITTE

Schwerpunktfach AM/PH, 2011 KEGELSCHNITTE Schwerpunktfach AM/PH, 011 KEGELSCHNITTE 5. Kreis und Ellipse 5.1. Grundkonstruktionen am Kreis Konstruktion 1: Konstruiere einen Kreis, welcher durch die gegebenen 3 Punkte A,B und C verläuft: C B A Konstruktionsbericht:

Mehr

8 Kreisgeometrie in der Zeichenebene

8 Kreisgeometrie in der Zeichenebene 8 Kreisgeometrie in der Zeichenebene 8.1 Inversion am Kreis 8.1.1 Definition Ein Kreis k ist die Menge aller Punkte, die von einem festen Punkt M, dem Mittelpunkt des Kreises, festen Abstand r haben. Dabei

Mehr

Mathematische Probleme, SS 2013 Donnerstag $Id: quadratisch.tex,v /08/12 09:49:46 hk Exp $ c a b = 1 3. tan(2φ) =

Mathematische Probleme, SS 2013 Donnerstag $Id: quadratisch.tex,v /08/12 09:49:46 hk Exp $ c a b = 1 3. tan(2φ) = Mathematische Probleme SS 13 Donnerstag 136 $Id: quadratischtexv 18 13/08/1 09:49:46 hk Exp $ 4 Kegelschnitte 41 Quadratische Gleichungen Nachdem wir in der letzten Sitzung die Hauptachsentransformation

Mehr

ACHSENAFFINE BILDQUADRATE EINES PARALLELOGRAMMS

ACHSENAFFINE BILDQUADRATE EINES PARALLELOGRAMMS ACHSENAFFINE BILDQUADRAE EINES PARALLELOGRAMMS Parallelogramme sind affine Bilder von Quadraten, umgekehrt lassen sich Parallelogrammen affine Bildquadrate zuordnen. Beschränkt man sich zu vorgegebenem

Mehr

10.5 Differentialgeometrie ebener Kurven Tangente, Normale

10.5 Differentialgeometrie ebener Kurven Tangente, Normale 1.5 1.5 Differentialgeometrie ebener Kurven 1.5.1 Tangente, Normale Gegeben: Kurve C C := C := { (x { (x y) } y = f(x), a x b y ) x = ϕ(t) y = ψ(t), t 1 t t } oder C heißt glatte Kurve, wenn f stetig differenzierbar

Mehr

Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus.

Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus. bschlussprüfung 2014 Prüfungsdauer: 150 Minuten Diese Lösung wurde erstellt von ornelia Sanzenbacher. Sie ist keine offizielle Lösung des ayerischen Staatsministeriums für Unterricht und Kultus. ufgaben

Mehr

EQF-Punkte für Sehnen-Tangenten-Vierecke. Eckart Schmidt

EQF-Punkte für Sehnen-Tangenten-Vierecke. Eckart Schmidt EQF-Punkte für ehnen-tangenten-vierecke Eckart chmidt Ein ehnen-tangenten-viereck hat einen Umkreis, auf dem die Ecken liegen, und einen Inkreis, den die eitengeraden berühren. Dabei ist der Umkreis der

Mehr

Übungsaufgaben Geometrie und lineare Algebra - Serie 1

Übungsaufgaben Geometrie und lineare Algebra - Serie 1 Übungsaufgaben Geometrie und lineare Algebra - Serie. Bei einer geraden Pyramide mit einer quadratischen Grundfläche von 00 cm beträgt die Seitenkante 3 cm. a) Welche Höhe hat die Pyramide? b) Wie groß

Mehr

Kegelschnitte. Mathematik I ITB. Kegelschnitte. Prof. Dr. Karin Melzer

Kegelschnitte. Mathematik I ITB. Kegelschnitte. Prof. Dr. Karin Melzer Kegelschnitte 10.11.08 Kegelschnitte: Einführung Wir betrachten,,,. Literatur: Brücken zur Mathematik, Band 1 Grundlagen, Analytische Geometrie Kreis Denition als geometrischer Ort: Der geometrische Ort

Mehr

Elemente der Algebra

Elemente der Algebra Prof. Dr. H. Brenner Osnabrück SS 2015 Elemente der Algebra Vorlesung 25 Auch Albrecht Dürer hatte Spaß an der Quadratur des Kreises Unter den drei klassischen Problemen der antiken Mathematik versteht

Mehr

Mathematische Kurven sind uns aus den verschiedensten Zusammenhängen vertraut. Wir stellen hier kurz die wichtigsten Begriffe zusammen.

Mathematische Kurven sind uns aus den verschiedensten Zusammenhängen vertraut. Wir stellen hier kurz die wichtigsten Begriffe zusammen. 10.1. Ebene Kurven Mathematische Kurven sind uns aus den verschiedensten Zusammenhängen vertraut. Wir stellen hier kurz die wichtigsten Begriffe zusammen. Parameterdarstellungen einer Kurve sind stetige

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Geometrie Modul 4b WS 2015/16 Mi HS 1

Geometrie Modul 4b WS 2015/16 Mi HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Grundbegriffe Geraden Kreis Winkel Kreis. Rund um den Kreis. Dr. Elke Warmuth. Sommersemester / 20

Grundbegriffe Geraden Kreis Winkel Kreis. Rund um den Kreis. Dr. Elke Warmuth. Sommersemester / 20 Rund um den Kreis Dr. Elke Warmuth Sommersemester 2018 1 / 20 Grundbegriffe Geraden Kreis Winkel Kreis 2 / 20 Kreis Kreisfläche oder Kreislinie Definition Die Kreislinie um M mit dem Radius r ist die Menge

Mehr

Die Ideen auf den folgenden Seiten sind für die Anwendung in der Lehrerausund -fortbildung gedacht.

Die Ideen auf den folgenden Seiten sind für die Anwendung in der Lehrerausund -fortbildung gedacht. Die Ideen auf den folgenden Seiten sind für die Anwendung in der Lehrerausund -fortbildung gedacht. Ziel dieser Aufgaben ist es, die Lehrer(innen) bzw. Student(inn)en dazu zu ermuntern, mehr über allgemeine

Mehr

Weitere Ableitungsregeln. Kapitel 4

Weitere Ableitungsregeln. Kapitel 4 Weitere Ableitungsregeln Kapitel . Die Kettenregel L f() = u(v()) g() = v(u()) a) + + b) cos [( + ) ] (cos + ) c) sin ( ) [sin ()] d) e) ( = _ ) _ ( f) cos [π( + )] cos (π) + g) ( ) = h) ( + ) + = + +

Mehr

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 1 /27 Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra 8. Das Skalarprodukt, metrische

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 24 Unter den drei klassischen Problemen der antiken Mathematik versteht man (1) die Quadratur des Kreises, (2) die Dreiteilung

Mehr

Die Kraft der Geometrie oder Eine geometrische Lösung zum Baseler Problem

Die Kraft der Geometrie oder Eine geometrische Lösung zum Baseler Problem Die Kraft der Geometrie oder Eine geometrische Lösung zum Baseler roblem von Reimund Albers, Bremen Im Baseler roblem geht es um die Summe der reziproken Quadrate, also + + 2 3 + 2 4 + +..., und ein exaktes

Mehr

Bogenmaß und trigonometrische Funktionen

Bogenmaß und trigonometrische Funktionen Bogenmaß und trigonometrische Funktionen Was ist ein "Winkel"? Wir suchen eine tragfähige Definition. N Der "Winkel (zwischen von einem Punkt ausgehenden Halbgeraden)" beschreibt deren relative Lage zueinander

Mehr

Lösungen der Übungsaufgaben III

Lösungen der Übungsaufgaben III Mathematik für die ersten Semester (. Auflage): Lösungen der Übungsaufgaben III C. Zerbe, E. Ossner, W. Mückenheim 6. Man konstruiere die Winkelhalbierende eines beliebigen Winkels analog zur Konstruktion

Mehr

10 Komplexe Zahlen. 2. Februar Komplexe Multiplikation: Für zwei Vektoren. z 1 =

10 Komplexe Zahlen. 2. Februar Komplexe Multiplikation: Für zwei Vektoren. z 1 = 2. Februar 2009 66 0 Komplexe Zahlen 0. Komplexe Multiplikation: Für zwei Vektoren [ [ a a2 z =, z 2 = in R 2 wird neben der üblichen Addition die komplexe Multiplikation [ a a z z 2 := 2 b b 2 a b 2 +

Mehr

K A N T O N S S C H U L E I M L E E MATHEMATIK. Grafiktaschenrechner ohne CAS, beliebige Formelsammlung

K A N T O N S S C H U L E I M L E E MATHEMATIK. Grafiktaschenrechner ohne CAS, beliebige Formelsammlung K A N T O N S S C H U L E I M L E E W I N T E R T H U R MATURITÄTSPRÜFUNGEN 06 Klasse: 4g Profil: MN Lehrperson: Rolf Kleiner MATHEMATIK Zeit: 3 Stunden Erlaubte Hilfsmittel: Grafiktaschenrechner ohne

Mehr

Kreis - Übungen. 1) Die y-achse ist am Punkt A eine Tangente an den Kreis. Mit dem noch nicht bekannten "Zwischenwert"

Kreis - Übungen. 1) Die y-achse ist am Punkt A eine Tangente an den Kreis. Mit dem noch nicht bekannten Zwischenwert Kreis - Übungen Wenn die "Kreisgleichung" gesucht ist, sind der Mittelpunkt und der Radius anzugeben. Es ist möglich, dass mehrere Kreise eine Aufgabenstellung erfüllen. 1) Ein Kreis berührt die y-achse

Mehr

LINEARE ALGEBRA UND ANALYSIS FÜR FUNKTIONEN EINER VARIABLEN

LINEARE ALGEBRA UND ANALYSIS FÜR FUNKTIONEN EINER VARIABLEN Fakultät Mathematik Institut für Numerische Mathematik LINEARE ALGEBRA UND ANALYSIS FÜR FUNKTIONEN EINER VARIABLEN 6. Komplexe Zahlen Prof. Dr. Gunar Matthies Wintersemester 2017/18 G. Matthies Lineare

Mehr

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 8

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 8 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 204): Lineare Algebra und analytische Geometrie 8 8. (Herbst 202, Thema 3, Aufgabe 4) Bestimmen Sie die euklidische Normalform der Quadrik Q, gegeben

Mehr

Hausaufgaben und Lösungen

Hausaufgaben und Lösungen Hausaufgaben und Lösungen Die folgenden Seiten sind nicht thematisch, sondern chronologisch geordnet. Die Lösungen der Hausaufgaben werden hier erst nach der Besprechung der Hausaufgaben veröffentlicht.

Mehr

Rauten-Mitten-Kegelschnitte zu vier Geraden. Eckart Schmidt. 1. Vorbemerkungen

Rauten-Mitten-Kegelschnitte zu vier Geraden. Eckart Schmidt. 1. Vorbemerkungen Raten-Mitten-Kegelschnitte z ier Geraden 1 Vorbemerkngen Eckart chmidt Z ier Geraden g 1, g, g 3, g 4 erden Raten R 1 R R 3 R 4 betrachtet, deren Ecken entsprechend der Indizierng af den orgegebenen Geraden

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 8

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 8 Dr. Erwin Schörner Klausurenkurs zum Staatseamen (SS 205): Lineare Algebra und analtische Geometrie 8 8. (Herbst 202, Thema 3, Aufgabe 4) Bestimmen Sie die euklidische Normalform der Quadrik Q, gegeben

Mehr

Angewandte Geometrie Semestralprüfung am 5. Juli 2005, Uhr

Angewandte Geometrie Semestralprüfung am 5. Juli 2005, Uhr Technische Universität München SS 2005 Zentrum Mathematik Blatt 7 apl. Prof. Dr. J. Hartl Angewandte Geometrie Semestralprüfung am 5. Juli 2005, 12.00-1.0 Uhr 1. In einem dreidimensionalen euklidischen

Mehr

Demo-Text für Inversion (Spiegelung am Kreis) Ein Spezialthema INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.

Demo-Text für   Inversion (Spiegelung am Kreis) Ein Spezialthema INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Inversion (Spiegelung am Kreis) Ein Spezialthema Teil 1 Grundlagen Text Nr. 1400 Stand: 4. Februar 016 FIEDICH W. BUCKEL INTENETBIBLIOTHEK FÜ SCHULMATHEMATIK 1400 Inversion 1 Vorwort Die Inversion, die

Mehr

n n x a 1 a 2 = 0 n 1 x 1 + n 2 x 2 + ( n 1 a 1 n 2 a 2 )

n n x a 1 a 2 = 0 n 1 x 1 + n 2 x 2 + ( n 1 a 1 n 2 a 2 ) IX. Normalformen ================================================================== 9.1 Die Normalenform einer Geradengleichung im 2-dimensionalen Punktraum ----------------------------------------------------------------------------------------------------------------

Mehr

Höhere Mathematik II für Ingenieurinnen und Ingenieure Lösungen zur 4. Übung

Höhere Mathematik II für Ingenieurinnen und Ingenieure Lösungen zur 4. Übung TU Bergakademie Freiberg Vorl. Frau Prof. Dr. Swanhild Bernstein Übung Dipl.-Math. Daniel Lorenz Freiberg, 26. April 2017 Höhere Mathematik II für Ingenieurinnen und Ingenieure Lösungen zur 4. Übung Aufgabe

Mehr

Grundwissen Abitur Geometrie 15. Juli 2012

Grundwissen Abitur Geometrie 15. Juli 2012 Grundwissen Abitur Geometrie 5. Juli 202. Erkläre die Begriffe (a) parallelgleiche Pfeile (b) Vektor (c) Repräsentant eines Vektors (d) Gegenvektor eines Vektors (e) Welcher geometrische Zusammenhang besteht

Mehr

11.3. Variablentrennung, Ähnlichkeit und Trajektorien

11.3. Variablentrennung, Ähnlichkeit und Trajektorien 3 Variablentrennung, Ähnlichkeit und Trajektorien Trennung der Veränderlichen (TdV) Es seien zwei stetige Funktionen a (der Variablen ) und b (der Variablen ) gegeben Die Dgl a( ) b( ) b( ) d d läßt sich

Mehr

c) y = ln( 2x + 5) d) y = 2) Verwandeln Sie die gegebene implizite Funktion in die explizite Form y(x):

c) y = ln( 2x + 5) d) y = 2) Verwandeln Sie die gegebene implizite Funktion in die explizite Form y(x): Übungen zur Einführung in die Physikalischen Rechenmethoden I (Mathematische Grundlagen für das Physikstudium I) WS /, 6 VO+UE Univ. Prof. Dr. Christoph Dellago ) Finden Sie die Umkehrung von folgenden

Mehr

Achsen- und punktsymmetrische Figuren

Achsen- und punktsymmetrische Figuren Achsensymmetrie Der Punkt P und sein Bildpunkt P sind symmetrisch bzgl. der Achse s, wenn ihre Verbindungsstrecke [PP ] senkrecht auf der Achse a steht und von dieser halbiert wird. Zueinander symmetrische......strecken

Mehr

Alle zu orthogonalen Tangenten müssen die Steigung 4,32 1 haben. 0, ,2723* 1,2** 6 Punktprobe mit %&1,2'1,2( 2* 3,6* 64,272 4,272 2* 3,6* 1,7280

Alle zu orthogonalen Tangenten müssen die Steigung 4,32 1 haben. 0, ,2723* 1,2** 6 Punktprobe mit %&1,2'1,2( 2* 3,6* 64,272 4,272 2* 3,6* 1,7280 Lösung A1 6 3 a) 1,21,2 64,272 1,23 1,2 4,32 1,2 1,21,2 4,32 1,24,2724,329,456 b) Alle Tangenten zu parallel müssen die Steigung 4,32 haben. 4,323 :3 1,44, 1,2 Für 1,2 siehe Aufgabenteil a). 1,21,2 67,728

Mehr

Analytische Geometrie I

Analytische Geometrie I Analytische Geometrie I Rainer Hauser Januar 202 Einleitung. Geometrie und Algebra Geometrie und Algebra sind historisch zwei unabhängige Teilgebiete der Mathematik und werden bis heute von Laien weitgehend

Mehr