13.1 Die Laplace-Transformation

Größe: px
Ab Seite anzeigen:

Download "13.1 Die Laplace-Transformation"

Transkript

1 13.1 Die Laplace-ranformation Die Laplace-ranformation Die Laplace-ranformation it eine Integraltranformation, die jeder Zeitfunktion f(t), t, eine Bildfunktion F () gemäß 13.1 F () = f (t) e t dt zuordnet. Da die Zeitintegration bei t = beginnt, wird im Folgenden immer von f (t) = für t < augegangen. Damit da uneigentliche Integral und damit die Bildfunktion F () überhaupt definiert it, mu da Integral für jede einen endlichen Wert annehmen. Eine hinreichende Bedingung hierfür it, da die Funktion f (t) die beiden folgenden Eigenchaften beitzt: Bedingung 1: f : [, ) IR it eine tückweie tetige Funktion: Der Definitionbereich der Funktion kann in endlich viele eilintervalle unterteilt werden, in denen die Funktion tetig und bechränkt it. Bedingung 2: f : [, ) IR wächt nicht chneller al eine Exponentialfunktion e αt mit geeignetem α: E gibt ein > und Kontanten α, M >, o da f (t) M e αt für t. Man nennt f dann von höchten exponentiellem Wachtum der Ordnung α. In Abb it eine tückweie tetige Funktion mit höchten exponentiellem Wachtum der Ordnung 1 gezeichnet. In jedem eilintervall it f (t) tetig und für Zeiten t > it f (t) < e t. Abb Funktion von höchten exponentiellem Wachtum

2 Laplace-ranformation Beipiele 13.2: 1 Funktionen von höchten exponentiellem Wachtum: f (t) = cont, t n, co (ωt), in (ωt), e αt, alle bechränkten Funktionen. 2 Funktionen, die ein größere Wachtum al da exponentielle beitzen: e t2, e in(t) t3. Satz 13.1: It f : [, ) IR von höchten exponentiellem Wachtum der Ordnung α, dann gilt lim t e t f (t) = für > α. Begründung: Wenn f (t) M e αt, dann it für > α e t f (t) e t M e αt = M e (α )t für t. Satz von Laplace: Sei f : [, ) IR eine tückweie tetige Funktion von höchten exponentiellem Wachtum der Ordnung α (d.h. f (t) M e αt für t > ). Dann exitiert L (f (t)) := F () := f (t) e t dt für > α. ( ) L (f (t)) heißt Laplace-ranformierte (Bildfunktion) zur Zeitfunktion f (t). Bemerkungen: (1) I.A. it = δ + iω eine komplexe Variable und F () eine komplexe Funktion. Im Folgenden werden wir aber bi auf die Angabe der inveren Laplace- ranformation al reelle Variable und damit F () al reellwertige Funktion betrachten. (2) Ein nach Formel ( ) gebildete Funktionenpaar f (t) und F () nennt man eine Korrepondenz. Man verwendet dafür auch die ymboliche Schreibweie f (t) F ().

3 13.1 Die Laplace-ranformation 567 (3) Mit der Laplace-ranformation behandelt man zeitlich veränderliche Vorgänge, die zur Zeit t = beginnen und die damit durch eine Funktion f mit f (t) = für t < bechrieben werden können. (4) Man kann allgemeiner die Laplace-ranformierte von Funktionen bilden, die tatt Bedingung 1 die folgende allgemeinere Bedingung erfüllen: In jedem endlichen eilintervall von [, ) it f tückweie tetig. Diee Eigenchaft it im Hinblick auf die Laplace-ranformierte von periodichen Funktionen von Bedeutung. Bewei de Satze von Laplace: Wir zeigen, da da Integral f (t) e t dt für jede > α einen endlichen Wert annimmt: Da f tückweie tetig it, lät ich da Intervall I = [, ) in endlich viele eilintervalle I 1,..., I n unterteilen, o da f auf jedem dieer Intervalle I k = [t k 1, t k ] (k = 1,..., n) tetig und bechränkt it. Außerdem it f(t) von höchten exponentiellem Wachtum der Ordnung α, d.h. e gibt ein und Kontanten α, M, o da f (t) M e αt für t >. Wir nehmen an, da > t n und zerlegen den Definitionbereich von f in [, ) = I 1 I 2... I n [t n, ] [, ). Dann it f (t) e t dt = t 1 f (t) e t dt t n t n 1 f (t) e t dt + t n f (t) e t dt + f (t) e t dt. Die erten n + 1 Integrale ind endlich, da f darauf tetig und bechränkt it. Da letzte Integral it endlich, da f von höchten exponentiellem Wachtum it: f (t) e t dt e t f (t) dt M e t e αt dt = M e ( α)t 1 dt = M ( α) e ( α)t = M α e ( α) M α = M α e ( α) für > α. lim t e ( α)t Damit ind alle eilintegrale endlich und F () für > α definiert.

4 Laplace-ranformation Beipiele 13.3: 1 Die Laplace-ranformierte der Sprungfunktion: Gegeben it die Sprungfunktion (Heaviidefunktion) S(t) := { für t < 1 für t Für > it: L(S(t)) = 1 e t dt = [ 1 e t ] = 1 S (t) 1. 2 Laplace-ranformierte von Potenzfunktionen: (i) Die Laplace-ranformierte der unten gezeichneten linearen Funktion p 1 (t) := { für t < t für t erhält man mittel partieller Integration: L (p 1 (t)) = t e t dt = t e t + 1 Die Korrepondenz lautet für > e t dt = 1 2 e t = 1 2. t S(t) 1 2. (ii) Die Laplace-ranformierte der Potenzfunktion { für t < p n (t) := t n für t = tn S(t) (n IN) lautet L (p n (t)) = n!. Man erhält diee Formel induktiv durch partielle n+1 Integration von L (p n+1 (t)) = t n+1 e t n+1 e t dt = t + n + 1 t n e t dt = n + 1 L (p n (t)) = n + 1 n! (n + 1)! = n+1 n+2.

5 13.1 Die Laplace-ranformation 569 Der Induktionanfang it durch 1 bzw. 2 (i) gegeben. t n S(t) n! n+1 > n IN. 3 Die Laplace-ranformierte der Exponentialfunktion: f (t) = { für t < e αt für t lautet F () = 1 α für > α. Denn L (f (t)) = = e αt e t dt = 1 ( α) e ( α)t e ( α)t dt = 1 α. e αt S(t) 1 α für > α. 4 Die Laplace-ranformierte der verchobenen Sprungfunktion (α > ) S (t α) = { für t < α 1 für t α lautet für > L (S (t α)) = S (t α) e t dt = α 1 e t dt = e t α = e α S (t α) e α für >.

Verschiebungssatz: Ist F (s) die Laplace-Transformierte von f (t), dann gilt für t 0 > 0

Verschiebungssatz: Ist F (s) die Laplace-Transformierte von f (t), dann gilt für t 0 > 0 3.6 Tranformationätze 853 3.6 Tranformationätze In dieem Abchnitt werden weitere Eigenchaften der Laplace-Tranformation vorgetellt, die in vielen technichen Bechreibungen ihre Anwendung finden. Oftmal

Mehr

12.6 Aufgaben zur Laplace-Transformation

12.6 Aufgaben zur Laplace-Transformation 292 12. Aufgaben zu linearen Gleichungen 12.6 Aufgaben zur Laplace-Tranformation A B C D Man löe die folgenden Anfangwertprobleme durch Laplace-Tranformation: 1) ẍ ẋ x = ; x() = ẋ() = 1 2) x (3) 6ẍ + 12ẋ

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Sytemtheorie eil - Zeitkontinuierliche Signale und Syteme - Muterlöungen Manfred Strohrmann Urban Brunner Inhalt Muterlöungen - Laplace-ranformation zeitkontinuierlicher Signale... 3. Berechnung der Laplace-ranformierten

Mehr

Laplace Transformation

Laplace Transformation Department Mathematik der Univerität Hamburg SoSe 29 Dr. Hanna Peywand Kiani Laplace Tranformation Die in Netz getellten Kopien der Anleitungfolien ollen nur die Mitarbeit während der Verantaltung erleichtern.

Mehr

D-HEST, Mathematik III HS 2017 Prof. Dr. E. W. Farkas M. Nitzschner. Lösung 7. Bitte wenden!

D-HEST, Mathematik III HS 2017 Prof. Dr. E. W. Farkas M. Nitzschner. Lösung 7. Bitte wenden! D-HEST, Mathematik III HS 27 Prof. Dr. E. W. Farka M. Nitzchner Löung 7 Bitte wenden! . Wir betrachten ein Sytem linearer Differentialgleichungen erter Ordnung mit kontanten Koeffizienten der Form y (t)

Mehr

Spezieller Ansatz bei spezieller Inhomogenität.

Spezieller Ansatz bei spezieller Inhomogenität. Spezieller Ansatz bei spezieller Inhomogenität. Bei Inhomogenitäten der Form h(t) = e µt kann man spezielle Ansätze zur Bestimmung von y p (t) verwenden: Ist µ keine Nullstelle der charakteristischen Gleichung

Mehr

Kapitel 3. Lineare Differentialgleichungen

Kapitel 3. Lineare Differentialgleichungen Kapitel 3. Lineare Differentialgleichungen 3.4 Die Laplace Transformation Sei F : R C eine reell oder komplexwertige Funktion auf R. Die Laplace Transformierten von F ist gegeben durch die Integraltransformation

Mehr

Z-Transformation. Laplace-Transformation. Laplace-Transformation der Delta-Funktion

Z-Transformation. Laplace-Transformation. Laplace-Transformation der Delta-Funktion Z-Tranformation Laplace-Tranformation Laplace-Tranformation der Delta-Funktion Z-Tranformation Für eine Differenengleichung wie.b. f(n+) f(n) = n n (alternative Schreibweie n+ n = n n ) it eine expliite

Mehr

Übungsmaterial. Lösen von Anfangswertproblemen mit Laplacetransformation

Übungsmaterial. Lösen von Anfangswertproblemen mit Laplacetransformation Prof. Dr. W. Roenheinrich 30.06.2009 Fachbereich Grundlagenwienchaften Fachhochchule Jena Übungmaterial Löen von Anfangwertproblemen mit Laplacetranformation Nachtehend ind einige Anfangwertprobleme zu

Mehr

Anleitung zu Blatt 5 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 5 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Univerität Hamburg WiSe / Dr. Hanna Peywand Kiani 4..2 Anleitung zu Blatt 5 Differentialgleichungen I für Studierende der Ingenieurwienchaften Stabilität, Laplace-Tranformation

Mehr

Ableitungsberechnung mit der Grenzwertmethode. Besonders wichtig ist der Zentraltext über Ableitungen Datei Stand 30.

Ableitungsberechnung mit der Grenzwertmethode. Besonders wichtig ist der Zentraltext über Ableitungen Datei Stand 30. Analyi Ableitungfunktionen Ableitungberechnung mit der Grenzwertmethode Beonder wichtig it der Zentraltet über Ableitungen 400 Datei 40 Stand 0. Dezember 00 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 40 Ableitungfunktionen

Mehr

Verschiebung und Skalierung bei Laplace-Transformation

Verschiebung und Skalierung bei Laplace-Transformation Verchiebung und Skalierung bei Laplace-Tranformation Bezeichnet man, wie in der Abbildung illutriert, mit u( a) die um a nach recht verchobene Funktion, o gilt für die Laplace-Tranformation u(t a) L exp(

Mehr

Mathematik III Vorlesung 5,

Mathematik III Vorlesung 5, Mathematik III Vorlesung 5, 03.11.2006 Markus Nemetz November 2006 1 Vorbemerkung Prof. Panholzer hat die illustrierenden Beispiele aus der zur VO empfohlenen Lektüre gebracht - sie sind hier nicht angeführt.

Mehr

Differentialgleichungen

Differentialgleichungen Differentialgleichungen Teilnehmer: Phili Bannach Heinrich-Hertz-Oberchule) Levin Keller Herder-Oberchule) Phili Kende Herder-Oberchule) Carten Kubbernuh Andrea-Oberchule) Giang Nguyen Herder-Oberchule)

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 15. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 15. Übungsblatt Karlruher Intitut für Technologie (KIT) Intitut für Analyi Dr. A. Müller-Rettkowki Dipl.-Math. M. Uhl WS 9/ Höhere Mathematik I für die Fachrichtungen Elektroingenieurween, Phyik und Geodäie Löungvorchläge

Mehr

LAPLACE Transformation

LAPLACE Transformation LAPLACE Transformation Bei der LAPLACE-Transformation wird einer (geeigneten) Funktion f(t) eine Funktion F (s) zugeordnet. Diese Art von Transformation hat u.a. Anwendungen bei gewissen Fragestellungen

Mehr

Systemtheorie. Vorlesung 20: Eigenschaften der Fourier-Transformation. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Systemtheorie. Vorlesung 20: Eigenschaften der Fourier-Transformation. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Systemtheorie Vorlesung 2: Eigenschaften der Fourier-Transformation Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Fourier-Transformation Eigenschaften der Fourier-Transformation Definitionsgleichungen

Mehr

Autonome Mobile Systeme

Autonome Mobile Systeme Autonome Mobile Syteme Teil II: Sytemtheorie für Informatiker Dr. Mohamed Oubbati Intitut für Neuroinformatik Univerität Ulm SS 2007 Warum Sytemtheorie? Informatiker werden zunehmend mit Sytemen konfrontiert,

Mehr

Kapitel 28. Bemerkungen zur Laplace-Transformation Die Transformation (Heaviside-Funktion; konvergenzerzeugender

Kapitel 28. Bemerkungen zur Laplace-Transformation Die Transformation (Heaviside-Funktion; konvergenzerzeugender Kapitel 28 Bemerkungen zur Laplace-Transformation 28.1 Die Transformation (Heaviside-Funktion; konvergenzerzeugender Faktor; exponentielle Ordnung) Eng verwandt mit der Fourier-Transformation ist die Laplace-

Mehr

Mathematik 2 (Master Sicherheitstechnik)

Mathematik 2 (Master Sicherheitstechnik) Priv.-Doz. Dr. J. uppenthal Wuppertal, 8.4.6 Aufgabe 5. Mathematik Master Sicherheitstechnik) Übungsblatt Gegeben seien die Schwingungen f t) 3 sin4πt + π) und f t) 4 sin4πt + π/). Berechnen Sie die Amplitude

Mehr

4 Die Laplace-Transformation

4 Die Laplace-Transformation 4 Die Laplace-ransformation 4. Definitionen, Beispiele und Regeln In der Wirklichkeit hat man es meist mit Signalen zu tun, die erst zu einem bestimmten Zeitpunkt ausgelöst werden. Um solche Einschaltvorgänge

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretiche Grundlagen der Informatik KIT 24.1.211 Univerität de Dorothea Lande Baden-Württemberg Wagner - Theoretiche und Grundlagen der Informatik nationale Forchungzentrum Vorleung in am der 2.Oktober

Mehr

2.1) Aufgrund der geraden Symetrie verschwinden alle Sinuskoeffizienten, also U b 1s;n = 0 für

2.1) Aufgrund der geraden Symetrie verschwinden alle Sinuskoeffizienten, also U b 1s;n = 0 für Muterlöung: Grundgebiete der Elektrotechnik IV 7.0.004 Aufgabe : 0 Punkte.) Aufgrund der geraden Symetrie verchwinden alle Sinukoefienten, alo U b ;n 0 für alle n IN (0,5 P).) Der Gleichanteil berechnet

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Sytemtheorie eil A - Zeitkontinuierliche Signale und Syteme - Muterlöungen Manfred Strohrmann Urban Brunner Inhalt Inhalt... Muterlöung Zeitkontinuierliche Signale.... echloene Dartellung tückweie definierter

Mehr

Mathematik 2 (Master Sicherheitstechnik)

Mathematik 2 (Master Sicherheitstechnik) Priv.-Doz. Dr. J. Ruppenthal Wuppertal, 4.6.8 Mathematik Master Sicherheitstechnik) Übungsblatt 8 Aufgabe 5. Konvergenz von Fourierreihen) Der Sinus Hyperbolicus ist die Funktion sinhx) = e x e x). Es

Mehr

Gewöhnliche Dierentialgleichungen

Gewöhnliche Dierentialgleichungen Gewöhnliche Dierentialgleichungen sind Gleichungen, die eine Funktion mit ihren Ableitungen verknüpfen. Denition Eine explizite Dierentialgleichung (DGL) nter Ordnung für die reelle Funktion t x(t) hat

Mehr

Integraldarstellung des Restgliedes; Lagrangesche Restgliedformel;

Integraldarstellung des Restgliedes; Lagrangesche Restgliedformel; Kapitel Der Satz von Taylor. Taylor-Formel und Taylor-Reihe (Taylor-Polynom; Restglied; Integraldarstellung des Restgliedes; Lagrangesche Restgliedformel; die Klasse C ; reell analytische Funktionen) In

Mehr

Lösungsvorschläge zum 9. Übungsblatt.

Lösungsvorschläge zum 9. Übungsblatt. Übung zur Anali III W / Löungvorchläge zum 9. Übungblatt. Wir zeigen zunächt, da die u.u. au Vorleung/Übung noch nicht bekannt it: It A BR p und B BR q, o it A B BR p+q. Die läßt ich z.b. wie in Aufgabe

Mehr

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Horst Laschinsky 12. Oktober 1999 Inhaltsverzeichnis 1 Gewöhnliche lineare homogene Differentialgleichungen 2. Ordnung mit konstanten

Mehr

Beispiel-Schulaufgabe 2

Beispiel-Schulaufgabe 2 Anregungen zur Ertellung von Aufgaben Aufgaben für Leitungnachweie Die zeichnet ich durch eine augewogene Berückichtigung der allgemeinen mathematichen Kompetenzen au. Aufgaben, deren Bearbeitung in auffallendem

Mehr

K T 1 s + 1. G S (s) = G S (s) = 1 2s + 1. T n s + 1 T n s. G R (s) = K R. G R (s) = 2s + 1 s. F ω (s) = 1/s 1 + 1/s = 1

K T 1 s + 1. G S (s) = G S (s) = 1 2s + 1. T n s + 1 T n s. G R (s) = K R. G R (s) = 2s + 1 s. F ω (s) = 1/s 1 + 1/s = 1 Aufgabe : a) Au und K = und T = 2 folgt: Mit und K R = 2, T n = 2 : G S () = K T G S () = 2 G R () = K R T n T n G R () = 2 G 0 () = G R ()G S () = F ω () = / + / = b) Y () = F ω ()W() Die Sprungantwort

Mehr

A. Die Laplace-Transformation

A. Die Laplace-Transformation A. Die Laplace-Transformation Die Laplace-Transformation ist eine im Wesentlichen eineindeutige Zuordnung von Funktionen der Zeit t zu Funktionen einer komplexen Variablen s. Im Rahmen der einseitigen)

Mehr

MATHEMATIK 1 VERSION 17. Dezember f(t)e st dt. F (s) = f(t)e st dt =

MATHEMATIK 1 VERSION 17. Dezember f(t)e st dt. F (s) = f(t)e st dt = MATHEMATIK VERSION 7. Dezember 28 ISIBACH ANDRÉ 4. aplacetranformation 4.. Definition. Sei f(t gegeben. Die Funktion F ( f(te t dt heit aplacetranformation der Funktion f(t. Symbolich chreiben wir F (

Mehr

Laplace Transformation

Laplace Transformation Laplace Transformation A Die Laplace Transformation ist eine im Wesentlichen eineindeutige Zuordnung von Funktionen der Zeit t zu Funktionen einer komplexen Variablen s. Formal kann die Laplace Transformation

Mehr

3 Der Cauchysche Integralsatz

3 Der Cauchysche Integralsatz 3 Der Cauchysche Integralsatz Die in der Funktionentheorie meist vorkommenden Integrale (insbesondere im Cauchyschen Integralsatz) sind Kurvenintegrale und wie folgt definiert: Definition Sei U C, f :

Mehr

5.1 Anwendung auf die Berechnung uneigentlicher

5.1 Anwendung auf die Berechnung uneigentlicher Kapitel 5 Anwendungen des Residuenkalküls Wie sich am Ende des vorigen Kapitels in Beispiel 4.17 bereits angedeutet hat, bietet der Residuenkalkül ein mächtiges Werkzeug, um uneigentliche Integrale mit

Mehr

Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse. 1

Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse. 1 F R O N T M A T T E R B O D Y Ueber die Anzahl der Primzahlen unter einer gegebenen Gröe. Bernhard Riemann (Monatberichte der Berliner Akademie, November 859) Meinen Dank für die Auzeichnung, welche mir

Mehr

1 Definition und Konstruktion vektorwertiger Funktionen und Funktionen mehrerer Variabler

1 Definition und Konstruktion vektorwertiger Funktionen und Funktionen mehrerer Variabler Zusammenfassung Kapitel IV: Funktionen mehrerer Veränderlicher und vektorwertige Funktionen 1 Definition und Konstruktion vektorwertiger Funktionen und Funktionen mehrerer Variabler Definition vektorwertige

Mehr

12 Gewöhnliche Differentialgleichungen

12 Gewöhnliche Differentialgleichungen 12 Gewöhnliche Differentialgleichungen 12.1 Der Satz von Picard-Lindelöf 12.1.1 Definition (Explizite Differentialgleichung erster Ordnung) Ω 1 R, Ω 2 R n seien offen und f : Ω 1 Ω 2 R n, (x,y) f (x,y)

Mehr

6.8 Residuenkalkül. Ziel: Weitere Verallgemeinerung auf mehrere Löcher L 1,..., L N. Kapitel 6: Komplexe Integration Γ 1

6.8 Residuenkalkül. Ziel: Weitere Verallgemeinerung auf mehrere Löcher L 1,..., L N. Kapitel 6: Komplexe Integration Γ 1 6.8 Residuenkalkül Erinnerung: Sei f analytisch auf einem zweifach zusammenhängenden Gebiet G, d.h. G besitzt genau ein Loch L. Weiterhin seien und zwei positiv orientierte geschlossene Wege, die das Loch

Mehr

Regelungs- und Systemtechnik 1 Sommer 10

Regelungs- und Systemtechnik 1 Sommer 10 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Regelungs- und Systemtechnik 1 Sommer 1 Wiederholung zur Laplacetransformation 1 1 Definitionen Definition 1 (Integraltransformation)

Mehr

7 Laplace-Transformation

7 Laplace-Transformation 7 Laplace-Tranformation In dieem Kapitel wird die Laplace-Tranformation eingeführt, eine der wichtigten Tranformationen in der linearen Sytemtheorie. Eine Verwendung olcher Tranformationen it, eine mathematiche

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretiche Grundlagen der Informatik Andrea Schumm 21.1.21 INSTITUT FÜR THEORETISCHE INFORMATIK KIT Univerität de Lande Baden-Württemberg und nationale Forchungzentrum in der Helmholtz-Gemeinchaft www.kit.edu

Mehr

8 Martingaldarstellung und Doob-Meyer Zerlegung

8 Martingaldarstellung und Doob-Meyer Zerlegung 8 Martingaldartellung und Doob-Meyer Zerlegung 8.1 Der Martingaldartellungatz In Kapitel 3 haben wir gezeigt, da da Ito-Integral eine H -Integranden ein tetige Martingal it. Der Martingaldartellungatz

Mehr

Formelsammlung Mathematik (ET053)

Formelsammlung Mathematik (ET053) Forelalung Matheatik (ET053) Änderunghitorie 07..2006 Differenzialgleichungen, Ordnung, Separierbarkeit, Hoogenität, Linearität, Löungen, Löunganatz Trennen der Variablen, Löunganatz Subtitution, Lineare

Mehr

Bemerkungen. f (x 1,..., x i + x i,..., x n ) f (x 1,..., x n ) lim. f xi (x 1,..., x n ) =

Bemerkungen. f (x 1,..., x i + x i,..., x n ) f (x 1,..., x n ) lim. f xi (x 1,..., x n ) = Bemerkungen Die Erweiterung der Definition von partiellen Ableitungen 1. Ordnung für Funktionen u = f (x 1,..., x n ) mit n > 2 Veränderlichen ist offensichtlich: f xi (x 1,..., x n ) = f (x 1,..., x i

Mehr

Aufgaben GDGL SS 1998

Aufgaben GDGL SS 1998 Aufgaben GDGL SS 1998 Frank Wübbeling 17. September 1998 Aufgabe 1: (4 Punkte) Stellen Sie eine Differentialgleichung 1. Ordnung auf für die Schar der Parabeln mit der x-achse als Achse und dem Ursprung

Mehr

Definitions- und Wertebereich von Funktionen und Relationen

Definitions- und Wertebereich von Funktionen und Relationen Definitions- und Wertebereich von Funktionen und Relationen -E -E2 -E3 Wiederholung: Definition einer Funktionen Definition: Unter einer Funktion versteht man eine Vorschrift, die jedem Element x aus einer

Mehr

v(x, y, z) = (1 z)x 2 + (1 + z)y 2 + z. Hinweis: Der Flächeninhalt der Einheitssphäre ist 4π; das Volumen der Einheitskugel

v(x, y, z) = (1 z)x 2 + (1 + z)y 2 + z. Hinweis: Der Flächeninhalt der Einheitssphäre ist 4π; das Volumen der Einheitskugel Aufgabe Gegeben sei das Gebiet G : { (x, y, z) R 3 x 2 + y 2 + z 2 < } und die Funktion Berechnen Sie das Integral v(x, y, z) ( z)x 2 + ( + z)y 2 + z. G n ds, wobei n der nach außen zeigende Normalenvektor

Mehr

9. Die Laplace Transformation

9. Die Laplace Transformation H.J. Oberle Differentialgleichungen I WiSe 212/13 9. Die Laplace Transformation Die Laplace Transformation gehört zur Klasse der so genannten Integraltransformationen. Diese ordnen einer vorgegebenen Funktion

Mehr

3. Beschreibung dynamischer Systeme im Frequenzbereich

3. Beschreibung dynamischer Systeme im Frequenzbereich 3. Laplace-Transformation 3. Frequenzgang 3.3 Übertragungsfunktion Quelle: K.-D. Tieste, O.Romberg: Keine Panik vor Regelungstechnik!.Auflage, Vieweg&Teubner, Campus Friedrichshafen --- Regelungstechnik

Mehr

Differenzengleichungen, Z - Transformation

Differenzengleichungen, Z - Transformation Differenengleichungen, Z - Transformation In diesem Kapitel wollen wir eine weitere Transformation, die Z-Transformation behandeln. Mit Hilfe der Z-Transformation können lineare Differenengleichungen (DFG

Mehr

Integraltransformationen

Integraltransformationen Fourier-ransformation Integraltransformationen Fakultät Grundlagen Juli 00 Fakultät Grundlagen Integraltransformationen Übersicht Fourier-ransformation Fourier-ransformation Motivation Fakultät Grundlagen

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr)

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr) WS 2011/12 Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2011ws/ds/uebung/ 18. Januar 2012 ZÜ DS ZÜ XII

Mehr

Inhaltsübersicht. Deltafunktion Gammafunktion Fehlerfunktion. Kapitel 13: Spezielle Funktionen

Inhaltsübersicht. Deltafunktion Gammafunktion Fehlerfunktion. Kapitel 13: Spezielle Funktionen Inhaltsübersicht Kapitel 13: Spezielle Funktionen Deltafunktion Gammafunktion Fehlerfunktion Notizen zur Vorlesung Mathematik für Materialwissenschaftler 2 1 Die Bezeichnung Delta-Funktion ist streng genommen

Mehr

Vorlesung 6. Übertragungsfunktion der linearen Regelkreisglieder Textuell: FederPendel. DGL: als Sprungantwort

Vorlesung 6. Übertragungsfunktion der linearen Regelkreisglieder Textuell: FederPendel. DGL: als Sprungantwort Textuell: FederPendel yste FederPendel Dreh- Magnet Feder c Masse l Däpfer d lf ld ollwertgeber Regler Winkelsensor Regelungstechnische Begriffe: PT-Glied it Verstärkung Kp, Däpfung D, Zeitkonstante T

Mehr

Beispiele zur Konvergenzuntersuchung bei Reihen.

Beispiele zur Konvergenzuntersuchung bei Reihen. Beispiele zur Konvergenzuntersuchung bei Reihen Beispiel: Wir untersuchen die Konvergenz der Exponentialreihe z k k! für z C Anwendung des Quotientenkriteriums ergibt z k+1 (k + 1! z k = z k+1 k! z k (k

Mehr

X.4 Elektromagnetische Wellen im Vakuum

X.4 Elektromagnetische Wellen im Vakuum X.4 Elektromagnetische Wellen im Vakuum 173 X.4 Elektromagnetische Wellen im Vakuum In Abwesenheit von Quellen, ρ el. = 0 j el. = 0, nehmen die Bewegungsgleichungen (X.9) (X.11) für die elektromagnetischen

Mehr

Fourierreihen periodischer Funktionen

Fourierreihen periodischer Funktionen Fourierreihen periodischer Funktionen periodische Funktion: (3.1) Fourierkoeffizienten und (3.2) (3.3) Fourier-Reihenentwicklungen Cosinus-Reihe: (3.4) (3.5) Exponentialreihe: (3.6) (3.7-3.8) Bestimmung

Mehr

9 Fourier-Transformation

9 Fourier-Transformation 9 Fourier-Transformation Zoltán Zomotor Versionsstand: 5. September 2015, 18:26 Die nummerierten Felder bitte mithilfe der Videos ausfüllen: http://www.z5z6.de This work is based on the works of Jörn Loviscach

Mehr

Laplacetransformation

Laplacetransformation Laplacetransformation Fakultät Grundlagen Februar 206 Fakultät Grundlagen Laplacetransformation Übersicht Transformationen Transformationen Bezugssysteme Definition der Laplacetransformation Beispiele

Mehr

Mathematische Grundlagen in Biologie und Geowissenschaften Kurs 2004/2005

Mathematische Grundlagen in Biologie und Geowissenschaften Kurs 2004/2005 Ina Kersten Mathematische Grundlagen in Biologie und Geowissenschaften Kurs 2004/2005 TgX-Bearbeitung von Ben Müller und Christian Kierdorf Universitätsdrucke Göttingen 2004 Zahlen und Abbildungen 10 1

Mehr

Potenzen, Wurzeln, Logarithmen

Potenzen, Wurzeln, Logarithmen KAPITEL 3 Potenzen, Wurzeln, Logarithmen 3.1 Funktionen und Umkehrfunktionen.............. 70 3.2 Wurzeln............................ 72 3.3 Warum ist a 2 + b 2 a + b?................. 73 3.4 Potenzfunktion........................

Mehr

Funktionentheorie, Woche 11. Funktionen mit Singularitäten Meromorphe Funktionen

Funktionentheorie, Woche 11. Funktionen mit Singularitäten Meromorphe Funktionen Funktionentheorie, Woche Funktionen mit Singularitäten. Meromorphe Funktionen Definition. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P = f ( hat keine

Mehr

Mathematik 1 für Bauingenieure

Mathematik 1 für Bauingenieure Mathematik 1 für Bauingenieure Name (bitte ausfüllen): Prüfung am 5.12.2014 Reinhard Winkler Matrikelnummer (bitte ausfüllen): Wichtige Hinweise bevor Sie beginnen: Die Prüfung besteht aus vier Aufgaben

Mehr

C. Eicher Analysis Study Center ETH Zürich HS Extremwerte

C. Eicher Analysis Study Center ETH Zürich HS Extremwerte C. Eicher Analysis Study Center ETH Zürich HS 05 Extremwerte Gelöste Aufgabenbeispiele:. Bestimme die lokalen und globalen Extrema der Funktion f(x) = x x + x auf dem Intervall [ 4, ]. a. Bestimmung der

Mehr

Zuname: Vorname: KennNr: Matr.Nr: PRÜFUNG AUS MATHEMATIK 3. 1)(8 P.) Lösen Sie das folgende AWP mit Hilfe der Laplacetransformation.

Zuname: Vorname: KennNr: Matr.Nr: PRÜFUNG AUS MATHEMATIK 3. 1)(8 P.) Lösen Sie das folgende AWP mit Hilfe der Laplacetransformation. (8 P.) Lösen Sie das folgende AWP mit Hilfe der Laplacetransformation. y 7y + 10y = sin(2x), y(0) = 1, y (0) = 3. x ( ) Bemerkung: Für festes a gilt L(e ax ) = 1 und L sin(ax) = arctan a. s a x s Die auftretenden

Mehr

Vorlesung Mathematik 2 für Ingenieure (Sommersemester 2016)

Vorlesung Mathematik 2 für Ingenieure (Sommersemester 2016) 1 Vorlesung Mathematik 2 für Ingenieure (Sommersemester 216) Kapitel 11: Potenzreihen und Fourier-Reihen Prof. Miles Simon Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke Universität Magdeburg.

Mehr

(a), für i = 1,..., n.

(a), für i = 1,..., n. .4 Extremwerte Definition Sei M R n eine Teilmenge, f : M R stetig, a M ein Punkt. f hat in a auf M ein relatives (oder lokales) Maximum bzw. ein relatives (oder lokales) Minimum, wenn es eine offene Umgebung

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 3

Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Prof. Dr. Norbert Pietralla/Sommersemester c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe : Berechnen Sie die bestimmten Integrale: π/ 3 cos(x)

Mehr

Analysis III. Teil I. Rückblick auf das letzte Semester. Themen aus dem SS Inhalt der letzten Vorlesung aus dem SS.

Analysis III. Teil I. Rückblick auf das letzte Semester. Themen aus dem SS Inhalt der letzten Vorlesung aus dem SS. Analysis III für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg Reiner Lauterbach Teil I Rückblick auf das letzte Semester Fakultät für Mathematik, Informatik und Naturwissenschaften

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Sytemtheorie Teil A - Zeitkontinuierliche Signale und Syteme - Muterlöungen Manfred Strohrmann rban Brunner Inhalt 5 Muterlöungen Syteme im Laplace-Bereich 3 5. Löen einer homogenen linearen Differentialgleichung...

Mehr

(t - t ) (t - t ) bzw. δ ε. θ ε. (t - t ) Theorie A (WS2005/06) Musterlösung Übungsblatt ε= 0.1 ε= t ) = lim.

(t - t ) (t - t ) bzw. δ ε. θ ε. (t - t ) Theorie A (WS2005/06) Musterlösung Übungsblatt ε= 0.1 ε= t ) = lim. Theorie A (WS5/6) Musterlösung Übungsblatt 7 6..5 Θ(t t [ t t ) = lim arctan( ) + π ] ε π ε ( ) d dt Θ(t t ) = lim ε π vergleiche Blatt 6, Aufg. b). + (t t ) ε ε = lim ε π ε ε + (t t ) = δ(t t ) Plot von

Mehr

Randomisiert inkrementelle Konstruktion der Trapezzerlegung. Strecken in der Ebene

Randomisiert inkrementelle Konstruktion der Trapezzerlegung. Strecken in der Ebene Randomiiert inkrementelle Kontruktion der Trapezzerlegung einer Menge von Strecken in der Ebene (Literatur: deberg et al., Kapitel 6) Chritian Knauer 1 Problemtellung Gegeben: Eine Menge von n Strecken

Mehr

D-ITET Analysis II FS 13 Prof. Horst Knörrer. Musterlösung 1. 3xy 2 = 2 x 2. y y. 3 y y. 3 x v x + v = 2 3 v v.

D-ITET Analysis II FS 13 Prof. Horst Knörrer. Musterlösung 1. 3xy 2 = 2 x 2. y y. 3 y y. 3 x v x + v = 2 3 v v. D-ITET Analysis II FS 3 Prof. Horst Knörrer Musterlösung. a) Es gilt: dy d 3 + y 3 3y 3 y + y 3. Dies ist eine homogene Differentialgleichung, das heisst y hängt nur von y ab. Setze v : y y() v() y v +

Mehr

Hörsaalübung 4, Analysis II

Hörsaalübung 4, Analysis II Fachbereich Mathematik der Universität Hamburg Dr. H. P. Kiani Hörsaalübung 4, Analysis II SoSe 6, 3/4. Mai Uneigentliche und parameterabhängige Integrale, Rotationskörper Die ins Netz gestellten Kopien

Mehr

Mathematik für Naturwissenschaftler I WS 2009/2010

Mathematik für Naturwissenschaftler I WS 2009/2010 Mathematik für Naturwissenschaftler I WS 2009/2010 Lektion 12 1. Dezember 2009 Kapitel 3. Differenzialrechnung einer Variablen (Fortsetzung) Satz 19. Es seien M und N zwei nichtleere Teilmengen von R,

Mehr

SBP Mathe Grundkurs 2 # 0 by Clifford Wolf. SBP Mathe Grundkurs 2

SBP Mathe Grundkurs 2 # 0 by Clifford Wolf. SBP Mathe Grundkurs 2 SBP Mathe Grundkurs 2 # 0 by Clifford Wolf SBP Mathe Grundkurs 2 # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das

Mehr

Aufgabensammlung. Mathematik 2

Aufgabensammlung. Mathematik 2 Prof. Dr. H.-R. Metz FH Gießen Friedberg Version K S 09 Aufgabensammlung zur Vorlesung Mathematik 2 1 Komplexe Zahlen 1.1 Kartesische Darstellung Aufgabe 1 Gegeben sind die komplexen Zahlen z 1 = 3 2j

Mehr

Algebraische K-Theorie

Algebraische K-Theorie Algebraiche K-Theorie Univerität Regenburg Sommeremeter 205 Daniel Heiß: : Projektive Moduln 22.04.205 Abtract In dieem Vortrag werden projektive Moduln eingeführt und äquivalente Definitionen gezeigt.

Mehr

10 Differentialrechnung für Funktionen in mehreren Variablen

10 Differentialrechnung für Funktionen in mehreren Variablen 6 Differentialrechnung für Funktionen in mehreren Variablen Die meisten Funktionen in den Naturwissenschaften hängen von mehreren Variablen ab. In diesem Kapitel behandeln wir deshalb Methoden zur Untersuchung

Mehr

Vorkurs Mathematik. Christoph Hindermann. Funktionen, Ableitungen und Optimierung

Vorkurs Mathematik. Christoph Hindermann. Funktionen, Ableitungen und Optimierung Kapitel 3 Funktionen, Ableitungen und Optimierung Christoph Hindermann Vorkurs Mathematik 1 Vorkurs Mathematik 2 3.1 Funktionen Motivation Funktionen reeller Veränderlicher gehören zu den wichtigsten Untersuchungs-

Mehr

Prüfungsfragen zur Theorie

Prüfungsfragen zur Theorie Prüfungsfragen zur Theorie Formulieren Sie die Monotoniegesetze (Rechenregeln für Ungleichungen)! Satz: Für alle a,b,c,d gilt: a b und c.d a+c b+d Satz: Für alle a,b,c,d + o gilt: a b und c d ac bd 1 Satz:

Mehr

Mathematik 1 für Bauingenieurwesen

Mathematik 1 für Bauingenieurwesen Mathematik 1 für Bauingenieurwesen Name (bitte ausfüllen): Prüfung am 28.1.2019 Reinhard Winkler Matrikelnummer (bitte ausfüllen): Wichtige Hinweise bevor Sie beginnen: Die Prüfung besteht aus vier Aufgaben

Mehr

Aufgabe 1 Zeigen Sie mittels vollständiger Induktion, dass für alle n N. n(n + 1)(2n + 1) 6. j 2 = gilt.

Aufgabe 1 Zeigen Sie mittels vollständiger Induktion, dass für alle n N. n(n + 1)(2n + 1) 6. j 2 = gilt. Aufgabe Zeigen Sie mittels vollständiger Induktion, dass für alle n N j 2 j n(n + )(2n + ) gilt. Der Beweis wird mit Hilfe vollständiger Induktion geführt. Wir verifizieren daher zunächst den Induktionsanfang,

Mehr

Laplace-Transformation I: Grundlagen

Laplace-Transformation I: Grundlagen Westfälische Wilhelms-Universität Münster Fachbereich Mathematik Seminararbeit Laplace-Transformation I: Grundlagen Matthias Böckmann 13.11.212 betreut durch Dr. Raimar Wulkenhaar Inhaltsverzeichnis 1

Mehr

Grundlagen der Mathematik (BSc Maschinenbau)

Grundlagen der Mathematik (BSc Maschinenbau) Priv.-Doz. Dr. J. Ruppenthal Wuppertal, 5.9.7 Grundlagen der Mathematik (BSc Maschinenbau) Aufgabe. (6+8+6 Punkte) a) Zeigen Sie durch Induktion nach n N: n (k ) = n k= b) Stellen Sie die folgenden Mengen

Mehr

Partielle Differentialgleichungen

Partielle Differentialgleichungen http://www.free background wallpaper.com/background wallpaper water.php Partielle Differentialgleichungen 1 E Partielle Differentialgleichungen Eine partielle Differentialgleichung (Abkürzung PDGL) ist

Mehr

5 Gewöhnliche Differentialgleichungen

5 Gewöhnliche Differentialgleichungen 5 Gewöhnliche Differentialgleichungen 5.1 Einleitung & Begriffsbildung Slide 223 Natürliches Wachstum Eine Population bestehe zur Zeit t aus N(t) Individuen. Die Population habe konstante Geburts- und

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Mathematik für Wirtschaftswissenschaftler Yves Schneider Universität Luzern Frühjahr 2016 Repetition Kapitel 1 bis 3 2 / 54 Repetition Kapitel 1 bis 3 Ausgewählte Themen Kapitel 1 Ausgewählte Themen Kapitel

Mehr

Kapitel II Funktionen reeller Variabler

Kapitel II Funktionen reeller Variabler Kapitel II Funktionen reeller Variabler D (Funktion) Es sei f XxY eine Abbildung Die Abbildung f heiß Funktion, falls sie eindeutig ist Man schreibt dann auch: f : X Y f ( x) = y, wobei y das (eindeutig

Mehr

Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse. 1

Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse. 1 F R O N T M A T T E R B O D Y Ueber die Anzahl der Primzahlen unter einer gegebenen Gröe. Bernhard Riemann (Monatberichte der Berliner Akademie, November 859) Meinen Dank für die Auzeichnung, welche mir

Mehr

Tutorübung 5. Analysis 2 für Lehramt TU Dortmund, Sommersemester 2014

Tutorübung 5. Analysis 2 für Lehramt TU Dortmund, Sommersemester 2014 Tutorübung 5 Analysis 2 für Lehramt TU Dortmund, Sommersemester 24 Aufgabe T Bestimme die Taylorreihen von (a) cos(x) um a. (b) ln(x) um a. (c) um a 2. +x Bestimme in allen Fällen das Taylorpolynom T n,a

Mehr

Zusatzmaterial zur Mathematik I für E-Techniker Übung 10

Zusatzmaterial zur Mathematik I für E-Techniker Übung 10 Mthemtik I für E-Techniker C. Erdmnn WS /, Univerität Rotock,. Vorleungwoche Zutzmteril zur Mthemtik I für E-Techniker Übung Uneigentliche Integrle Die Funktion f ei für x definiert und in jedem Intervll

Mehr

Protokoll zur Laborübung Verfahrenstechnik. Übung: Filtration. Betreuer: Dr. Gerd Mauschitz. Durchgeführt von:

Protokoll zur Laborübung Verfahrenstechnik. Übung: Filtration. Betreuer: Dr. Gerd Mauschitz. Durchgeführt von: Protokoll zur Laborübung Verahrentechnik Übung: Filtration Betreuer: Dr. Gerd Mauchitz Durchgeührt von: Marion Pucher Mtk.Nr.:015440 Kennzahl: S6 Mtk.Nr.:015435 Kennzahl: S9 Datum der Übung:.06.004 1/11

Mehr

Übungen zur Vorlesung MATHEMATIK II

Übungen zur Vorlesung MATHEMATIK II Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Übungen zur Vorlesung MATHEMATIK II Prof. Dr. C. Portenier unter Mitarbeit von Michael Koch Marburg, Sommersemester 2005 Fassung vom

Mehr

1. Zeta-Funktion und Euler-Produkt

1. Zeta-Funktion und Euler-Produkt . Zeta-Funktion und Euler-Produkt. Zeta-Funktion und Euler-Produkt.. Die Riemannsche Zeta-Funktion ist für s C mit Re s > definiert durch ζ(s) := n= n s. Traditionell schreibt man s = σ + it mit σ, t R.

Mehr

Lösungsvorschläge zur ersten Klausur Gewöhnliche Differenzialgleichungen am um 10 Uhr. Bearbeitungszeit beträgt zwei Stunden.

Lösungsvorschläge zur ersten Klausur Gewöhnliche Differenzialgleichungen am um 10 Uhr. Bearbeitungszeit beträgt zwei Stunden. Lösungsvorschläge zur ersten Klausur Gewöhnliche Differenzialgleichungen am 20.6.2015 um 10 Uhr. Bearbeitungszeit beträgt zwei Stunden. Prof. Dr. Wolfgang Arendt Manuel Bernhard Sommersemester 2015 Achten

Mehr