Algorithmik WS 07/ Vorlesung, Andreas Jakoby Universität zu Lübeck

Größe: px
Ab Seite anzeigen:

Download "Algorithmik WS 07/ Vorlesung, Andreas Jakoby Universität zu Lübeck"

Transkript

1 Lemma 15 KLP 1 ist genau dann lösbar, wenn das dazugehörige LP KLP 2 eine Lösung mit dem Wert Z = 0 besitzt. Ist Z = 0 für x 0, x 0, dann ist x eine zulässige Lösung von KLP 1. Beweis von Lemma 15: Nach Lemma 14 ist der Wert der Zielfunktion Z von KLP 2 nicht negativ. Wir betrachten zunächst den Fall, dass Z = x 0 = 0 ist. Dann gibt es ein x 0 in R n, so dass ist (siehe Bedingung von KLP 2). e x 0 + Y x = Y x = x B 283

2 Beweis von Lemma 15 (Teil 2): Somit gilt für diese Lösung B 1 A x = Y x = x B = B 1 b und folglich A x = b. Dieses x ist folglich eine zulässige Lösung des ursprünglichen LP KLP

3 Beweis von Lemma 15 (Teil 3): Wir betrachten nun die Rückrichtung: Sei x eine zulässige Lösung von KLP 1, d.h. A x = b. Dann gilt Y x = B 1 A x = B 1 b = x B. Folglich ist x 0 = 0 zusammen mit diesem Vektor x eine zulässige Lösung für das KLP 2, wobei der Wert der Zielfunktion Z = x 0 = 0 ist. Da eine Bedingung des KLP 2 x 0 0 ist, ist diese Wert der Zielfunktion minimal. 285

4 Um eine erste zulässige Basislösung zu finden können wir wie folgt vorgehen: Wir generieren aus einer Basislösung für ein kanonisches lineares Programm ein neues kanonisches lineares Programm in der Form von KLP 2. Wir bestimmen eine zulässige Basislösung für dieses LP wie im Beweis von Lemma 14 beschrieben. Verfahren analog zur Phase 3 um eine optimale Lösung zu finden. Interpretiere diese Lösung wie in Lemma 15 beschrieben. 286

5 287 Algorithmus Finde-zulässige-Basislösung(T [, j 1,..., j m ) ] Y x Eingabe: m + 1 n + 1-Tableau T := B c T z T Z Ergebnis: Tableau mit zulässiger Basislösung x B oder infeasible 1: if i [1..m] : T [i, n + 1] 0 then Return(T, j 1,..., j m ) end if 2: generiere in T Spalte 0 und Zeile m + 2 3: T [m + 2, 0] := 1, T [m + 1, 0] := 0 4: for i = 1 to n + 1 by +1 do T [m + 2, i] := 0 end for 5: for i = 1 to m by +1 do 6: if T [i, n + 1] < 0 then T [i, 0] := 1 else T [i, 0] := 0 end if 7: end for 8: wähle r [1..m] mit T [r, n + 1] T [i, n + 1] für alle i [1..m] 9: setze j r := 0 und T :=Pivotieren(T, r, 0) 10: setze H =Verbessere-zulässige-Basislösung-2(T, j 1,..., j m ) 11: if H =unb T [m + 2, n + 1] 0 then Return(infeasible) end if 12: setze (T, j 1,.., j m ) := H und entferne in T Spalte 0 und Zeile m : Return(T, j 1,..., j m )

6 Phase 3: Verbessern einer zulässigen Basislösung: Da die Idee hinter dem verbessern einer zulässigen Basislösung einfacher ist, wollen wir diese Phase vorziehen. Sei x B = B 1 b eine zulässige Basislösung eines kanonischen linearen Programms und Z = ( c B ) T x B. Sei Y = B 1 A und Y j = (y 1,j,..., y m,j ) die j-te Spalte von Y. Da B regulär ist, gilt A j = B Y j = m y i,j B i. i=1 Ist y r,j 0, dann sind auch die Spalten B 1,..., B r 1, A j, B r+1,..., B m linear unabhängig und wir können B durch B = (B 1,..., B r 1, A j, B r+1,..., B m ) ersetzen und eine neue Basislösung x B = (B ) 1 b. 288

7 289 x B muss keine zulässige Basislösung sein. Mit Hilfe einiger elementarer Umformungen folgt: Lemma 16 x B ist genau dann eine zulässige Basislösung, wenn für alle i [1..m] \ {r} xi B xr B yi,j 0 y r,j ist und gilt. x B r y r,j 0

8 290 Wir untersuchen nun, unter welchen Voraussetzungen x B eine zulässige Basislösung ist. Es gilt: Ist x B r = 0, dann sind beide Ungleichungen aus Lemma 16 erfüllt. Ist x B r 0, dann folgt aus der zweiten Ungleichung von Lemma 16, dass y r,j > 0 ist. Ist y i,j < 0, dann ist auch die erste Ungleichung erfüllt. Ist x B r 0 und y r,j < 0, dann ist nach Lemma 16 x B keine zulässige Basislösung. Wir müssen nun noch den Fall x B r 0, y r,j > 0 und y i,j > 0 betrachten. Damit x B eine zulässige Basislösung ist, muss nach Lemma 16 in diesem Fall xr B x i B y r,i gelten. y i,j

9 291 Damit x B eine zulässige Basislösung ist, müssen wir r so aus B auswählen, dass xr B { } x B = min i y r,i i [1..m] y i,j y i,j > 0 =: θ ist. Idee für einen Algorithmus: Wir wählen eine (beliebige) Spalte A j von A, die nicht in B vorkommt. Gibt es ein y i,j > 0, dann gibt es in B eine Spalte B r, die wir durch A j ersetzen können, um eine zulässige Basislösung x B zu erhalten. Diese Spalte können wir mit Hilfe der obigen Formel bestimmen.

10 Mit Hilfe einiger elementarer Umformungen 1 folgt: Lemma 17 Der Wert der Zielfunktion der zulässige Basislösung x B ist Z = Z + x B r y r,j (c j z j ) = Z + θ (c j z j ). 1 und etwas rechnen 292

11 293 Idee für einen Algorithmus: Wir wählen eine Spalte A j von A, die nicht in B vorkommt, für die (c j z j ) < 0 ist und für die es ein y i,j > 0 gibt. Wählen wir ein geeignetes B r und ersetzen B r durch A j, dann erhalten wir einen neuen Wert der Zielfunktion Z Z. Ist die Basislösung x B nicht degeneriert, d.h. ist x B r 0, dann gilt sogar Z < Z. Bezüglich des Tableaus [ I Ym+1... Y n x B 0 c m+1 z m 1... c n z m Z von x B bedeutet dieses: Wir suchen eine Spalte j mit negativem Eintrag in der letzten und positivem y i,j in der i-ten Zeile. Für jeden positiven Eintage y i,j berechnen wir θ i = xi B /y i,j und wählen r, so dass θ r minimal ist. Dann pivotieren wir auf Zeile r und Spalte j. ]

12 Wann liegt eine unbeschränkte Lösung vor? Wir betrachten eine Spalte A j mit y i,j 0 für alle i [1..m]. Es gilt b = B x B = m i=1 B i x B i wobei der Wert der Zielfunktion Z = ( c B ) T x B ist. Für einen beliebigen Wert θ gilt b = B x B θ A j + θ A j = m i=1 B i x B i θ A j + θ A j und A j = B Y j = m B i y i,j. i=1 294

13 295 Somit ist b = m i=1 B i (x B i θ y i,j ) + θ A j. Ist θ > 0, dann ist xi B θ y i,j xi B 0 für alle i [1..m]. Aus der obigen Gleichung erhalten wir eine neue zulässige Lösung für das LP: und x i = x B i θ y i,j für i [1..m] x j = θ. Als Wert der Zielfunktion erhalten wir Z = Z + θ (c j z j ). Ist c j z j < 0, dann können wir den Wert der Zielfunktion beliebig klein machen.

14 Für unseren Algorithmus merken wir uns: Gibt es eine Spalte A j, die nicht in B vorliegt und für die sowohl c j z j < 0 als auch Y j = B 1 A j 0 ist, dann ist das lineare Programm unbeschränkt. Gibt es im Tableau eine Spalte j in der kein Eintrag positiv und der letzte Eintrag negativ ist, dann ist das lineare Programm unbeschränkt. 296

15 Wann ist eine zulässige Lösung optimal? Lemma 18 Sei x B = B 1 b eine zulässige Basislösung des kanonischen linearen Programms A, b, c wobei Z = ( c B ) T x B. Ist c j z j 0 für alle Spalten A j, die nicht zu B gehören, 2 dann ist Z minimal und x B beschreibt eine optimale zulässige Lösung für das lineare Programm. Beweis von Lemma 18: Jede Spalte A j von A kann als Linearkombination A j = B Y j geschrieben werden. Wir erhalten A = B Y und z T = ( c B ) T Y. 2 Das bedeutet, dass der Wert der aktuellen Lösung nicht durch Austausch einer Spalte von B mit einer anderen Spalte aus A verbessert werden kann. 297

16 Beweis von Lemma 18 (Teil 2): Sei x eine beliebige zulässige Lösung des LPs und Z = c T x der dazugehörige Wert der Zielfunktion. Für alle Lösungen x (also insbesondere auch für x ) gilt B x B = b = A x = B Y x und somit x B = Y x. Betrachten wir nun die Zielfunktion, so erkennen wir, dass Z = ( c B ) T x B = ( c B ) T Y x = z T x c T x = Z. Die letzte Ungleichung folgt aus der Tatsache, dass z c und x 0 ist. Z ist somit minimal und folglich ist x B eine optimale zulässige Lösung. 298

17 299 Für unseren Algorithmus gilt: Gibt es im Tableau keinen negativen Eintrag in der letzten Zeile, dann haben wir eine optimale Lösung gefunden. Um die optimale Lösung auszugeben, suchen wir die m Spalten j 1,..., j m im Tableau, die die m m-einheitsmatrix auf den ersten m Zeilen enthalten. Dann gilt für die optimale Lösung x R n : x j = { x B i falls j = j i ist und 0 sonst

18 300 Algorithmus Verbessere-zulässige-Basislösung(T, j 1,..., j m ) Eingabe: Tableau T R m+1 n+1 Ergebnis: Tableau mit optimaler Lösung x B oder unbounded 1: while j [1..n] : T [m + 1, j] < 0 do 2: if j [1..n] i [1..m] : T [i, j] 0 T [m + 1, j] < 0 then 3: Return(unbounded) end if 4: wähle s [1..n] \ {j 1,..., j m } mit T [m + 1, s] < 0 für alle i [1..m] 6: mit T [i, s] > 0 und T [r, s] > 0 7: setze T :=Pivotieren(T, r, s) und j r := s 8: end while 9: Return(T, j 1,..., j m ) 5: wähle r [1..m] mit T [r,n+1] T [r,s] T [i,n+1] T [i,s]

19 301 Algorithmus Verbessere-zulässige-Basislösung-2(T, j 1,..., j m ) Eingabe: Tableau T R m+2 n+2 Ergebnis: Tableau mit optimaler Lösung x B für KLP 2 oder unb 1: while j [0..n] : T [m + 2, j] < 0 do 2: if j [0..n] i [1..m] : T [i, j] 0 T [m + 2, j] < 0 then 3: Return(unb) end if 4: wähle s [0..n] \ {j 1,..., j m } mit T [m + 2, s] < 0 für alle i [1..m] 6: mit T [i, s] > 0 und T [r, s] > 0 7: setze T :=Pivotieren(T, r, s) und j r := s 8: end while 9: Return(T, j 1,..., j m ) 5: wähle r [1..m] mit T [r,n+1] T [r,s] T [i,n+1] T [i,s]

20 302 Terminierung Aus unserer Analyse folgt bis jetzt nicht, ob die Suche nach einer optimalen Lösung jemals terminiert. Die Terminierung hängt im wesentlichen von der Wahl des Pivotelements in Zeile 4 (und 5) der Algorithmen Verbessere-zulässige-Basislösung und Verbessere-zulässige-Basislösung-2 ab. Die Regel nach der dieses Element ausgewählt wird nennen wir Pivotregel. Wenden wir die smallest-index-regel an, dann hält die Suche nach einer optimalen Lösung immer. Die smallest-index-regel wählt s, r wie folgt: wähle s minimal, so dass T [m + 1, s] < 0 bzw. T [m + 2, s] < 0 ist und wähle r minimal, so dass T [r, s] > 0 und für alle i [1..m] mit T [i, s] > 0 ist. T [r, n + 1] T [r, s] T [i, n + 1] T [i, s]

21 303 Algorithmus Simplex-Algorithmus(A, b, c) Eingabe: kanonisches lineares Programm mit m n-matrix A, m-dimensionalem Vektor b und n-dimensionalem Vektor c Ergebnis: optimaler Lösung x des kanonischen linearen Programms 1: generiere das Tableau T := [ A b c T 0 2: H :=Finde-Basislösung(T ) 3: if H =infeasible then Return(infeasible) end if 4: H :=Finde-zulässige-Basislösung(H) 5: if H =infeasible then Return(infeasible) end if 6: sei (T, j 1,..., j m ) = H 7: if i [1..m] : j i = 0 then 8: wähle k [1..n] \ {j 1,..., j m } mit T [i, k] 0 9: T := Pivotieren(T, i, k), j i := k 10: end if ]

22 Simplex-Algorithmus (Teil 2): 11: H :=Verbessere-zulässige-Basislösung(T, j 1,..., j m ) 12: if H =unbounded then Return(unbounded) end if 13: sei (T, j 1,..., j m ) = H 14: for i := 1 to n by +1 do x i := 0 end for 15: for i := 1 to m by +1 do x ji := T [i, n + 1] end for 16: Z := T [m + 1, n + 1] 17: Return(Z, x 1,..., x n ) 304

23 305 Satz 17 Der Simplex-Algorithmus terminiert immer und bestimmt die optimale Lösung für ein kanonisches lineares Programm korrekt, wenn wir die smallest-index-regel anwenden.

24 306 Analysieren wir die Lösungen, die der Simplex-Algorithmus findet, so erkennen wir: Beobachtung 16 Bestimmt der Simplex-Algorithmus eine optimale Lösung, dann ist diese Lösung für ein lineares Programme A N m n, ein Vektor b N m und ein Vektor c N n immer ein rationaler Vektor x Q n. Beobachtung 17 Für die zulässigen Basislösungen x, die der Simplex-Algorithmus auf Eingabe eines linearen Programms A N m n, ein Vektor b N m und ein Vektor c N n bestimmt, gilt x Q n und sowohl die Beträge der Einträge in x als auch deren Nenner sind durch 2 L beschränkt, wobei L = m n + log 2 P und P das Produkt der Einträge in A, b und c ist, die ungleich 0 sind.

25 Lemma 19 Seien x und x zwei zulässige Basislösungen eines linearen Programms in kanonischer Form mit k 2 2L < c T x, c T x (k + 1) 2 2L für ein k N, dann ist c T x = c T x. Beweis von Lemma 19: Sei c T x c T x. Nach Beobachtung 17 sind dann c T x und c T x zwei rationale Zahlen mit jeweils einem Nenner größer 2 L. Somit ist c T x c T x 2 2L. Dieses stellt eine wesentliche Beobachtung auf dem Weg zu einem polynomial zeitbeschränkten Verfahren zur Lösung linearer Algorithmen dar, dem Ellipsoid-Algorithmus. 307

VORLESUNG 11 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt)

VORLESUNG 11 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) VORLESUNG Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) 3 Wiederholung! Lineare Programme häufig geeignete Modellierung von Optimierungsproblemen! Verschiedene Darstellungen sind

Mehr

Vortrag 20: Kurze Vektoren in Gittern

Vortrag 20: Kurze Vektoren in Gittern Seminar: Wie genau ist ungefähr Vortrag 20: Kurze Vektoren in Gittern Kerstin Bauer Sommerakademie Görlitz, 2007 Definition und Problembeschreibung Definition: Gitter Seien b 1,,b k Q n. Dann heißt die

Mehr

Zeilenstufenform. Wir beweisen nun den schon früher angekündigten Satz.

Zeilenstufenform. Wir beweisen nun den schon früher angekündigten Satz. Zeilenstufenform Wir beweisen nun den schon früher angekündigten Satz. Satz. Jede m n-matrix A lässt sich durch elementare Zeilenumformungen auf Zeilenstufenform und analog durch elementare Spaltenumformungen

Mehr

VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt)

VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) 96 H. Meyerhenke: Kombinatorische Optimierung Dualität bei linearen Programmen Def.: Es sei (L): c T x max

Mehr

Minimumproblem. Definition 4.7. Ein LP der Form. unter den Nebenbedingungen. d ij x j b i (i =1,...,m)

Minimumproblem. Definition 4.7. Ein LP der Form. unter den Nebenbedingungen. d ij x j b i (i =1,...,m) Minimumproblem Definition 4.7 Ein LP der Form nx Minimiere Z = c j x j j=1 unter den Nebenbedingungen nx d ij x j b i (i =1,...,m) j=1 und den Vorzeichenbedingungen x j 0(j =1,...,n) heißt Minimumproblem.

Mehr

1 Lineare Optimierung, Simplex-Verfahren

1 Lineare Optimierung, Simplex-Verfahren 1 Lineare Optimierung, Simplex-Verfahren 1.1 Einführung Beispiel: In einer Fabrik werden n Produkte A 1, A 2,..., A n hergestellt. Dazu werden m Rohstoffe B 1, B 2,..., B m (inklusive Arbeitskräfte und

Mehr

Optimierung. Optimierung. Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus Fabian Kuhn

Optimierung. Optimierung. Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus Fabian Kuhn Optimierung Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus 1 Resource Allocation Beispiel aus Vorlesung 6 Primales LP: Duales LP: max 3 4 2 2 4 2 8 3 6 0, 0, 0 min 4 8 6 2 3 3 4 2 2 0, 0,

Mehr

4.3.3 Simplexiteration

4.3.3 Simplexiteration 7. Januar 2013 53 4.3.3 Simplexiteration Eine Simplexiteration entspricht dem Übergang von einer Ecke des zulässigen Bereiches in eine benachbarte Ecke Dabei wird genau eine Nichtbasisvariable (die zugehörige

Mehr

Wiederholung. Wir gehen von LP s in Standardform aus, wobei A R m n vollen Zeilenrang hat: minc T x A x = b

Wiederholung. Wir gehen von LP s in Standardform aus, wobei A R m n vollen Zeilenrang hat: minc T x A x = b Wiederholung Wir gehen von LP s in Standardform aus, wobei A R m n vollen Zeilenrang hat: minc T x A x = b x 0. x R n heißt Basislösung, wenn Ax = b und rang(a J ) = J, wobei J = {j x (j) 0}; Basislösung

Mehr

Eigenschaften von LPs

Eigenschaften von LPs 2 Lineare Programmierung Eigenschaften von LPs Eigenschaften von LPs Definition 24 Eine Menge K IR n heißt konvex gdw für je zwei Punkte Punkte x (1) K und x (2) K auch jeder Punkt mit 0 λ 1 zu K gehört

Mehr

Aufgabe 5.3 Duale Simplexverfahren

Aufgabe 5.3 Duale Simplexverfahren Aufgabe 5.3 Knut Krause Thomas Siwczyk Stefan Tittel Technische Universität Dortmund Fakultät für Informatik Algorithmen und Datenstrukturen 15. Januar 2009 Gliederung 1 Aufgabenstellung und Motivation

Mehr

Operations Research. Die Simplexmethode. LP-Dualität. Die Simplexmethode. Rainer Schrader. 18. Juni Zur Erinnerung: Gliederung

Operations Research. Die Simplexmethode. LP-Dualität. Die Simplexmethode. Rainer Schrader. 18. Juni Zur Erinnerung: Gliederung Operations Research Rainer Schrader Die Simplexmethode Zentrum für Angewandte Informatik Köln 18 Juni 00 1 / 1 / 1 Gliederung LP-Dualität ein lineares Produktionsmodell der Simplexalgorithmus Phase I Endlichkeit

Mehr

5 Lineare Gleichungssysteme und Determinanten

5 Lineare Gleichungssysteme und Determinanten 5 Lineare Gleichungssysteme und Determinanten 51 Lineare Gleichungssysteme Definition 51 Bei einem linearen Gleichungssystem (LGS) sind n Unbekannte x 1, x 2,, x n so zu bestimmen, dass ein System von

Mehr

6 Korrektheit des Simplexalgorithmus

6 Korrektheit des Simplexalgorithmus 6 Korrektheit des Simplexalgorithmus Folgerung: Es sei L: Ax = b, c T x max LP und A B nicht-degenerierte PZB von L und es gebe c r := c r c B A B A r > 0 a) Falls a r := A B a r 0, dann L unbeschränkt

Mehr

Lineare Algebra I (WS 12/13)

Lineare Algebra I (WS 12/13) Lineare Algebra I (WS 12/13) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 18.10.2012 Alexander Lytchak 1 / 12 Lineare Gleichungssysteme Wir untersuchen nun allgemeiner Gleichungssysteme der

Mehr

Übung 3, Simplex-Algorithmus

Übung 3, Simplex-Algorithmus Übung 3, 21.6.2011 Simplex-Algorithmus Aufgabe 3.1 Lösen Sie das folgende Optimierungsproblem (von Aufgabe 2.3) graphisch. Substituieren Sie dazu z = 5 y um ein 2-dimensionales Problem zu erhalten. Rechnung

Mehr

05. Lineare Gleichungssysteme

05. Lineare Gleichungssysteme 05 Lineare Gleichungssysteme Wir betrachten ein System von m Gleichungen in n Unbestimmten (Unbekannten) x 1,, x n von der Form a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + a

Mehr

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR LR-Zerlegung bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR Definition 2.17 Unter einer LR-Zerlegung einer Matrix A R n n verstehen wir eine

Mehr

z = c T x : Ax = b, x 0 }, - die Darstellung der Nichtbasisvektoren durch die Basis ist

z = c T x : Ax = b, x 0 }, - die Darstellung der Nichtbasisvektoren durch die Basis ist Kapitel 5 Die Simplexmethode Es werden folgende Bezeichnungen verwendet: - das untersuchte Problem ist min x R n { z = c T x : Ax = b, x 0 }, - die erste zulässige Basislösung sei x = x 1, x 2,, x m, 0,,

Mehr

Randomisierte Algorithmen 2. Erste Beispiele

Randomisierte Algorithmen 2. Erste Beispiele Randomisierte Algorithmen Randomisierte Algorithmen 2. Erste Beispiele Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2016/2017 1 / 35 Randomisierter Identitätstest

Mehr

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema:

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema: Matrizen Betrachten wir das nachfolgende Rechteckschema: a 12 a 1(m 1 a 1m a n1 a n2 a n(m 1 a nm Ein solches Schema nennt man (n m-matrix, da es aus n Zeilen und m Spalten besteht Jeder einzelne Eintrag

Mehr

Lösung allgemeiner linearer Programme

Lösung allgemeiner linearer Programme Lösung allgemeiner linearer Programme Bisher: Für Anwendung des Simplexalgorithmus muss eine primal oder eine dual zulässige Basislösung vorliegen. Für allgemeine lineare Programme können wir dies direkt

Mehr

Vorlesung Wirtschaftsmathematik I WS 2007/2008, Wirtschaftingenieurwesen. Kapitel IV: Grundlagen der Linearen Optimierung

Vorlesung Wirtschaftsmathematik I WS 2007/2008, Wirtschaftingenieurwesen. Kapitel IV: Grundlagen der Linearen Optimierung Vorlesung Wirtschaftsmathematik I WS 2007/2008, Wirtschaftingenieurwesen Kapitel IV: Grundlagen der Linearen Optimierung Inhaltsverzeichnis Abschnitt 3-5 3 Der Simplexalgorithmus 58 3.1 Grundlagen..............................

Mehr

Optimale Steuerung 1 Prozessoptimierung 1

Optimale Steuerung 1 Prozessoptimierung 1 Optimale Steuerung 1 Prozessoptimierung 1 Kapitel 2: Lineare Optimierung Prof. Dr.-Ing. Pu Li Fachgebiet Simulation und Optimale Prozesse (SOP) Lineare Algebra (Mathematische Grundlagen) 2 Beispiel: Produktionsplanung

Mehr

Lineare Gleichungssysteme: eine Ergänzung

Lineare Gleichungssysteme: eine Ergänzung Lineare Gleichungssysteme: eine Ergänzung Ein lineares Gleichungssystem, bei dem alle Einträge auf der rechten Seite gleich sind heiÿt homogenes lineares Gleichungssystem: a x + a 2 x 2 +... + a n x n

Mehr

Numerische Lineare Algebra

Numerische Lineare Algebra Numerische Lineare Algebra Vorlesung 7 Prof. Dr. Klaus Höllig Institut für Mathematischen Methoden in den Ingenieurwissenschaften, Numerik und Geometrische Modellierung SS 200 Prof. Dr. Klaus Höllig (IMNG)

Mehr

Lineare Algebra I (WS 12/13)

Lineare Algebra I (WS 12/13) Lineare Algebra I (WS 12/13) Bernhard Hanke Universität Augsburg 17.10.2012 Bernhard Hanke 1 / 9 Wir beschreiben den folgenden Algorithmus zur Lösung linearer Gleichungssysteme, das sogenannte Gaußsche

Mehr

1 Der Simplex Algorithmus I

1 Der Simplex Algorithmus I 1 Nicoletta Andri 1 Der Simplex Algorithmus I 1.1 Einführungsbeispiel In einer Papiermühle wird aus Altpapier und anderen Vorstoffen feines und grobes Papier hergestellt. Der Erlös pro Tonne feines Papier

Mehr

Simplex-Verfahren. Kapitel 4. Simplex-Verfahren. Peter Becker (H-BRS) Operations Research I Sommersemester / 298

Simplex-Verfahren. Kapitel 4. Simplex-Verfahren. Peter Becker (H-BRS) Operations Research I Sommersemester / 298 Kapitel 4 Simplex-Verfahren Peter Becker (H-BRS) Operations Research I Sommersemester 24 86 / 298 Inhalt Inhalt 4 Simplex-Verfahren Dualer Simplexalgorithmus Vermeidung von Zyklen Peter Becker (H-BRS)

Mehr

9 Lineare Gleichungssysteme

9 Lineare Gleichungssysteme 9 Lineare Gleichungssysteme Eine der häufigsten mathematischen Aufgaben ist die Lösung linearer Gleichungssysteme In diesem Abschnitt beschäftigen wir uns zunächst mit Lösbarkeitsbedingungen und mit der

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 05.11.2013 Alexander Lytchak 1 / 14 Linearkombinationen Definition Es sei V ein reeller Vektorraum. Es sei (v i ) i

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales

Mehr

Lineares Optimieren. W. Kippels 12. April Inhaltsverzeichnis. 1 Einleitung 2. 2 Die Beispielaufgabe 2. 3 Einführung von Schlupfvariablen 2

Lineares Optimieren. W. Kippels 12. April Inhaltsverzeichnis. 1 Einleitung 2. 2 Die Beispielaufgabe 2. 3 Einführung von Schlupfvariablen 2 Lineares Optimieren W. Kippels 1. April 015 Inhaltsverzeichnis 1 Einleitung Die Beispielaufgabe Einführung von Schlupfvariablen 4 Die Simplex-Methode 5 Das Basis-Austauschverfahren 4 6 Fortsetzung der

Mehr

Kap. 4: Lineare Programmierung

Kap. 4: Lineare Programmierung Kap. 4: Lineare Programmierung Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 13./14. VO A&D WS 08/09 27.11./2.12.2008 Petra Mutzel Alg. & Dat.

Mehr

mit. Wir definieren (Skalarprodukt = Winkel).

mit. Wir definieren (Skalarprodukt = Winkel). 1 Grundidee des Simplexverfahrens (von George Dantzig): Man bestimmt eine beliebige Ecke (Extremalpunkt) einer Lösungsmenge eines Ungleichungssystems. Nun geht man an den Kanten vom Punkt entlang und kontrolliert

Mehr

Kap. 4.2: Simplex- Algorithmus

Kap. 4.2: Simplex- Algorithmus Kap. 4.: Simplex- Algorithmus Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS Fakultät für Informatik, TU Dortmund Literatur für diese VO V. Chvatal: Linear Programming D. ertsimas:

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 18. April 2016 Übersicht über die Methoden Seien v 1,..., v r Vektoren in K n. 1. Um zu prüfen, ob die Vektoren v 1,...,

Mehr

Computer Science Department - High Performance and Web Computing Group. Optimierungsprobleme

Computer Science Department - High Performance and Web Computing Group. Optimierungsprobleme Optimierungsprobleme Häufig in Alltagssituationen anzutreffen (z.b. Kauf eines Gerätes) Optimierungsprobleme (OPs) sind Probleme, die i.a. viele zulässige Lösungen besitzen Jeder Lösung ist ein bestimmter

Mehr

Darstellung von Gruppen

Darstellung von Gruppen Darstellung von Gruppen Definition Darstellung von Gruppen Sei G eine endlich erzeugte abelsche Gruppe mit Erzeugern S = (g 1,..., g k ) G k. Elemente des Kerns von ϕ S : Z k G, (m 1,..., m k ) k i=1 m

Mehr

Studientag zur Algorithmischen Mathematik

Studientag zur Algorithmischen Mathematik Studientag zur Algorithmischen Mathematik Lineare Optimierung Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 1. Juli 2012 Outline Lineares Programm (LP) in Standardform

Mehr

Euklidische und unitäre Vektorräume

Euklidische und unitäre Vektorräume Kapitel 7 Euklidische und unitäre Vektorräume In diesem Abschnitt ist der Körper K stets R oder C. 7.1 Definitionen, Orthonormalbasen Definition 7.1.1 Sei K = R oder C, und sei V ein K-Vektorraum. Ein

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

7.1 Matrizen und Vektore

7.1 Matrizen und Vektore 7.1 Matrizen und Vektore Lineare Gleichungssysteme bestehen aus einer Gruppe von Gleichungen, in denen alle Variablen nur in der 1. Potenz vorkommen. Beispiel Seite 340 oben: 6 x 2 = -1 + 3x 2 = 4 mit

Mehr

Kapitel 16. Invertierbare Matrizen

Kapitel 16. Invertierbare Matrizen Kapitel 16. Invertierbare Matrizen Die drei Schritte des Gauß-Algorithmus Bringe erweiterte Matrix [A b] des Gleichungssystems A x auf Zeilenstufenform [A b ]. Das System A x = b ist genau dann lösbar,

Mehr

Dualitätssätze der linearen Optimierung

Dualitätssätze der linearen Optimierung Kapitel 9 Dualitätssätze der linearen Optimierung Sei z = c T x min! Ax = b 9.1 x 0 mit c, x R n, b R m, A R m n ein lineares Programm. Definition 9.1 Duales lineares Programm. Das lineare Programm z =

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

Einführung in die Lineare Programmierung

Einführung in die Lineare Programmierung Einführung in die Lineare Programmierung Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 RWTH Aachen 28. Mai 2008 Elementares Beispiel Die kanonische Form Die algebraische Gleichungsform Gegeben seien

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns anschließend mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren einmal den begrifflichen Aspekt, d.h.

Mehr

Rückwärts-Einsetzen. Bei einem linearen Gleichungssystem in oberer Dreiecksform, nacheinander bestimmt werden: r n,n x n = b n. = x n = b n /r n,n

Rückwärts-Einsetzen. Bei einem linearen Gleichungssystem in oberer Dreiecksform, nacheinander bestimmt werden: r n,n x n = b n. = x n = b n /r n,n Rückwärts-Einsetzen Bei einem linearen Gleichungssystem in oberer Dreiecksform, r 1,1 r 1,n x 1 b 1..... =., } 0 {{ r n,n } x n b n R mit det R = r 1,1 r n,n 0 können die Unbekannten x n,..., x 1 nacheinander

Mehr

Wiederhole die obigen Themen! Wir stellen Fragen im Testat!

Wiederhole die obigen Themen! Wir stellen Fragen im Testat! 1.) Wiederholung: Stetigkeit: Definition und elementare Eigenschaften, Anwendungen von Stetigkeit: Zwischenwertsatz, Intervallschachtelung, Extrema, Grenzwerte und Stetigkeit, Beispiele und erste Theorie

Mehr

2.3 Lineare Abbildungen und Matrizen

2.3 Lineare Abbildungen und Matrizen 2.3. LINEARE ABBILDUNGEN UND MATRIZEN 89 Bemerkung Wir sehen, dass die Matrix à eindeutig ist, wenn x 1,...,x r eine Basis ist. Allgemeiner kann man zeigen, dass sich jede Matrix mittels elementarer Zeilenumformungen

Mehr

Grundlagen der Optimierung. Übung 6

Grundlagen der Optimierung. Übung 6 Technische Universität Chemnitz Chemnitz, 2. November 24 Prof. Dr. R. Herzog, J. Blechschmidt, A. Schäfer Abgabe am 28. November 24 Grundlagen der Optimierung Übung 6 Aufgabe 2: Verschiedene Verfahren

Mehr

Zugeordneter bipartiter Graph

Zugeordneter bipartiter Graph Zugeordneter bipartiter Graph Für ein Transportproblem sei A = {A 1,...,A m } die Menge der Fabriken und B = {B 1,...,B n } sei die Menge der Warenhäuser. Wir ordnen nun einem Transportproblem einen bipartiten

Mehr

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $ Mathematik für Ingenieure I, WS 8/9 Freitag 9. $Id: linabb.tex,v.3 9//9 3:7:34 hk Exp hk $ II. Lineare Algebra 9 Lineare Abbildungen 9. Lineare Abbildungen Der folgende Satz gibt uns eine einfachere Möglichkeit

Mehr

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten Einheitsmatrix Die quadratische Einheitsmatrix I n M n,n ist definiert durch I n = 1 0 0 0 1 0 0 0 1 (Auf der Hauptdiagonalen stehen Einsen, außerhalb Nullen Durch Ausmultiplizieren sieht man I n A = A

Mehr

1.) Matrix einer linearen Abbildung

1.) Matrix einer linearen Abbildung 1.) Matrix einer linearen Abbildung Aufgaben: 7 restart; with(linearalgebra): Definitionen MATH: Seien und Vektorräume über dem Körper mit Basen und. Wir wollen eine bequeme Art finden, eine lineare Abbildung

Mehr

Wenn wir zudem a ii = 1 für 1 i n setzen, dann gilt für A k (boolesches Produkt, A 0 = I) 0 falls es im Graphen keinen Pfad von v i nach v j,

Wenn wir zudem a ii = 1 für 1 i n setzen, dann gilt für A k (boolesches Produkt, A 0 = I) 0 falls es im Graphen keinen Pfad von v i nach v j, 6.2 Boolesche Matrixmultiplikation und Transitive Hülle Wir ersetzen nun im vorhergehenden Abschnitt die Distanzmatrix durch die (boolesche) Adjazenzmatrix und (min, +) durch (, ), d.h.: n C = A B; c ij

Mehr

Lineare Programmierung (2)

Lineare Programmierung (2) Inhalt Rückblick Motivation - linearen Programmierung Flussprobleme Multiple Warenflüsse Fortsetzung Simplex Algorithmus Initialisierung Fundamentalsatz der linearen Programmierung schwache Dualität Dualität

Mehr

10.2 Dualitätstheorie Operations Research. In der Standardform eines Maximierungsproblem: b e ) mit ( w) + a ej ) x j + x g = ( b g + g G

10.2 Dualitätstheorie Operations Research. In der Standardform eines Maximierungsproblem: b e ) mit ( w) + a ej ) x j + x g = ( b g + g G 48 0 Operations Research In der Standardform eines Maximierungsproblem: Max ( w) mit ( w) + u. d. N. z + x l + n ( a gj + j= g G e E n d j x j = z 0 j= n a l j x j = b l für alle l L j= x g n + a gj x

Mehr

4 Der Gauß Algorithmus

4 Der Gauß Algorithmus 4 Der Gauß Algorithmus Rechenverfahren zur Lösung homogener linearer Gleichungssysteme Wir betrachten ein GLS (1) a 11 x 1 + a 1 x + + a 1n x n = a 1 x 1 + a x + + a n x n = a m1 x 1 + a m x + + a mn x

Mehr

Zeilenstufenform eines Gleichungssystems

Zeilenstufenform eines Gleichungssystems Zeilenstufenform eines Gleichungssystems Ein lineares Gleichungssystem mit einer m n-koeffizientenmatrix lässt sich mit Gauß-Transformationen auf Zeilenstufenform (Echelon-Form) transformieren: Ax = b...

Mehr

Vektor-Additions-Systeme und Invarianten

Vektor-Additions-Systeme und Invarianten Vektor-Additions-Systeme und Invarianten http://www.informatik.uni-bremen.de/theorie/teach/petri Renate Klempien-Hinrichs Stellen- und Transitions-Vektoren T -Invarianten S-Invarianten Bezug zu erreichbaren

Mehr

8. A & D - Heapsort. Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können.

8. A & D - Heapsort. Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können. 8. A & D - Heapsort Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können. Genauer werden wir immer wieder benötigte Operationen durch Datenstrukturen unterstützen.

Mehr

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 12

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 12 Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 12 Die Lösungshinweise dienen

Mehr

2.2 Lineare Gleichungssysteme (LGS)

2.2 Lineare Gleichungssysteme (LGS) 2.2 Lineare Gleichungssysteme (LGS) Definition 2.2.. Ein LGS über einem Körper K von m Gleichungen in n Unbekannten x,..., x n ist ein Gleichungssystem der Form a x + a 2 x 2 +... + a n x n = b a 2 x +

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

4 Lineare Optimierung

4 Lineare Optimierung 4 Lineare Optimierung In diesem Kapitel werden wir uns mit effizienten Verfahren im Bereich der linearen Optimierung beschäftigen. 4.1 Einführung Als Einführung betrachten wir das Beispiel einer Erdölraffinerie.

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof Dr H Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 11 Rang von Matrizen Definition 111 Es sei K ein Körper und sei M eine m n-matrix über K Dann nennt man die Dimension des von

Mehr

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q:

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q: Lineare Algebra D-MATH, HS 214 Prof Richard Pink Serie 5 1 [Aufgabe] Invertieren Sie folgende Matrizen über Q: 1 a) 1 1 1 1 1 2 1 1 1 b) 1 2 1 1 1 1 2 1 1 1 1 2 1 2 3 1 c) 1 3 3 2 2 1 5 3 1 2 6 1 [Lösung]

Mehr

R 3 und U := [e 2, e 3 ] der von e 2, e 3 erzeugte

R 3 und U := [e 2, e 3 ] der von e 2, e 3 erzeugte Aufgabe ( Es seien e =, e = Untervektorraum (, e = ( R und U := [e, e ] der von e, e erzeugte Weiter sei G := {A GL(, R A e = e und A U U} (a Zeigen Sie, dass G eine Untergruppe von GL(, R ist (b Geben

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

Proseminar Lineare Algebra WS 08/09 Prof. Dr. O. Bogopolski 1. Vortrag: Lineare Gleichungen. am 11. März von Maximilian Wahner

Proseminar Lineare Algebra WS 08/09 Prof. Dr. O. Bogopolski 1. Vortrag: Lineare Gleichungen. am 11. März von Maximilian Wahner Proseminar Lineare Algebra WS 08/09 Prof. Dr. O. Bogopolski 1 Vortrag: Lineare Gleichungen am 11. März 2009 von Maximilian Wahner Technische Universität Dortmund Fakultät für Mathematik Proseminar Lineare

Mehr

Kap. 4.3: Das Dualitätstheorem der linearen Optimierung

Kap. 4.3: Das Dualitätstheorem der linearen Optimierung Kap. 4.3: Das Dualitätstheorem der linearen Optimierung Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 18. VO A&D WS 08/09 18.12.2008 1 Literatur

Mehr

TEIL II LINEARE ALGEBRA

TEIL II LINEARE ALGEBRA TEIL II LINEARE ALGEBRA 1 Kapitel 10 Lineare Gleichungssysteme 101 Motivation Sei K ein fest gewählter Körper (zb K = R, C, Q, F p ) Betrachten das lineare Gleichungssystem (L) α 11 x 1 + α 12 x 2 + +

Mehr

7 Matrizen über R und C

7 Matrizen über R und C Mathematik für Physiker I, WS 06/07 Montag 9 $Id: matrixtex,v 7 06//9 :58: hk Exp $ 7 Matrizen über R und C 7 Addition und Multiplikation von Matrizen In der letzten Sitzung haben wir begonnen uns mit

Mehr

Der Simplex-Algorithmus

Der Simplex-Algorithmus 5 Lineare Programmierung Simplex-Algorithmus Der Simplex-Algorithmus Standardverfahren zur Lösung von LPs, von G B Dantzig entwickelt Grundidee: Versuche ausgehend von einer Startecke mit einer Ausgangsbasis

Mehr

3.4 Der Gaußsche Algorithmus

3.4 Der Gaußsche Algorithmus 94 34 Der Gaußsche Algorithmus Wir kommen jetzt zur expliziten numerischen Lösung des eingangs als eine Motivierung für die Lineare Algebra angegebenen linearen Gleichungssystems 341 n 1 a ik x k = b i,

Mehr

3. Übungsblatt zur Lineare Algebra I für Physiker

3. Übungsblatt zur Lineare Algebra I für Physiker Fachbereich Mathematik Prof. Dr. Mirjam Dür Dipl. Math. Stefan Bundfuss. Übungsblatt zur Lineare Algebra I für Physiker WS 5/6 6. Dezember 5 Gruppenübung Aufgabe G (Basis und Erzeugendensystem) Betrachte

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Dr. Hanjo Täubig Tobias Lieber Sommersemester 2011 Übungsblatt 1 16. September 2011 Grundlagen: Algorithmen und

Mehr

3 Determinanten, Eigenwerte, Normalformen

3 Determinanten, Eigenwerte, Normalformen Determinanten, Eigenwerte, Normalformen.1 Determinanten Beispiel. Betrachte folgendes Parallelogramm in der Ebene R 2 : y (a + c, b + d) (c, d) (a, b) x Man rechnet leicht nach, dass die Fläche F dieses

Mehr

a 1 a 1 A = a n . det = λ det a i

a 1 a 1 A = a n . det = λ det a i 49 Determinanten Für gegebene Vektoren a 1,,a n K n, betrachte die Matrix deren Zeilenvektoren a 1,,a n sind, also A = Ab sofort benutzen wir diese bequeme Schreibweise Definition Sei M : K n K }{{ n K

Mehr

Mathematik I. Vorlesung 14. Rang von Matrizen

Mathematik I. Vorlesung 14. Rang von Matrizen Prof Dr H Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 14 Rang von Matrizen Definition 141 Es sei K ein Körper und sei M eine m n-matrix über K Dann nennt man die Dimension des von den Spalten

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Definition. Sei K ein Körper, a ij K für 1 i m, 1 j n und b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2......

Mehr

Lineare Optimierung und Simplex-Algorithmus

Lineare Optimierung und Simplex-Algorithmus Lineare Optimierung und Simplex-Algorithmus Problemstellung Beispiel : Unser Unternehmen verfügt über drei Maschinen A, B, C, mit denen zwei verschiedene Produkte P, P2 hergestellt werden. Die Maschinen

Mehr

Nash-Gleichgewichte in 2-Spieler Systemen. Katharina Klost Freie Universität Berlin

Nash-Gleichgewichte in 2-Spieler Systemen. Katharina Klost Freie Universität Berlin Nash-Gleichgewichte in 2-Spieler Systemen Katharina Klost Freie Universität Berlin Seminar über Algorithmen, 29.10.2013 Grundlegende Definitionen A Gewinnmatrix für Spieler 1, B Gewinnmatrix für Spieler

Mehr

OPERATIONS-RESEARCH (OR)

OPERATIONS-RESEARCH (OR) OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:

Mehr

Algorithmische Bioinformatik 1

Algorithmische Bioinformatik 1 Algorithmische Bioinformatik 1 Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2009 Übersicht Algorithmen

Mehr

3.9 Elementarmatrizen

3.9 Elementarmatrizen 90 Kapitel III: Vektorräume und Lineare Abbildungen 3.9 Elementarmatrizen Definition 9.1 Unter einer Elementarmatrix verstehen wir eine Matrix die aus einer n n-einheitsmatrix E n durch eine einzige elementare

Mehr

Das inhomogene System. A x = b

Das inhomogene System. A x = b Ein homogenes lineares Gleichungssystem A x = 0 mit m Gleichungen und n Unbestimmten hat immer mindestens die Lösung 0. Ist r der Rang von A, so hat das System n r Freiheitsgrade. Insbesondere gilt: Ist

Mehr

Lösung zu Serie 9. Lineare Algebra D-MATH, HS Prof. Richard Pink

Lösung zu Serie 9. Lineare Algebra D-MATH, HS Prof. Richard Pink Lineare Algebra D-MATH, HS 2014 Prof. Richard Pink Lösung zu Serie 9 1. [Aufgabe] Sei f : V W eine lineare Abbildung. Zeige: a) Die Abbildung f ist injektiv genau dann, wenn eine lineare Abbildung g :

Mehr

6. Woche: Lineare Codes, Syndrom, Gilbert-Varshamov Schranke. 6. Woche: Lineare Codes, Syndrom, Gilbert-Varshamov Schranke 107/ 238

6. Woche: Lineare Codes, Syndrom, Gilbert-Varshamov Schranke. 6. Woche: Lineare Codes, Syndrom, Gilbert-Varshamov Schranke 107/ 238 6 Woche: Lineare Codes, Syndrom, Gilbert-Varshamov Schranke 6 Woche: Lineare Codes, Syndrom, Gilbert-Varshamov Schranke 107/ 238 Erinnerung: Der Vektorraum F n 2 Schreiben {0, 1} n als F n 2 Definition

Mehr

Kapitel 3 Lineare Algebra

Kapitel 3 Lineare Algebra Kapitel 3 Lineare Algebra Inhaltsverzeichnis VEKTOREN... 3 VEKTORRÄUME... 3 LINEARE UNABHÄNGIGKEIT UND BASEN... 4 MATRIZEN... 6 RECHNEN MIT MATRIZEN... 6 INVERTIERBARE MATRIZEN... 6 RANG EINER MATRIX UND

Mehr

2. Entsprechende Listen P i von Vorgängern von i 3. for i := 1 to n do. (ii) S i = Knoten 2 + 1}

2. Entsprechende Listen P i von Vorgängern von i 3. for i := 1 to n do. (ii) S i = Knoten 2 + 1} 1. Berechne für jeden Knoten i in BFS-Art eine Liste S i von von i aus erreichbaren Knoten, so dass (i) oder (ii) gilt: (i) S i < n 2 + 1 und Si enthält alle von i aus erreichbaren Knoten (ii) S i = n

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof Dr H Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 12 Wege entstehen dadurch, dass man sie geht Franz Kafka Invertierbare Matrizen Definition 121 Es sei K ein

Mehr

Lineare Programmierung Teil I

Lineare Programmierung Teil I Seminar über Algorithmen Prof. Dr. Helmut Alt Lineare Programmierung Teil I Lena Schlipf, Benjamin Jankovic Lena Schlipf, Benjamin Jankovic Seminar über Algorithmen SS05 1 Struktur des Vortrags 1. Was

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr

Es wurde in der Vorlesung gezeigt, daß man die Matrixgleichung Ax=b auch in der Form

Es wurde in der Vorlesung gezeigt, daß man die Matrixgleichung Ax=b auch in der Form Gaußscher Algorithmus zur Lösung linearer Gleichungssysteme Wir gehen aus vom Gleichungssystem A=b. Dabei ist A M m n K, b K m. Gesucht werden ein oder alle Elemente K n, so daß obige Gleichung erfüllt

Mehr

1 Matrizenrechnung zweiter Teil

1 Matrizenrechnung zweiter Teil MLAN1 1 Literatur: K. Nipp/D. Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4. Auflage, 1998, oder neuer. 1 Matrizenrechnung zweiter Teil 1.1 Transponieren einer Matrix Wir betrachten

Mehr

Schleifeninvarianten. Dezimal zu Binär

Schleifeninvarianten. Dezimal zu Binär Schleifeninvarianten Mit vollstandiger Induktion lasst sich auch die Korrektheit von Algorithmen nachweisen. Will man die Werte verfolgen, die die Variablen beim Ablauf eines Algorithmus annehmen, dann

Mehr

H. Meyerhenke: Kombinatorische Optimierung. Paralleles Rechnen, Institut für Theoretische Informatik, Fakultät für Informatik

H. Meyerhenke: Kombinatorische Optimierung. Paralleles Rechnen, Institut für Theoretische Informatik, Fakultät für Informatik VORLESUNG 13 Smoothed Analysis des Simplex-Algorithmus Nach Heiko Röglin, Universität Bonn, Vorlesungsskript Introduction to Smoothed Analysis vom 9. Januar 2012 78 Wiederholung Simplex-Algorithmus! Korrektheit:!

Mehr