Fig. 1 zeigt drei gekoppelte Wagen eines Zuges und die an Ihnen angreifenden Kräfte. Fig. 1

Größe: px
Ab Seite anzeigen:

Download "Fig. 1 zeigt drei gekoppelte Wagen eines Zuges und die an Ihnen angreifenden Kräfte. Fig. 1"

Transkript

1 Anwendung von N3 Fig. 1 zeigt drei gekoppelte Wagen eines Zuges und die an Ihnen angreifenden Kräfte. Die Beschleunigung a des Zuges Massen zusammen. Die Antwort Fig. 1 sei konstant, die Frage ist, wie hängt die Zugkraft F mit den drei liefert die Summierung aller Kräfte: Wegen N3 ist aber und, damit verbleibt Gewichtskraft und Trägheitskraft In der Nähe der Erdoberfläche kann g = const = 9,8 m/s 2 angenommen werden. Die durch g ausgeübte Kraft nennt man 'Gewichtskraft'. Eine Kraft, die durch eine Beschleunigung verursacht wird nennt man 'Trägheitskraft'. Beispiel für Gewichts und Trägheitskraft Fig.2 zeigt ein Maskottchen, das am Innenspiegel eines Autos hängt. Das Auto beschleunigt mit a B nach links, damit wirkt auf das Maskottchen eine gleichgroße, nach rechts gerichtete Trägheits Beschleunigung a T. Die GravitationsBeschleunigung g wird durch die Aufhängung kompensiert.

2 Fig.2 Die resultierende Beschleunigungg a res ergibt sich durch vektorielle Addition von a T und g als Für den Winkel α ergibt sich: ;! Für a T = 4,0 m/s 2 ergibt sich α = 22,2 oder α = 0,39 rad. Arbeit und kinetische Energie Für konstante Kraft ist die Arbeit (W, work) als Produkt aus Kraft und Weg s definiert : ##!$, Die Arbeit ist ein Skalar. Die obige Definition der Arbeit ist nur dann anwendbar, wenn die Kraft über den Weg konstant ist. Ist das nicht der Fall, z.b. bei einer Federkraft & &, muß zur Berechnung der Arbeit die gesamte Strecke ' ( in Teilstrecken zerlegt werden, entlang derer die Kraft als konstant betrachtet werden kann. Fig. 2 zeigt den Kraftverlauf zwischen den Orten x 2 und x 1 in der durchgezogenenn Kurve. Um die Arbeit von bis zu berechnen kann im erster Näherung über die Ortsintervalle x summiert werden:, ),ü

3 Fig. 2 Bei der Summierung werden alle nicht geschwärzten Flächen unter der Kurve nicht berücksichtig. Dies führt dazu, daß die berechnete Arbeit immer kleiner als die tatsächlich zu leistende Arbeit ist.. Um diesen Fehler zu reduzieren wählt man die Intervalle x immer kleiner und nähert sich auf diese Weise dem Grenzwert für x 0:,, 123 ) 5 6 Das Wegintegral liefert schließlich den genauen Wert der Arbeit. Die Dimension der Arbeit ist: &.; (J: Joule nach P. Joule, britischer Physiker und Brauereiinhaber) Arbeit ist nicht auf eindimensionale Wege begrenzt. Um die Begrenzung auf eine Dimension zu erweitern, berechnet man den Weg von einem Startpunkt 0 zu einem Endpunkt 0 durch Integration über alle Wegelemente /0: Integrale dieses Typs werden 'Wegintegrale' genannt. Als Wegintegral über einen mehrdimensionalen Weg geschrieben lautet die Definition der Arbeit: 7 8

4 5 6 Arbeit gegen Federkräfte Trägt man die Kraft zur Dehnung einer Feder als Funktion der Strecke x, um die die Feder gedehnt wird, auf, dann ergibt sich qualitativ ein Verlauf gemäß Fig. 3: Bis zur Dehnung ± x k existiert ein linearen Zusammenhang zwischen F und x, der durch die Gleichung ( Hook'sches Gesetz): beschrieben werden kann. k ist die Federkonstante mit der Dimension :. ( Um die Feder zu expandieren muß Arbeit gegen die Federkraft geleistet werden. Dehnt man eine Feder mit der Ausgangslänge x 0 bis zur Länge x 1, dann ist die erforderliche Arbeit: für wird und damit Fig. 3. &, 5 6 & 5 6, &; < & ; <, & Reibungskräfte Fig.4 zeigt einen Klotz auf einer rauhen Oberfläche, der nach rechts in Bewegungg gesetzt werden soll. Um den Klotz in Bewegung zu setzten ist eine Mindestkraft erforderlich, die dem Betrage gerade der Reibungskraft des Klotzes entspricht.

5 Fig. 4: Man unterscheidet zwischen der Haftreibung, die überwunden werden muß, um eine Bewegung zu erzeugten und der Gleitreibung, die eine Bewegung mit konstanter Geschwindigkeit entgegenwirkt. Die Kraft, die senkrecht zur Bewegungsrichtung nach unten gerichtet ist bezeichnet man als Normalkraft. Die Reibungskräfte sind entgegengesetzt zur Bewegungsrichtung orientiert. Normalkraft und Reibungskräfte sind über Koeffizienten miteinander verknüpft. Dabei wird zwischen dem Haftreibungskoeffizient: = >?> und dem Gleitreibungskoeffizient: unterschieden. Liegt ein Klotz mit der Masse m auf einer schiefen Ebene, dann greifen vier Kräfte an: (Länge der Kraftvektoren nicht maßstäblich) Gewichtskraft Normalkraft!$ A Haft/Gleitreibungskraft?> = > ;?@ Hangabtriebskraft > A

6 Normalkraft, Gewichtskraft und Hangabtriebskraft bilden ein rechtwinkliges Dreieck mit der Gewichtskraft als Hypothenuse: Vergrößert man den Neigungswinkel, dann beginnt der Klotz zu Rutschen. Findet das z.b bei einem Neigungswinkel von B 20 statt, dann muß bei B 20 die Hangabtriebskraft gerade gleich der Haftreibungskraft gewesen sein, also besitzt der Haftreibungskoeffizient den Wert: = >?> A!$ A =EA=,F Rutscht der Klotz die schiefe Ebene hinab, dann wirkt nur die Gleitreibungskraft F RG der Hangabtriebskraft entgegen. Für Gummireifen auf Beton kann der Gleitreibungskoeffizient nahezu 1 werden. Für zwei weiche Holzblöcke gilt z.b. angenähert = > =,. Leistung Falls die Arbeit G in einem Zeitintervall H als konstant angesehen werden kann, gilt mit der Dimension: I= E = ; (W: Watt) Über die Dimension Watt sind mechanische und elektrische Dimensionen miteinander verknüpft, denn: ==JK ( V: Volt, Dimension der el. Spannung, A: Amperè, Dimension des elektr. Stroms ). Im Allgemeinen ist die Arbeit von der Zeit abhängig, daher lautet die allgemein gültige Definition der Leistung :t: I= 6 6E.

7 Kinetische Energie Die Bewegungsenergie oder kinetischen Energie entspricht der Arbeit, die eine Masse, welche eine Geschwindigkeit L > 0 besitzt, zu leisten imstande ist und basiert auf der Definition der Arbeit: mit NE 6 und 6 NE6E ergibt sich 6E O O O,O =56=5 6NE N E6E=5N 6N=P O 6E N Q =R & = SN O N T= N Die kinetische Energie besitzt wie die Arbeit die Dimension UV=W. Für Anwendungen in der Atom und Kernphysik erwies sich das Joule als eine unhandliche große Dimension, da die Teilchen, deren kinetische Energien von Bedeutung sind, sehr kleine Massen besitzen. Daher hat man in der Atom und Kernphysik als Maß für die kinetische Energie diejenige kinetische Energie genommen, die ein Elektron besitzt, wenn es mit eine elektrischen Spannung von 1Y beschleunigt wurde. Da mechanische und elektrische Einheiten über das Watt miteinander verknüpft sind, bietet es sich an, ohne Umrechnung die Einheit 'Elektronenvolt (ev)' festzulegen als: J= J=,F Z[ K J=,F Z[ =,F Z[. Die Geschwindigkeit eines mit 1Y beschleunigten Elektrons beträgt also: R & = N =J N=\ J =],[ ] Zusammenhang zwischen Arbeit und kinetischer Energie Arbeit hat eine Änderung der kinetischen Energie zur Folge, umgekehrt wird durch eine Änderung der kinetischen Energie Arbeit geleistet:,o =R &,O R &,

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 3: Dynamik und Kräfte Dr. Daniel Bick 09. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 09. November 2016 1 / 25 Übersicht 1 Wiederholung

Mehr

Die Kraft. Mechanik. Kräfteaddition. Die Kraft. F F res = F 1 -F 2

Die Kraft. Mechanik. Kräfteaddition. Die Kraft. F F res = F 1 -F 2 Die Kraft Mechanik Newton sche Gesetze und ihre Anwendung (6 h) Physik Leistungskurs physikalische Bedeutung: Die Kraft gibt an, wie stark ein Körper auf einen anderen einwirkt. FZ: Einheit: N Gleichung:

Mehr

Dynamik. 4.Vorlesung EPI

Dynamik. 4.Vorlesung EPI 4.Vorlesung EPI I) Mechanik 1. Kinematik 2.Dynamik a) Newtons Axiome (Begriffe Masse und Kraft) b) Fundamentale Kräfte c) Schwerkraft (Gravitation) d) Federkraft e) Reibungskraft 1 Das 2. Newtonsche Prinzip

Mehr

Solution V Published:

Solution V Published: 1 Reibungskraft I Ein 25kg schwerer Block ist zunächst auf einer horizontalen Fläche in Ruhe. Es ist eine horizontale Kraft von 75 N nötig um den Block in Bewegung zu setzten, danach ist eine horizontale

Mehr

2.0 Dynamik Kraft & Bewegung

2.0 Dynamik Kraft & Bewegung .0 Dynamik Kraft & Bewegung Kraft Alltag: Muskelkater Formänderung / statische Wirkung (Gebäudestabilität) Physik Beschleunigung / dynamische Wirkung (Impulsänderung) Masse Schwere Masse: Eigenschaft eines

Mehr

Kapitel 5 Weitere Anwendungen der Newton schen Axiome

Kapitel 5 Weitere Anwendungen der Newton schen Axiome Kapitel 5 Weitere Anwendungen der Newton schen Axiome 5.1 Reibung 5.2 Widerstandskräfte 5.3 Krummlinige Bewegung 5.4 Numerische Integration: Das Euler-Verfahren 5.5 Trägheits- oder Scheinkräfte 5.6 Der

Mehr

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Fakultät für Physik Wintersemester 2016/17 Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Dr. Andreas K. Hüttel Blatt 4 / 9.11.2016 1. May the force... Drei Leute A, B, C ziehen

Mehr

PW2 Grundlagen Vertiefung. Kinematik und Stoÿprozesse Version

PW2 Grundlagen Vertiefung. Kinematik und Stoÿprozesse Version PW2 Grundlagen Vertiefung Kinematik und Stoÿprozesse Version 2007-09-03 Inhaltsverzeichnis 1 Vertiefende Grundlagen zu den Experimenten mit dem Luftkissentisch 1 1.1 Begrie.....................................

Mehr

Basisexperiment: Bestimmung des Haft- und Gleitreibungskoeffizienten

Basisexperiment: Bestimmung des Haft- und Gleitreibungskoeffizienten Lehrerversion Basiseperiment: Bestimmung des Haft- und Gleitreibungskoeffizienten Lehrplanbezug: Reibungskraft, Gewichtskraft Ziel: Eperimentelle Bestimmung des Gleit- und Haftreibungskoeffizienten Voraussetzungen:

Mehr

F H. Um einen Körper zu beschleunigen, müssen Körper aus der Umgebung ihn einwirken. Man sagt die Umgebung wirkt auf ihn Kräfte aus.

F H. Um einen Körper zu beschleunigen, müssen Körper aus der Umgebung ihn einwirken. Man sagt die Umgebung wirkt auf ihn Kräfte aus. II. Die Newtonschen esetze ================================================================== 2. 1 Kräfte F H Um einen Körper zu beschleunigen, müssen Körper aus der Umgebung ihn einwirken. Man sagt die

Mehr

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9 I. Grundbegriffe der Newton schen Mechanik 9 I..3 b Arbeit einer Kraft Wird die Wirkung einer Kraft über ein Zeitintervall oder genauer über die Strecke, welche das mechanische System in diesem Zeitintervall

Mehr

4. Beispiele für Kräfte

4. Beispiele für Kräfte 4. Beispiele für Kräfte 4.1 Federkraft 4.2 Gravitation 4.3 Elektrische Kraft 4.4 Reibungskraft 4Bi 4. Beispiele il für Kräfte Käft Man kennt: Federkraft, Reibungskraft, Trägheitskraft, Dipolkraft, Schubskraft,

Mehr

Physik 1 Zusammenfassung

Physik 1 Zusammenfassung Physik 1 Zusammenfassung Lukas Wilhelm 31. August 009 Inhaltsverzeichnis 1 Grundlagen 3 1.1 Mathe...................................... 3 1.1.1 Einheiten................................ 3 1. Trigonometrie..................................

Mehr

In der Physik definiert man Arbeit durch das Produkt aus Kraft und Weg:

In der Physik definiert man Arbeit durch das Produkt aus Kraft und Weg: Werkstatt: Arbeit = Kraft Weg Viel Kraft für nichts? In der Physik definiert man Arbeit durch das Produkt aus Kraft und Weg: W = * = F * s FII bezeichnet dabei die Kraftkomponente in Wegrichtung s. Die

Mehr

2) Nennen und beschreiben Sie kurz die drei Newtonschen Axiome! 1. Newt. Axiom: 2. Newt. Axiom: 3. Newt. Axiom:

2) Nennen und beschreiben Sie kurz die drei Newtonschen Axiome! 1. Newt. Axiom: 2. Newt. Axiom: 3. Newt. Axiom: Übungsaufgaben zu 3.1 und 3.2 Wiederholung zur Dynamik 1) An welchen beiden Wirkungen kann man Kräfte erkennen? 2) Nennen und beschreiben Sie kurz die drei Newtonschen Axiome! 1. Newt. Axiom: 2. Newt.

Mehr

Lösungen zu Übungsblatt 4

Lösungen zu Übungsblatt 4 PN1 - Physik 1 für Chemiker und Biologen Prof. J. Lipfert WS 017/18 Übungsblatt 4 Lösungen zu Übungsblatt 4 Aufgabe 1 actio=reactio. Käptn Jack Sparrow wird mit seinem Schiff Black Pearl in eine Seeschlacht

Mehr

Dynamik Lehre von den Kräften

Dynamik Lehre von den Kräften Dynamik Lehre von den Kräften Physik Grundkurs Stephie Schmidt Kräfte im Gleichgewicht Kräfte erkennt man daran, dass sie Körper verformen und/oder ihren Bewegungszustand ändern. Es gibt Muskelkraft, magnetische

Mehr

4. Beispiele für Kräfte

4. Beispiele für Kräfte Inhalt 4. Beispiele für Kräfte 4.1 Gravitation 4.2 Elektrische Kraft 4.3 Federkraft 4.4 Reibungskraft 4.1 Gravitation 4.1 Gravitation 4. Beispiele für Kräfte Man kennt: Federkraft, Reibungskraft, Trägheitskraft,

Mehr

F H. Extremfälle: α ~ 0 (ganz flache Ebene) F N ~ F G ; F H ~ 0 Es gibt keine Hangabtriebskraft (Flachdach) Begründung: sin 0 = 0; cos 0 = 1

F H. Extremfälle: α ~ 0 (ganz flache Ebene) F N ~ F G ; F H ~ 0 Es gibt keine Hangabtriebskraft (Flachdach) Begründung: sin 0 = 0; cos 0 = 1 3.2.5 Zerlegung von Kräften (am Beispiel der schiefen Ebene) Aus der Statik ist bekannt, dass sich resultierende Kräfte aus einzelnen Kräften zusammensetzen können (Addition einzelner Kräfte). Ebenso kann

Mehr

Physik 1. Kinematik, Dynamik.

Physik 1. Kinematik, Dynamik. Physik Mechanik 3 Physik 1. Kinematik, Dynamik. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH Physik Mechanik 5 Themen Definitionen Kinematik Dynamik Physik Mechanik 6 DEFINITIONEN Physik Mechanik 7 Was ist

Mehr

Lösung VII Veröffentlicht:

Lösung VII Veröffentlicht: 1 Konzeptionelle Fragen (a) Kann Haftreibung Arbeit verrichten? Wenn Haftreibung intern ist, ist sie eine verlustfreie Kraft und leistet keine Arbeit am gewählten System. Als externe Kraft kann Haftreibung

Mehr

Kinetik des Massenpunktes

Kinetik des Massenpunktes Technische Mechanik II Kinetik des Massenpunktes Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes 2.

Mehr

Dynamik. 4.Vorlesung EP

Dynamik. 4.Vorlesung EP 4.Vorlesung EP I) Mechanik 1. Kinematik 2.Dynamik Fortsetzung a) Newtons Axiome (Begriffe Masse und Kraft) b) Fundamentale Kräfte c) Schwerkraft (Gravitation) d) Federkraft e) Reibungskraft Versuche: 1.

Mehr

Übungen zu Experimentalphysik 2

Übungen zu Experimentalphysik 2 Physik Department, Technische Universität München, PD Dr. W. Schindler Übungen zu Experimentalphysik 2 SS 13 - Lösungen zu Übungsblatt 4 1 Schiefe Ebene im Magnetfeld In einem vertikalen, homogenen Magnetfeld

Mehr

4. Beispiele für Kräfte

4. Beispiele für Kräfte 4. Beispiele für Kräfte 4.1 Federkraft 4.2 Gravitation 4.3 Elektrische Kraft 4.4 Reibungskraft 4. Beispiele für Kräfte Man kennt: Federkraft, Reibungskraft, Trägheitskraft, Dipolkraft, Schubskraft, Coulombkraft,

Mehr

2. Arbeit und Energie

2. Arbeit und Energie 2. Arbeit und Energie Zur Ermittlung der Bewegungsgrößen aus der Bewegungsgleichung müssen mehr oder weniger komplizierte Integrale berechnet werden. Bei einer Reihe von wichtigen Anwendungen treten die

Mehr

Gruppenarbeit Federn, Kräfte und Vektoren

Gruppenarbeit Federn, Kräfte und Vektoren 1 Gruppenarbeit Federn, Kräfte und Vektoren Abzugeben bis Woche 10. Oktober Der geschätzte Zeitaufwand wird bei jeder Teilaufgabe mit Sternen angegeben. Je mehr Sterne eine Aufgabe besitzt, desto grösser

Mehr

5. Arbeit und Energie

5. Arbeit und Energie 5. Arbeit und Energie 5.1 Arbeit 5.2 Konservative Kräfte 5.3 Potentielle Energie 5.4 Kinetische Energie 5. Arbeit und Energie Energie = Fähigkeit Arbeit zu verrichten 5.1 Arbeit Wird Masse m von Punkt

Mehr

Physik 1 für Chemiker und Biologen 4. Vorlesung

Physik 1 für Chemiker und Biologen 4. Vorlesung Physik 1 für Chemiker und Biologen 4. Vorlesung 13.11.2015 https://xkcd.com/539/ Prof. Dr. Jan Lipfert Jan.Lipfert@lmu.de Heute: - Allgemeines zu Kräften - Kreisbewegungen - Zentrifugalkraft - Reibung

Mehr

& sind die Vektorkomponenten von und sind die Vektorkoordinaten von. A x. a) Der Betrag eines Vektors

& sind die Vektorkomponenten von und sind die Vektorkoordinaten von. A x. a) Der Betrag eines Vektors Einführu hnung Was ist ein Vektor? In Bereichen der Naturwissenschaften treten Größen auf, die nicht nur durch eine Zahlenangabe dargestellt werden können, wie Kraft oder Geschwindigkeit. Zur vollständigen

Mehr

Physikunterricht 11. Jahrgang P. HEINECKE.

Physikunterricht 11. Jahrgang P. HEINECKE. Physikunterricht 11. Jahrgang P. HEINECKE Hannover, Juli 2008 Inhaltsverzeichnis 1 Kinematik 3 1.1 Gleichförmige Bewegung.................................. 3 1.2 Gleichmäßig

Mehr

Versuch M9 - Gleitreibung

Versuch M9 - Gleitreibung Versuch M9 - Gleitreibung Praktikanten: Carl Böhmer, Maxim Singer 18. November 2009 1 Einleitung Reibungskräfte sind im alltäglichen Leben unvermeidbar. Jede reale Bewegung ist mit Reibung und folglich

Mehr

Physik Klasse 7. Projekt. Energie, Umwelt, Mensch 8h. Kraft und ihre Wirkungen. 22h. Elektrische Leitungsvorgänge. Naturgewalten Blitz und Donner 3h

Physik Klasse 7. Projekt. Energie, Umwelt, Mensch 8h. Kraft und ihre Wirkungen. 22h. Elektrische Leitungsvorgänge. Naturgewalten Blitz und Donner 3h 1. Kraft und ihre Wirkungen KA 22h Energie, Umwelt, Mensch 8h 2. Projekt Physik Klasse 7 3. Elektrische Leitungsvorgänge KA 20h 4. Naturgewalten Blitz und Donner 3h Kraft und ihre Wirkungen Lies LB. S.

Mehr

1.3. Aufgaben zur Statik

1.3. Aufgaben zur Statik 1.3. Aufgaben ur Statik Aufgabe 1: Kräfteerlegung Ein Schlitten kann auf einer Schiene horiontal bewegt werden. Im Winkel von = 40 ur Schiene ieht ein Seil mit der Kraft = 100 N an dem Schlitten. Bestimme

Mehr

Reibungskräfte. Haftreibung. (µ H hängt von Material und Oberflächenbeschaffenheit ab, aber nicht von der Größe der reibenden Oberflächen)

Reibungskräfte. Haftreibung. (µ H hängt von Material und Oberflächenbeschaffenheit ab, aber nicht von der Größe der reibenden Oberflächen) Reibungskräfte F =g=g N F zug Reibung ist eine der Bewegung entgegenwirkende Kraft, die entsteht, wenn zwei sich berührende Körper sich gegeneinander bewegen. Haftreibung F zug = F H ist die Kraft, die

Mehr

Lösung II Veröffentlicht:

Lösung II Veröffentlicht: 1 Momentane Bewegung I Die Position eines Teilchens auf der x-achse, ist gegeben durch x = 3m 30(m/s)t + 2(m/s 3 )t 3, wobei x in Metern und t in Sekunden angeben wird (a) Die Position des Teilchens bei

Mehr

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW)

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW) Physik 1 VNT Aufgabenblatt 8 5. Übung (5. KW) 5. Übung (5. KW) Aufgabe 1 (Achterbahn) Start v h 1 25 m h 2 2 m Ziel v 2? v 1 Welche Geschwindigkeit erreicht die Achterbahn in der Abbildung, wenn deren

Mehr

Übungen zu Physik I für Physiker Serie 3 Musterlösungen

Übungen zu Physik I für Physiker Serie 3 Musterlösungen Übungen zu Physik I für Physiker Serie 3 Musterlösungen Allgemeine Fragen 1. Coulomb- und Gravitationskraft Atome und damit die Materie bestehen aus den Z-fach positiv geladenen Atomkernen und Z negativ

Mehr

Version A. Aufgabe 1. A: 1.2 m B: 0.01 m C: 0.11 m D: 0.31 m E: m. Aufgabe 2

Version A. Aufgabe 1. A: 1.2 m B: 0.01 m C: 0.11 m D: 0.31 m E: m. Aufgabe 2 Aufgabe 1 Eine Kugel mit Masse 5 kg wird auf eine senkrecht stehende Spiralfeder mit Federkonstante D=5000 N/m gelegt. Wie weit muss man die Kugel nun nach unten drücken (die Feder stauchen), damit beim

Mehr

4. Beispiele für Kräfte

4. Beispiele für Kräfte 4. Beispiele für Kräfte Inhalt 4. Beispiele für Kräfte 4.1 Gravitation 4.2 Elektrische Kraft 4.3 Federkraft 4.4 Reibungskraft 4.5 Magnetische Kraft 4.1 Gravitation 4. Beispiele für Kräfte 4.1 Gravitation

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

Lösungen zu Aufgaben Kräfte, Drehmoment c 2016 A. Kersch

Lösungen zu Aufgaben Kräfte, Drehmoment c 2016 A. Kersch Lösungen zu Aufgaben Kräfte, Drehmoment c 2016 A. Kersch Freischneiden Was zeigt die Waage? Behandeln Sie die Person auf der Plattform auf der Waage als eindimensionales Problem. Freischneiden von Person

Mehr

Impuls, Kraft, Impulsbilanz, Grundgesetz der Mechanik

Impuls, Kraft, Impulsbilanz, Grundgesetz der Mechanik Aufgaben Translations-Mechanik Impuls, Kraft, Impulsbilanz, Grundgesetz der Mechanik Lernziele - die Eigenschaften des Impulses und den Zusammenhang zwischen Impuls, Masse und Geschwindigkeit eines Körpers

Mehr

Volumen von Gasen. Masse, Masseneinheit und Dichte

Volumen von Gasen. Masse, Masseneinheit und Dichte Volumen von Gasen Versuch: Wir halten das freie Ende des PVC- Schlauches in den Messzylinder. Gibt man kurz die Öffnung des Luftballons frei, so strömt Luft in den Messzylinder, steigt nach oben und verdrängt

Mehr

Potential und Spannung

Potential und Spannung Potential und Spannung Arbeit bei Ladungsverschiebung: Beim Verschieben einer Ladung q im elektrischen Feld E( r) entlang dem Weg C wird Arbeit geleistet: W el = F C d s = q E d s Vorzeichen: W el > 0

Mehr

Physik. 1. Mechanik. Inhaltsverzeichnis. 1.1 Mechanische Grössen. LAP-Zusammenfassungen: Physik Kraft (F) und Masse (m) 1.1.

Physik. 1. Mechanik. Inhaltsverzeichnis. 1.1 Mechanische Grössen. LAP-Zusammenfassungen: Physik Kraft (F) und Masse (m) 1.1. Physik Inhaltsverzeichnis 1. Mechanik...1 1.1 Mechanische Grössen...1 1.1.1 Kraft (F) und Masse (m)...1 1.1.2 Die Masse m...1 1.1.3 Die Kraft F...1 1.1.4 Die Geschwindigkeit (v) und die Beschleunigung

Mehr

Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am werden sie von Herrn

Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am werden sie von Herrn Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am 4.11. werden sie von Herrn Hofstaetter in den Übungen vorgerechnet. Vom Weg zu

Mehr

Übung zu Mechanik 3 Seite 48

Übung zu Mechanik 3 Seite 48 Übung zu Mechanik 3 Seite 48 Aufgabe 81 Vor einer um das Maß f zusammengedrückten und verriegelten Feder mit der Federkonstanten c liegt ein Massenpunkt der Masse m. a) Welchen Wert muß f mindestens haben,

Mehr

Aufrechterhaltung der Energie im Betrieb Kraft und Arbeitsmaschinen Physikalische Grundlagen. Wolfgang Weiß

Aufrechterhaltung der Energie im Betrieb Kraft und Arbeitsmaschinen Physikalische Grundlagen. Wolfgang Weiß Aufrechterhaltung der Energie im Betrieb Kraft und Arbeitsmaschinen Physikalische Grundlagen Wolfgang Weiß 10-04-2016 Maßeinheiten 2 Bewegungsgleichungen 3 Energie Energie ist eine fundamentale physikalische

Mehr

Grundwissen Physik. Referat von Benjamin Mazatis und Fabian Priermeier

Grundwissen Physik. Referat von Benjamin Mazatis und Fabian Priermeier Grundwissen Physik Referat von Benjamin Mazatis und Fabian Priermeier Folie 3 by Benjamin Mazatis und Fabian Priermeier Grundregeln Niemals mit der Steckdose experimentieren, Lebensgefahr! (Daheim nur

Mehr

10. Versuch: Schiefe Ebene

10. Versuch: Schiefe Ebene Physikpraktikum für Pharmazeuten Universität Regensburg Fakultät Physik 10. Versuch: Schiefe Ebene In diesem Versuch untersuchen Sie Mechanik der schiefen Ebene, indem Sie mithilfe dem statischen und dynamischen

Mehr

7.6 Brechung. 7.7 Zusammenfassung. Schwingungen und Wellen. Phasengeschwindigkeit ist von Wassertiefe abhängig

7.6 Brechung. 7.7 Zusammenfassung. Schwingungen und Wellen. Phasengeschwindigkeit ist von Wassertiefe abhängig 7.6 Brechung Phasengeschwindigkeit ist von Wassertiefe abhängig Dreieckige Barriere lenkt ebene Welle ab Dispersion Brechung von Licht 7.7 Zusammenfassung Schwingungen und Wellen 7.1 Harmonische Schwingungen

Mehr

Länge der Feder (unbelastet): l 0 = 15 cm; Aus dem hookeschen Gesetz errechnet man die Ausdehnung s:

Länge der Feder (unbelastet): l 0 = 15 cm; Aus dem hookeschen Gesetz errechnet man die Ausdehnung s: Die Federkonstante ist für jede Feder eine charakteristische Größe und beschreibt den Härtegrad der Feder. Je größer bzw. kleiner die Federkonstante ist, desto härter bzw. weicher ist die Feder. RECHENBEISPIEL:

Mehr

Kursstufe Physik / Aufgaben / 04 Teilchenbahnen im E Feld Kopetschke 2011 Teilchenbahnen im elektrischen Querfeld

Kursstufe Physik / Aufgaben / 04 Teilchenbahnen im E Feld Kopetschke 2011 Teilchenbahnen im elektrischen Querfeld Kursstufe Physik / Aufgaben / 04 Teilchenbahnen im E Feld Kopetschke 011 Teilchenbahnen im elektrischen Querfeld 1) Elektronen starten an der negativen Platte eines Kondensators (d = 5 mm, U = 300 V) und

Mehr

Formelsammlung Physik1 für Wirtschaftsingenieure und PA Stand Additionstheoreme für sinus und cosinus: Darf in der Klausur verwendet werden!

Formelsammlung Physik1 für Wirtschaftsingenieure und PA Stand Additionstheoreme für sinus und cosinus: Darf in der Klausur verwendet werden! Stand Bereich: Mathematik Darf in der Klausur verwendet werden! sin = a c ; cos = b c ; tan = a b sin 2 cos 2 =1 Additionstheoreme für sinus und cosinus: sin ± =sin cos ± cos sin cos ± =cos cos sin sin

Mehr

Lösung IV Veröffentlicht:

Lösung IV Veröffentlicht: Fx = mg sin θ = ma x 1 Konzeptionelle Frage I Welche der der folgenden Aussagen über Kraft Bewegung ist korrekt? Geben sie Beispiele an (a) Ist es für ein Objekt möglich sich zu bewegen, ohne dass eine

Mehr

Masse, Kraft und Beschleunigung Masse:

Masse, Kraft und Beschleunigung Masse: Masse, Kraft und Beschleunigung Masse: Seit 1889 ist die Einheit der Masse wie folgt festgelegt: Das Kilogramm ist die Einheit der Masse; es ist gleich der Masse des Internationalen Kilogrammprototyps.

Mehr

Impuls, Kraft, Impulsbilanz, Grundgesetz der Mechanik

Impuls, Kraft, Impulsbilanz, Grundgesetz der Mechanik Aufgaben Translations-Mechanik Impuls, Kraft, Impulsbilanz, Grundgesetz der Mechanik Lernziele - die Eigenschaften des Impulses und den Zusammenhang zwischen Impuls, Masse und Geschwindigkeit eines Körpers

Mehr

5. Arbeit und Energie

5. Arbeit und Energie 5. Arbeit und Energie 5.1 Arbeit 5.2 Konservative Kräfte 5.3 Potentielle Energie 5.4 Kinetische Energie 5. Arbeit und Energie Konzept der Arbeit führt zur Energieerhaltung. 5.1 Arbeit Wird Masse m mit

Mehr

5. Arbeit und Energie Physik für E-Techniker. 5.1 Arbeit. 5.3 Potentielle Energie Kinetische Energie. Doris Samm FH Aachen

5. Arbeit und Energie Physik für E-Techniker. 5.1 Arbeit. 5.3 Potentielle Energie Kinetische Energie. Doris Samm FH Aachen 5. Arbeit und Energie 5.1 Arbeit 5.2 Konservative Kräfte 5.3 Potentielle Energie 54 5.4 Kinetische Energie 5. Arbeit und Energie Konzept der Arbeit führt zur Energieerhaltung. 51 5.1 Arbeit Wird Masse

Mehr

1 Arbeit und Energie. ~ F d~r: (1) W 1!2 = ~ F ~s = Beispiel für die Berechnung eines Wegintegrals:

1 Arbeit und Energie. ~ F d~r: (1) W 1!2 = ~ F ~s = Beispiel für die Berechnung eines Wegintegrals: 1 Arbeit und Energie Von Arbeit sprechen wir, wenn eine Kraft ~ F auf einen Körper entlang eines Weges ~s einwirkt und dadurch der "Energieinhalt" des Körpers verändert wird. Die Arbeit ist de niert als

Mehr

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am )

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am ) Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: 14.09.11, Abgabe am 1.09.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.

Mehr

2.2 Arbeit und Energie. Aufgaben

2.2 Arbeit und Energie. Aufgaben 2.2 Arbeit und Energie Aufgaben Aufgabe 1: Auf eine Katapult befindet sich eine Kugel der Masse, die durch eine Feder beschleunigt wird. Die Feder ist a Anfang u die Strecke s 0 zusaengedrückt. Für die

Mehr

Dynamik. 4.Vorlesung EP

Dynamik. 4.Vorlesung EP 4.Vorlesung EP I) Mechanik 1. Kinematik.Dynamik ortsetzung a) Newtons Axiome (Begriffe Masse und Kraft) b) undamentale Kräfte c) Schwerkraft (Gravitation) d) ederkraft e) Reibungskraft Versuche: Zwei Leute

Mehr

Physik 1 Hydrologen/VNT, WS 2014/15 Lösungen Aufgabenblatt 7. Erde und Mond ) (b) Welche Gewichtskraft hat die Mondlandeeinheit auf dem Mond?

Physik 1 Hydrologen/VNT, WS 2014/15 Lösungen Aufgabenblatt 7. Erde und Mond ) (b) Welche Gewichtskraft hat die Mondlandeeinheit auf dem Mond? Aufgabenblatt 7 Aufgabe 7.2 Erde und ond ) Die Landeeinheit einer ondsonde habe auf der Erde eine Gewichtskraft von 20 000 N. Der Radius der Erde beträgt r E = 6370 km, einen Faktor 3.6 größer als derjenige

Mehr

Aufgabe 1: Klausur Physik für Maschinenbauer (SS 2009) Lösungen 1. (10 Punkte)

Aufgabe 1: Klausur Physik für Maschinenbauer (SS 2009) Lösungen 1. (10 Punkte) Klausur Physik für Maschinenbauer (SS 2009) Lösungen 1 Aufgabe 1: Schiefe Ebene Auf einer reibungsfreien, schiefen Ebene mit dem Winkel 30 befindet sich eine Kiste der Masse m = 100 kg zunächst in Ruhe.

Mehr

4. Veranstaltung. 16. November 2012

4. Veranstaltung. 16. November 2012 4. Veranstaltung 16. November 2012 Heute Wiederholung Beschreibung von Bewegung Ursache von Bewegung Prinzip von Elektromotor und Generator Motor Generator Elektrischer Strom Elektrischer Strom Magnetkraft

Mehr

Arbeitsblatt Physik 2 (Mechanik) Statik

Arbeitsblatt Physik 2 (Mechanik) Statik Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mathematik und Naturwissenschaften Arbeitsblatt Physik 2 (Mechanik) Dozent: - Brückenkurs Mathematik / Physik 2016 Modul: Physik

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

F r = m v2 r. Bewegt sich der Körper mit der konstanten Winkelgeschwindigkeit ω = 2π, T

F r = m v2 r. Bewegt sich der Körper mit der konstanten Winkelgeschwindigkeit ω = 2π, T Kreisbewegung ================================================================== Damit sich ein Körper der Masse m auf einer Kreisbahn vom Radius r, dannmuss die Summe aller an diesem Körper angreifenden

Mehr

06/02/12. Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise:

06/02/12. Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Prof Dr-Ing Ams Klausur Technische Mechanik C 06/0/1 Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel

Mehr

Vorlesung Theoretische Mechanik

Vorlesung Theoretische Mechanik Julius-Maximilians-Universität Würzburg Vorlesung Theoretische Mechanik Wintersemester 17/18 Prof. Dr. Johanna Erdmenger Vorläufiges Skript 1 (Zweite Vorlesung, aufgeschrieben von Manuel Kunkel, 23. 10.

Mehr

Mechanik. Entwicklung der Mechanik

Mechanik. Entwicklung der Mechanik Mechanik Entwicklung der Mechanik ältester Zweig der Physik Kinematik Bewegung Dynamik Kraft Statik Gleichgewicht Antike: Mechanik = Kunst die Natur zu überlisten mit Newton Beginn Entwicklung Mechanik

Mehr

B.1 Lösungsskizzen der Übungsaufgaben zum Kapitel 1

B.1 Lösungsskizzen der Übungsaufgaben zum Kapitel 1 B sskizzen B.1 sskizzen der Übungsaufgaben zum Kapitel 1 Aufgabe 1 (Zeitabhängige Beschleunigung) Ein geladenes Teilchen (Ion) bewegt sich im Vakuum kräftefrei mit der Geschwindigkeit v x0 längs der x-achse.

Mehr

2.2 Arbeit und Energie. Aufgaben

2.2 Arbeit und Energie. Aufgaben Technische Mechanik 3 2.2-1 Prof. Dr. Wandinger Aufgabe 1 Auf eine Katapult befindet sich eine Kugel der Masse, die durch eine Feder beschleunigt wird. Die Feder ist a Anfang u die Strecke s 0 zusaengedrückt.

Mehr

Warum muß man sich mit dem Zweirad in die Kurve neigen?

Warum muß man sich mit dem Zweirad in die Kurve neigen? Warum muß man sich mit dem Zweirad in die Kurve neigen? Die Erfahrung lehrt uns, daß wir uns während der Fahrt in die Kurve hineinlegen sollen. Kinder versuchen, während ihrer ersten Fahrversuche das Fahrrad

Mehr

1 Die drei Bewegungsgleichungen

1 Die drei Bewegungsgleichungen 1 Die drei Bewegungsgleichungen Unbeschleunigte Bewegung, a = 0: Hier gibt es nur eine Formel, nämlich die für den Weg, s. (i) s = s 0 + v t s ist der zurückgelegte Weg, s 0 der Ort, an dem sich der Körper

Mehr

Physik A VL8 (25.10.2012)

Physik A VL8 (25.10.2012) Physik A VL8 (5.10.01) Arbeit, nergie und Leistung Arbeit und nergie nergiebilanzen Leistung Reibung Arbeit und nergie umgangssprachlich: man muss arbeiten, um etwas hochzuheben: physikalisch im alle der

Mehr

Erklärungen, Formeln und gelöste Übungsaufgaben der Mechanik aus Klasse 11. von Matthias Kolodziej aol.com

Erklärungen, Formeln und gelöste Übungsaufgaben der Mechanik aus Klasse 11. von Matthias Kolodziej aol.com GRUNDLAGEN DER MECHANIK Erklärungen, Formeln und gelöste Übungsaufgaben der Mechanik aus Klasse 11 von Matthias Kolodziej shorebreak13 @ aol.com Hagen, Westfalen September 2002 Inhalt: I. Kinematik 1.

Mehr

Klausur 2 Kurs 11Ph1e Physik. 2 Q U B m

Klausur 2 Kurs 11Ph1e Physik. 2 Q U B m 2010-11-24 Klausur 2 Kurs 11Ph1e Physik Lösung 1 α-teilchen (=2-fach geladene Heliumkerne) werden mit der Spannung U B beschleunigt und durchfliegen dann einen mit der Ladung geladenen Kondensator (siehe

Mehr

2.4 Stoßvorgänge. Lösungen

2.4 Stoßvorgänge. Lösungen .4 Stoßvorgänge Lösungen Aufgabe 1: a) Geschwindigkeit und Winkel: Für die Wurfhöhe gilt: H = v 0 g sin Die zugehörige x-koordinate ist: x 1 = v 0 g sincos Aus diesen beiden Gleichungen lässt sich die

Mehr

Übung zu Mechanik 1 Seite 65

Übung zu Mechanik 1 Seite 65 Übung zu Mechanik 1 Seite 65 Aufgabe 109 Gegeben ist das skizzierte System. a) Bis zu welcher Größe kann F gesteigert werden, ohne daß Rutschen eintritt? b) Welches Teil rutscht, wenn F darüber hinaus

Mehr

Prüfungsvorbereitung Physik: Bewegungen und Kräfte

Prüfungsvorbereitung Physik: Bewegungen und Kräfte Prüfungsvorbereitung Physik: Bewegungen und Kräfte Theoriefragen: Diese Begriffe müssen Sie auswendig in ein bis zwei Sätzen erklären können. a) Vektor/Skalar b) Woran erkennt man eine Kraft? c) Welche

Mehr

Lösung VIII Veröentlicht:

Lösung VIII Veröentlicht: 1 Impulse and Momentum Bei einem Crash-Test kollidiert ein Auto der Masse 2kg mit einer Wand. Die Anfangs- und Endgeschwindigkeit des Autos sind jeweils v = (- 2 m/ s) e x und v f = (6 m/ s) e x. Die Kollision

Mehr

Aufgabenblatt Kräfte, Dichte, Reibung und Luftwiderstand

Aufgabenblatt Kräfte, Dichte, Reibung und Luftwiderstand Urs Wyder, 4057 Basel U.Wyder@ksh.ch Aufgabenblatt Kräfte, Dichte, Reibung und Luftwiderstand Hinweis: Verwenden Sie in Formeln immer die SI-Einheiten Meter, Kilogramm und Sekunden resp. Quadrat- und Kubikmeter!

Mehr

Hochschule Düsseldorf University of Applied Sciences. 03. November 2016 HSD. Physik. Newton s Gesetze

Hochschule Düsseldorf University of Applied Sciences. 03. November 2016 HSD. Physik. Newton s Gesetze Physik Newton s Gesetze http://de.wikipedia.org/wiki/philosophiae_naturalis_principia_mathematica Philosophiae Naturalis Principia Mathematica Mathematische Prinzipien der Naturphilosophie Im Sprachgebrauch

Mehr

Formelsammlung Mechanik

Formelsammlung Mechanik Joachim Stiller Formelsammlung Mechanik Alle Rechte vorbehalten Formelsammlung Mechanik Ich möchte in den nächsten Wochen einmal eine Formelsammlung zur Mechanik erstellen, die ich aus dem Telekolleg Mechanik

Mehr

3. Impuls und Drall. Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik 2.3-1

3. Impuls und Drall. Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik 2.3-1 3. Impuls und Drall Die Integration der Bewegungsgleichung entlang der Bahn führte auf die Begriffe Arbeit und Energie. Die Integration der Bewegungsgleichung bezüglich der Zeit führt auf die Begriffe

Mehr

6. Welche der folgenden Anordnungen von vier gleich großen ohmschen Widerständen besitzt den kleinsten Gesamtwiderstand?

6. Welche der folgenden Anordnungen von vier gleich großen ohmschen Widerständen besitzt den kleinsten Gesamtwiderstand? 1 1. Welche der folgenden Formulierungen entspricht dem ersten Newton schen Axiom (Trägheitsprinzip)? Ein Körper verharrt in Ruhe oder bewegt sich mit konstanter gleichförmiger Geschwindigkeit, wenn die

Mehr

a) Zeichne einen Versuch, mit dem die Federkonstante (Härte) einer Feder gemessen werden kann.

a) Zeichne einen Versuch, mit dem die Federkonstante (Härte) einer Feder gemessen werden kann. a) Zeichne einen Versuch, mit dem die Federkonstante (Härte) einer Feder gemessen werden kann. a) s 0 s b) Gib an, welche Größen gemessen werden müssen. Ds c) Gib an, wie die Federkonstante berechnet wird.

Mehr

Ein Fahrzeug ohne eigenen Antrieb startet auf der abgebildeten Bahn von dem Punkt (1) und fährt reibungsfrei über den Punkt (2) zum Punkt (3).

Ein Fahrzeug ohne eigenen Antrieb startet auf der abgebildeten Bahn von dem Punkt (1) und fährt reibungsfrei über den Punkt (2) zum Punkt (3). Achterbahn Ein Fahrzeug ohne eigenen Antrieb startet auf der abgebildeten Bahn von dem Punkt (1) und fährt reibungsfrei über den Punkt (2) zum Punkt (3). a) Warum bewegt sich das Fahrzeug? sidee b) Welche

Mehr

Physik 1 ET, WS 2012 Aufgaben mit Lösung 6. Übung (KW 49) Zwei Kugeln )

Physik 1 ET, WS 2012 Aufgaben mit Lösung 6. Übung (KW 49) Zwei Kugeln ) Physik ET, WS 0 Aufgaben mit Lösung 6. Übung KW 49) 6. Übung KW 49) Aufgabe M 5. Zwei Kugeln ) Zwei Kugeln mit den Massen m = m und m = m bewegen sich mit gleichem Geschwindigkeitsbetrag v aufeinander

Mehr

2.2. Skalarprodukt. Geschwindigkeitsvektoren ergeben sich bei allen Bewegungen. Sie zeigen jeweils in Richtung der Bahnkurve.

2.2. Skalarprodukt. Geschwindigkeitsvektoren ergeben sich bei allen Bewegungen. Sie zeigen jeweils in Richtung der Bahnkurve. .. Skalarprodukt Kraftvektoren treten bei vielen physikalisch-technischen Problemen auf; sie greifen an einem Punkt in verschiedenen Richtungen an. Die bekannte Formel Arbeit = Kraft mal Weg muß man dann

Mehr

Energie und Energieerhaltung

Energie und Energieerhaltung Arbeit und Energie Energie und Energieerhaltung Es gibt keine Evidenz irgendwelcher Art dafür, dass Energieerhaltung in irgendeinem System nicht erfüllt ist. Energie im Austausch In mechanischen und biologischen

Mehr

3. Vorlesung Wintersemester

3. Vorlesung Wintersemester 3. Vorlesung Wintersemester 1 Parameterdarstellung von Kurven Wir haben gesehen, dass man die Bewegung von Punktteilchen durch einen zeitabhängigen Ortsvektor darstellen kann. Genauso kann man aber auch

Mehr

Arbeitsblatt Mathematik 2 (Vektoren)

Arbeitsblatt Mathematik 2 (Vektoren) Fachhochschule Nordwestschweiz (FHNW Hochschule für Technik Institut für Mathematik und Naturwissenschaften Arbeitsblatt Mathematik (Vektoren Dozent: - Brückenkurs Mathematik / Physik 6. Aufgabe Gegeben

Mehr