Elektromagnetische Welle (em-welle): Ausbreitung von periodischen elektrischen und magnetischen Feldern

Größe: px
Ab Seite anzeigen:

Download "Elektromagnetische Welle (em-welle): Ausbreitung von periodischen elektrischen und magnetischen Feldern"

Transkript

1

2

3 Elektromagnetische Welle (em-welle): Ausbreitung von periodischen elektrischen und magnetischen Feldern Beispiele: Radiowellen, sichtbares Licht, WLAN, Röntgenstrahlen

4 Ausbreitungsgeschwindigkeit jeder em-welle im Vakuum: c = m/s (Lichtgeschwindigkeit) Verschiedene em-wellen unterscheiden sich in Frequenz/Wellenlänge und Amplitude (Leistung bzw. Intensität) Transportierte Energie bei fester Amplitude E = h f oder E = hc λ (je höher die Frequenz, desto größer die Energie!) Jede em-welle kann auch als Strom von Teilchen (Photonen) betrachtet werden. Je nach Anwendung ist die Betrachtung als Welle oder Teilchen sinnvoller. Interferenz, Beugung: Welle Photoeffekt, Compton-Effekt: Teilchen

5 Man bezeichnet den kompletten Frequenzbereich der elektromagnetischen Wellen als deren Spektrum. Dieses wird je nach Nutzung bzw. Erzeugung in verschiedene Bereiche eingeteilt. Em-Wellen werden meistens durch Schwingungen geladener Teilchen (z.b. Elektronen in Antennen) oder durch atomare Übergänge (angeregte Gase in Dampflampen) erzeugt.

6 Werden z.b. Protonen oder Elektronen stark beschleunigt und gebündelt, spricht man von Teilchenstrahlung. Die Energie der Strahlung hängt dann von der Bewegungsenergie der einzelnen Teilchen und deren Anzahl ab.

7

8 Das Ankommen einer em-welle bedeutet, dass an einer Stelle ein wechselndes elektrisches und magnetisches Feld entsteht. Dieses hat Einfluss auf jede Art von geladenen Teilchen und Elementarmagnete. + - Die übertragene Energie kann außerdem chemische Bindungen beeinflussen.

9 1. Freie Ladungsträger (in elektr. Leitern) bewegen sich durch die Schwingung innerhalb des Leiters mit Empfangs-Antenne auch ungewollte Effekte wie radio-empfangende Heizkörper 2. Polare Moleküle (z.b. Wasser) beginnen mitzuschwingen Mikrowellenherd erwärmt Wasser durch Reibungswärme der schwingenden Moleküle Infrarotstrahlung ist Wärmestrahlung, da diese der natürlichen Schwingfrequenz der Atome und Moleküle (Wärmebewegung) entspricht und diese daher verstärkt

10 3. Im Teilchenmodell können die Photonen mit sehr hoher Energie Elektronen aus Atomen herausschlagen oder Moleküle zertrennen (Ionisation). Ionisation: jeder Vorgang, bei dem aus einem Atom oder Molekül ein oder mehrere Elektronen entfernt werden, so dass das Atom oder Molekül als positiv geladenes Ion (Kation) zurückbleibt

11

12 Für biologische Organismen spielen die physikalischen Effekte mehr oder weniger große Rollen: Elektrische Ströme in Nervenzellen (Bewegung von Ionen) werden durch die Felder im Radio- und Mikrowellenbereich leicht beeinflusst (gering) Durch Mikrowellenstrahlung (Handy, WLAN ) wird das Wasser im Körper leicht erwärmt (gering) Strahlung im UV-Bereich und Alpha- und Betastrahlung dringt in die oberen Hautschichten ein und zerstört wichtige Moleküle oder Hautzellen durch Ionisation Gamma- und Röntgenstrahlung durchdringt das komplette Gewebe und kann im gesamten Körper Schäden durch Ionisation verursachen Nicht ionisierend ionisierend

13 ionisierend

14 Strahlung ab einer gewissen Energie (>3eV bzw. > Hz) kann (mehrfach) ionisierend wirken ( Ionisierende Strahlung ). Ionisation führt im Körper zur Zerstörung wichtiger Proteine, Enzyme oder im schlimmsten Fall zur Schädigung der Erbsubstanz (DNS). Der Körper kann eine gewisse Menge an Schädigung durch Ionisation verarbeiten (natürliche Strahlung, Nulleffekt ). Ist die Intensität, und damit die Schädigungsrate zu hoch, versagen die Schutzmechanismen.

15 Die biologischen Strahlenwirkungen werden außerdem in zwei Kategorien unterteilt: Deterministische Strahlenwirkungen: Sofortige Schädigung des Organismus durch Zelltod vieler Zellen; ab einer bestimmten Strahlendosis (Menge an aufgenommener Strahlung) Stochastische Strahlenwirkungen: Durch Bestrahlung veränderte DNS wird weitervererbt, führt je nach Schweregrad mit bestimmter Wahrscheinlichkeit zu Folgeschäden, z.b. Tumor.

16 Die Strahlenschäden selbst werden in drei Kategorien unterteilt: Somatische Schäden, die beim bestrahlten Organismus selbst auftreten (nochmals unterteilt in Früh- und Spätschäden) Teratogene Schäden, die während der Schwangerschaft eine Schädigung des Embryos verursachen. Genetische Schäden, die erst bei den Nachkommen auftreten.

17

18 Die Energiemenge, die durch Strahlung insgesamt auf Materie übetragen wird (Energiedosis), wird in der Einheit 1 Gray (1Gr = 1 J/kg) gemessen. Beispiele: Letale Energiedosis (50% Letalität nach 30 Tagen) bei verschiedenen Lebewesen Mensch: 3 4,5 Gy Ratte: 6 Gy Goldfisch: 8,5 Gy Hamster: 9 11 Gy Forelle: 15 Gy Escherichia coli: 50 Gy Fledermaus: 150 Gy Schnecke: 200 Gy Wespe: Gy

19 Die Energiedosis berücksichtigt nicht, dass verschiedene Strahlungsarten unterschiedlich starke Wirkung entfalten: Nicht ionisierende Strahlung richtet keine unmittelbaren Schäden an Locker ionisierende Strahlung (Photonen jeder Energie, Beta- Strahlung) verteilt die Energie gleichmäßig auf das Gewebe (weniger gefährlich) Dicht ionisierende Strahlung (z.b. Alpha-Strahlung) ionisieren in einem eng begrenzten Bereich und damit mit höherer Wahrscheinlichkeit mehrmals pro Molekül (sehr gefährlich) Die Einheit Sievert (Äquivalentdosis, (1Sv = 1 J/kg) berücksichtigt zusätzlich die biologische Wirksamkeit.

20 Natürliche Strahlenbelastung ca. 1mSv pro Jahr auf Meereshöhe Künstliche Strahlenbelastung ca. 2mSv pro Jahr durch Medizin Kosmische Strahlung 8% Sonstige künstliche Strahlenbelastung 1% Kernkraftwerte und Atomwaffentests 1% Medizinische Anwendungen Einatmen von 41% Radon 27% Sonstige Strahlung der Erde 22% Tschernobyl-Unfall 0% Strahlenbelastung des Menschen Kosmische Strahlung 8 Einatmen von Radon 27,1 Sonstige Strahlung der Erde 22 Tschernobyl-Unfall 0,6 Kernkraftwerte und Atomwaffentests 0,6 Sonstige künstliche Strahlenbelastung 0,6 Medizinische Anwendungen 41,1

21 tz/biologischestrahlenwirkung/zellulaerestrahl eneffekteaufdengesamtorganismus.html

Praxisseminar Strahlenschutz Teil 3.1: Biologische Wirkung ionisierender Strahlung

Praxisseminar Strahlenschutz Teil 3.1: Biologische Wirkung ionisierender Strahlung Praxisseminar Strahlenschutz Teil 3.1: Biologische Wirkung ionisierender Strahlung Nikolaus Arnold 14.03.2013 01.05.2013 Praxisseminar Strahlenschutz Teil 2: Ionisierende Strahlung 1 1 Inhalt Wiederholung

Mehr

Elektromagnetisches Spektrum Radioaktive Strahlung

Elektromagnetisches Spektrum Radioaktive Strahlung Umgang mit Radionukliden Elektromagnetisches Spektrum Radioaktive Strahlung Strahlung Nichtionisierende Strahlung Mikrowellen Sichtbares Licht Strahlung von Radiound Fernsehsendern UV-Licht Ionisierende

Mehr

Biologische Wirkungen der Strahlungen

Biologische Wirkungen der Strahlungen Biologische Wirkungen der Strahlungen den 14 Oktober 2016 Dr. Emőke Bódis TGfE JJ9 Prüfungsfrage Die biologische Wirkung der radioaktiven Strahlungen. Dosenabhängige Wirkung der Strahlungen: Dosis- Wirkung

Mehr

Klausurinformation. Sie dürfen nicht verwenden: Handy, Palm, Laptop u.ae. Weisses Papier, Stifte etc. Proviant, aber keine heiße Suppe u.dgl.

Klausurinformation. Sie dürfen nicht verwenden: Handy, Palm, Laptop u.ae. Weisses Papier, Stifte etc. Proviant, aber keine heiße Suppe u.dgl. Klausurinformation Zeit: Mittwoch, 3.Februar, 12:00, Dauer :90 Minuten Ort: Veterinärmediziner: Großer Phys. Hörsaal ( = Hörsaal der Vorlesung) Geowissenschaftler u.a.: Raum A140, Hauptgebäude 1. Stock,

Mehr

Optische Aktivität α =δ k d 0

Optische Aktivität α =δ k d 0 Optische Aktivität α =δ0 k d Flüssigkristalle Flüssigkristall Displays Flüssigkristalle in verschiedenen Phasen - sie zeigen Eigenschaften, die sich zwischen denen einer perfekten Kristallanordnung und

Mehr

Optische Aktivität α =δ k d 0

Optische Aktivität α =δ k d 0 Optische Aktivität α = δ 0 k d Flüssigkristalle Flüssigkristall Displays Flüssigkristalle in verschiedenen Phasen - sie zeigen Eigenschaften, die sich zwischen denen einer perfekten Kristallanordnung und

Mehr

Radiologie Modul I. Teil 1 Grundlagen Röntgen

Radiologie Modul I. Teil 1 Grundlagen Röntgen Radiologie Modul I Teil 1 Grundlagen Röntgen Teil 1 Inhalt Physikalische Grundlagen Röntgen Strahlenbiologie Technische Grundlagen Röntgen ROENTGENTECHNIK STRAHLENPHYSIK GRUNDLAGEN RADIOLOGIE STRAHLENBIOLOGIE

Mehr

Strahlenphysik Grundlagen

Strahlenphysik Grundlagen Dr. Martin Werner, 17.02.2010 Strahlentherapie und spezielle Onkologie Elektromagnetisches Spektrum aus Strahlentherapie und Radioonkologie aus interdisziplinärer Sicht, 5. Auflage, Lehmanns Media Ionisierende

Mehr

Strahlenschutzbelehrung

Strahlenschutzbelehrung Strahlenschutzbelehrung für Herr/Frau (nicht zutreffendes bitte durchstreichen) Name:... Vorname:... Geburtsdatum:... Beschäftigt in Arbeitsgruppe:... Bitte kreuzen Sie an, welche Dosimeter Sie benötigen:

Mehr

Strahlenschutz in der Feuerwehr

Strahlenschutz in der Feuerwehr in der Feuerwehr Wiederholung der Ausbildung zum A-Einsatz Einsatzgebiete Wahrnehmung Ladung der Strahlung Energie und biologische Wirkung Grenzwerte Einsatzgrundsätze Kontamination Ausblick Strahlungsarten

Mehr

Dosimetrie der ionisierenden Strahlungen

Dosimetrie der ionisierenden Strahlungen Dosimetrie der ionisierenden Strahlungen Entdeckung (Röntgenstrahlung, Radioaktivität usw.) Anwendung (Vorteile, positive Wirkungen) Dosimetrie (schädliche Folgen) 1 Das Abschätzen des Ausmasses der schädlichen

Mehr

Markus Drapalik. Universität für Bodenkultur Wien Institut für Sicherheits- und Risikowissenschaften

Markus Drapalik. Universität für Bodenkultur Wien Institut für Sicherheits- und Risikowissenschaften Praxisseminar Strahlenschutz Teil 2: Ionisierende Strahlung Markus Drapalik 14.03.2013 26.03.2013 Praxisseminar Strahlenschutz Teil 2: Ionisierende Strahlung 1 1 Inhalt Aufbau des Atoms Atomarer Zerfall

Mehr

FORTBILDUNG. Röntgendiagnostik. Strahlenschutz und Qualitätssicherung. Donnerstag, 13. Oktober 2016

FORTBILDUNG. Röntgendiagnostik. Strahlenschutz und Qualitätssicherung. Donnerstag, 13. Oktober 2016 0 FORTBILDUNG Röntgendiagnostik und Qualitätssicherung Donnerstag, 13. Oktober 2016 Kepler Universitätsklinikum GmbH Ausbildungszentrum am Med Campus VI Paula-Scherleitner-Weg 3 4020 Linz Thema: Physikalische

Mehr

Versuch O

Versuch O 1 Grundlagen Plancksches Wirkungsquantum Das Plancksche Wirkungsquantum gibt den Zusammenhang zwischen Energie und Frequenz wieder und verknüpft damit die Welleneigenschaft mit der Teilcheneigenschaft.

Mehr

Physikalische. Grundlagen. L. Kölling, Fw Minden

Physikalische. Grundlagen. L. Kölling, Fw Minden Physikalische Grundlagen L. Kölling, Fw Minden Radioaktivität kann man weder sehen, hören, fühlen, riechen oder schmecken. Daher muss sie der FA (SB) zumindest verstehen, um im Einsatzfall die erforderlichen

Mehr

Lösungen zu den Aufg. S. 363/4

Lösungen zu den Aufg. S. 363/4 Lösungen zu den Aufg. S. 363/4 9/1 Die gemessene Gegenspannung (s. Tab.) entspricht der max. kin. Energie der Photoelektronen; die Energie der Photonen = E kin der Elektronen + Austrittsarbeit ==> h f

Mehr

Strahlung und Strahlenschutz in den Physikalischen Praktika

Strahlung und Strahlenschutz in den Physikalischen Praktika Strahlung und Strahlenschutz in den Physikalischen Praktika Was ist Strahlung? Welche Gefahren entstehen durch Strahlung? Wie kann man sich vor Strahlung schützen? Was ist Strahlung Strahlung ist Transport

Mehr

Einführung Strahlenkunde/ Strahlenschutz in der Radiologie

Einführung Strahlenkunde/ Strahlenschutz in der Radiologie / CC6 Einführung Strahlenkunde/ Strahlenschutz in der Radiologie Jürgen Beuthan - Medizinische Physik und optische Diagnostik - Ziele des Strahlenschutzes Schutz von Leben, Gesundheit und Sachgütern vor

Mehr

Handout. Atomaufbau: Radioaktivität begleitet uns unser ganzes Leben Grundkenntnisse. Bauteile des Atoms: positiv geladen

Handout. Atomaufbau: Radioaktivität begleitet uns unser ganzes Leben Grundkenntnisse.  Bauteile des Atoms: positiv geladen www.sustainicum.at Radioaktivität begleitet uns unser ganzes Leben Grundkenntnisse Autor Ing. Mag.rer.nat. Ewald Grohs, Bakk.rer.nat. Institution, Month 013 Handout Radioaktivität

Mehr

Strahlung und Strahlenschutz in den Physikalischen Praktika

Strahlung und Strahlenschutz in den Physikalischen Praktika Strahlung und Strahlenschutz in den Physikalischen Praktika Was ist Strahlung? Welche Gefahren entstehen durch Strahlung? Wie kann man sich vor Strahlung schützen? Physikalisches Institut 1 Was ist Strahlung?

Mehr

Klausur -Informationen

Klausur -Informationen Klausur -Informationen Datum: 4.2.2009 Uhrzeit und Ort : 11 25 im großen Physikhörsaal (Tiermediziner) 12 25 ibidem Empore links (Nachzügler Tiermedizin, bitte bei Aufsichtsperson Ankunft melden) 11 25

Mehr

Biologische Wirkung ionisierender Strahlung

Biologische Wirkung ionisierender Strahlung Biologische Wirkung ionisierender Strahlung Bettina Dannheim Biologische Wirkung ionisierender Strahlung Natürliche und zivilisatorische Strahlenbelastung Biologische Wirkung ionisierender Strahlung Strahlenarten

Mehr

Einführung in die Quantenphysik

Einführung in die Quantenphysik Einführung in die Quantenphysik Klassische Optik Der lichtelektrische Effekt Effekte elektromagnetischer Strahlung Kopenhagen-Interpretation Elektronen Quantenphysik und klassische Physik Atomphysik Klassische

Mehr

5) Messung radioaktiver Strahlung (1)

5) Messung radioaktiver Strahlung (1) 5) Messung radioaktiver Strahlung (1) Registrierung von Wechselwirkungen zwischen Strahlung und Materie Universelles Prinzip: Messung der Ionisierungswirkung Messung der Ionisierung Messung der Dosis.

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #28 10/12/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Reichweite radioaktiver Strahlung Alpha-Strahlung: Wenige cm in Luft Abschirmung durch Blatt Papier,

Mehr

IV. Elektrizität und Magnetismus

IV. Elektrizität und Magnetismus IV. Elektrizität und Magnetismus IV.5 Elektromagnetische Wellen Physik für Mediziner 1 Elektromagnetische Wellen Physik für Mediziner 2 Wiederholung: Schwingkreis elektrische Feld im Kondensator wird periodisch

Mehr

Welche Aussage trifft zu? Schallwellen (A) sind elektromagnetische Wellen hoher Energie (B) sind infrarote, elektromagnetische Wellen (C) können sich im Vakuum ausbreiten (D) sind Schwingungen miteinander

Mehr

Strahlenwirkung und Strahlenschutz. Medizintechnik Bildgebende Verfahren

Strahlenwirkung und Strahlenschutz. Medizintechnik Bildgebende Verfahren Strahlenwirkung und Strahlenschutz Medizintechnik Bildgebende Verfahren Die Deutsche Röntgen-Gesellschaft hat festgestellt, dass die Hälfte der Röntgenaufnahmen in Deutschland überflüssig ist. aus: Strahlenthemen,

Mehr

Basiskenntnistest - Physik

Basiskenntnistest - Physik Basiskenntnistest - Physik 1.) Welche der folgenden Einheiten ist keine Basiseinheit des Internationalen Einheitensystems? a. ) Kilogramm b. ) Sekunde c. ) Kelvin d. ) Volt e. ) Candela 2.) Die Schallgeschwindigkeit

Mehr

Fortgeschrittene Experimentalphysik für Lehramtsstudierende. Teil II: Kern- und Teilchenphysik

Fortgeschrittene Experimentalphysik für Lehramtsstudierende. Teil II: Kern- und Teilchenphysik Fortgeschrittene Experimentalphysik für Lehramtsstudierende Markus Schumacher 30.5.2013 Teil II: Kern- und Teilchenphysik Prof. Markus Schumacher Sommersemester 2013 Kapitel 4: Zerfälle instabiler Kerne

Mehr

Dosimetrie der ionisierenden Strahlungen

Dosimetrie der ionisierenden Strahlungen Dosimetrie der ionisierenden Strahlungen Teilchenstrahlungen α, β -, β + n EMS γ, X 1 Physikalische Strahlendosimetrie: sie soll in den n an einer vorliegenden Stelle die absorbierte Energie bestimmen

Mehr

Strahlungsarten. Ionisierende Strahlung kann Schäden am Körper verursachen. Wie stark die Schäden sind, ist von verschiedenen Dingen abhängig:

Strahlungsarten. Ionisierende Strahlung kann Schäden am Körper verursachen. Wie stark die Schäden sind, ist von verschiedenen Dingen abhängig: Drei Arten von Strahlung: Information Ionisierende Strahlung kann Schäden am Körper verursachen. Wie stark die Schäden sind, ist von verschiedenen Dingen abhängig: Dauer der Bestrahlung Stärke der Bestrahlung

Mehr

Warum ist radioaktive Strahlung gefährlich? Wie wirkt radioaktive Strahlung?

Warum ist radioaktive Strahlung gefährlich? Wie wirkt radioaktive Strahlung? Warum ist radioaktive Strahlung gefährlich? Wie wirkt radioaktive Strahlung? Mozart-Schönborn-Gymnasium Würzburg März 2010 (Mai 2007) 1 Wie wird radioaktive Strahlung absorbiert? 2 Biologische Wirkung

Mehr

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 28. Atomphysik, Röntgenstrahlung (Fortsetzung: Röntgenröhre, Röntgenabsorption) 29. Atomkerne, Radioaktivität (Nuklidkarte, α-, β-, γ-aktivität, Dosimetrie)

Mehr

Therapie mit Strahlen: Wo bleiben Strahlen und Radioaktivität nach der Therapie?

Therapie mit Strahlen: Wo bleiben Strahlen und Radioaktivität nach der Therapie? Therapie mit Strahlen: Wo bleiben Strahlen und Radioaktivität nach der Therapie? Frank Zimmermann Klinik für Strahlentherapie und Radioonkologie Universitätsspital Basel Petersgraben 4 CH 4031 Basel radioonkologiebasel.ch

Mehr

Feldbegriff und Feldlinienbilder. Elektrisches Feld. Magnetisches Feld. Kraft auf Ladungsträger im elektrischen Feld

Feldbegriff und Feldlinienbilder. Elektrisches Feld. Magnetisches Feld. Kraft auf Ladungsträger im elektrischen Feld Feldbegriff und Feldlinienbilder Elektrisches Feld Als Feld bezeichnet man den Bereich um einen Körper, in dem ohne Berührung eine Kraft wirkt beim elektrischen Feld wirkt die elektrische Kraft. Ein Feld

Mehr

Ionisierende Strahlung

Ionisierende Strahlung Ionisierende Strahlung Eine gesunde Schilddrüse lagert Jod ein. Das wird in der Medizin verwendet: Man kann damit untersuchen, in welchen Bereichen der Schilddrüse viel und in welchen Bereichen wenig Jod

Mehr

Physik-Vorlesung. Radioaktivität.

Physik-Vorlesung. Radioaktivität. 3 Physik-Vorlesung. Radioaktivität. SS 16 2. Sem. B.Sc. Oec. und B.Sc. CH 5 Themen Aufbau der Atomkerns Isotope Zerfallsarten Messgrößen Strahlenschutz 6 Was ist Radioaktivität? Radioaktivität = Umwandlungsprozesse

Mehr

Strahlenschutz. Dr. Joachim Unger

Strahlenschutz. Dr. Joachim Unger Strahlenschutz Dr. Joachim Unger UNIVERSITÄTSMEDIZIN BERLIN Unterweisung nach 38 StrlSchV Personen, denen der Zutritt zu Kontrollbereichen erlaubt wird, sind vor dem erstmaligen Zutritt über die möglichen

Mehr

Kontrollaufgaben zur Optik

Kontrollaufgaben zur Optik Kontrollaufgaben zur Optik 1. Wie schnell bewegt sich Licht im Vakuum? 2. Warum hat die Lichtgeschwindigkeit gemäss moderner Physik eine spezielle Bedeutung? 3. Wie nennt man die elektromagnetische Strahlung,

Mehr

Radioaktivität. den 7 Oktober Dr. Emőke Bódis

Radioaktivität. den 7 Oktober Dr. Emőke Bódis Radioaktivität den 7 Oktober 2016 Dr. Emőke Bódis Prüfungsfrage Die Eigenschaften und Entstehung der radioaktiver Strahlungen: Alpha- Beta- und Gamma- Strahlungen. Aktivität. Zerfallgesetz. Halbwertzeit.

Mehr

Strahlenschutzkurs für Mediziner

Strahlenschutzkurs für Mediziner Strahlenschutzkurs für Mediziner von Uwe G. Schröder, Beate S. Schröder 2. akt. Aufl. Thieme 2007 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 13 139112 4 Zu Inhaltsverzeichnis schnell und portofrei

Mehr

= 6,63 10 J s 8. (die Plancksche Konstante):

= 6,63 10 J s 8. (die Plancksche Konstante): 35 Photonen und Materiefelder 35.1 Das Photon: Teilchen des Lichts Die Quantenphysik: viele Größen treten nur in ganzzahligen Vielfachen von bestimmten kleinsten Beträgen (elementaren Einheiten) auf: diese

Mehr

Licht als Teilchenstrahlung

Licht als Teilchenstrahlung Der Photoeffekt: die auf die Materie einfallende Strahlung löst ein Elektron aus. Es gibt eine Grenzfrequenz, welche die Strahlung haben muss, um das Atom gerade zu ionisieren. Licht als Teilchenstrahlung

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http://brinkmann-du.de Seite 25..203 Oberstufe: se und ausführliche Lösungen zur Klassenarbeit zur Elektrik und Kernphysik se: E Eine Glühlampe 4V/3W (4 Volt, 3 Watt) soll an eine Autobatterie

Mehr

Nuklidkarte. Experimentalphysik I/II für Studierende der Biologie und Zahnmedizin Caren Hagner V

Nuklidkarte. Experimentalphysik I/II für Studierende der Biologie und Zahnmedizin Caren Hagner V Z Nuklidkarte 1 N 2 Instabilität der Atomkerne: radioaktive Zerfälle Bekannteste Arten: α-zerfall: β-zerfall: γ-zerfall: Mutterkern Tochterkern + Heliumkern Mutterkern Tochterkern + Elektron + Neutrino

Mehr

Strahlenschutzunterweisung Praktikum

Strahlenschutzunterweisung Praktikum Strahlenschutzunterweisung Praktikum Inhalt Grundlagen Strahlung Aktivität Dosis Strahlenexpositionen externe Bestrahlungen Inkorporation Deterministische Schäden Stochastische Schäden Schutzmaßnahmen

Mehr

1.2 Grenzen der klassischen Physik Michael Buballa 1

1.2 Grenzen der klassischen Physik Michael Buballa 1 1.2 Grenzen der klassischen Physik 23.04.2013 Michael Buballa 1 1.2 Grenzen der klassischen Physik Die Konzepte klassischer Teilchen und Wellen haben ihren Ursprung in unserer Alltagserfahrung, z.b. Teilchen:

Mehr

Physik. Carl-von-Ossietzky-Gymnasium Bonn Schulinternes Curriculum. Jahrgangstufe 6. Jahrgangsstufe 8. Materialhinweise: Unterrichtsvorhaben:

Physik. Carl-von-Ossietzky-Gymnasium Bonn Schulinternes Curriculum. Jahrgangstufe 6. Jahrgangsstufe 8. Materialhinweise: Unterrichtsvorhaben: Jahrgangsstufe 8 Jahrgangstufe 6 Einführung in die Grundlagen des Faches Das Licht und der Schatten Temperatur und Energie Elektrische Stromkreise UV 5: Schall Impulse 1 (Klett-Verlag, Stuttgart) SchwerpunkteSach-,

Mehr

Aufgaben zum Wasserstoffatom

Aufgaben zum Wasserstoffatom Aufgaben zum Wasserstoffatom Hans M. Strauch Kurfürst-Ruprecht-Gymnasium Neustadt/W. Aufgabenarten Darstellung von Zusammenhängen, Abgrenzung von Unterschieden (können u.u. recht offen sein) Beantwortung

Mehr

Photonen in Astronomie und Astrophysik Sommersemester 2015

Photonen in Astronomie und Astrophysik Sommersemester 2015 Photonen in Astronomie und Astrophysik Sommersemester 2015 Dr. Kerstin Sonnabend I. EIGENSCHAFTEN VON PHOTONEN I.1 Photonen als elektro-magnetische Wellen I.3 Wechselwirkung mit Materie I.3.1 Streuprozesse

Mehr

bei Multiple-Choice-Fragen ist jeweils nur eine Antwort zutreffend

bei Multiple-Choice-Fragen ist jeweils nur eine Antwort zutreffend 0 /Serie 0 Qualifikationsverfahren Med. Praxisassistentinnen EFZ/ Med. Praxisassistenten EFZ BERUFSKENNTNISSE Pos. Diagnostische und therapeutische Prozesse Bildgebende Diagnostik Lösungsexemplar Zeit

Mehr

Quantenphysik in der Sekundarstufe I

Quantenphysik in der Sekundarstufe I Quantenphysik in der Sekundarstufe I Atome und Atomhülle Quantenphysik in der Sek I, Folie 1 Inhalt Voraussetzungen 1. Der Aufbau der Atome 2. Größe und Dichte der Atomhülle 3. Die verschiedenen Zustände

Mehr

Grundbausteine des Mikrokosmos (6) Vom Planetenmodell der Atome zum Bohrschen Atommodell

Grundbausteine des Mikrokosmos (6) Vom Planetenmodell der Atome zum Bohrschen Atommodell Grundbausteine des Mikrokosmos (6) Vom Planetenmodell der Atome zum Bohrschen Atommodell 1900: Entdeckung einer neuen Naturkonstanten: Plancksches Wirkungsquantum Was sind Naturkonstanten und welche Bedeutung

Mehr

Physik. Überblick über die Themen der Oberstufe. Unterrichtsvorhaben der Einführungsphase (EF) GRUNDKURS

Physik. Überblick über die Themen der Oberstufe. Unterrichtsvorhaben der Einführungsphase (EF) GRUNDKURS Physik Unterrichtsvorhaben der Einführungsphase (EF) GRUNDKURS Physik in Sport und Verkehr Wie lassen sich Bewegungen vermessen und analysieren? Bewegungsvorgänge im alltäglichen Leben Auf dem Weg in den

Mehr

UV STRAHLUNG VERSTEHEN, MESSEN, FILTERN

UV STRAHLUNG VERSTEHEN, MESSEN, FILTERN UV STRAHLUNG VERSTEHEN, MESSEN, FILTERN INHALT Was ist UV Strahlung Wie wirkt UV Strahlung auf den Menschen Was misst mein UV Messgerät Wie breitet sich Strahlung aus Wie kann ich Strahlung filtern WAS

Mehr

Physikalische und strahlenbiologische Grundlagen

Physikalische und strahlenbiologische Grundlagen OncoRay National Center for Radiation Research in Oncology, Dresden Biologische Wirkung ionisierender Strahlung: Physikalische und strahlenbiologische Grundlagen Prof. Dr. Wolfgang Dörr Arten der Strahlung

Mehr

Strahlenschutzbelehrung zum Umgang mit radioaktiven Quellen im Physikalischen Fortgeschrittenen-Praktikum. Strahlenart Versuch Energie

Strahlenschutzbelehrung zum Umgang mit radioaktiven Quellen im Physikalischen Fortgeschrittenen-Praktikum. Strahlenart Versuch Energie Strahlenschutzbelehrung zum Umgang mit radioaktiven Quellen im Physikalischen Fortgeschrittenen-Praktikum Strahlenarten im F.-Praktkum Strahlenart Versuch Energie α-teilchen (Energieverlust) E α < 6 MeV

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #42 am

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #42 am Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #42 am 11.07.2007 Vladimir Dyakonov Resonanz Damit vom Sender effektiv Energie abgestrahlt werden

Mehr

Strahlenschäden und Strahlenschutz

Strahlenschäden und Strahlenschutz 5A Strahlenschäden und Strahlenschutz 5A Quellen: Strahlenschäden und Strahlenschutz Physik 10, Geipel, Jäger, Rausch Natur und Technik, Cornelsen Wikipedia umweltlexikon-online.de 5A Aktivität A Strahlenschäden

Mehr

13. Elektromagnetische Wellen

13. Elektromagnetische Wellen 13. Elektromagnetische Wellen 13.1 Erzeugung elektromagnetischer Wellen 13.2 Eigenschaften elektromagnetischer Wellen 13.3 Ausbreitung elektromagnetischer Wellen 13.4 Reflexion und Brechung 13.5 Interferenz

Mehr

Strahlentherapie. Julia Tissen. Johannes Gutenberg Universität Mainz

Strahlentherapie. Julia Tissen. Johannes Gutenberg Universität Mainz Strahlentherapie Julia Tissen Seminar zum Physikalischen Praktikum für Fortgeschrittene Johannes Gutenberg Universität Mainz 22.11.2010 Strahlentherapie wird zur Tumorbekämpfung eingesetzt, wobei ionisierende

Mehr

Aktualisierung der Fachkunde / Kenntnisse im Strahlenschutz

Aktualisierung der Fachkunde / Kenntnisse im Strahlenschutz Aktualisierung der Fachkunde / Kenntnisse im Strahlenschutz Strahlenexposition und biologische Wirkungen REFERENT: Matthias Schneider THEMA: Aktualisierung Fachkunde / Kenntnisse im Strahlenschutz - Zahnmedizin

Mehr

Sonne. Sonne. Δ t A 1. Δ t. Heliozentrisches Weltbild. Die Keplerschen Gesetze

Sonne. Sonne. Δ t A 1. Δ t. Heliozentrisches Weltbild. Die Keplerschen Gesetze Seite 1 von 6 Astronomische Weltbilder und Keplersche Gesetze Heliozentrisches Weltbild Die Sonne steht im Mittelpunkt unseres Sonnensystems, die Planeten umkreisen sie. Viele Planeten werden von Monden

Mehr

Jetzt noch die Strahlung aus der Elektronenhülle. Hüllenstrahlung. Kein Radioaktiver Zerfall. Kapitel 4 1

Jetzt noch die Strahlung aus der Elektronenhülle. Hüllenstrahlung. Kein Radioaktiver Zerfall. Kapitel 4 1 Hüllenstrahlung Inhalt des 4.Kapitels Charakteristische Photonen- und Röntgenstrahlung - Röntgenfluoreszenz Augerelektronen Fluoreszenz- und Augerelektronenausbeute Bremsstrahlung Erzeugung von Röntgenstrahlung

Mehr

Contra. Pro. Strahlenschutz, Dosis und Risiko. Kernenergie vielleicht doch?

Contra. Pro. Strahlenschutz, Dosis und Risiko. Kernenergie vielleicht doch? Strahlenschutz, Dosis und Risiko Dr. Gerhard Frank KIT Universität des Landes Baden-Württemberg und nationales Großforschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Kernenergie vielleicht doch?

Mehr

Geozentrisches und heliozentrisches Weltbild. Das 1. Gesetz von Kepler. Das 2. Gesetz von Kepler. Das 3. Gesetz von Kepler.

Geozentrisches und heliozentrisches Weltbild. Das 1. Gesetz von Kepler. Das 2. Gesetz von Kepler. Das 3. Gesetz von Kepler. Geozentrisches und heliozentrisches Weltbild Geozentrisches Weltbild: Vertreter Aristoteles, Ptolemäus, Kirche (im Mittelalter) Heliozentrisches Weltbild: Vertreter Aristarch von Samos, Kopernikus, Galilei

Mehr

Dosimetrie. Wirkung ionisierender Strahlung Quantifizierung objektive Berichterstattung. Richard Bauer, JLU Gießen

Dosimetrie. Wirkung ionisierender Strahlung Quantifizierung objektive Berichterstattung. Richard Bauer, JLU Gießen Dosimetrie Wirkung ionisierender Strahlung Quantifizierung objektive Berichterstattung Richard Bauer, JLU Gießen Radioaktivität und ionisierende Strahlung wir können Hitze, Licht, Gerüche und Schmerz wahrnehmen...

Mehr

2. Der Aufbau der Atome wird mit dem Rutherford schen und dem Bohr schen Atommodellen beschrieben. Ordne die Aussagen zu und verbinde.

2. Der Aufbau der Atome wird mit dem Rutherford schen und dem Bohr schen Atommodellen beschrieben. Ordne die Aussagen zu und verbinde. Atommodelle 1. Vervollständige den Lückentext. Atome bestehen aus einer mit negativ geladenen und einem mit positiv geladenen und elektrisch neutralen. Die Masse des Atoms ist im konzentriert. Die Massenzahl

Mehr

Radioaktivität und Strahlenschutz. FOS: Energie von Strahlungsteilchen und Gammaquanten

Radioaktivität und Strahlenschutz. FOS: Energie von Strahlungsteilchen und Gammaquanten R. Brinkmann http://brinkmann-du.de Seite 1 25.11.2013 Radioaktivität und Strahlenschutz FOS: Energie von Strahlungsteilchen und Gammaquanten Energieeinheit Elektronenvolt (ev) Bekannte Energieeinheiten:

Mehr

Grundlagen der Quantentheorie

Grundlagen der Quantentheorie Grundlagen der Quantentheorie Ein Schwarzer Körper (Schwarzer Strahler, planckscher Strahler, idealer schwarzer Körper) ist eine idealisierte thermische Strahlungsquelle: Alle auftreffende elektromagnetische

Mehr

Physikalische Grundlagen zur Wärmegewinnung aus Sonnenenergie

Physikalische Grundlagen zur Wärmegewinnung aus Sonnenenergie 7 Physikalische Grundlagen zur Wärmegewinnung aus Sonnenenergie Umwandlung von Licht in Wärme Absorptions- und Emissionsvermögen 7.1 Umwandlung von Licht in Wärme Zur Umwandlung von Solarenergie in Wärme

Mehr

Schutz vor Schäden durch ionisierende Strahlen. radioaktiven Stoffen oder ionisierender Strahlung aus der zielgerichteten Nutzung bei Tätigkeiten

Schutz vor Schäden durch ionisierende Strahlen. radioaktiven Stoffen oder ionisierender Strahlung aus der zielgerichteten Nutzung bei Tätigkeiten Strahlenschutz genauer: Schutz vor Schäden durch ionisierende Strahlen noch genauer: Schutz von Mensch und Umwelt vor radioaktiven Stoffen oder ionisierender Strahlung aus der zielgerichteten Nutzung bei

Mehr

2. Kapitel Der Photoeffekt

2. Kapitel Der Photoeffekt 2. Kapitel Der Photoeffekt 2.1 Lernziele Sie wissen, was allgemein unter dem Begriff Photoeffekt zu verstehen ist. Sie können den inneren Photoeffekt vom äusseren unterscheiden. Sie können das Experiment

Mehr

Radioaktivität der Umwelt Lehrerinformation

Radioaktivität der Umwelt Lehrerinformation Lehrerinformation 1/11 Arbeitsauftrag Ziel Material Sozialform Zeit Der einleitende Text auf Seite 2 wird im Plenum gelesen und besprochen. Die weiteren Arbeitsblätter können gut als Partnerarbeit gelöst

Mehr

27. Wärmestrahlung. rmestrahlung, Quantenmechanik

27. Wärmestrahlung. rmestrahlung, Quantenmechanik 24. Vorlesung EP 27. Wärmestrahlung rmestrahlung, Quantenmechanik V. STRAHLUNG, ATOME, KERNE 27. Wärmestrahlung, Quantenmechanik Photometrie Plancksches Strahlungsgesetz Welle/Teilchen Dualismus für Strahlung

Mehr

biologische Wirkung ionisierender Strahlung

biologische Wirkung ionisierender Strahlung biologische Wirkung ionisierender Strahlung Jörn Frederik Gerchen [1] biologische Wirkung ionisierender Strahlung - physikalische Mechanismen - Wirkung auf Biomoleküle - Wirkung auf Zellen - Wirkung auf

Mehr

Wirkung von Strahlung auf den Menschen

Wirkung von Strahlung auf den Menschen Wirkung von Strahlung auf den Menschen A-, B- und Z-DNA in modellhafter Strukturdarstellung. Abbildung von Zephyris (Wikimedia Commons), lizensiert unter Creative Commons-Lizenz Namensnennung-Weitergabe

Mehr

Skript zum Masterpraktikum. Studiengang: Radiochemie. Radioaktivität und Strahlenschutz

Skript zum Masterpraktikum. Studiengang: Radiochemie. Radioaktivität und Strahlenschutz Skript zum Masterpraktikum Studiengang: Radiochemie Radioaktivität und Strahlenschutz Stand: Sommersemester 2010 1 Gliederung 1. Einführung 1.1. Grundlagen zur Radioaktivität 1.2. Messgrößen der Radioaktivität

Mehr

Einführung in die Quantentheorie der Atome und Photonen

Einführung in die Quantentheorie der Atome und Photonen Einführung in die Quantentheorie der Atome und Photonen 23.04.2005 Jörg Evers Max-Planck-Institut für Kernphysik, Heidelberg Quantenmechanik Was ist das eigentlich? Physikalische Theorie Hauptsächlich

Mehr

Fachgespräch AKW-Rückbau - Mammutaufgabe und Konfliktherd. Vortrag Strahlungsgefährdung im Vergleich

Fachgespräch AKW-Rückbau - Mammutaufgabe und Konfliktherd. Vortrag Strahlungsgefährdung im Vergleich Fachgespräch AKW-Rückbau - Mammutaufgabe und Konfliktherd Vortrag Strahlungsgefährdung im Vergleich 7. November 2016 im Deutschen Bundestag, Berlin Christian Küppers Öko-Institut e.v., Darmstadt Überblick

Mehr

22. Wärmestrahlung. rmestrahlung, Quantenmechanik

22. Wärmestrahlung. rmestrahlung, Quantenmechanik 22. Wärmestrahlung rmestrahlung, Quantenmechanik Plancksches Strahlungsgesetz: Planck (1904): der Austausch von Energie zwischen dem strahlenden System und dem Strahlungsfeld kann nur in Einheiten von

Mehr

43. Strahlenschutz und Dosimetrie. 36. Lektion Wechselwirkung und Reichweite von Strahlung

43. Strahlenschutz und Dosimetrie. 36. Lektion Wechselwirkung und Reichweite von Strahlung 43. Strahlenschutz und Dosimetrie 36. Lektion Wechselwirkung und Reichweite von Strahlung Lernziel: Die Wechselwirkung von radioaktiver Strahlung (α,β,γ( α,β,γ) ) ist unterschiedlich. Nur im Fall von α-

Mehr

Grundbausteine des Mikrokosmos (7) Wellen? Teilchen? Beides?

Grundbausteine des Mikrokosmos (7) Wellen? Teilchen? Beides? Grundbausteine des Mikrokosmos (7) Wellen? Teilchen? Beides? Experimentelle Überprüfung der Energieniveaus im Bohr schen Atommodell Absorbierte und emittierte Photonen hν = E m E n Stationäre Elektronenbahnen

Mehr

9.3 Der Compton Effekt

9.3 Der Compton Effekt 9.3 Der Compton Effekt Im Kapitel Photoelektrischer Effekt wurde die Wechselwirkung von Licht mit Materie untersucht. Dabei wird Licht einer bestimmten Wellenlänge beim Auftreffen auf eine lichtempfindliche

Mehr

(in)stabile Kerne & Radioaktivität

(in)stabile Kerne & Radioaktivität Übersicht (in)stabile Kerne & Radioaktivität Zerfallsgesetz Natürliche und künstliche Radioaktivität Einteilung der natürlichen Radionuklide Zerfallsreihen Zerfallsarten Untersuchung der Strahlungsarten

Mehr

Elektromagnetische Schwingungen und Wellen

Elektromagnetische Schwingungen und Wellen Elektromagnetische Schwingungen und Wellen Größen des Wechselstromes u max U u t u Momentanwert u max Amplitude U Effektivwert T Periodendauer f Frequenz T Der Wechselstrom ist eine elektrische Schwingung.

Mehr

Klausurtermin: Nächster Klausurtermin: September :15-11:15

Klausurtermin: Nächster Klausurtermin: September :15-11:15 Klausurtermin: 10.02.2017 Gruppe 1: 9:15 11:15 Uhr Gruppe 2: 11:45-13:45 Uhr Nächster Klausurtermin: September 2017 9:15-11:15 Fragen bitte an: Antworten: t.giesen@uni-kassel.de direkt oder im Tutorium

Mehr

2 Einführung in die physikalischen Grundlagen

2 Einführung in die physikalischen Grundlagen 16 Elektromagnetische er im Alltag LfU 2 Einführung in die physikalischen Grundlagen 2.1 Elektrische und magnetische er Ein elektrisches entsteht überall dort, wo auf Grund getrennter Ladungsträger eine

Mehr

28. Einsatzleiterseminar - Hafnersee Strahlenbelastung und Risiko für Einsatzkräfte

28. Einsatzleiterseminar - Hafnersee Strahlenbelastung und Risiko für Einsatzkräfte 28. Einsatzleiterseminar - Hafnersee Strahlenbelastung und Risiko für Einsatzkräfte DI Oliver Unterweger Vortragender DI Oliver Unterweger Behördlich anerkannter Medizinphysiker. Allgemein beeideter und

Mehr

Was ist Radioaktivität? Und warum ist sie schädlich?

Was ist Radioaktivität? Und warum ist sie schädlich? Was ist Radioaktivität? Und warum ist sie schädlich? Das Verhalten der Atomkerne, bei ihrem Zerfall Strahlung auszusenden, nennt man Radioaktivität. Die freiwerdende Energie wird als ionisierende Strahlung

Mehr

Radioaktivität. Bildungsstandards Physik - Radioaktivität 1 LEHRPLANZITAT. Das radioaktive Verhalten der Materie:

Radioaktivität. Bildungsstandards Physik - Radioaktivität 1 LEHRPLANZITAT. Das radioaktive Verhalten der Materie: Bildungsstandards Physik - Radioaktivität 1 Radioaktivität LEHRPLANZITAT Das radioaktive Verhalten der Materie: Ausgehend von Alltagsvorstellungen der Schülerinnen und Schüler soll ein grundlegendes Verständnis

Mehr

CMB Echo des Urknalls. Max Camenzind Februar 2015

CMB Echo des Urknalls. Max Camenzind Februar 2015 CMB Echo des Urknalls Max Camenzind Februar 2015 Lemaître 1931: Big Bang des expandierenden Universums Big Bang : Photonenhintergrund + Neutrinohintergrund 3-Raum expandiert: dx a(t) dx ; Wellenlängen

Mehr

Das Trommelfell ist eine. Die Ohrmuschel fängt. a) dünne Membran. b) schmale Öffnung. c) flache Neigung.

Das Trommelfell ist eine. Die Ohrmuschel fängt. a) dünne Membran. b) schmale Öffnung. c) flache Neigung. Die Ohrmuschel fängt a) Infrarotwellen ein. b) Schallwellen ein. c) ultraviolette Wellen ein. Das Trommelfell ist eine a) dünne Membran. b) schmale Öffnung. c) flache Neigung. Hammer, Amboss und Steigbügel

Mehr

FOS: Radioaktivität und Strahlenschutz. Chemische Elemente und ihre kleinsten Teilchen

FOS: Radioaktivität und Strahlenschutz. Chemische Elemente und ihre kleinsten Teilchen R. Brinkmann http://brinkmann-du.de Seite 5..03 Chemische Elemente FOS: Radioaktivität und Strahlenschutz Chemische Elemente und ihre kleinsten Teilchen Der Planet Erde besteht aus 9 natürlich vorkommenden

Mehr

Hessisches Ministerium für Umwelt, Klimaschutz, Landwirtschaft und Verbraucherschutz Das 10 µsv Konzept: Gibt es eine ungefährliche Dosis?

Hessisches Ministerium für Umwelt, Klimaschutz, Landwirtschaft und Verbraucherschutz Das 10 µsv Konzept: Gibt es eine ungefährliche Dosis? Hessisches Ministerium für Umwelt, Klimaschutz, Landwirtschaft und Verbraucherschutz Das 10 µsv Konzept: Gibt es eine ungefährliche Dosis? 2. Informationsforum zur Stilllegung und zum Abbau des Kernkraftwerks

Mehr

Äußerer lichtelektrischer Effekt (Äußerer Fotoeffekt; HALLWACHS-Effekt)

Äußerer lichtelektrischer Effekt (Äußerer Fotoeffekt; HALLWACHS-Effekt) Äußerer lichtelektrischer Effekt (Äußerer Fotoeffekt; HALLWACHS-Effekt) Experiment 1: Bestrahlung einer elektrisch geladene Zinkplatte mit Licht Rotlichtlampe; positive Ladung Quecksilberdampflampe; positive

Mehr