Mathematische Probleme, SS 2016 Freitag $Id: convex.tex,v /05/13 14:42:55 hk Exp $

Größe: px
Ab Seite anzeigen:

Download "Mathematische Probleme, SS 2016 Freitag $Id: convex.tex,v /05/13 14:42:55 hk Exp $"

Transkript

1 $Id: convex.tex,v /05/3 4:42:55 hk Exp $ 3 Konvexgeometrie 3. Konvexe Polyeder In der letzten Sitzung haben wir begonnen uns mit konvexen Polyedern zu befassen, diese sind die Verallgemeinerung der ebenen n-ecke auf den dreidimensionalen Raum. Die Kanten eines n-ecks in der Ebene entsprechen in dieser Deutung den Flächen eines Polyeders im Raum und wir wollen jetzt auch den Begriff der Innenwinkel von n-ecken auf die dreidimensionale Situation übertragen. Die Innenwinkel eines n-ecks sind Winkel zwischen seinen Kanten und als Innenwinkel eines dreidimensionalen Polyeders verwendet man entsprechend die Winkel zwischen seinen Randflächen. Dabei ist immer derjenige der möglichen vier Winkel gemeint der das Polyeder enthält. Manchmal werden die Winkel zwischen den Randflächen auch als die Diederwinkel des Polyeders bezeichnet, wir sprechen meist einfach von Winkeln. f 2 θ e f e g 2 A M B θ l g Winkel zwischen Ebenen Querschnitt Mittelsenkrechte Hat man zwei Ebenen f, f 2 die sich in einer Geraden l schneiden und will den Winkel θ zwischen f und f 2 bestimmen, so können wir f, f 2 mit einer auf f und f 2 senkrechten Ebene e schneiden, in e wird e l dann ein Punkt in dem sich die beiden Geraden g = e f und g 2 = e f 2 schneiden und der Winkel θ ist dann der Winkel zwischen g und g 2. Damit sind die räumlichen Winkel auf ebene Winkel zurückgeführt. Will man diesen Mechanismus verwenden so braucht man nur noch eine Methode, zu entscheiden ob zwei Ebenen senkrecht aufeinander stehen. Hierzu beachte zunächst das zwei nicht parallele Ebenen e, f genau dann senkrecht aufeinander stehen wenn es eine Gerade l in f gibt die senkrecht auf e steht, es reicht also eine Ebene und eine Gerade als senkrecht zu erkennen. Will man sogar wie oben eine Ebene e finden die auf zwei nicht parallelen Ebenen f und f 2 senkrecht ist, so muss diese Ebene e also auf der Schnittgeraden l = f f 2 senkrecht sein. 0-

2 Will man schließlich erkennen ob eine Ebene e senkrecht auf einer Geraden l ist, so können wir hierzu die räumlichen Mittelsenkrechten verwenden. Sind A, B zwei verschiedene Punkte im Raum, so bildet die Menge aller Punkte die von A und B denselben Abstand haben eine Ebene nämlich die auf AB senkrechte Ebene durch den Mittelpunkt M der Strecke AB, dies kann man genau wie im zweidimensionalen Fall einsehen. Haben wir also eine Gerade l und eine Ebene e und wollen einsehen das l senkrecht auf e ist, so müssen wir nur zwei Punkte A, B l und drei nicht kollineare Punkte C, C 2, C 3 e mit AC i = BC i für i =, 2, 3 finden, denn dann liegen C, C 2, C 3 auf der Mittelsenkrechten von AB und diese ist damit gleich e. E D D E C F A Standardsimplex B A θ M Querschnitt F Wir wollen uns ein Beispiel anschauen. Wir starten mit einem Würfel W der Kantenlänge a > 0. Sei A eine Ecke von W und seien B, C, D die drei mit A benachtbarten Ecken von W, d.h. diejenigen die mit A durch eine Kante von W verbunden sind. Die konvexe Hülle S der Punkte A, B, C, D ist dann ein Simplex aber kein Tetraeder. Wir wollen den Winkel θ zwischen der unteren Fläche ABC von S und der diagonalen Fläche BCD von S bestimmen. Wollen wir dem obigen Schema folgen so benötigen wir zunächst eine Ebene e die senkrecht auf ABC und BCD ist und hierzu verwenden wir die Ebene e die das Rechteck AF ED enthält wobei EF die AD gegenüberliegende Kante von W ist. Die beiden Ebenen ABC und BCD schneiden sich in der Diagonale BC des Quadrats ABF C und wir behaupten das diese senkrecht auf e ist. Da BC in der Fläche ABF C von W liegt ist AD senkrecht auf BC und da die beiden Diagonalen eines Quadrats senkrecht aufeinander stehen ist auch AF senkrecht auf BC. Damit ist e senkrecht auf BC und damit auch auf ABC und BCD. Nun ist e W ein Rechteck mit AD = a und AF = 2 a. Weiter schneiden sich die beiden Diagonalen eines Quadrats in ihrem gemeinsamen Mittelpunkt, d.h. BCD e läuft durch den Mittelpunkt M von AF und durch D, der Winkel θ ist also der Winkel des Dreiecks AMD 0-2

3 bei M. Da dieses in A rechtwinklig ist folgt tan θ = AD AM = 2 und somit cos θ = + tan 2 θ =. 3 Damit haben wir ( ) θ = arccos 3 54, 74. Alternativ kann man den Winkel auch mit Methoden der Vektorrechnung berechnen, schreiben wir die beiden Ebenen e, e 2 in Hessescher Normalform mit Normalenvektoren n, n 2 so ist der Winkel zwischen e und e 2 gleich dem Winkel zwischen den Normalenvektoren n und n 2. Allgemeiner kann man auch Vielfache der Normalenvektoren nehmen da dies keinen Einfluss auf den Winkel hat. In unserem Beispiel hat ABC den Normalenvektor n = (0, 0, ) und der Normalenvektor auf BCD steht senkrecht auf C B = a(,, 0) und D B = a(, 0, ). Dabei haben wir das Koordinatensystem mit zum Würfel passenden Koordinatenachsen gewählt. Als nicht normierten Normalenvektor können wir das Vektorprodukt n 2 = verwenden und es wird wieder 0 0 = cos θ = n n 2 n n 2 = 3. Wir wollen hier nur einen allgemeinen, und nicht so offensichtlichen, Satz über konvexe Polyeder beweisen, die sogenannte eulersche Polyederformel. Für den Beweis dieses Satzes ist ein kleiner Hilfsbegriff nützlich. Ein polyedrisches Netz im R 2 ist eine endliche, nicht leere Menge Σ von Teilmengen des R 2 mit den folgenden drei Eigenschaften:. Jedes A Σ ist ein n-eck für ein n N mit n Sind A, B Σ mit A B, so ist A B entweder leer, oder eine gemeinsame Ecke von A und B oder eine gemeinsame Kante von A und B. 3. Die Vereinigung M := Σ R 2 ist zusammenhängend und der Rand M ist ein überschneidungsfreier Kantenzug bestehend aus Seiten der Elemente von Σ. Polyedrisches Netz Kein Netz Kein Netz 0-3

4 Dabei kann die Zahl n im ersten Punkt von A abhängen, muss also nicht immer denselben Wert haben. Die Bedingung an den Rand von M verbietet Netze mit Löchern oder aus mehreren Stücken zusammengesetzte Netze wie die beiden obigen Beispiele. Haben wir ein konvexes Polyeder P R 3, so können wir aus diesem eine Fläche entfernen und den verbleibenden Teil des Randes in die Ebene aufklappen, dabei veränderen sich alle metrischen Werte wie Winkel und Flächeninhalte aber die kombinatorische Struktur des Randes bleibt erhalten. Auf diese Weise wird aus dem Polyeder P ein polyedrisches Netz. Führen wir diese Konstruktion für Tetraeder, Würfel und Oktaeder durch, so ergeben sich beispielsweise die folgenden polyedrischen Netze: Α 4 Α 3 Α 3 Α 5 Α7 Α 2 2 Α 3 4 Α5 Α 2 Α 6 Α Α Aufgeklapptes Tetraeder Aufgeklappter Würfel Aufgeklapptes Oktaeder Die eulersche Polyederformel besagt das in einem konvexen Polyeder P im R 3 mit e Ecken, k Kanten und f Flächen stets e k + f = 2 gilt. Entfernen wir eine Fläche von P und klappen den Rest zu einem polyedrischen Netz Σ auf, so sollte in Σ die Zahl der Ecken minus die Zahl der Kanten plus die Zahl der n-ecke also gleich Eins sein und wir werden die eulersche Polyederformel beweisen indem wir diese entsprechende Aussage über polyedrische Netze nachweisen. Satz 3.2 (Die eulersche Polyederformel) Sei P R 3 ein konvexer Polyeder mit f Flächen, k Kanten und e Ecken. Dann gilt die sogenannte eulersche Polyederformel e k + f = 2. Beweis: Wir teilen den Beweis in mehrere Schritte auf. (Schritt ) Sei Σ ein nur aus Dreiecken bestehendes polyedrisches Netz im R 2 mit f Dreiecken, k Kanten und e Ecken. Dann gilt e k + f =. Diese Behauptung beweisen wir durch Induktion nach f. Im Induktionsanfang f = besteht Σ nur aus einem einzigen Dreieck und damit sind e = 3, k = 3 und f =, also e k + f =. Nun sei sei f N mit f 2 und für jedes nur aus Dreiecken bestehende polyedrische Netz Σ im R 2 mit Σ < f gelte die Behauptung. Sei Σ jetzt ein aus f Dreiecken bestehendes polyedrisches Netz im R 2 mit k Kanten und e Ecken. Sei M = Σ. Da der Rand M aus mindestens einer Kante besteht, gibt es ein Σ das mindestens eine Kante auf M hat. Wären alle drei Kanten von in M, so kann M nur aus diesen drei Kanten bestehen und es ist Σ = {}, im Widerspruch zu Σ = f >. Es können also zwei verschiedene Fälle auftreten. 0-4

5 Fall (.a) Fall (.b) Fall (2) Fall. Genau eine Kante von liegt auf dem Rand M. Damit erhalten wir eine weitere Fallunterscheidung. Fall.a. Zunächst nehmen wir an das die dritte Ecke v von auch auf M liegt. Dann zerfällt Σ\{} = Σ Σ in zwei nur aus Dreiecken bestehende polyedrische Netze Σ, Σ im R 2 mit Σ, Σ < f, die sich in der Ecke v treffen. Bezeichnet e, k, f und e, k, f die Zahl der Ecken, Kanten und Dreiecke in Σ und Σ, so haben wir nach unserer Induktionsannahme e k + f = e k + f =. Nun gelten e = e + e, da die Ecke v in Σ und Σ vorkommt, sowie k = k + k + und f = f + f +. Damit ist auch e k + f = e k + f + e k + f =. Fall.b. Die dritte Ecke von liegt nicht auf dem Rand M. Dann ist Σ := Σ\{} ein nur aus Dreiecken bestehendes polyedrisches Netz im R 2 mit e = e Ecken, k := k Kanten und f := Σ = f < f Dreiecken, also ist nach unserer Induktionsannahme e k + f =, und somit auch e k + f = e k + f =. Damit ist der erste Fall vollständig behandelt. Fall 2. Genau zwei der Kanten von sind in M. Dann ist Σ := Σ\{} wieder ein nur aus Dreiecken bestehendes polyedrisches Netz im R 2 mit f = f Dreiecken, k = k 2 Kanten und e = e Ecken. Nach unserer Induktionsannahme ist damit e k + f = e k + f =, und die Behauptung ist auch in diesem Fall bewiesen. Per vollständiger Induktion ist Schritt () damit vollständig bewiesen. (Schritt 2) Ist Σ ein polyedrisches Netz im R 2 mit f Elementen, k Kanten und e Ecken, so gilt e k + f =. Für jedes A Σ sei n(a) die Anzahl der Ecken von A und setze n(σ) := A Σ (n(a) 3). Wir beweisen die Behauptung dann durch Induktion nach n(σ). Ist Σ ein polyedrisches Netz im R 2 mit n(σ) = 0, so besteht Σ nur aus Dreiecken und die Behauptung gilt nach Schritt (). Nun sei n N mit n und für jedes polyedrische Netz Σ im R 2 mit n(σ) = n gelte die Behauptung. Sei Σ ein polyedrisches Netz im R 2 mit n(σ) = n > 0. Dann gibt es ein A Σ das ein m-eck für ein m 4 ist. Dann können 0-5

6 wir A = A A in ein Dreieck A und ein (m )-Eck A zerlegen und erhalten ein neues polyedrisches Netz Σ := (Σ\{A}) {A, A } mit f := Σ = f + das k = k + Kanten und e = e Ecken hat. Weiter ist n(σ ) = n(σ) (n(a) 3) + (n(a ) 3) + (n(a ) 3) = n(σ) m + m = n, also gilt nach unserer Induktionsannahme = e k +f = e k +f. Per vollständiger Induktion ist Schritt (2) damit vollständig bewiesen. (Schritt 3) Sei schließlich P R 3 ein konvexer Polyeder mit e Ecken, k Kanten und f Flächen. Durch Aufklappen dieses Polyeders erhalten wir ein polyedrisches Netz Σ im R 2 mit f Elementen, k Kanten und e Ecken. Nach Schritt (2) gilt somit e k + f = e k + (f ) + = Die platonischen Körper Wir hatten bereits bemerkt das die konvexen Polyeder im R 3 in gewissen Sinne die dreidimensionale Version der konvexen n-ecke in der Ebene sind. Ein besonders regelmäßiger Typ eines konvexen n-ecks waren dabei die gleichseitigen n-ecke bei denen alle Kanten dieselben Länge haben. Es gibt keine kanonische Verallgemeinerung gleichseitiger n-ecke zu einem dreidimesionalen Begriff, in unserer Analogie entsprechen die Kanten eines n-ecks den Seitenflächen eines konvexen Polyeders, für die Länge einer Kante gibt es aber keine direkte Entsprechung. Im Laufe der Zeit wurden verschiedene Typen besonders regelmäßiger konvexer Polyeder eingeführt. Eine Möglichkeit ist es zu fordern das die Seitenflächen möglichst regelmäßig sind, und es entsteht der Begriff der sogenannten Johnson-Polyeder. Definition 3.3 (Johnson Polyeder) Ein Johnson-Polyeder ist ein konvexer Polyeder im R 3 dessen Flächen reguläre n-ecke sind. Dabei wird n-eck als Name verwendet, es ist kein fixiertes n gemeint. Starten wir etwa mit einem Quadrat in einer Ebene, so können wir nach Aufgabe (8) einen Punkt außerhalb dieser Ebene finden dessen Abstand zu allen vier Ecken des Quadrats gleich der Kantenlänge des Quadrats ist, bilden wir also die konvexe Hülle unseres Quadrats und dieses neuen Punkts so entsteht eine Pyramide als ein Johnson-Polyeder mit vier gleichseitigen Dreiecken und einem Quadrat als Seitenflächen. Unter den gleichseitigen n-ecken gibt es den speziellen Typ der regulären n-ecke bei denen auch noch alle Innenwinkel gleich sind. Bei diesen liegen alle Ecken nach Aufgabe (5) auf einem Kreis und durch Drehungen um den Mittelpunkt dieses Kreises können wir jede Ecke des n-ecks in jede andere überführen. Die Ecken eines regulären n-ecks sehen also in gewissen Sinne alle gleich aus. Entsprechend gibt es auch unter den Johnson-Polyedern solche bei denen alle Ecken gleich aussehen, allerdings kann auch 0-6

7 dies im Raum auf verschiedene Weisen interpretiert werden. Die wohl einschränkenste Interpretation führt auf den Begriff eines platonischen Körpers. Definition 3.4 (Platonische Körper) Seien n, m N mit n, m 3. Ein platonischer Körper von Typ (n, m) ist ein konvexer Polyeder P R 3 mit den folgenden beiden Eigenschaften: (a) Jede Fläche von P ist ein reguläres n-eck. (b) In jeder Ecke von P treffen genau m Flächen zusammen. Wir kennen auch bereits einige Beispiele platonischer Körper. Ein Tetraeder besteht aus f = 4 gleichseitigen Dreiecken und in jeder Ecke des Tetraeders treffen drei von diesen aufeinander, der Tetraeder ist also ein platonischer Körper von Typ (3, 3). Beim Würfel haben wir f = 6 Quadrate, also reguläre Vierecke, und in jeder Ecke des Würfels treffen drei dieser Quadrate zusammen, der Würfel ist also ein platonischer Körper von Typ (4, 3). Schließlich hatten wir auch noch das aus f = 8 gleichseitigen Dreiecken gebildete Oktaeder und in diesem treffen in jeder Ecke vier dieser Dreiecke zusammen, der Oktaeder ist also ein platonischer Körper von Typ (3, 4). 0-7

Über die regelmäßigen Platonischen Körper

Über die regelmäßigen Platonischen Körper Hermann König, Mathematisches Seminar Studieninformationstage an der Universität Kiel Über die regelmäßigen Platonischen Körper Winkelsumme im n-eck Zerlegung eines ebenen n-ecks in (n-2) Dreiecke, oben

Mehr

2.4A. Reguläre Polyeder (Platonische Körper)

2.4A. Reguläre Polyeder (Platonische Körper) .A. Reguläre Polyeder (Platonische Körper) Wie schon in der Antike bekannt war, gibt es genau fünf konvexe reguläre Polyeder, d.h. solche, die von lauter kongruenten regelmäßigen Vielecken begrenzt sind:

Mehr

Darstellung dreidimensionaler Figuren in der Ebene. Schrägbild

Darstellung dreidimensionaler Figuren in der Ebene. Schrägbild Mathematik Bl Darstellung dreidimensionaler Figuren in der Ebene Schrägbild Das Bild bei einer schrägen Parallelprojektion heisst Schrägbild und wird durch folgende Merkmale bestimmt: - Zur Zeichenebene

Mehr

Tag der Mathematik 2013

Tag der Mathematik 2013 Tag der Mathematik 2013 Gruppenwettbewerb Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind nicht zugelassen. Teamnummer Die folgende

Mehr

Körper zum Selberbauen Polydron

Körper zum Selberbauen Polydron Körper zum Selberbauen Polydron Was versteht man unter Polydron? Polydron ist ein von Edward Harvey erfundenes intelligentes Spielzeug, mit dem man verschiedene geometrische Figuren bauen kann. Es ist

Mehr

Sekundarschulabschluss für Erwachsene

Sekundarschulabschluss für Erwachsene SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2011 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

Übersicht Analytische Geometrie Grundkurs bis zur 4 Klausur Q1

Übersicht Analytische Geometrie Grundkurs bis zur 4 Klausur Q1 Übersicht Analytische Geometrie Grundkurs bis zur 4 Klausur Q1 F Vektorrechnung F1 Verschiebungen durch Vektoren sowie Punkte im Raum durch Ortsvektoren und Vektorketten beschreiben und damit realitätsnahe

Mehr

Oktaeder. Bernhard Möller. 22. Dezember 2010

Oktaeder. Bernhard Möller. 22. Dezember 2010 Oktaeder Bernhard Möller. Dezember 00 Ein Oktaeder ist ein regelmäßiges Polyeder, dessen Oberfläche aus acht kongruenten, gleichseitigen Dreiecken besteht. Jedes Oktaeder kann einem Würfel so einbeschrieben

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

Erweiterung: Flächeninhalt mit Vorzeichen. a b, P, Q, R gegen Uhrzeigersinn a b, P, Q, R im Uhrzeigersinn

Erweiterung: Flächeninhalt mit Vorzeichen. a b, P, Q, R gegen Uhrzeigersinn a b, P, Q, R im Uhrzeigersinn Flächeninhalte Flächeninhalt eines Dreiecks: R A(PQR)= 1 2 = 1 2 a b sin α a b P b α a c Q Erweiterung: Flächeninhalt mit Vorzeichen A(PQR)= 1 2 1 2 a b, P, Q, R gegen Uhrzeigersinn a b, P, Q, R im Uhrzeigersinn.

Mehr

2 Eulersche Polyederformel und reguläre Polyeder

2 Eulersche Polyederformel und reguläre Polyeder 6 2 Eulersche Polyederformel und reguläre Polyeder 2.1 Eulersche Polyederformel Formal besteht ein Graph aus einer Knotenmenge X und einer Kantenmenge U. Jede Kante u U ist eine zweielementige Teilmenge

Mehr

Raum- und Flächenmessung bei Körpern

Raum- und Flächenmessung bei Körpern Raum- und Flächenmessung bei Körpern Prismen Ein Prisma ist ein Körper, dessen Grund- und Deckfläche kongruente Vielecke sind und dessen Seitenflächen Parallelogramme sind. Ist der Winkel zwischen Grund-

Mehr

Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte April 2008

Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte April 2008 Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte April 8 Zusammenfassung IC Il Corso Advanzato I. Besondere Punkte, Geraden und Ebenen 1. Besondere Ebenen Koordinatenebenen: Wie in dem konkretes

Mehr

Geometrie Modul 4b WS 2015/16 Mi HS 1

Geometrie Modul 4b WS 2015/16 Mi HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Tag der Mathematik 2007

Tag der Mathematik 2007 Tag der Mathematik 2007 Gruppenwettbewerb Einzelwettbewerb Speed-Wettbewerb Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind

Mehr

Fußbälle, platonische und archimedische Körper

Fußbälle, platonische und archimedische Körper Fußbälle, platonische und archimedische Körper Prof. Dr. Wolfram Koepf http://www.mathematik.uni-kassel.de/~koepf Was ist ein Fußball? Sepp Herberger: Der Ball ist rund. Ist also ein Fußball eine Kugel?

Mehr

Raumgeometrie - gerade Pyramide

Raumgeometrie - gerade Pyramide 1.0 Das Quadrat ABCD mit der Seitenlänge 7 cm ist Grundfläche einer geraden Pyramide ABCDS mit der Höhe h = 8 cm. S ist die Pyramidenspitze. 1.1 Fertige ein Schrägbild der Pyramide ABCDS an. 1.2 Berechne

Mehr

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung Herzlich willkommen zur der Um sich schnell innerhalb der ca. 350.000 Mathematikaufgaben zu orientieren, benutzen Sie unbedingt das Lesezeichen Ihres Acrobat Readers: Das Icon finden Sie in der links stehenden

Mehr

Geometrie. Homepage zur Veranstaltung: Lehre Geometrie

Geometrie. Homepage zur Veranstaltung:  Lehre Geometrie Geometrie 4.1 Geometrie Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 4.2 Inhaltsverzeichnis Geometrie 1 Axiome der Elementargeometrie 2 Kongruenzabbildungen 3 Längen-,

Mehr

Mathematik I Prüfung für den Übertritt aus der 8. Klasse

Mathematik I Prüfung für den Übertritt aus der 8. Klasse Aufnahmeprüfung 015 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 8. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle

Mehr

3. Mathematikschulaufgabe

3. Mathematikschulaufgabe Arbeitszeit 40min 1.0 Gegeben sind die Punkte A (-I1) und B (6I-1), sowie die Gerade g mit der Gleichung y = 0,5x + 3. Führe die folgenden Berechnungen jeweils auf zwei Stellen gerundet aus. 1.1 Berechne

Mehr

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel Lösungen Übung 7 Aufgabe 1. Skizze (mit zusätzlichen Punkten): Die Figur F wird begrenzt durch die Strecken AB und BC und den Kreisbogen CA auf l. Wir werden die Bilder von AB, BC und CA unter der Inversion

Mehr

Vektorgeometrie - Teil 1

Vektorgeometrie - Teil 1 Vektorgeometrie - Teil 1 MNprofil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 14. März 2016 Inhaltsverzeichnis 1 Einführung & die analytische Darstellung der

Mehr

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.)

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.) 3. Untergruppen 19 3. Untergruppen Nachdem wir nun einige grundlegende Gruppen kennengelernt haben, wollen wir in diesem Kapitel eine einfache Möglichkeit untersuchen, mit der man aus bereits bekannten

Mehr

Wahlteil Geometrie/Stochastik B 1

Wahlteil Geometrie/Stochastik B 1 Abitur Mathematik: Wahlteil Geometrie/Stochastik B 1 Baden-Württemberg 214 Aufgabe B 1.1 a) 1. SCHRITT: SKIZZE ANFERTIGEN Die Lage der Pyramide im Koordinatensystem ist wie folgt: 2. KOORDINATENGLEICHUNG

Mehr

Platonische Körper sind regelmäßige Polyeder, die die folgenden Bedingungen erfüllen:

Platonische Körper sind regelmäßige Polyeder, die die folgenden Bedingungen erfüllen: Kapitel 8 Platonische Körper Platonische Körper sind regelmäßige Polyeder, die die folgenden Bedingungen erfüllen: Die Begrenzungsflächen sind regelmäßige Vielecke, die untereinander kongruent sind An

Mehr

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01 . Klasse TOP 0 Grundwissen Geradengleichungen 0 Punkt-Richtungs-Form Geraden sind gegeben durch einen Aufpunkt A (mit Ortsvektor a) auf der Geraden und einen Richtungsvektor u: x = a + λ u, λ IR. (Interpretation:

Mehr

Eignungstest Mathematik

Eignungstest Mathematik Eignungstest Mathematik Klasse 4 Datum: Name: Von Punkten wurden Punkte erreicht Zensur: 1. Schreibe in folgende Figuren die Bezeichnungen für die jeweilige Figur! Für eine Rechteck gibt ein R ein, für

Mehr

Das Mathematikabitur. Abiturvorbereitung Geometrie. Autor: Claus Deser Abiturvorbereitung Mathematik 1

Das Mathematikabitur. Abiturvorbereitung Geometrie. Autor: Claus Deser Abiturvorbereitung Mathematik 1 Das Mathematikabitur Abiturvorbereitung Geometrie Autor: Claus Deser Abiturvorbereitung Mathematik 1 Gliederung Was sind Vektoren/ ein Vektorraum? Wie misst man Abstände und Winkel? Welche geometrischen

Mehr

3 Polytope. 3.1 Polyeder

3 Polytope. 3.1 Polyeder 28 3 Polytope 3.1 Polyeder Polytope in der Ebene und im Raum standen neben Kreis und Kugel schon während der griechischen Antike im Mittelpunkt des mathematischen (und philosophischen) Interesses. Durch

Mehr

WS 2010/ Januar Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch

WS 2010/ Januar Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch WS 2010/2011 14. Januar 2011 Geometrie mit Übungen Übungsblatt 9, Musterlösungen Aufgabe 33. Es werden Kreise in der Euklidischen

Mehr

Stufen- und Wechselwinkel sind genau dann gleich groß, wenn die Geraden g und h parallel sind.

Stufen- und Wechselwinkel sind genau dann gleich groß, wenn die Geraden g und h parallel sind. 1 Sätze über Winkel Geradenkreuzung: Zwei Geraden, die sich in einem Punkt schneiden, nennt man eine Geradenkreuzung. α α Nebeneinander liegende Winkel heißen Nebenwinkel, sie β ergeben zusammen stets

Mehr

Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans

Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans josef.coenen@web.de Abitour Analytische Geometrie Leistungskurs Aufgaben 1. Welche Lagebeziehungen zwischen

Mehr

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung

Mehr

Achsensymmetrie. Konstruktionen. Mathematik-Grundwissen Klassenstufe 7

Achsensymmetrie. Konstruktionen. Mathematik-Grundwissen Klassenstufe 7 Wissen Achsensymmetrie Beispiel Figuren die an einer Achse a gespiegelt werden nennt man achsensymmetrisch bezüglich a. Die Verbindungsstrecke zwischen zwei achsensymmetrischen Punkten wird durch die Achse

Mehr

Lösungen V.1. Pfeile bedeuten ist auch ein. (Lambacher-Schweizer Geometrie 2, S. 150)

Lösungen V.1. Pfeile bedeuten ist auch ein. (Lambacher-Schweizer Geometrie 2, S. 150) Lösungen V.1 I: Trapez (zwei parallele Seiten; keine Symmetrie) II: gleichschenkliges Trapez (zwei parallele Seiten, die anderen beiden gleich lang; achsensymmetrisch) III: Drachen(viereck) (jeweils zwei

Mehr

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1) Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier

Mehr

MB 10. Seiten im Materialblock: Wissensspeicher ab Seite MB 11 Methodenspeicher Seite MB 14 Arbeitsmaterial ab Seite MB 15 Checkliste Seite MB 23

MB 10. Seiten im Materialblock: Wissensspeicher ab Seite MB 11 Methodenspeicher Seite MB 14 Arbeitsmaterial ab Seite MB 15 Checkliste Seite MB 23 MB 10 Seiten im Materialblock: Wissensspeicher ab Seite MB 11 Methodenspeicher Seite MB 14 ab Seite MB 15 Checkliste Seite MB 23 Wissensspeicher Körper und Flächen MB 11 Wissensspeicher Fachwörter zu Körpern

Mehr

Formelsammlung Analytische Geometrie

Formelsammlung Analytische Geometrie Formelsammlung Analytische Geometrie http://www.fersch.de Klemens Fersch 6. August 6 Inhaltsverzeichnis 6 Analytische Geometrie 6. Vektorrechung in der Ebene......................................... 6..

Mehr

Serie 6: Lösungen Wir erinnern uns daran, dass für die Anzahl Elemente konvexer Polyeder die folgenden dualen Beziehungen gelten: e j, f =

Serie 6: Lösungen Wir erinnern uns daran, dass für die Anzahl Elemente konvexer Polyeder die folgenden dualen Beziehungen gelten: e j, f = Serie 6: Lösungen Wir erinnern uns daran, dass für die Anzahl Elemente konvexer Polyeder die folgenden dualen Beziehungen gelten: e = e j, f = j=3 j e j = 2k = j=3 f j (1) j=3 j f j (2) j=3 e k + f = 2

Mehr

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m)

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m) Grundwissen Mathematik 7. Klasse 1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: Ttm (, ) = ( t 5+ 6) 20+ m (ausgesprochen: T von t und m) Ein Term besteht aus

Mehr

Berechnung von Strecken und Winkeln. Hier alle Beispiele aus Teil 5 und 6. als Aufgabensammlung. Datei Nr. 64120. Stand 22.

Berechnung von Strecken und Winkeln. Hier alle Beispiele aus Teil 5 und 6. als Aufgabensammlung. Datei Nr. 64120. Stand 22. Vektorgeometrie ganz einfach Aufgabensammlung Berechnung von Strecken und Winkeln Hier alle Beispiele aus Teil 5 und 6 als Aufgabensammlung. Datei Nr. 640 Stand. März 0 INTERNETBIBLITHEK FÜR SCHULMATHEMATIK

Mehr

Klassenstufen 7, 8. Aufgabe 1 (6+6+8 Punkte). Magischer Stern:

Klassenstufen 7, 8. Aufgabe 1 (6+6+8 Punkte). Magischer Stern: Department Mathematik Tag der Mathematik 31. Oktober 2009 Klassenstufen 7, 8 Aufgabe 1 (6+6+8 Punkte). Magischer Stern: e a 11 9 13 12 10 b c d Die Summe S der natürlichen Zahlen entlang jeder der fünf

Mehr

Philipps-Universität Marburg Fachbereich 12: Mathematik und Informatik Platonische Körper

Philipps-Universität Marburg Fachbereich 12: Mathematik und Informatik Platonische Körper Philipps-Universität Marburg Fachbereich 12: Mathematik und Informatik PS: Klassische Probleme der Mathematik Leitung: Prof. Harald Upmeier, Benjamin Schwarz Referentin: Irina Kaiser WS 2009/2010 Platonische

Mehr

2.5. Aufgaben zu Dreieckskonstruktionen

2.5. Aufgaben zu Dreieckskonstruktionen 2.5. Aufgaben zu Dreieckskonstruktionen Aufgabe 1 Zeichne das Dreieck AC mit A( 1 2), (5 0) und C(3 6) und konstruiere seinen Umkreis. Gib den Radius und den Mittelpunkt des Umkreises an. Aufgabe 2 Konstruiere

Mehr

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin 1 Hausaufgaben vom 12.09.2007 Zahlentheorie 1 Aufgabe 1.1 Berechne die (quadratischen)

Mehr

d 2 b 2 c 2 d 3 b 3 c 3 , D a 1 d 1 c 1 v 3 Definiton (Verbindungsvektor): Zwei Punkte A(a 1 a 2 a 3 ) und B(b 1 b 2 b 3 ) legen den Vektor b 1 a 1

d 2 b 2 c 2 d 3 b 3 c 3 , D a 1 d 1 c 1 v 3 Definiton (Verbindungsvektor): Zwei Punkte A(a 1 a 2 a 3 ) und B(b 1 b 2 b 3 ) legen den Vektor b 1 a 1 2008/2009 Das Wichtigste in Kürze Klasse 3 Lineare Gleichungssysteme und Determinanten Definiton (Lineare Gleichungssysteme: Lineare Gleichungssysteme löst man entweder mit dem Gauß-Algorithmus oder nach

Mehr

3 Geometrisches Beweisen

3 Geometrisches Beweisen 22 3 Geometrisches Beweisen 3.1 Axiome Durch empirische Untersuchungen werden immer wieder Gesetzmäßigkeiten gefunden, die man versucht durch logische Schlüsse zu begründen. Irgendwann am Ende einer Schlusskette

Mehr

Handeln und Denken im Raum

Handeln und Denken im Raum Handeln und Denken im Raum Vom Quadrat zur Dreieckspyramide Man nehme ein Quadrat (15cm x 15cm), zeichne die Diagonalen ein und schneide von einem Eckpunkt des Quadrates bis zum Schnittpunkt der Diagonalen

Mehr

Abiturprüfung Mathematik 8 Baden-Württemberg (ohne CAS) Wahlteil Aufgaben Analytische Geometrie II, Aufgabe II. Die Punkte A(//), B(//), C(//), F(//), G(//) und H(//) sind die Ecken eines dreiseitigen

Mehr

Übungen zum Verbessern der Raumvorstellung. Josef Molnár

Übungen zum Verbessern der Raumvorstellung. Josef Molnár ROMOTE MSc UIT DESCRITOR MATHEMATIK 3 Titel der Einheit Stoffgebiet ame und Email des Einsenders Ziel der Einheit Inhalt Voraussetzungen Übungen zum Verbessern der Raumvorstellung Geometrie Josef Molnár

Mehr

Trigonometrie. bekannte Zusammenhänge. 4-Streckensatz: groß/klein = groß/klein. Zusammenhänge im allgemeinen Dreieck:

Trigonometrie. bekannte Zusammenhänge. 4-Streckensatz: groß/klein = groß/klein. Zusammenhänge im allgemeinen Dreieck: Trigonometrie bekannte Zusammenhänge 4-Streckensatz: groß/klein = groß/klein Zusammenhänge im allgemeinen Dreieck: Summe zweier Seiten größer als dritte Seitenlänge: a + b > c Innenwinkelsumme: Summe der

Mehr

II* III* IV* Niveau das kann ich das kann er/sie. Mein Bericht, Kommentar (Einsatz, Schwierigkeiten, Fortschritte, Zusammenarbeit) Name:... Datum:...

II* III* IV* Niveau das kann ich das kann er/sie. Mein Bericht, Kommentar (Einsatz, Schwierigkeiten, Fortschritte, Zusammenarbeit) Name:... Datum:... Titel MB 8 LU Nr nhaltliche * * V* Titel MB 8 LU 5 * nhaltliche mein Raumvorstellungsvermögen weiter entwickeln und ebene wie räumliche V Figuren erkennen die Eigenschaften eines regelmässigen Tetraeders

Mehr

4. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Saison 1964/1965 Aufgaben und Lösungen

4. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Saison 1964/1965 Aufgaben und Lösungen 4. athematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Saison 1964/1965 Aufgaben und Lösungen 1 OJ 4. athematik-olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

Beweis der Existenz von genau 5 platonischen Körpern anhand der Eulerschen Polyederformel

Beweis der Existenz von genau 5 platonischen Körpern anhand der Eulerschen Polyederformel Platonische Körper.nb 1 Beweis der xistenz von genau 5 platonischen Körpern anhand der ulerschen Polyederformel Daniel Bauernfeind, 0355507 Dietmar Kerbl, 0355750 Dodekaeder Tetraeder Ikosaeder Würfel

Mehr

Der dreidimensionale Raum wird als unendliche Punktmenge aufgefasst. Geraden und Ebenen sind dann Teilmengen dieser Punktmenge.

Der dreidimensionale Raum wird als unendliche Punktmenge aufgefasst. Geraden und Ebenen sind dann Teilmengen dieser Punktmenge. STEREOMETRIE I Grundlagen 1. Punkte, Geraden und Ebenen Der dreidimensionale Raum wird als unendliche Punktmenge aufgefasst. Geraden und Ebenen sind dann Teilmengen dieser Punktmenge. a) Gerade Axiom:

Mehr

Aufgaben zur Übung der Anwendung von GeoGebra

Aufgaben zur Übung der Anwendung von GeoGebra Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,

Mehr

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen können zwei Ebenen (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Wie heiÿt

Mehr

Bezeichnung: F F Jede Kongruenzabbildung lässt sich durch Hintereinander Ausführen von höchstens drei Geradenspiegelungen darstellen

Bezeichnung: F F Jede Kongruenzabbildung lässt sich durch Hintereinander Ausführen von höchstens drei Geradenspiegelungen darstellen 3 6. Ähnlichkeitsabbildungen Bilde eine Figur durch Hintereinander Ausführen von Kongruenzabbildungen (Geradenspiegelungen, Drehungen, Translationen, Punktspiegelungen) und zentrischen Streckungen in eine

Mehr

Zeichnet man nun über die Seiten des Dreiecks die Quadrate der jeweiligen Seiten, dann ergibt sich folgendes Bild:

Zeichnet man nun über die Seiten des Dreiecks die Quadrate der jeweiligen Seiten, dann ergibt sich folgendes Bild: 9. Lehrsatz von Pythagoras Pythagoras von Samos war ein griechischer Philosoph und Mathematiker, der von ca. 570 v.chr. bis 510 n.chr lebte. Obwohl es über seine gesallschaftliche Stellung verschiedene

Mehr

WF Mathematik: 1. Grundbegriffe der Geometrie

WF Mathematik: 1. Grundbegriffe der Geometrie WF Mathematik: 1. Grundbegriffe der Geometrie Geometrie setzt sich aus den beiden griechischen Wörtern geo (Erde) und metrein (messen) zusammen, bedeutet ursprünglich Erdvermessen. Alle Gegenstände unseres

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

Hans Walser, [ a], Das DIN Rechteck 1/29

Hans Walser, [ a], Das DIN Rechteck 1/29 Hans Walser, [0050930a], Das DIN Rechteck /9 Hans Walser Das DIN Rechteck DIN-Format Inhalt Internationale Papierformate (ISO/DIN)... Schnittpunkte...4 3 Drehstreckung...6 4 Oktogon aus einem DIN Rechteck...

Mehr

Und so weiter... Annäherung an das Unendliche Lösungshinweise

Und so weiter... Annäherung an das Unendliche Lösungshinweise Stefanie Anzenhofer, Hans-Georg Weigand, Jan Wörler Numerisch und graphisch. Umfang einer Quadratischen Flocke Abbildung : Quadratische Flocke mit Seitenlänge s = 9. Der Umfang U der Figur beträgt aufgrund

Mehr

Vektorgeometrie. Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert. (G): Grundlagen, Basiswissen einfache Aufgaben

Vektorgeometrie. Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert. (G): Grundlagen, Basiswissen einfache Aufgaben Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert (G): Grundlagen, Basiswissen einfache Aufgaben (F): Fortgeschritten mittelschwere Aufgaben (E): Experten schwere Aufgaben Vorzeigeaufgaben: Block Stunde

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 9 Freitag. $Id: quadrat.tex,v.5 9//5 ::59 hk Exp $ $Id: orthogonal.tex,v.4 9// ::54 hk Exp $ $Id: fourier.tex,v. 9// :: hk Exp $ Symmetrische Matrizen und quadratische

Mehr

Grundlagen der Planimetrie und Stereometrie

Grundlagen der Planimetrie und Stereometrie Überblick über die wichtigsten Formeln Inhaltsverzeichnis 1. Planimetrie Dreieck, Viereck, Vieleck, Kreis. Stereometrie.1. Ebenflächig begrenzte Körper Würfel, Quader, Prisma, Pyramide, Pyramidenstumpf,

Mehr

Parallelogramme und Dreiecke A512-03

Parallelogramme und Dreiecke A512-03 12 Parallelogramme und Dreiecke 1 10 Dreiecke 401 Berechne den Flächeninhalt der vier Dreiecke. Die Dreiecke 3 und 4 sind gleichschenklig. 4 3 2 M 12,8 cm 7,2 cm 1 9,6 cm 12 cm A 1 = A 2 = A 3 = A 4 =

Mehr

Alles rund um den Würfel - Mathematikstunde in einer Grundschule - Aufgaben, Ergebnisse und Reflexionen

Alles rund um den Würfel - Mathematikstunde in einer Grundschule - Aufgaben, Ergebnisse und Reflexionen Naturwissenschaft Sabrina Spahr Alles rund um den Würfel - Mathematikstunde in einer Grundschule - Aufgaben, Ergebnisse und Reflexionen Unterrichtsentwurf Wie bastelt man einen Würfel? Struktur, Vorstellungen,

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Hauptprüfung Abiturprüfung 04 (ohne CAS) Baden-Württemberg Wahlteil Analytische Geometrie / Stochastik Hilfsmittel: GTR und Formelsammlung allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

Archimedische und Platonische Körper

Archimedische und Platonische Körper Archimedische und Platonische Körper Eine Bauanleitung für den Einsatz in der Lehre Mai 2016 Julia Bienert Inhalt 1 Einleitung... 1 2 Konstruktion... 1 2.1 Idee und Material... 1 2.2 Grundkörper (Archimedischer

Mehr

Inhaltsverzeichnis Band 2b Analytische Geometrie. 1. Vektoralgebra

Inhaltsverzeichnis Band 2b Analytische Geometrie. 1. Vektoralgebra Inhaltsverzeichnis Band b Analytische Geometrie Auf der beigefügten CD befinden sich zwei Verzeichnisse: Inhalt_Mathcad und Inhalt_pdf In diesen Verzeichnissen sind alle Mathcad-Dateien (***.xmcd) und

Mehr

Grundwissen. 7. Jahrgangsstufe. Mathematik

Grundwissen. 7. Jahrgangsstufe. Mathematik Grundwissen 7. Jahrgangsstufe Mathematik Grundwissen Mathematik 7. Jahrgangsstufe Seite 1 1 Geometrie 1.1 Grundkonstruktionen Lotkonstruktion I: Gegeben ist die Gerade g und der Punkt P, der nicht auf

Mehr

Surjektive, injektive und bijektive Funktionen.

Surjektive, injektive und bijektive Funktionen. Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens

Mehr

Realschule Abschlussprüfung

Realschule Abschlussprüfung Realschule Abschlussprüfung Annegret Sonntag 4. Januar 2010 Inhaltsverzeichnis 1 Strategie zur Berechnung von ebenen Figuren (Trigonometrie) 3 1.1 Skizze.................................................

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Analytische Geometrie

Analytische Geometrie Analytische Geometrie Übungsaufgaben Punkte, Vektoren, Geradengleichungen Gymnasium Klasse 0 Alexander Schwarz www.mathe-aufgaben.com März 04 Aufgabe : Gegeben sind die Punkte O(0/0/0), A(6/6/0), B(/9/0),

Mehr

Kapitel D : Flächen- und Volumenberechnungen

Kapitel D : Flächen- und Volumenberechnungen Kapitel D : Flächen- und Volumenberechnungen Berechnung einfacher Flächen Bei Flächenberechnungen werden die Masse folgendermassen bezeichnet: = Fläche in m 2, dm 2, cm 2, mm 2, etc a, b, c, d = Bezeichnung

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Lösung zur Aufgabe Würfel färben von Heft 20

Lösung zur Aufgabe Würfel färben von Heft 20 Lösung zur Aufgabe Würfel färben von Heft 20 (1) Jedes der 24 Teilquadrate grenzt an genau eine der acht Ecken. Da nach unserer Vorschrift die drei Teilquadrate an jeder Ecke unterschiedlich gefärbt sein

Mehr

Kurs 7 Geometrie 2 MSA Vollzeit (1 von 2)

Kurs 7 Geometrie 2 MSA Vollzeit (1 von 2) Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 2815 Bremen Kurs 7 Geometrie 2 MSA Vollzeit (1 von 2) Name: Ich 1. 2. 3. So schätze ich meinen Lernzuwachs ein. kann die

Mehr

Einbettung kombinatorischer Mannigfaltigkeiten

Einbettung kombinatorischer Mannigfaltigkeiten MN Seminar Einbettung kombinatorischer Mannigfaltigkeiten Hochschule Darmstadt Fachbereich MN Torsten-Karl Strempel 24.11.2009 Geometrie Kombinatorik Topologie Punkt Strecke Fläche Volumen 24.11.2009 Strempel

Mehr

Ma A 15/21_Online-Ergänzung

Ma A 15/21_Online-Ergänzung Ma A 15/21_Online-Ergänzung Denkanstöße beim Arbeiten mit Stäbchen, Dreiecken und Vierecken (I) SEBASTIAN KUNTZE Online-Ergänzung 1 Denkanstöße beim Arbeiten mit Stäbchen, Dreiecken und Vierecken (I) S.

Mehr

4 Das Riemann-Integral im R n

4 Das Riemann-Integral im R n $Id: nintegral.tex,v 1.11 2012/11/27 14:07:09 hk Exp hk $ 4 Das Riemann-Integral im R n 4.3 Jordan-meßbare engen In der letzten Sitzung hatten wir schließlich das n-dimensionale Riemann-Integral auch auf

Mehr

Mathematik Geometrie

Mathematik Geometrie Inhalt: Mathematik Geometrie 6.2003 2003 by Reto Da Forno bbildung / bbildungsvorschriften - Ähnlichkeitsabbildungen Seite 1 - Zentrische Streckung Seite 1 - Die Strahlensätze Seite 1 - Kongruenzabbildungen

Mehr

Symmetrien und Winkel

Symmetrien und Winkel 1 10 Symmetrien 301 Zeichne Grossbuchstaben des Alphabets, sortiert nach vier Typen: achsensymmetrisch punktsymmetrisch achsen- und punktsymmetrisch weder achsen- noch punktsymmetrisch Trage bei den symmetrischen

Mehr

Aufgaben zum Basiswissen 7. Klasse

Aufgaben zum Basiswissen 7. Klasse Aufgaben zum Basiswissen 7. Klasse 1. Achsen- und Punktsymmetrie 1. Aufgabe: Zeichne die Gerade g und alle weiteren Punkte ab und spiegle diese Punkte an der Geraden g und am Zentrum Z. 2. Aufgabe: Zeichne

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Deutsch. a hoch 3. a zum Quadrat. acht. achtzig. dividiert. drei. dreißig. dreizehn

Deutsch. a hoch 3. a zum Quadrat. acht. achtzig. dividiert. drei. dreißig. dreizehn Deutsch Deutsch Plural a hoch 3 a zum Quadrat acht achtzig Addition, die Ar, das Basis, die Betrag von a, der Binom, das Bruch, der Bruchstrich, der Deckfläche, die Dekagramm, das Deltoid, das Dezimalbruch,

Mehr

Basteln und Zeichnen

Basteln und Zeichnen Titel des Arbeitsblatts Seite Inhalt 1 Falte eine Hexentreppe 2 Falte eine Ziehharmonika 3 Die Schatzinsel 4 Das Quadrat und seine Winkel 5 Senkrechte und parallele Linien 6 Ein Scherenschnitt 7 Bastle

Mehr

10 Kapitel I: Anschauliche Vektorrechnung

10 Kapitel I: Anschauliche Vektorrechnung 10 Kapitel I: Anschauliche Vektorrechnung haben. In Mengenschreibweise ist G = {x x = a + tb für ein t R}. Wir werden für diese einführenden Betrachtungen im Interesse einer knappen Redeweise jedoch häufig

Mehr

Ute May Lern- und Übungsheft Mathematik 4. Klasse als Vorbereitung für den Schulübertritt

Ute May Lern- und Übungsheft Mathematik 4. Klasse als Vorbereitung für den Schulübertritt Ute May Lern- und Übungsheft Mathematik 4. Klasse als Vorbereitung für den Schulübertritt Bestellnummer 20-038 Zur Autorin Ute May, Jahrgang 1984, hat an der RWTH Aachen Mathematik studiert. Nach ihrem

Mehr

Grundregeln der Perspektive und ihre elementargeometrische Herleitung

Grundregeln der Perspektive und ihre elementargeometrische Herleitung Vortrag zu Mathematik, Geometrie und Perspektive von Prof. Dr. Bodo Pareigis am 15.10.2007 im Vorlesungszyklus Naturwissenschaften und Mathematische Wissenschaften im Rahmen des Seniorenstudiums der LMU.

Mehr

Basistext Geometrie Grundschule. Eine Strecke bezeichnet man einer direkte Verbindung zwischen zwei Punkten:

Basistext Geometrie Grundschule. Eine Strecke bezeichnet man einer direkte Verbindung zwischen zwei Punkten: Basistext Geometrie Grundschule Geometrische Figuren Strecke Eine Strecke bezeichnet man einer direkte Verbindung zwischen zwei Punkten: Gerade Eine Gerade ist eine Strecke ohne Endpunkte. Die Gerade geht

Mehr

Einige Gedanken zum Begriff Raumvorstellung

Einige Gedanken zum Begriff Raumvorstellung Einige Gedanken zum Begriff Raumvorstellung Beim sicheren Bewegen im täglichen Leben benötigen wir Kenntnisse über räumliche Verhältnisse und Anordnungen: z.b. Einparken von Autos Wegbeschreibungen Eine

Mehr

3. Mathematikschulaufgabe

3. Mathematikschulaufgabe Klasse 0 / II.0 Die Raute ABCD mit den Diagonalen AC = e und BD = f ist die Grundfläche einer schiefen Pyramide ABCDS. Die Spitze S liegt senkrecht über dem Punkt D der Grundfläche. Es gilt: e = 4 cm;

Mehr

Anwengungen geometrischer Abbildungen Kongruenz- und Ähnlichkeitsabbildung

Anwengungen geometrischer Abbildungen Kongruenz- und Ähnlichkeitsabbildung Anwengungen geometrischer Abbildungen Kongruenz- und Ähnlichkeitsabbildung Amina Duganhodzic Proseminar: Mathematisches Problemlösen Unter der Leitung von Privat Dozentin Dr. Natalia Grinberg 26. Juni

Mehr

START MATHEMATIK-STAFFEL 2010 Ihr habt 60 Minuten Zeit für 20 Aufgaben. Die Gesamtzahl der zu erreichenden Punkte ist 500.

START MATHEMATIK-STAFFEL 2010 Ihr habt 60 Minuten Zeit für 20 Aufgaben. Die Gesamtzahl der zu erreichenden Punkte ist 500. START MATHEMATIK-STAFFEL 2010 Ihr habt 60 Minuten Zeit für 20 Aufgaben. Die Gesamtzahl der zu erreichenden Punkte ist 500. 1 (20 Punkte) Eine Pflasterung In der Abbildung siehst du einen Ausschnitt einer

Mehr

Falten regelmäßiger Vielecke

Falten regelmäßiger Vielecke Blatt 1 Gleichseitige Dreiecke Ausgehend von einem quadratischen Stück Papier kann man ohne weiteres Werkzeug viele interessante geometrische Figuren nur mit den Mitteln des Papierfaltens (Origami) erzeugen.

Mehr