16. FUNKTIONEN VON MEHREREN VARIABLEN

Größe: px
Ab Seite anzeigen:

Download "16. FUNKTIONEN VON MEHREREN VARIABLEN"

Transkript

1 16. FUNKTIONEN VON MEHREREN VARIABLEN 1

2 Reelle Funktionen auf dem R 2 Wir betrachten Funktionen f(x 1, x 2 ) von zwei reellen Variablen x 1, x 2, z.b. f(x 1, x 2 ) = x x2 2, g(x 1, x 2 ) = x 2 1 x2 2 h(x 1, x 2 ) = x 3 1 3x 1y 2 2, k(x, y) = cos ( x x2 2 ) 2

3 Solche Funktionen lassen sich graphisch verschieden darstellen. Als Fläche im R 3 oder als Graph ihrer Höhenlinien. 3

4 f(x 1, x 2 ) = x x2 2 Paraboloid 4

5 f(x 1, x 2 ) = x x2 2 Paraboloid 5

6 g(x 1, x 2 ) = x 2 1 x2 2 Sattelfläche 6

7 g(x 1, x 2 ) = x 2 1 x2 2 = R(x 1 + ix 2 ) 2 7

8 h(x 1, x 2 ) = x 3 1 3x 1x 2 2 Affensattel 8

9 h(x 1, x 2 ) = R(x 1 + ix 2 ) 3 9

10 k(x 1, x 2 ) = cos ( x x2 2 ) 10

11 k(x 1, x 2 ) = cos ( x x2 2 ) 11

12 Partielle Ableitungen: In Funktionen von mehreren Variablen finden sich Funktionen von einer Variablen, wenn man die anderen Variablen festhält: f(x 1, x 2 ) kann man bei festem x 2 als Funktion in x 1 und bei festem x 1 als Funktion in x 2 betrachten. 12

13 x 2 x 2 x 1 x 1 13

14 Wir können dann wie früher Ableitungen bilden, mit festgehaltenem x 2 oder festgehaltenem x 1 : f f(x (x 1, x 2 ) = lim 1 + h, x 2 ) f(x 1, x 2 ) x 1 h 0 h f f(x (x 1, x 2 ) = lim 1, x 2 + h) f(x 1, x 2 ) x 2 h 0 h Diese Ableitungen heißen partielle Ableitungen. (Voraussetzung ist natürlich, dass diese Ableitungen existieren.) 14

15 15

16 Partielle Ableitungen können zu denselben Zwecken benutzt werden wie gewöhnliche, etwa zum Bestimmen von Extremalpunkten (lokalen Maxima und Minima) und allgemeiner stationären Punkten. Definition. (x 1, x 2 ) heißt stationärer Punkt von f, falls f (x 1, x 2 ) = f (x 1, x 2 ) = 0 x 1 x 2 gilt. 16

17 Beispiele: 1. f(x, y) = x 2 + y 2, f x f (x, y) = 2x, (x, y) = 2y y (x 0, y 0 ) = (0, 0) ist stationärer Punkt, hier ein Minimum. 2. f(x, y) = x 2 y 2, f x f (x, y) = 2x, (x, y) = 2y y (x 0, y 0 ) = (0, 0) ist stationärer Punkt, hier ein Sattelpunkt. 17

18 3. Lineare Regression: An Datenpunkte x 1,..., x n sollen Punkte auf einer Geraden α + βt 1,..., α + βt n angepasst werden. Bestimme α, β so, dass der Abstand im R n f(α, β) = (x 1 α βt 1 ) (x n α βt n ) 2 minimal wird. Es gilt f α (α, β) = 2(x 1 α βt 1 ) 2(x n α βt n ) f β (α, β) = 2(x 1 α βt 1 )t 1 2(x n α βt n )t n Die Gleichungen f f α (α, β) = β (α, β) = 0 sind die schon früher abgeleiteten Normalgleichungen für α, β. 18

19 Totale Differenzierbarkeit: Wir fassen f(x 1, x 2 ) nun als Funktion auf dem R 2 und schreiben ( ) x1 f(x 1, x 2 ) = f(x) mit x = x 2 R 2 Damit schließen wir an die Lineare Algebra an. 19

20 Definition. Eine Abbildung f : D R mit D R 2 heißt total differenzierbar im Punkte x R 2, falls es eine Linearform l : R 2 R gibt, so dass für Vektoren u gilt f(x + u) = f(x) + l(u) + o( u ) für u 0 u 0 bedeutet dasselbe wie u 0. Eine gebräuchliche Schreibweise für die (von x abhängige) Linearform l ist l = Df(x) 20

21 f(x) x 21

22 f(x + u) = f(x) + l(u) + o( u ) x x + u x + u 22

23 Kurz gesprochen: Wir haben f lokal linearisiert, approximativ um x herum. Die Linearform l hat die Gestalt l(u) = au = a 1 u 1 + a 2 u 2 mit einem Zeilenvektor a = (a 1, a 2 ) (der von x abhängt). Wie kann man a berechnen? 23

24 Es gilt a 1 = f x 1 (x 1, x 2 ) und a 2 = f x 2 (x 1, x 2 ) bzw. a = ( f x 1 (x), f x 2 (x) ) 24

25 Zum Beweis wählen wir u = (h, 0) T, so dass für h 0 f(x 1 + h, x 2 ) = f(x) + l(u) + o( u ) = f(x 1, x 2 ) + a 1 h + o( h ) Also ist a 1 die Ableitung von f(x 1, x 2 ) nach x 1 bei festem x 2, also tatsächlich a 1 = f x 1 (x 1, x 2 ) 25

26 Beispiel: Für f(x 1, x 2 ) = x 2 1 x2 2 ist f x 1 (x 1, x 2 ) = 2x 1, f x 2 (x 1, x 2 ) = 2x 2 und wir erhalten die lineare Approximation in x = (2, 3) T als f(x 1 + u 1, x 2 + u 2 ) 5 + 4u 1 6u 2 z.b. f(2.02, 2.99) = ( 0.01) =

27 Der Gradient. Die lineare Approximation benutzt den Zeilenvektor ( f x (x), f 1 x (x) ). 2 Durch Transposition erhält man den Gradienten von f: gradf = f = f x 1 f x 2 f(x) ist für jedes x ein Vektor, ein Element des R 2. 27

28 f(x 1, x 2 ) = x x2 2 f(x 1, x 2 ) = (2x 1, 2x 2 ) T 28

29 f(x 1, x 2 ) = x 2 1 x2 2 f(x 1, x 2 ) = (2x 1, 2x 2 ) T 29

30 Der Gradient f(x) gibt die Richtung und die Größe der steilsten Steigung der Funktion f an der Stelle x an. Beispiel. Für f(x 1, x 2 ) = x x2 2 gilt f(x 1, x 2 ) = (2x 1, 2x 2 ) T. Die Richtung ist weg vom Ursprung, und die Größe ist 2 x x

31 31

32 Zum Beweis berechnen wir die Richtungsableitung in die Richtung b, mit einem Vektor b = (b 1, b 2 ) T R 2 der Länge 1: 32

33 Für reelle Zahlen h > 0 gilt aufgrund der totalen Differenzierbarkeit mit u = hb f(x + hb) = f(x) + hl(b) + o(h) für h 0 Die Steigung in Richtung b ist l(b) = a 1 b 1 + a 2 b 2 = f x 1 (x)b 1 + f x 2 (x)b 2 33

34 und mit dem Gradienten ausgedrückt ist die Steigung in Richtung b gleich also l(b) = f x 1 (x)b 1 + f x 2 (x)b 2 = f(x), b f(x + hb) = f(x) + h f(x), b + o(h) für h 0 Wann ist die Steigung maximal? f(x), b 34

35 Nach der Cauchy-Schwarz-Ungleichung gilt für diese Richtungssteigung wegen b = 1 f(x), b f(x) b = f(x) und speziell für den Vektor b = 1 f(x) in Richtung des f(x) Gradienten der Länge 1 ist dieser Ausdruck maximal: f(x), b = 1 f(x), f(x) = f(x) f(x) 35

36 Also: In Richtung des Vektors f(x) steigt die Funktion f im Punkt x am stärksten an, und diese Steigung hat die Größe f(x) In stationären Punkten verschwindet der Gradient. 36

37 Extrema unter Nebenbedingungen. Aufgabe: Maximiere f(x 1, x 2 ) = x 1 x 2 unter der Nebenbedingung g(x 1, x 2 ) = x 1 + 2x 2 = 5 37

38 Höhenlinien von f und g: 38

39 An der Stelle (x 1, x 2 ) T des Extremums zeigen f und g offenbar in dieselbe (oder entgegengesetzte) Richtung: 39

40 40

41 f(x 1, x 2 ) = λ g(x 1, x 2 ) λ heißt Lagrange-Multiplikator (das Minuszeichen ist Konfention).

42 Es gilt hier und die Gleichung ( ) x2 f(x 1, x 2 ) = x 1, g(x 1, x 2 ) = ( ) 1 2 f(x 1, x 2 ) = λ g(x 1, x 2 ) geht über in x 2 = λ, x 1 = 2λ, die zusammen mit der Nebenbedingung x 1 + 2x 2 = 5 λ = 1, x 1 = 2, x 2 = 1 ergeben. Das Maximum wird im Punkt (x 1, x 2 ) T = (1, 1) T angenommen und hat den Wert 1. 41

43 Definition: Eine Funktion f : D R m mit D R n heißt im Punkt x D total differenzierbar, falls es eine (im Allgemeinen von x abhängige) lineare Abbildung L : R n R m gibt, so dass gilt f(x + u) = f(x) + L(u) + o( u ) für u 0 Man nennt L das Differential von f und schreibt L = Df(x). 42

44 Zerlegen wir die Funktion f in ihre Koordinaten gemäß f(x) = ( f 1 (x),..., f m (x) ) T so lassen sich die partiellen Ableitungen f i / x j ), 1 i m, 1 j n bilden. Die lineare Abbildung L ist dann durch die Matrix J f (x) = f 1 f 1 x (x) 1 x n (x) f m f x (x) m 1 x n (x) gegeben, die Jacobimatrix von f. 43

45 Kettenregel. Ist für die Funktion h = g f sowohl f im Punkt x als auch g im Punkt y = f(x) total differenzierbar, so ist auch h in x total differenzierbar. Die Verkettungseigenschaft überträgt sich auf das Differential: bzw. auf die Jacobimatrix Dh(x) = Dg(y) Df(x) J g f (x) = J g (y)j f (x) 44

46 Ist m = 1, also f eine Abbildung in die reellen Zahlen, so kann man wieder den Gradienten f(x) = f x (x) 1. f x n (x) bilden. Er hat analoge Eigenschaften zum Fall n = 2. 45

2 Funktionen in mehreren Variablen: Differentiation

2 Funktionen in mehreren Variablen: Differentiation Satz 2. (Richtungsableitung) Für jede auf der offenen Menge D R n total differenzierbaren Funktion f (insbesondere für f C 1 (D, R) und für jeden Vektor v R n, v 0, gilt: n v f(x) = f(x) v = f xi (x)v

Mehr

Extremwerte von Funktionen mehrerer reeller Variabler

Extremwerte von Funktionen mehrerer reeller Variabler Extremwerte von Funktionen mehrerer reeller Variabler Bei der Bestimmung der Extrema von (differenzierbaren) Funktionen f : R n R ist es sinnvoll, zuerst jene Stellen zu bestimmen, an denen überhaupt ein

Mehr

Kapitel 6 Differential- und Integralrechnung in mehreren Variablen

Kapitel 6 Differential- und Integralrechnung in mehreren Variablen Kapitel 6 Differential- und Integralrechnung in mehreren Variablen Inhaltsverzeichnis FUNKTIONEN IN MEHREREN VARIABLEN... 3 BEISPIELE UND DARSTELLUNGEN... 3 GRENZWERT UND STETIGKEIT (ABSTANDSBEGRIFF)...

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 89

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 89 9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 89 Beweis. Der Beweis erfolgt durch vollständige Induktion. Angenommen wir hätten den Satz für k 1 gezeigt. Dann ist wegen auch Damit ist f(g(y), y) = 0 0 = D y

Mehr

Mehrdimensionale Differentialrechnung Übersicht

Mehrdimensionale Differentialrechnung Übersicht Mehrdimensionale Differentialrechnung Übersicht Partielle und Totale Differenzierbarkeit Man kann sich mehrdimensionale Funktionen am Besten für den Fall f : R 2 M R vorstellen Dann lässt sich der Graph

Mehr

Analysis II. Vorlesung 47

Analysis II. Vorlesung 47 Prof. Dr. H. Brenner Osnabrück SS 2014 Analysis II Zu einer reellwertigen Funktion Vorlesung 47 interessieren wir uns wie schon bei einem eindimensionalen Definitionsbereich für die Extrema, also Maxima

Mehr

f(x) f(x 0 ) lokales Maximum x U : gilt, so heißt x 0 isoliertes lokales Minimum lokales Minimum Ferner nennen wir x 0 Extremum.

f(x) f(x 0 ) lokales Maximum x U : gilt, so heißt x 0 isoliertes lokales Minimum lokales Minimum Ferner nennen wir x 0 Extremum. Fabian Kohler Karolina Stoiber Ferienkurs Analsis für Phsiker SS 4 A Extrema In diesem Abschnitt sollen Extremwerte von Funktionen f : D R n R diskutiert werden. Auch hier gibt es viele Ähnlichkeiten mit

Mehr

Musterlösung zu Blatt 1

Musterlösung zu Blatt 1 Musterlösung zu Blatt Analysis III für Lehramt Gymnasium Wintersemester 0/4 Überprüfe zunächst die notwendige Bedingung Dfx y z = 0 für die Existenz lokaler Extrema Mit x fx y z = 8x und y fx y z = + z

Mehr

Berechnung von Extrema

Berechnung von Extrema KAPITEL 2 Berechnung von Extrema 1. Partielle Ableitungen Definition 2.1 (partielle Ableitung). Sei U R n offen und e j der j-te Einheitsvektor. Eine Funktion f : U R ist in x u partiell differenzierbar

Mehr

Vorlesung Mathematik für Ingenieure 2 (Sommersemester 2009)

Vorlesung Mathematik für Ingenieure 2 (Sommersemester 2009) 1 Vorlesung Mathematik für Ingenieure 2 (Sommersemester 2009) Kapitel 10: Differenzialrechnung R n R m Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 27. März 2009) Differenzialrechnung

Mehr

AM3: Differenzial- und Integralrechnung im R n. 1 Begriffe. 2 Norm, Konvergenz und Stetigkeit. x 1. x 2. f : x n. aus Platzgründen schreibt man:

AM3: Differenzial- und Integralrechnung im R n. 1 Begriffe. 2 Norm, Konvergenz und Stetigkeit. x 1. x 2. f : x n. aus Platzgründen schreibt man: AM3: Differenzial- und Integralrechnung im R n 1 Begriffe f : x 1 f 1 x 1, x 2,..., x n ) x 2... f 2 x 1, x 2,..., x n )... x n f m x 1, x 2,..., x n ) }{{}}{{} R n R m aus Platzgründen schreibt man: f

Mehr

1 Übungsaufgaben zu Kapitel 1

1 Übungsaufgaben zu Kapitel 1 Übungsaufgaben zu Kapitel. Übungsaufgaben zu Abschnitt... Aufgabe. Untersuchen Sie die nachstehend definierten Folgen ( a k ) k und ( b k ) k auf Konvergenz und bestimmen Sie ggf. den jeweiligen Grenzwert:

Mehr

Vorlesung Mathematik für Ingenieure II (Sommersemester 2008)

Vorlesung Mathematik für Ingenieure II (Sommersemester 2008) Vorlesung Mathematik für Ingenieure II (Sommersemester 8) Kapitel : Differenzialrechnung R n R m Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 8. Mai 8) Differenzialrechnung R R 4

Mehr

Analysis 2, Woche 9. Mehrdimensionale Differentialrechnung I. 9.1 Differenzierbarkeit

Analysis 2, Woche 9. Mehrdimensionale Differentialrechnung I. 9.1 Differenzierbarkeit A Analysis, Woche 9 Mehrdimensionale Differentialrechnung I A 9. Differenzierbarkeit A3 =. (9.) Definition 9. Sei U R m offen, f : U R n eine Funktion und a R m. Die Funktion f heißt differenzierbar in

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Funktionen mehrerer Variabler Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Funktionen mehrerer Variabler Übersicht Funktionsbegriff 1 Funktionsbegriff Beispiele Darstellung Schnitte 2 Partielle Ableitungen

Mehr

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015 Analysis D-BAUG Dr. Cornelia Busch FS 05 Serie 4. Finden Sie die lokalen Extrema der Funktionen f : R R auf dem Einheitskreis S = {x, y R : x + y = } und geben Sie an, ob es sich um ein lokales Minimum

Mehr

Richtungsableitungen.

Richtungsableitungen. Richtungsableitungen. Definition: Sei f : D R, D R n offen, x 0 D, und v R n \ {0} ein Vektor. Dann heißt D v f(x 0 f(x 0 + tv) f(x 0 ) ) := lim t 0 t die Richtungsableitung (Gateaux-Ableitung) von f(x)

Mehr

Analysis II 14. Übungsblatt

Analysis II 14. Übungsblatt Jun.-Prof. PD Dr. D. Mugnolo Wintersemester 01/13 F. Stoffers 04. Februar 013 Analysis II 14. Übungsblatt 1. Aufgabe (8 Punkte Man beweise: Die Gleichung z 3 + z + xy = 1 besitzt für jedes (x, y R genau

Mehr

1.6 Implizite Funktionen

1.6 Implizite Funktionen 1 1.6 Implizite Funktionen Wir werden uns jetzt mit nichtlinearen Gleichungen beschäftigen, f(x) = 0, wobei f = (f 1,..., f m ) stetig differenzierbar auf einem Gebiet G R n und m < n ist. Dann hat man

Mehr

Wirtschaftsmathematik II

Wirtschaftsmathematik II WMS: Wirtschaftsmathematik 2 :: WS 2009/10 Wirtschaftsmathematik II Reinhard Ullrich http://homepage.univie.ac.at/reinhard.ullrich Basierend auf Folien von Dr. Ivana Ljubic October 11, 2009 1 Funktionen

Mehr

Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt

Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt 9 19.12.2012 Aufgabe 35: Thema: Differenzierbarkeit a) Was bedeutet für eine Funktion f : R n R, dass f an der Stelle x 0 R n differenzierbar ist?

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof Dr M Keyl M Kech TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker 3 (Analysis 2) MA923 http://wwwm5matumde/allgemeines/ma923_26s Sommersem 26 Probeklausur (4726) Krümmung

Mehr

Wenn man den Kreis mit Radius 1 um (0, 0) beschreiben möchte, dann ist. (x, y) ; x 2 + y 2 = 1 }

Wenn man den Kreis mit Radius 1 um (0, 0) beschreiben möchte, dann ist. (x, y) ; x 2 + y 2 = 1 } A Analsis, Woche Implizite Funktionen A Implizite Funktionen in D A3 Wenn man den Kreis mit Radius um, beschreiben möchte, dann ist { x, ; x + = } eine Möglichkeit Oft ist es bequemer, so eine Figur oder

Mehr

Thema 12 Differentialrechnung, Partielle Ableitungen, Differenzierbarkeit, Taylor-Formel, Lokale Extrema

Thema 12 Differentialrechnung, Partielle Ableitungen, Differenzierbarkeit, Taylor-Formel, Lokale Extrema Thema 12 Differentialrechnung, Partielle Ableitungen, Differenzierbarkeit, Taylor-Formel, Lokale Extrema In diesem Kapitel befassen wir uns mit der Ableitung von Funktionen f : R m R n. Allein die Schreibweise

Mehr

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0.

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0. Mehrdimensionale Dierenzialrechnung 9 Optimierung 9 Optimierung Definition Seien U R n oen, f : U R, x U x heiÿt lokales Maximum, falls eine Umgebung V U von x existiert mit y V : fx fy x heiÿt lokales

Mehr

B Lösungen. Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R 2 Berechnen Sie zur Abbildung. f(x, y) := x sin(xy) f : R 2 R,

B Lösungen. Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R 2 Berechnen Sie zur Abbildung. f(x, y) := x sin(xy) f : R 2 R, B en Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R Berechnen Sie zur Abbildung f : R R, f(x, y) : x sin(xy) das totale Differenzial f df, die Jacobi-Matrix J f (x, y) und den Gradienten ( f)(x,

Mehr

Mathematik für Anwender II

Mathematik für Anwender II Prof. Dr. H. Brenner Osnabrück SS 2012 Mathematik für Anwender II Vorlesung 49 Zu einer reellwertigen Funktion Extrema auf einer offenen Menge G R n interessieren wir uns, wie schon bei einem eindimensionalen

Mehr

1 Partielle Differentiation

1 Partielle Differentiation Technische Universität München Christian Neumann Ferienkurs Analysis 2 Vorlesung Dienstag SS 20 Thema des heutigen Tages sind Differentiation und Potenzreihenentwicklung Partielle Differentiation Beim

Mehr

Mikroökonomik Prof. Dr. Stefan Klonner SoSe Übungsblatt 1

Mikroökonomik Prof. Dr. Stefan Klonner SoSe Übungsblatt 1 1 Funktionen Definition 1 (Funktion). Übungsblatt 1 Eine Funktion f(x) einer reellen Variable x mit Definitionsbereich D ist eine Regel, die jeder Zahl x in D eine reelle Zahl f(x) eindeutig zuordnet.

Mehr

3 Differenzierbarkeit und Ableitung (Differentialrechnung I)

3 Differenzierbarkeit und Ableitung (Differentialrechnung I) 3 Differenzierbarkeit und Ableitung (Differentialrechnung I) 31 Differenzierbarkeit und Ableitung von Funktionen einer Variablen Definition 31 Es sei M R, f : M R und a M Wenn der Funktionsgrenzwert f(x)

Mehr

Übungen zur Analysis II Blatt 27 - Lösungen

Übungen zur Analysis II Blatt 27 - Lösungen Prof. Dr. Torsten Wedhorn SoSe 22 Daniel Wortmann Übungen zur Analysis II Blatt 27 - Lösungen Aufgabe 5: 6+6+6* Punkte Bestimme alle lokalen Extrema der folgenden Funktionen: a b c* f : R 3 R g : R 2 R

Mehr

4 Differenzierbarkeit

4 Differenzierbarkeit 4 Differenzierbarkeit 16 4 Differenzierbarkeit Wir wollen nun Differenzierbarkeit von Funktionen mehrerer Veränderlicher definieren Dazu führen wir zunächst den Begriff der partiellen Ableitung ein Definition

Mehr

Folgerungen aus dem Auflösungsatz

Folgerungen aus dem Auflösungsatz Folgerungen aus dem Auflösungsatz Wir haben in der Vorlesung den Satz über implizite Funktionen (Auflösungssatz) kennen gelernt. In unserer Formulierung lauten die Resultate: Seien x 0 R m, y 0 R n und

Mehr

Multivariate Analysis

Multivariate Analysis Kapitel Multivariate Analysis Josef Leydold c 6 Mathematische Methoden I Multivariate Analysis / 38 Lernziele Funktionen in mehreren Variablen Graph und Niveaulinien einer Funktion in zwei Variablen Partielle

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 5: Differentialrechnung im R n Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 17. Juni 2009 1 / 31 5.1 Erinnerung Kapitel

Mehr

2 Extrema unter Nebenbedingungen

2 Extrema unter Nebenbedingungen $Id: lagrangetex,v 18 01/11/09 14:07:08 hk Exp $ $Id: untermfgtex,v 14 01/11/1 10:00:34 hk Exp hk $ Extrema unter Nebenbedingungen Lagrange-Multiplikatoren In der letzten Sitzung hatten wir begonnen die

Mehr

AM3: Differenzial- und Integralrechnung im R n. 1 Begriffe. 2 Norm, Konvergenz und Stetigkeit. x 1. x 2. f : x n. aus Platzgründen schreibt man:

AM3: Differenzial- und Integralrechnung im R n. 1 Begriffe. 2 Norm, Konvergenz und Stetigkeit. x 1. x 2. f : x n. aus Platzgründen schreibt man: AM3: Differenzial- und Integralrechnung im R n 1 Begriffe f : x 1 f 1 (x 1, x 2,..., x n ) x 2... f 2 (x 1, x 2,..., x n )... x n f m (x 1, x 2,..., x n ) }{{}}{{} R n R m aus Platzgründen schreibt man:

Mehr

Definition: Differenzierbare Funktionen

Definition: Differenzierbare Funktionen Definition: Differenzierbare Funktionen 1/12 Definition. Sei f :]a, b[ R eine Funktion. Sie heißt an der Stelle ξ ]a, b[ differenzierbar, wenn der Grenzwert existiert. f(ξ + h) f(ξ) lim h 0 h = lim x ξ

Mehr

Extrema multivariater Funktionen

Extrema multivariater Funktionen Extrema multivariater Funktionen Ist f (x ) ein Minimum (Maximum) einer stetig differenzierbaren skalaren Funktion f auf einer Umgebung U von x, so gilt grad f (x ) = (0,..., 0) t. Extrema multivariater

Mehr

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Niveaumengen und Gradient

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Niveaumengen und Gradient Vorlesung: Analysis II für Ingenieure Wintersemester 07/08 Michael Karow Themen: Niveaumengen und Gradient Wir betrachten differenzierbare reellwertige Funktionen f : R n G R, G offen Zur Vereinfachung

Mehr

Totale Ableitung und Jacobi-Matrix

Totale Ableitung und Jacobi-Matrix Totale Ableitung und Jacobi-Matrix Eine reelle Funktion f : R n R m ist in einem Punkt x differenzierbar, wenn f (x + h) = f (x) + f (x)h + o( h ) für h 0. Totale Ableitung 1-1 Totale Ableitung und Jacobi-Matrix

Mehr

Extremalprobleme mit Nebenbedingungen

Extremalprobleme mit Nebenbedingungen Extremalprobleme mit Nebenbedingungen In diesem Abschnitt untersuchen wir Probleme der folgenden Form: g(x 0 ) = inf{g(x) : x Ω, f(x) = 0}, (x 0 Ω, f(x 0 ) = 0). (1) Hierbei sind Ω eine offene Menge des

Mehr

10 Extremwerte mit Nebenbedingungen

10 Extremwerte mit Nebenbedingungen 10 Extremwerte mit Nebenbedingungen 49 10 Extremwerte mit Nebenbedingungen Wir betrachten nun Extremwertaufgaben, bei denen nach dem Extremwert einer fx 1,, x n gesucht wird, aber die Menge der zulässigen

Mehr

Mathematik für Wirtschaftswissenschaftler Kapitel 4-6. Universität Trier Wintersemester 2013 / 2014

Mathematik für Wirtschaftswissenschaftler Kapitel 4-6. Universität Trier Wintersemester 2013 / 2014 Mathematik für Kapitel 4-6 Universität Trier Wintersemester 2013 / 2014 Kapitel 4 1. Extremwerte 2. Lokale Optimalpunkte 3. Wendepunkte 2 Kapitel 4.1 EXTREMWERTE 3 Extrempunkte und Extremwerte 4 Strikte

Mehr

Nachklausur zur Analysis 2, SoSe 2017

Nachklausur zur Analysis 2, SoSe 2017 BERGISCHE UNIVERSITÄT WUPPERTAL 18.9.17 Fakultät 4 - Mathematik und Naturwissenschaften Prof. N. V. Shcherbina Dr. T. P. Pawlaschyk www.kana.uni-wuppertal.de Nachklausur zur Analysis 2, SoSe 217 Aufgabe

Mehr

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Differentialrechnung für Funktionen mehrerer

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Technische Universität München. Probeklausur Lösung SS 2012

Technische Universität München. Probeklausur Lösung SS 2012 Technische Universität München Andreas Wörfel & Carla Zensen Ferienkurs Analysis für Physiker Probeklausur Lösung SS Aufgabe Differenzierbarkeit / Punkte: [4,, 3, 4] Es sei f(x, y) = sin(x3 + y 3 ) x +

Mehr

Ferienkurs der TU München- - Analysis 2 Funktionen in mehreren Variablen Vorlesung

Ferienkurs der TU München- - Analysis 2 Funktionen in mehreren Variablen Vorlesung Ferienkurs der TU München- - Analysis 2 Funktionen in mehreren Variablen Vorlesung Jonas J. Funke 30.08.2010-03.09.2010 Inhaltsverzeichnis 1 Funktionen in mehreren Variablen 3 2 Partielle Differentiation

Mehr

3 Optimierung mehrdimensionaler Funktionen f : R n R

3 Optimierung mehrdimensionaler Funktionen f : R n R 3 Optimierung mehrdimensionaler Funktionen f : R n R 31 Optimierung ohne Nebenbedingungen Optimierung heißt eigentlich: Wir suchen ein x R n so, dass f(x ) f(x) für alle x R n (dann heißt x globales Minimum)

Mehr

Mathematik. für das Ingenieurstudium. 10 Funktionen mit mehreren Variablen. Jürgen Koch Martin Stämpfle.

Mathematik. für das Ingenieurstudium. 10 Funktionen mit mehreren Variablen. Jürgen Koch Martin Stämpfle. 10 Funktionen mit mehreren Variablen www.mathematik-fuer-ingenieure.de 2010 und, Esslingen Dieses Werk ist urheberrechtlich geschützt. Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung

Mehr

12. R n als EUKLIDISCHER VEKTORRAUM

12. R n als EUKLIDISCHER VEKTORRAUM 12. R n als EUKLIDISCHER VEKTORRAUM 1 Orthogonalität in der Ebene. Die Vektoren in der Ebene, die (im üblichen Sinne) senkrecht zu einem Vektor x = (x 1, x 2 ) T stehen, lassen sich leicht angeben. Sie

Mehr

b) Definieren Sie den Begriff Cauchy-Folge. c) Geben Sie zwei Beispiele für konvergente Folgen und deren jeweilige Grenzwerte an.

b) Definieren Sie den Begriff Cauchy-Folge. c) Geben Sie zwei Beispiele für konvergente Folgen und deren jeweilige Grenzwerte an. Repetitorium zur Ingenieur-Mathematik I, WS 00/ Aufgabe : Bestimmen Sie das quadratische Polynom, auf dessen Graph die Punkte (, 4), (0, ), (, 7) liegen. Aufgabe : a) Wann ist eine Folge konvergent (Definition)?

Mehr

Heinrich-Hertz-Oberschule, Berlin

Heinrich-Hertz-Oberschule, Berlin Reellwertige Funktionen mehrerer Variabler Teilnehmer: Maximilian Ringleb Jakob Napiontek Kay Makowsky Mallku Schlagowski Trung Duc Nguyen Alexander Reinecke Herder-Oberschule, Berlin Heinrich-Hertz-Oberschule,

Mehr

(a), für i = 1,..., n.

(a), für i = 1,..., n. .4 Extremwerte Definition Sei M R n eine Teilmenge, f : M R stetig, a M ein Punkt. f hat in a auf M ein relatives (oder lokales) Maximum bzw. ein relatives (oder lokales) Minimum, wenn es eine offene Umgebung

Mehr

Teil 6. Differentialrechnung mehrerer Veränderlicher

Teil 6. Differentialrechnung mehrerer Veränderlicher Teil 6 Differentialrechnung mehrerer Veränderlicher 95 96 6.1 Topologie von Mengen Umgebung ε-umgebung eines Punktes x R n : B ε (x) = {y : y x < ε} Umgebung U von x: Menge, die eine ε-umgebung von x enthält

Mehr

Tangentialebene. Sei f eine stetig differenzierbare Funktion und p = (p 1,..., p n ) die Koordinaten eines Punktes P auf der durch

Tangentialebene. Sei f eine stetig differenzierbare Funktion und p = (p 1,..., p n ) die Koordinaten eines Punktes P auf der durch Tangentialebene Sei f eine stetig differenzierbare Funktion und p = (p 1,..., p n ) die Koordinaten eines Punktes P auf der durch implizit definierten Fläche. f (x 1,..., x n ) = c Tangentialebene 1-1

Mehr

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 91 Optimierung ohne Nebenbedingungen Ein Optimum zu suchen heißt, den größten oder den kleinsten Wert zu suchen Wir suchen also ein x R n, sodass

Mehr

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen In diesem Kapitel betrachten wir die Invertierbarkeit von glatten Abbildungen bzw. die Auflösbarkeit von impliziten Gleichungen.

Mehr

Probeklausur. 1 Stetigkeit [7 Punkte] 2 Differenzierbarkeit [10 Punkte] Ferienkurs Analysis 2 für Physiker SS Karolina Stoiber Aileen Wolf

Probeklausur. 1 Stetigkeit [7 Punkte] 2 Differenzierbarkeit [10 Punkte] Ferienkurs Analysis 2 für Physiker SS Karolina Stoiber Aileen Wolf Karolina Stoiber Aileen Wolf Ferienkurs Analysis 2 für Physiker SS 26 A Probeklausur Allgemein Hinweise: Die Arbeitszeit beträgt 9 Minuten. Falls nicht anders angegeben, sind alle en ausführlich und nachvollziehbar

Mehr

i j m f(y )h i h j h m

i j m f(y )h i h j h m 10 HÖHERE ABLEITUNGEN UND ANWENDUNGEN 56 Speziell für k = 2 ist also f(x 0 + H) = f(x 0 ) + f(x 0 ), H + 1 2 i j f(x 0 )h i h j + R(X 0 ; H) mit R(X 0 ; H) = 1 6 i,j,m=1 i j m f(y )h i h j h m und passendem

Mehr

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 15

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 15 D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger Lösung - Serie 15 1. Der Wert einer Funktion f : R R fällt am schnellsten in die Richtung (a) (b) (c) der minimalen partiellen Ableitung. entgegengesetzt

Mehr

Probeklausur zur Analysis 2, SoSe 2017

Probeklausur zur Analysis 2, SoSe 2017 BERGISCHE UNIVERSITÄT WUPPERTAL 21717 Fakultät 4 - Mathematik und Naturwissenschaften Prof N V Shcherbina Dr T P Pawlaschyk wwwkanauni-wuppertalde Probeklausur zur Analysis 2, SoSe 217 Hinweis Die Lösungen

Mehr

Die Tangentialebene. {(x, y, z) z = f(x 0, y 0 )+ f x (x 0, y 0 )(x x 0 )+ f. y (x 0, y 0 )(y y 0 )}

Die Tangentialebene. {(x, y, z) z = f(x 0, y 0 )+ f x (x 0, y 0 )(x x 0 )+ f. y (x 0, y 0 )(y y 0 )} Die Tangentialebene Der Graph der linearen Approximation ist Tangentialebene an den Graph der Funktion. In Symbolen: Es sei D R 2. Es sei f : D R, (x, y) f(x, y) differenzierbar. Dann ist {(x, y, z) z

Mehr

Kapitel 7. Differentialrechnung. Josef Leydold Mathematik für VW WS 2017/18 7 Differentialrechnung 1 / 56

Kapitel 7. Differentialrechnung. Josef Leydold Mathematik für VW WS 2017/18 7 Differentialrechnung 1 / 56 Kapitel 7 Differentialrechnung Josef Leydold Mathematik für VW WS 2017/18 7 Differentialrechnung 1 / 56 Differenzenquotient Sei f : R R eine Funktion. Der Quotient f x = f (x 0 + x) f (x 0 ) x = f (x)

Mehr

Übung 22: Gradient und Richtungsableitung; Extremwertaufgaben für Funktionen mehrerer Veränderlicher

Übung 22: Gradient und Richtungsableitung; Extremwertaufgaben für Funktionen mehrerer Veränderlicher Technische Universität Chemnitz 1. Juli 20 Fakultät für Mathematik Höhere Mathematik I.2 Übung 22: Gradient und Richtungsableitung; Extremwertaufgaben für Funktionen mehrerer Veränderlicher 1. Durch ein

Mehr

1 Umkehrfunktionen und implizite Funktionen

1 Umkehrfunktionen und implizite Funktionen Mathematik für Physiker III WS 2012/2013 Freitag 211 $Id: implizittexv 18 2012/11/01 20:18:36 hk Exp $ $Id: lagrangetexv 13 2012/11/01 1:24:3 hk Exp hk $ 1 Umkehrfunktionen und implizite Funktionen 13

Mehr

Rückblick auf die letzte Vorlesung

Rückblick auf die letzte Vorlesung Rückblick auf die letzte Vorlesung 1. Anwendungen des Satzes über implizite Funktionen 2. Stationäre Punkte implizit definierter Funktionen 3. Reguläre Punkte 4. Singuläre Punkte Ausblick auf die heutige

Mehr

f(x) f(a) f (a) := lim x a Es existiert ein Polynom ersten Grades l(x) = f(a) + c (x a) derart, dass gilt lim x a x a lim

f(x) f(a) f (a) := lim x a Es existiert ein Polynom ersten Grades l(x) = f(a) + c (x a) derart, dass gilt lim x a x a lim A Analysis, Woche 8 Partielle Ableitungen A 8. Partielle Ableitungen Wir haben vorhin Existenzkriterien für Extrema betrachtet, aber wo liegen sie genau? Anders gesagt, wie berechnet man sie? In einer

Mehr

5.10. Mehrdimensionale Extrema und Sattelpunkte

5.10. Mehrdimensionale Extrema und Sattelpunkte 5.1. Mehrdimensionale Extrema und Sattelpunkte Zur Erinnerung: Eine Funktion f von einer Teilmenge A des R n nach R hat im Punkt a ein (strenges) globales Maximum, falls f( x ) f( a ) (bzw. f( x ) < f(

Mehr

Mathematischer Vorkurs NAT-ING II

Mathematischer Vorkurs NAT-ING II Mathematischer Vorkurs NAT-ING II (02.09.2013 20.09.2013) Dr. Jörg Horst WS 2013-2014 Mathematischer Vorkurs TU Dortmund Seite 1 / 252 Kapitel 7 Differenzierbarkeit Mathematischer Vorkurs TU Dortmund Seite

Mehr

HM I Tutorium 9. Lucas Kunz. 19. Dezember 2018

HM I Tutorium 9. Lucas Kunz. 19. Dezember 2018 HM I Tutorium 9 Lucas Kunz 19. Dezember 2018 Inhaltsverzeichnis 1 Theorie 2 1.1 Definition der Ableitung............................ 2 1.2 Ableitungsregeln................................ 2 1.2.1 Linearität................................

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Funktionen mehrerer Variabler Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Funktionen mehrerer Variabler Übersicht Funktionsbegriff 1 Funktionsbegriff Beispiele Darstellung Schnitte 2 Partielle Ableitungen

Mehr

15 Differentialrechnung in R n

15 Differentialrechnung in R n 36 15 Differentialrechnung in R n 15.1 Lineare Abbilungen Eine Abbilung A : R n R m heißt linear falls A(αx + βy) = αa(x) + βa(y) für alle x, y R n un alle α, β R. Man schreibt oft Ax statt A(x) un spricht

Mehr

Kapitel 12. Lagrange-Funktion. Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 1 / 28. f (x, y) g(x, y) = c. f (x, y) = x y 2

Kapitel 12. Lagrange-Funktion. Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 1 / 28. f (x, y) g(x, y) = c. f (x, y) = x y 2 Kapitel 12 Lagrange-Funktion Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 1 / 28 Optimierung unter Nebenbedingungen Aufgabe: Berechne die Extrema der Funktion unter der Nebenbedingung

Mehr

55 Lokale Extrema unter Nebenbedingungen

55 Lokale Extrema unter Nebenbedingungen 55 Lokale Extrema unter Nebenbedingungen Sei f : O R mit O R n differenzierbar. Notwendige Bescheinigung für ein lokales Extremum in p 0 ist dann die Bedingung f = 0 (siehe 52.4 und 49.14). Ist nun F :

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 13. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 13. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Andreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.de Department Biologie II Telefon: 89-8-748 Großhadernerstr. Fax:

Mehr

4.4 Lokale Extrema und die Hessesche Form

4.4 Lokale Extrema und die Hessesche Form 74 Kapitel 4 Differentialrechnung in mehreren Variablen 44 Lokale Extrema und die Hessesche Form Sei jetzt wieder U R n offen und f:u R eine Funktion Unter einem lokalen Extremum der Funktion f verstehen

Mehr

7.11. Extrema unter Nebenbedingungen

7.11. Extrema unter Nebenbedingungen 7.11. Extrema unter Nebenbedingungen Randextrema Wir haben schon bemerkt, daß die üblichen Tests mit Hilfe von (eventuell höheren) Ableitungen nur Kriterien für (lokale) Extrema im Inneren des Definitionsgebietes

Mehr

Differenzierbarkeit im R n. Analysis III October 30, / 94

Differenzierbarkeit im R n. Analysis III October 30, / 94 Differenzierbarkeit im R n Analysis III October 30, 2018 36 / 94 Partielle Ableitungen Buch Kap. 5.5 Definition 5.23: (partielle Differenzierbarkeit) Sei die Funktion f : D R, D R n, wobei D eine offene

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Lineare Algebra

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen 7. Juni 201 *Aufgabe 1. Gegeben seien fx, y = xy 2 8e x+y und P = 1, 2. Der Gradient von f ist genau an der Stelle P Null. a Untersuchen Sie mit Hilfe der Hesse-Matrix,

Mehr

Kapitel 16 : Differentialrechnung

Kapitel 16 : Differentialrechnung Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen

Mehr

9 Differentialrechnung für Funktionen in n Variablen

9 Differentialrechnung für Funktionen in n Variablen $Id: diff.tex,v.7 29/7/2 3:4:3 hk Exp $ $Id: ntaylor.tex,v.2 29/7/2 3:26:42 hk Exp $ 9 Differentialrechnung für Funktionen in n Variablen 9.6 Lagrange Multiplikatoren Die Berechnung von Maxima und Minima

Mehr

0.1 Hauptsatz über implizite Funktionen

0.1 Hauptsatz über implizite Funktionen 0.1 Hauptsatz über implizite Funktionen 0.1 Hauptsatz über implizite Funktionen Ein lineares homogenes Gleichungssystem von q Gleichungen in r + q Unbekannten kann bekanntlich verwendet werden um q Unbekannte

Mehr

Analysis III. Teil I. Rückblick auf das letzte Semester. Themen aus dem SS Inhalt der letzten Vorlesung aus dem SS.

Analysis III. Teil I. Rückblick auf das letzte Semester. Themen aus dem SS Inhalt der letzten Vorlesung aus dem SS. Analysis III für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg Reiner Lauterbach Teil I Rückblick auf das letzte Semester Fakultät für Mathematik, Informatik und Naturwissenschaften

Mehr

Rückblick auf die letzte Vorlesung. Bemerkung

Rückblick auf die letzte Vorlesung. Bemerkung Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D

Mehr

Monotonie, Konkavität und Extrema

Monotonie, Konkavität und Extrema Kapitel 8 Monotonie, Konkavität und Extrema Josef Leydold Auffrischungskurs Mathematik WS 2017/18 8 Monotonie, Konkavität und Extrema 1 / 55 Monotonie Eine Funktion f heißt monoton steigend, falls x 1

Mehr

Monotonie, Konkavität und Extrema

Monotonie, Konkavität und Extrema Kapitel 8 Monotonie, Konkavität und Extrema Josef Leydold Auffrischungskurs Mathematik WS 2017/18 8 Monotonie, Konkavität und Extrema 1 / 55 Monotonie Eine Funktion f heißt monoton steigend, falls x 1

Mehr

M U = {x U f 1 =... = f n k (x) = 0}, (1)

M U = {x U f 1 =... = f n k (x) = 0}, (1) Aufgabe 11. a) Es sei M = {(x, y, z) R 3 f 1 = xy = 0; f = yz = 0}. Der Tangentialraum T x M muss in jedem Punkt x M ein R-Vektorraum sein und die Dimension 1 besitzen, damit diese Menge M eine Untermannigfaltigkeit

Mehr

Mathematik II: Übungsblatt 03 : Lösungen

Mathematik II: Übungsblatt 03 : Lösungen N.Mahnke Mathematik II: Übungsblatt 03 : Lösungen Verständnisfragen 1. Was bestimmt die erste Ableitung einer Funktion f : D R R im Punkt x 0 D? Die erste Ableitung einer Funktion bestimmt deren Steigung

Mehr

3 Funktionen in mehreren Variablen

3 Funktionen in mehreren Variablen 3 Funktionen in mehreren Variablen Funktionen in mehreren Variablen Wir betrachten nun Abbildungen / Funktionen in mehreren Variablen. Dies sind Funktionen von einer Teilmenge des R d nach R. f : D f R,

Mehr

Mathematik II. Vorlesung 46. Der Gradient

Mathematik II. Vorlesung 46. Der Gradient Prof. Dr. H. Brenner Osnabrück SS 2010 Mathematik II Vorlesung 46 Der Gradient Lemma 46.1. Es sei K ein Körper und V ein K-Vektorraum, der mit einer Bilinearform, versehen sei. Dann gelten folgende Aussagen

Mehr

Mathematik für Sicherheitsingenieure I A

Mathematik für Sicherheitsingenieure I A Priv.-Doz. Dr. J. Ruppenthal Wuppertal, 9.0.08 Dr. T. Pawlaschyk Mathematik für Sicherheitsingenieure I A Aufgabe. (5+5+6+4 Punkte) a) Geben Sie für jede der folgenden Aussagen an, ob sie WAHR oder FALSCH

Mehr

Serie 3. z = f(x, y) = 9 (x 2) 2 (y 3) 2 z 2 = 9 (x 2) 2 (y 3) 2, z 0 9 = (x 2) 2 + (y 3) 2 + z 2, z 0.

Serie 3. z = f(x, y) = 9 (x 2) 2 (y 3) 2 z 2 = 9 (x 2) 2 (y 3) 2, z 0 9 = (x 2) 2 + (y 3) 2 + z 2, z 0. Analysis D-BAUG Dr Cornelia Busch FS 2016 Serie 3 1 a) Zeigen Sie, dass der Graph von f(x, y) = 9 (x 2) 2 (y 3) 2 eine Halbkugel beschreibt und bestimmen Sie ihren Radius und ihr Zentrum z = f(x, y) =

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 12. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 12. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Andreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.de Department Biologie II Telefon: 89-8-748 Großhadernerstr. Fax:

Mehr

Reellwertige Funktionen mehrerer Veränderlicher

Reellwertige Funktionen mehrerer Veränderlicher Reellwertige Funktionen mehrerer Veränderlicher Teilnehmer: Philipp Besel Joschka Braun Robert Courant Florens Greÿner Tim Jaschek Leroy Odunlami Gloria Xiao Heinrich-Hertz-Oberschule, Berlin Ludwigs-Georgs-Gymnasium,

Mehr