einige Zusatzfolien für s Seminar

Größe: px
Ab Seite anzeigen:

Download "einige Zusatzfolien für s Seminar"

Transkript

1 Signale und Systeme einige Zusatzfolien für s Seminar Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Signale und Systeme Fourierreihe reelle Fourierreihe betrachtet wird ein periodisches Zeitsignal u p mit der Periode t p ; es gilt demnach u p = u p (t + kt p ), k Z der Reziprokwert f = /t p von t p ist die Grundfrequenz dieses Signal lässt sich gleichermaßen durch eine reelle Fourierreihe darstellen: u p = A + A µ cos(2πµf t + φ µ ) µ= u p besteht aus harmonischen Schwingungen mit den diskreten Frequenzen µf, den Amplituden A µ (A µ, reell) und den Phasen φ µ sowie einem Gleichanteil A (linearer Mittelwert von u p ) Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Signale und Systeme 2

2 Fourierreihe Übergang zur komplexen Fourierreihe jeder harmonische Anteil A µ cos(2πµf t + φ µ ) lässt sich auch durch 2 komplexe Schwingungen mit den Frequenzen µf und µf darstellen, wobei µ =,2,3,..., A µ cos(2πµf t + φ µ ) = A µ e+j(2πµf t+φ µ ) + e j(2πµf t+φ µ ) = A µ 2 ejφ µ }{{} C µ e +j2πµf t + A µ 2 e jφ µ }{{} C µ 2 e j2π( µ)f t, () so dass sich u p auch als komplexe Fourierreihe darstellen lässt u p = C µ e +j2πµft, wobei C = A µ= Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Signale und Systeme 3 Fourierreihe Eigenschaften der komplexen Fourierkoeffizienten C µ entsprechend Gleichung () muss bei reellen Signalen u p gelten C µ = C µ, wobei konjugiert komplex bedeutet dementsprechend ist C µ (also der Betragsverlauf) immer eine gerade Funktion über µ, d.h., C µ = C µ für die Phase φ µ = arg(c µ ) gilt hingegen: φ µ = φ µ und für Real- und Imaginärteil gilt: Re{C µ } = Re{C µ }, Im{C µ } = Im{C µ } C ist (bei reellen Signale) immer reell und korrespondiert mit dem linearen Mittelwert t p t p u p dt des Signals Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Signale und Systeme 4

3 Fourierreihe Beispiel: periodische Rechteckimpulsfolge () das periodische Signal sei gegeben durch u p = U n= ( ) t ntp rect mit C µ = t p t p u p e j2πµf t dt folgt für die komplexen Fourierkoeffizienten C µ = U si(πµf ), wobei si(x) = sin(x) t p x da u p im vorliegenden Fall eine gerade Zeitfunktion ist, sind die Koeffizienten C µ ebenfalls reell und gerade Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Signale und Systeme 5 Fourierreihe Beispiel: periodische Rechteckimpulsfolge (2) Darstellung der Fourierkoeffizienten C µ, Annahme: t p = 2 normierte Amplitude Cµ/U normierte Frequenz f Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Signale und Systeme 6

4 Fourierreihe Beispiel: periodische Rechteckimpulsfolge (3) Darstellung der Reihe, Abbruch nach der. Harmonischen µ =....2 normierte Amplitude normierte Zeit t/t p Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Signale und Systeme 7 Fourierreihe Beispiel: periodische Rechteckimpulsfolge (4) Darstellung der Reihe, Abbruch nach µ = µ =....2 normierte Amplitude normierte Zeit t/t p Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Signale und Systeme 8

5 Fourierreihe Beispiel: periodische Rechteckimpulsfolge (5) Darstellung der Reihe, Abbruch nach µ = µ =....2 normierte Amplitude normierte Zeit t/t p Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Signale und Systeme 9 Übergang von der Fourierreihe zum Fourierintegral mit zunehmender Periodendauer t p sinkt die Grundfrequenz f (also der Abstand der Spektrallinien) proportional das Spektrum wird dichter gleichzeitig sinkt bei gleichbleibender Einzelimpulsbreite der lineare Mittelwert C und damit die Amplitude der Einhüllenden (gestrichelte Kurve in den folgenden Darstellungen) dieser Sachverhalt wird auf den folgenden Folien am Beispiel der periodischen Rechteckimpulsfolge dargestellt für t p würde die periodische Rechteckimpulsfolge in einen einzelnen Rechteckimpuls übergehen anstelle des diskreten Spektrums rückt ein kontinuierliches Dichtespektrum U(f ) mit U(f ) = ue j2πft dt für u gilt dann aufgrund f : u = U(f )e+j2πft df Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Signale und Systeme

6 Übergang von der Fourierreihe zum Fourierintegral Darstellung der Fourierkoeffizienten C µ, Annahme: t p = 2.5 normierte Amplitude Cµ/U normierte Frequenz f Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Signale und Systeme Übergang von der Fourierreihe zum Fourierintegral Darstellung der Fourierkoeffizienten C µ, Annahme: t p = 4.5 normierte Amplitude Cµ/U normierte Frequenz f Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Signale und Systeme 2

7 Übergang von der Fourierreihe zum Fourierintegral Darstellung der Fourierkoeffizienten C µ, Annahme: t p =.5 normierte Amplitude Cµ/U normierte Frequenz f Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Signale und Systeme 3 Übergang von der Fourierreihe zum Fourierintegral Darstellung der Fourierkoeffizienten C µ, Annahme: t p = 2.5 normierte Amplitude Cµ/U normierte Frequenz f Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Signale und Systeme 4

8 Übergang von der Fourierreihe zum Fourierintegral Amplitudendichtespektrum U(f ) von u = U rect() normierte Dichte U(f )/(U ) normierte Frequenz f Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Signale und Systeme 5 Einige Eigenschaften/Gesetze der Fouriertransform. Funktionswerte mit dem Argument Null es gilt sowohl als auch U() = u() = u dt U(f )df Beispiel : u = U rect ( t ) U() = U Beispiel 2: G(f ) = tri ( f B) g() = B Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Signale und Systeme 6

9 Einige Eigenschaften/Gesetze der Fouriertransform. Verschiebungssatz gilt u U(f ), dann folgt für das gegenüber u um t, t R, verschobene Signal u u = u(t t ) U (f ) = U(f ) e j2πft die Verschiebung in t äußert sich im Frequenzbereich in einer zusätzlichen frequenzproportionalen Phase von 2πft Beispiel : u = tri ( ) t ) U(f ) = si 2 (πf) u = tri U (f ) = si 2 (πf) e jπf ( t /2 Beispiel 2: ( ) ( ) u = rect t /2 rect t+/2 U (f ) = si(πf) [ e jπf e +jπf] = j2 si(πf) sin(πf) Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Signale und Systeme 7 Einige Eigenschaften/Gesetze der Fouriertransform. Verschiebungssatz: Beispiel u t / U(f) / φ(f)/π u.5 U (f) /.5 φ(f)/π t / 2 2 f 2 2 Hinweis: φ(f ) = arg(g(f )) wurde hier auf ±π begrenzt Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Signale und Systeme 8

10 Einige Eigenschaften/Gesetze der Fouriertransform. Verschiebungssatz: Beispiel 2 u.5 U(f) / t / 2 2 u t / U (f) / (j ) 2 2 f Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Signale und Systeme 9 Einige Eigenschaften/Gesetze der Fouriertransform. Ähnlichkeitssatz Annahme: u U(f ) dann gilt für u = u(at), a R,a Beispiel : u = u(at) U (f ) = a U ( ) f a u = rect ( t ) U(f ) = si(πf) u = rect ( t 2 ) U (f ) = 2si(πf 2) wobei a = 2 Beispiel 2: u = e π ( t ) 2 U(f ) = e π(f ) 2 ( Merkform ) 2 u = e ln(2) t t H U (f ) = a e π ( f a ) 2 mit a = ln(2) π t H Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Signale und Systeme 2

11 Einige Eigenschaften/Gesetze der Fouriertransform. Ähnlichkeitssatz: Beispiel 2 u.5 U(f) / 2 2 t / u.5 U (f) / 2 2 t / 2 2 Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Signale und Systeme 2 Einige Eigenschaften/Gesetze der Fouriertransform. Ähnlichkeitssatz: Beispiel 2 u.5 U(f) / t / u.5 U (f) / t H t / t H f t H t H ist die gegenüber anschaulichere einseitige Halbwertsbreite Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Signale und Systeme 22

12 Einige Eigenschaften/Gesetze der Fouriertransform. Differentiationssatz Annahme: u U(f ) dann gilt für u = du dt u = du dt U (f ) = U(f ) j2πf Beispiel: u = tri ( ) t ) U(f ) = si 2 (πf) ) u = rect rect ( t+/2 ( t /2 = du dt U (f ) = U(f ) j2πf = si 2 (πf) 2j πf sin(πf) sin(πf) = j2si(πf) sin(πf) Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Signale und Systeme 23 Einige Eigenschaften/Gesetze der Fouriertransform. Differentiationssatz: Beispiel u.5 U(f) / u.5.5 U (f) / (j ) 2 2 f Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Signale und Systeme 24

13 Einige Eigenschaften/Gesetze der Fouriertransform. Integrationssatz Annahme: u U(f ) dann gilt für u = t u(τ)dτ u = Beispiel: t u(τ)dτ U (f ) = U(f ) u = t u(τ)dτ = j2πf +U() 2 δ(f ) u = δ rect( ) t U(f ) = si(πf) U (f ) = j si(πf) 2πf da U() = 2 t < t < 2 2 t 2 < t < sonst Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Signale und Systeme 25 Einige Eigenschaften/Gesetze der Fouriertransform. Integrationssatz: Beispiel.5 u U(f) u U (f) / (j ) Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Signale und Systeme 26

14 Einige Eigenschaften/Gesetze der Fouriertransform. Faltungssatz Multiplikation im Zeitbereich Faltung im Frequenzbereich u = u u 2 U(f ) = U (f ) U 2 (f ) wobei U (f ) U 2 (f ) = U (ν) U 2 (f ν)dν Faltung im Zeitbereich Multiplikation im Frequenzbereich u = u u 2 U(f ) = U (f ) U 2 (f ) wobei u u 2 = u (τ) u 2 (t τ)dτ Beispiel : tri() sin(2πf c t) si 2 (πf) 2 j[δ(f +f c) δ(f f c )] Beispiel 2: rect() rect() }{{} tri() si(πf) si(πf) }{{} si 2 (πf) Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Signale und Systeme 27 Einige Eigenschaften/Gesetze der Fouriertransform. Faltungssatz: Beispiel mit u = u u 2 (hier: f c = 2,5/).5.5 u.5 u 2 u U (f) /.5 U 2 (f) / j U(f) / (j ) Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Signale und Systeme 28

15 Einige Eigenschaften/Gesetze der Fouriertransform. Faltungssatz: Bsp.2 mit u=u u 2 U(f )=U U 2 (f ) u.5 u 2.5 u U (f) /.5 U 2 (f).5 U(f) / f Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Signale und Systeme 29 Zum Verständnis des Faltungsintegrals x g y U U * = t t t t t t t (t + t ) t Beispiel zur Berechnung der Funktionswerte bei t =, t = t und t = t + t /2 x(τ) U g( τ) g(t τ) g(t + t /2 τ) U t = x(τ)g( τ) x(τ)g(t τ) x(τ)g(t + t /2 τ) t τ t t t τ t t t (t + t ) τ Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Signale und Systeme 3

,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge

,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge Heavisidefunktion σ (t), Diracimpuls δ (t),faltung Definition Heavisidefunktion, t > 0 σ ( t) = 0, t < 0 Anwendungen ) Rechteckimpuls, t < T r( t) = = σ ( t + T ) σ ( t T ) 0, t > T 2) Sprungfunktionen,

Mehr

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 4 Fourier-Transformation 3

Mehr

4. Beschreibung von LTI-Systemen mit der Fourier-Transformation

4. Beschreibung von LTI-Systemen mit der Fourier-Transformation Die Fourier-Transformation 1. Anwendungsbeispiele der Fourier-Transformation 2. Die kontinuierliche Fourier-Transformation 3. Die Fourier-Reihe 4. Beschreibung von LTI-Systemen mit der Fourier-Transformation

Mehr

2. Fourier-Transformation

2. Fourier-Transformation 2. Fourier-Transformation Die Fourier-Transformation ist ein wichtiges Hilfsmittel für die dynamische Analyse linearer Systeme: Die Fourier-Transformierte der Antwort ist gleich dem Produkt der Fourier-Transformierten

Mehr

Fourier- und Laplace- Transformation

Fourier- und Laplace- Transformation Skriptum zur Vorlesung Mathematik für Ingenieure Fourier- und Laplace- Transformation Teil : Fourier-Transformation Prof. Dr.-Ing. Norbert Höptner (nach einer Vorlage von Prof. Dr.-Ing. Torsten Benkner)

Mehr

Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 2 Zeitkontinuierliche

Mehr

Integraltransformationen

Integraltransformationen Fourier-ransformation Integraltransformationen Fakultät Grundlagen Juli 00 Fakultät Grundlagen Integraltransformationen Übersicht Fourier-ransformation Fourier-ransformation Motivation Fakultät Grundlagen

Mehr

Kapitel 2: Fourieranalyse. Analoge, periodische Signale

Kapitel 2: Fourieranalyse. Analoge, periodische Signale ZHW, NM, 5/, Rur Kapitel : Fourieranalyse Analoge, periodische Signale Inhaltsverzeichnis. EINLEIUNG.... LINEARER MIELWER... 3. LEISUNG UND EFFEKIVWER...3 4. WINKELFUNKIONEN...3 5. FOURIERREIHE...4 6.

Mehr

A2.1: Gleichrichtung. Die Grafik zeigt das periodische Signal x(t). Legt man x(t) an den Eingang einer Nichtlinearität mit der Kennlinie

A2.1: Gleichrichtung. Die Grafik zeigt das periodische Signal x(t). Legt man x(t) an den Eingang einer Nichtlinearität mit der Kennlinie Abschnitt: 2.1 Allgemeine Beschreibung A2.1: Gleichrichtung Die Grafik zeigt das periodische Signal x(t). Legt man x(t) an den Eingang einer Nichtlinearität mit der Kennlinie so erhält man am Ausgang das

Mehr

Übung 3: Fouriertransformation

Übung 3: Fouriertransformation ZHAW, SiSy HS202, Rumc, Übung 3: Fouriertransformation Aufgabe Fouriertransformation Dirac-Impuls. a) Bestimmen Sie die Fouriertransformierte S(f) des Dirac-Impulses s(t) = δ(t) und interpretieren Sie

Mehr

5. Fourier-Transformation

5. Fourier-Transformation 5. Fourier-Transformation 5.1 Definition 5.2 Eigenschaften 5.3 Transformation reeller Funktionen 5.4 Frequenzbereich und Zeitbereich 2.5-1 5.1 Definition Definition: Die Fourier-Transformation einer Funktion

Mehr

Als Summendarstellung der komplexen Zahl bezeichnen wir den bekannten Ausdruck

Als Summendarstellung der komplexen Zahl bezeichnen wir den bekannten Ausdruck A.1 MATHEMATISCHE GRUNDLAGEN In diesem Abschnitt werden die mathematischen Grundlagen zusammengestellt, die für die Behandlung von Übertragungssystemen erforderlich sind. Unter anderem sind dies die komplexen

Mehr

Kapitel 2: Fourieranalyse. Periodische und nichtperiodische Signale

Kapitel 2: Fourieranalyse. Periodische und nichtperiodische Signale ZHAW, ASV, FS9, - Kapitel : Fourieranalyse Periodische und nichtperiodische Signale Inhaltsverzeichnis. EINLEIUNG.... LINEARER MIELWER... 3 3. LEISUNG UND EFFEKIVWER... 3 4. WINKELFUNKIONEN... 4 5. FOURIERREIHE...

Mehr

Fourier-Reihe und -Spektrum

Fourier-Reihe und -Spektrum SiSy, Fourier-Reihen / Fourier-Reihe und -Spektrum Fourier-Darstellung periodischer Funktionen. Einleitung In vielen technischen Anwendungen sind die zeitlichen Verläufe von Signalen wie z.b. Spannung

Mehr

5. Fourier-Transformation

5. Fourier-Transformation Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf

Mehr

Vom Zeit- zum Spektralbereich: Fourier-Analyse

Vom Zeit- zum Spektralbereich: Fourier-Analyse Vom Zeit- zum Spektralbereich: Fourier-Analyse Ergebnis der Analyse Zerlegung eines beliebigen periodischen Signals in einem festen Zeitfenster in eine Summe von Sinoidalschwingungen Ermittlung der Amplituden

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Systemtheorie Teil A - Zeitkontinuierliche Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt 6 Musterlösungen Spektrum von Signalen 6. Approximation eines periodischen Signals

Mehr

:. (engl.: first harmonic frequency)

:. (engl.: first harmonic frequency) 5 Fourier-Reihen 5.1 Schwingungsüberlagerung 5.2 "Oberschwingungen" f 0 :. (engl.: fundamental frequency) :. (engl.: first harmonic frequency) Jede ganzzahlige (n) vielfache Frequenz von f 0 nennt man

Mehr

A3.1: Spektrum des Exponentialimpulses

A3.1: Spektrum des Exponentialimpulses Abschnitt: 3.1 Fouriertransformation und -rücktransformation A3.1: Spektrum des Exponentialimpulses In dieser Aufgabe wird ein kausales Signal x(t) betrachtet, das zum Zeitpunkt t = 0 sprungartig von 0

Mehr

Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung

Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung 28. September 2016 Elektrizitätslehre 3 Martin Weisenhorn Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung Aufgabe 1. Die nachfolgende Grafik stellt das Oszillogramm zweier sinusförmiger Spannungen

Mehr

Laplacetransformation

Laplacetransformation Laplacetransformation Fakultät Grundlagen Februar 206 Fakultät Grundlagen Laplacetransformation Übersicht Transformationen Transformationen Bezugssysteme Definition der Laplacetransformation Beispiele

Mehr

Einführung in die Signalverarbeitung

Einführung in die Signalverarbeitung Einführung in die Signalverarbeitung Phonetik und Sprachverarbeitung, 2. Fachsemester, Block Sprachtechnologie I Florian Schiel Institut für Phonetik und Sprachverarbeitung, LMU München Signalverarbeitung

Mehr

Bildsignaltechnik. Name:... Matrikelnummer:...

Bildsignaltechnik. Name:... Matrikelnummer:... Fachbereich lektrotechnik Fachgebiet Kounikationstechnik Schriftliche Prüfung Bildsignaltechnik.9. Nae:... Matrikelnuer:... zugelassene Hilfsittel : Vorlesungshilfsblätter ohne zusätzliche Blätter, keine

Mehr

Amplitudenunabhängige. Impulslängenbestimmung. mit Hilfe der. Cepstrum-Analyse

Amplitudenunabhängige. Impulslängenbestimmung. mit Hilfe der. Cepstrum-Analyse Amplitudenunabhängige Impulslängenbestimmung mit Hilfe der Cepstrum-Analyse Dipl.-Ing. Leo Baumann Datum 15.03.1999 Inhalt 1.0 Kontinuierliche Berechnung 2.0 Diskrete Berechnung 3.0 Einige Beispiele 4.0

Mehr

Überblick zu Kapitel 3

Überblick zu Kapitel 3 Überblick zu Kapitel 3 Im zweiten Kapitel wurden periodische Signale durch eine Reihe harmonischer Schwingungen ( Fourierreihe ) beschrieben. Verringert man zumindest gedanklich die Wiederholfrequenz eines

Mehr

Anwendungen der Fourier-Entwicklung in der Elektrotechnik 1 / 22

Anwendungen der Fourier-Entwicklung in der Elektrotechnik 1 / 22 Anwendungen der Fourier-Entwicklung in der Elektrotechnik 1 / Unser heutiges Ziel Reaktion eines Netzwerks auf ein periodisches Eingangssignal oder speziell Wie reagiert ein RC-Glied auf periodische Erregung?

Mehr

Betrachtetes Systemmodell

Betrachtetes Systemmodell Betrachtetes Systemmodell Wir betrachten ein lineares zeitinvariantes System mit der Impulsantwort h(t), an dessen Eingang das Signal x(t) anliegt. Das Ausgangssignal y(t) ergibt sich dann als das Faltungsprodukt

Mehr

Approximation von Funktionen

Approximation von Funktionen von Funktionen Fakultät Grundlagen Februar 6 Fakultät Grundlagen von Funktionen Übersicht Problemstellung Taylorpolynom Taylorenreihe Zusammenhang von e-funktion und trigonometrischen Funktionen 3 Fakultät

Mehr

3. Beschreibung dynamischer Systeme im Frequenzbereich

3. Beschreibung dynamischer Systeme im Frequenzbereich 3. Laplace-Transformation 3. Frequenzgang 3.3 Übertragungsfunktion Quelle: K.-D. Tieste, O.Romberg: Keine Panik vor Regelungstechnik!.Auflage, Vieweg&Teubner, Campus Friedrichshafen --- Regelungstechnik

Mehr

Nachrichtentechnik [NAT] Kapitel 3: Zeitkontinuierliche Systeme. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 3: Zeitkontinuierliche Systeme. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 3: Zeitkontinuierliche Systeme Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 2005 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 3 Zeitkontinuierliche

Mehr

Analoge Signale und Systeme im Zeit- und Frequenzbereich

Analoge Signale und Systeme im Zeit- und Frequenzbereich . Zeitbereich Analoge Signale und Systeme im Zeit- und Frequenzbereich. Zeitbereich. Die Sprungfuntion h(t) Eine um die Zeit τ zeitverschobene Sprungfuntion schreibt sich also h(t-τ).. Der Dirac-Impuls

Mehr

Signale und Systeme I

Signale und Systeme I FACULTY OF ENGNEERING CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITAL SIGNAL PROCESSING AND SYSTEM THEORY DSS Signale und Systeme I Musterlösung zur Modulklausur WS 010/011 Prüfer: Prof. Dr.-Ing. Gerhard

Mehr

Allgemeine Beschreibung (1)

Allgemeine Beschreibung (1) Allgemeine Beschreibung (1) Jede periodische Funktion x(t) kann in allen Bereichen, in denen sie stetig ist oder nur endlich viele Sprungstellen aufweist, in eine trigonometrische Reihe entwickelt werden,

Mehr

Systemtheorie. Vorlesung 20: Eigenschaften der Fourier-Transformation. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Systemtheorie. Vorlesung 20: Eigenschaften der Fourier-Transformation. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Systemtheorie Vorlesung 2: Eigenschaften der Fourier-Transformation Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Fourier-Transformation Eigenschaften der Fourier-Transformation Definitionsgleichungen

Mehr

2 Periodische, nicht harmonische Signale

2 Periodische, nicht harmonische Signale Hochfrequenztechnik I Signaldarstellung im Zeit- und Frequenzbereich S/ Harmonische Signale Zeitabhängige Gröÿen, wie z. B. Spannung, Strom oder Feld, sind häug harmonische Gröÿen. Solche sinus- oder kosinusförmigen

Mehr

Technische Schwingungslehre, WS2009/10

Technische Schwingungslehre, WS2009/10 Institut für Technische Mechanik Prof. Dr.-Ing. C. Proppe Prof. Dr.-Ing. W. Seemann Technische Schwingungslehre, WS9/ Übungsblatt Nr. Thema: Darstellung von Schwingungen Formelsammlung: Grundbegriffe der

Mehr

Fourier-Reihen und Fourier-Transformation

Fourier-Reihen und Fourier-Transformation Fourier-Reihen und Fourier-Transformation Matthias Dreÿdoppel, Martin Koch, Bernhard Kreft 25. Juli 23 Einleitung Im Folgenden sollen dir und die Fouriertransformation erläutert und mit Beispielen unterlegt

Mehr

Prof. Dr. Stefan Weinzierl Aufgabe: Amplitudenstatistik analoger Audiosignale. Abb. 1: WDF eines Audiosignals. p X.

Prof. Dr. Stefan Weinzierl Aufgabe: Amplitudenstatistik analoger Audiosignale. Abb. 1: WDF eines Audiosignals. p X. Audiotechnik II 1.Übungstermin Prof. Dr. Stefan Weinzierl 21.1.21 1. Aufgabe: Amplitudenstatistik analoger Audiosignale a. Ein Signal x(t) hat die durch Abb. 1 gegebene Wahrscheinlichkeitsdichtefunktion

Mehr

IKA IKA. Zeitsignale. Analoge, zeitdiskrete, und digitale Signale

IKA IKA. Zeitsignale. Analoge, zeitdiskrete, und digitale Signale Zeitsignale Je nach Zeitbasis und Wertemenge des Signals unterscheidet man zeit- und wertkontinuierliche Signale (analoge Signale); zeitdiskrete, aber wertkontinuierliche Signale (zeitdiskrete Signale);

Mehr

Beschreibung linearer Systeme im Frequenzbereich

Beschreibung linearer Systeme im Frequenzbereich Beschreibung linearer Systeme im Frequenzbereich Jan Albersmeyer Seminar Regelungstechnik Ziel Man möchte das Verhalten linearer Systeme der Form in Abhängigkeit der Steuerungen u(t) beschreiben. 22.11.2002

Mehr

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung 34 Schwingungen Im Zusammenhang mit Polardarstellungen trifft man häufig auf Funktionen, die Schwingungen beschreiben und deshalb für den Ingenieur von besonderer Wichtigkeit sind Fast alle in der Praxis

Mehr

SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden:

SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden: /5 Fourier-Analyse (periodischer Signale) Grundlagen Ein periodisches, kontinuierliches Signal x(t) der Periodendauer kann als Fourier-Reihe beschrieben werden: wie folgt ( ) = c k x t + e j k 2πf t k=

Mehr

Angewandte Mathematik und Programmierung

Angewandte Mathematik und Programmierung Angewandte Mathematik und Programmierung Einführung in das Konzept der objektorientierten Anwendungen zu mathematischen Rechnens WS 2012/13 Inhalt Fourier reihen Fourier Transformation Laplace Transforamation

Mehr

Programmierung und Angewandte Mathematik

Programmierung und Angewandte Mathematik Programmierung und Angewandte Mathematik C++ /Scilab Programmierung und Einführung in das Konzept der objektorientierten Anwendungen zu wissenschaftlichen Rechnens SS 2012 Inhalt Steckbrief der Funktion

Mehr

Signal- und Systemtheorie

Signal- und Systemtheorie Thomas Frey, Martin Bossert Signal- und Systemtheorie Mit 117 Abbildungen, 26 Tabellen, 64 Aufgaben mit Lösungen und 84 Beispielen Teubner B.G.Teubner Stuttgart Leipzig Wiesbaden Inhaltsverzeichnis 1 Einleitung

Mehr

4. Dämpfungsmodelle. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. Elastodynamik 3.

4. Dämpfungsmodelle. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. Elastodynamik 3. 4. Dämpfungsmodelle 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung 3.4-1 4.1 Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Dabei

Mehr

4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. 4. Dämpfungsmodelle. Elastodynamik 1 3.

4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. 4. Dämpfungsmodelle. Elastodynamik 1 3. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung 4. Dämpfungsmodelle 3.4-1 4.1 Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Mechanische

Mehr

Angewandte Mathematik und Programmierung

Angewandte Mathematik und Programmierung Angewandte Mathematik und Programmierung Einführung in das Konzept der objektorientierten Anwendungen zu mathematischen Rechnens SS2013 Inhalt Fourier Reihen Sehen wir in 2 Wochen Lösung der lin. Dgln.

Mehr

Einführung in die Systemtheorie

Einführung in die Systemtheorie Einführung in die Systemtheorie Von Professor Dr.-Ing. Bernd Girod Priv.-Doz. Dr.-Ing. habil. Rudolf Rabenstein und Dipl.-Ing. Alexander Stenger Universität Erlangen-Nürnberg Mit 259 Bildern B.G. Teubner

Mehr

Einführung in die Systemtheorie

Einführung in die Systemtheorie Bernd Girod, Rudolf Rabenstein, Alexander Stenger Einführung in die Systemtheorie Signale und Systeme in der Elektrotechnik und Informationstechnik 2., korrigierte und aktualisierte Auflage Mit 388 Abbildungen

Mehr

Fourierreihen periodischer Funktionen

Fourierreihen periodischer Funktionen Fourierreihen periodischer Funktionen periodische Funktion: (3.1) Fourierkoeffizienten und (3.2) (3.3) Fourier-Reihenentwicklungen Cosinus-Reihe: (3.4) (3.5) Exponentialreihe: (3.6) (3.7-3.8) Bestimmung

Mehr

Mathematik III Die Fourier-Transformation in Bildern

Mathematik III Die Fourier-Transformation in Bildern Mathematik III Die Fourier-Transformation in Bildern Cornelia Busch D-CHAB 20. Dezember 2018 Eine periodische Funktion f (t)... ... wird zerlegt: f (t) = sin(3t) + cos(5t). f (t) = cos(2t) + sin(3t) +

Mehr

Signale, Transformationen

Signale, Transformationen Signale, Transformationen Signal: Funktion s(t), t reell (meist t die Zeit, s eine Messgröße) bzw Zahlenfolge s k = s[k], k ganzzahlig s reell oder komplex s[k] aus s(t): Abtastung mit t = kt s, s[k] =

Mehr

Spektrale Analyse Fourier Transformation

Spektrale Analyse Fourier Transformation Spektrale Analyse Fourier Transformation Fragestellung: Bestimmung der Amplitude eines verrauschten Signals UU =? 2 Fragestellung: Bestimmung der Amplitude eines verrauschten Signals UU =? 3 Frequenz-Spektrum

Mehr

Dämpfung. . Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung. Elastodynamik 2 SS

Dämpfung. . Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung. Elastodynamik 2 SS Dämpfung. Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung 5. Dämpfung 5-1 1. Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Mechanische Energie

Mehr

Einführung in die Physik I. Schwingungen und Wellen 1

Einführung in die Physik I. Schwingungen und Wellen 1 Einführung in die Physik I Schwingungen und Wellen O. von der Lühe und U. Landgraf Schwingungen Periodische Vorgänge spielen in eine große Rolle in vielen Gebieten der Physik E pot Schwingungen treten

Mehr

BERUFSAKADEMIE S T U T T G A R T University of Cooperative Education. Höhere Mathematik II. Übungen. Komplexe Zahlen. i e π + 1=

BERUFSAKADEMIE S T U T T G A R T University of Cooperative Education. Höhere Mathematik II. Übungen. Komplexe Zahlen. i e π + 1= BERUFSAKADEMIE S T U T T G A R T University of Cooperative Education Höhere Mathematik II Übungen Komplexe Zahlen i e π + 0 8 R. Mohr FK Blatt Komplexe Zahlen I WS 004/ Aufgabe : Gegeben sind die komplexen

Mehr

Globale Operationen. Prof. Dr. Aris Christidis WS 2018 / 19

Globale Operationen. Prof. Dr. Aris Christidis WS 2018 / 19 Globale Operationen Operationen / Funktionen, die alle Pixel des Eingabebildes benötigen, bevor sie ein Pixel oder eine Aussage für das Ergebnisbild ermitteln, nennt man global. (Beispiel: Erkennung /

Mehr

Lösungsblatt 2 Signalverarbeitung

Lösungsblatt 2 Signalverarbeitung Fakultät für nformatik Übung zu Kognitive Systeme Sommersemester 208 S. Constantin (stefan.constantin@kit.edu) T. Nguyen (thai.nguyen@kit.edu) Lösungsblatt 2 Signalverarbeitung Aufgabe : Faltung Abbildung

Mehr

Fourier- und Laplace-Transformation. Material zur Vorlesung Grundgebiete der Elektrotechnik 3

Fourier- und Laplace-Transformation. Material zur Vorlesung Grundgebiete der Elektrotechnik 3 Fourier- und Laplace-Transformation Material zur Vorlesung Grundgebiete der Elektrotechnik 3 Dr. Alexander Schaum Vertretungsprofessur für vernetzte elektronische Systeme Christian-Albrechts-Universität

Mehr

Runde 9, Beispiel 57

Runde 9, Beispiel 57 Runde 9, Beispiel 57 LVA 8.8, Übungsrunde 9,..7 Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 3..7 Angabe Seien y, z C N und c, d C N ihre Spektralwerte. Außerdem bezeichne (x k ) k die N - periodische

Mehr

Zusammenfassung der 1. Vorlesung

Zusammenfassung der 1. Vorlesung Zusammenfassung der. Vorlesung Einordnung und Motivation Grundlegende Definitionen Kontinuierliches Signal Quantisiertes Signal Zeitdiskretes Signal Digitales Signal Auflösung der A/D- Umsetzer der MicroAutoBox

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Gedämpfte & erzwungene Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 16. Dez. 16 Harmonische Schwingungen Auslenkung

Mehr

Übung 2: Spektrum periodischer Signale

Übung 2: Spektrum periodischer Signale ZHAW, SiSy, Rumc, Übung : Spektrum periodischer Signale Augabe Verschiedene Darstellungen der Fourierreihe. Betrachten Sie das periodische Signal s(t) = + sin(π t). a) Bestimmen Sie die A k - und B k -Koeizienten

Mehr

SYS_A - ANALYSIEREN. Statistik. NTB Druckdatum: SYS A. Histogramm (Praxis) Gaußsche Normalverteilung (Theorie) Gebrauch: bei n > 100

SYS_A - ANALYSIEREN. Statistik. NTB Druckdatum: SYS A. Histogramm (Praxis) Gaußsche Normalverteilung (Theorie) Gebrauch: bei n > 100 SYS_A - ANALYSIEREN Statistik Gaußsche Normalverteilung (Theorie) Gebrauch: bei n > 100 Histogramm (Praxis) Realisierung Lage Streuung Zufallsvariable Dichte der Normalverteilung Verteilungsfunktion Fläche

Mehr

Übungen zu Transformationen. im Bachelor ET oder EW. Version 2.0 für das Wintersemester 2014/2015 Stand:

Übungen zu Transformationen. im Bachelor ET oder EW. Version 2.0 für das Wintersemester 2014/2015 Stand: Fachhochschule Dortmund University of Applied Sciences and Arts Institut für Informationstechnik Software-Engineering Signalverarbeitung Regelungstechnik IfIT Übungen zu Transformationen im Bachelor ET

Mehr

Parseval-Identität: Seien zwei Funktionen v. mit Fourier-Reihen: dann gilt: Parseval-Identität. Speziell:

Parseval-Identität: Seien zwei Funktionen v. mit Fourier-Reihen: dann gilt: Parseval-Identität. Speziell: Parseval-Identität: Seien zwei Funktionen v. mit Fourier-Reihen: dann gilt: (kühnes Vertauschen von Integral und Summe!) Parseval-Identität Speziell: Anmerkung: beide Seiten kann man als Skalarprodukt

Mehr

Harmonische Schwingungen und komplexe Zeiger

Harmonische Schwingungen und komplexe Zeiger Harmonische Schwingungen und komplexe Zeiger Eine harmonische Schwingung wird durch eine allgemeine sinusartige Funktion beschrieben (Grafik siehe unten: y = y (t = sin (ω t + ϕ Dabei ist die mplitude,

Mehr

Lösungsblatt 2 Signalverarbeitung und Klassifikation

Lösungsblatt 2 Signalverarbeitung und Klassifikation Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 06 M. Sperber (matthias.sperber@kit.edu) S. Nguyen (thai.nguyen@kit.edu) Lösungsblatt Signalverarbeitung und Klassifikation Aufgabe : Faltung

Mehr

Lösungen. Lösungen Teil I. Lösungen zum Kapitel 3. u(t) 2mV. t/s. u(t) 2mV 1mV. t/ms. u(t) t/ms -2V. x(t) 1. a) u(t) = 2mV3 (t 2ms)

Lösungen. Lösungen Teil I. Lösungen zum Kapitel 3. u(t) 2mV. t/s. u(t) 2mV 1mV. t/ms. u(t) t/ms -2V. x(t) 1. a) u(t) = 2mV3 (t 2ms) Lösungen Lösungen eil I Lösungen zum Kapitel 3. a ut = mv3 t ms ut mv t/ms b ut = mv3t mv3 t ms mv3 t ms mv mv ut t/ms p c ut = V3 t ms sin ms t V ut -V 3 4 5 6 t/ms d xt = 4 s r t s 4 s r t s 4 s r t

Mehr

Zeitfunktionen. Kapitel Elementarfunktionen

Zeitfunktionen. Kapitel Elementarfunktionen Kapitel Zeitfunktionen Systeme werden durch Eingangsgrößen (Ursache, Eingangssignal, Erregung) angeregt und man interessiert sich für die Ausgangsgrößen (Wirkung, Ausgangssignal, Antwort). Die praktisch

Mehr

Die Fourier-Transformation

Die Fourier-Transformation 1/20 Die Fourier-Transformation 2/20 Die FT ermittelt aus dem Signal von überlagerten Schwingungen welche Frequenzen enthalten sind FT 3/20 Von der folgenden Schwingung soll die Frequenz ermittelt werden

Mehr

Technische Beschreibung der akustischen Signalkette

Technische Beschreibung der akustischen Signalkette Technische Beschreibung der akustischen Signalkette Wichtige Aufgabe: Vielfältige Medien Gestaltung akustischer Kommunikationsketten (Sprache, Geräusche, Musik, CD, Radio, mp3,...) Unterschiedlichste Information

Mehr

Praktikum Grundlagen der Elektrotechnik

Praktikum Grundlagen der Elektrotechnik Fakultät für Elektrotechnik und Informationstechnik Institut für Informationstechnik Lehrgruppe Grundlagen der Elektrotechnik Praktikum Grundlagen der Elektrotechnik 1. Versuchsbezeichnung GET 10: Fourieranalyse

Mehr

Albert-Ludwigs-Universität Freiburg Institut für Informatik Lehrstuhl für Mustererkennung und Bildverarbeitung Prof. Dr.-Ing.

Albert-Ludwigs-Universität Freiburg Institut für Informatik Lehrstuhl für Mustererkennung und Bildverarbeitung Prof. Dr.-Ing. Musterlösung Blatt 6 Aufgabe 6.. Albert-Ludwigs-Universität Freiburg Institut für Informatik Lehrstuhl für Mustererkennung und Bildverarbeitung Prof. Dr.-Ing. Hans Burkhardt 6.. Die Fourierkoeffizienten

Mehr

Aufgabensammlung. Signale und Systeme 2. Dr. Mike Wolf und Dr. Ralf Irmer, Fachgebiet Nachrichtentechnik

Aufgabensammlung. Signale und Systeme 2. Dr. Mike Wolf und Dr. Ralf Irmer, Fachgebiet Nachrichtentechnik Aufgabensammlung Signale und Systeme 2 für die BA-Studiengänge EIT, II und MT (5. FS) Dr. Mike Wolf und Dr. Ralf Irmer, Fachgebiet Nachrichtentechnik Version vom 4. Februar 2015 24 7 Analoge Systeme und

Mehr

Rückblick auf die letzte Vorlesung

Rückblick auf die letzte Vorlesung Rückblick auf die letzte Vorlesung 1 Lineare autonome Differentialgleichungen 2 Bestimmung des Fundamentalsystems 3 Jordansche Normalform 4 Reelle Fundamentalsysteme Ausblick auf die heutige Vorlesung

Mehr

Anmerkung: Falls f(x) nicht ganz glatt ist, sondern nur stückweise stetig differenzierbar ist (d.h. Sprünge hat), gilt (Satz v.

Anmerkung: Falls f(x) nicht ganz glatt ist, sondern nur stückweise stetig differenzierbar ist (d.h. Sprünge hat), gilt (Satz v. Fourier-Reihen für periodische Funktionen Sei periodisch, mit Periode L: Auch für diesen Fall gilt die Fourier- Reihen-Darstellung (b.3), mit : (b.3) (und stückweise stetig differenzierbar) (c.5) Integral

Mehr

Übung 1: Charakterisierung von Signalen

Übung 1: Charakterisierung von Signalen Übung Signale und Systeme Sommersemester Übung : Charakterisierung von Signalen 5.April Übung : Charakterisierung von Signalen. Zeichnen Sie die folgenden Signale und diskutieren Sie deren Eigenschaften:

Mehr

Elektro- und Informationstechnik WS 2012/2013. Mathematik II - Übungsblatt 04 mit Lösungsvorschlägen. a 2, a 1, b 1,

Elektro- und Informationstechnik WS 2012/2013. Mathematik II - Übungsblatt 04 mit Lösungsvorschlägen. a 2, a 1, b 1, Aufgabe 1 - Übungsblatt 04 mit Lösungsvorschlägen Berechnen Sie die Fourierkoeffizienten a 0, a 1, a 2, b 1, b 2 der im folgenden Diagramm dargestellte Rechteckspannung: Hinweis: Suchen Sie zunächst nach

Mehr

4. Gleichungen im Frequenzbereich

4. Gleichungen im Frequenzbereich Stationäre Geräusche: In der technischen Akustik werden überwiegend stationäre Geräusche untersucht. Stationäre Geräusche sind zusammengesetzt aus harmonischen Schallfeldern p x,t = p x cos t x Im Folgenden

Mehr

Grundlagen der Signalverarbeitung

Grundlagen der Signalverarbeitung Grundlagen der Signalverarbeitung Zeitdiskrete Signale Wintersemester 6/7 Kontinuierliche und diskrete Signale wertkontinuierlich wertdiskret Signal Signal Signal Signal zeitdiskret zeitkontinuierlich

Mehr

Diskrete Fourier-Transformation und FFT. 1. Die diskrete Fourier-Transformation (DFT) 2. Die Fast Fourier Transform (FFT)

Diskrete Fourier-Transformation und FFT. 1. Die diskrete Fourier-Transformation (DFT) 2. Die Fast Fourier Transform (FFT) Diskrete Fourier-Transformation und FFT 2. Die Fast Fourier Transform (FFT) 3. Anwendungsbeispiele der DFT 1 Wiederholung: Fourier-Transformation und Fourier-Reihe Fourier-Transformation kontinuierlicher

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d + d z + c d z + c uk d + + yk z d + c d z + c Systemtheorie eil B - Zeitdiskrete Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt Musterlösungen - Signalabtastung und Rekonstruktion...

Mehr

10. Periodische Funktionen, Fourier Reihen

10. Periodische Funktionen, Fourier Reihen H.J. Oberle Analysis II SoSe 212 1. Periodische Funktionen, Fourier Reihen Jean Baptiste Joseph Fourier: Joseph Fourier wurde am 21.3.1768 bei Auxerre (Burgund) geboren und starb am 16.5.183 in Paris.

Mehr

f(t) = a 2 + darstellen lasst Periodische Funktionen.

f(t) = a 2 + darstellen lasst Periodische Funktionen. 7. Fourier-Reihen Viele Prozesse der Ingenieur- und Naturwissenschaften verlaufen periodisch oder annahernd periodisch, wie die Schwingungen einer Saite, Spannungs- und Stromverlaufe in Wechselstromkreisen

Mehr

Fourier-Reihe mit komplexer Exponentialfunktion

Fourier-Reihe mit komplexer Exponentialfunktion Fourier-Reihe mit komplexer Exponentialfunktion Jörn Loviscach Versionsstand: 9. Juni 2010, 15:54 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. 1 Überlagung sinusförmiger

Mehr

Spezieller Ansatz bei spezieller Inhomogenität.

Spezieller Ansatz bei spezieller Inhomogenität. Spezieller Ansatz bei spezieller Inhomogenität. Bei Inhomogenitäten der Form h(t) = e µt kann man spezielle Ansätze zur Bestimmung von y p (t) verwenden: Ist µ keine Nullstelle der charakteristischen Gleichung

Mehr

1 Fourier-Reihen und Fourier-Transformation

1 Fourier-Reihen und Fourier-Transformation Fourier-Reihen und Fourier-ransformation Fourier-Reihen und Fourier-ransformation J.B.J. de Fourier beobachtete um 8, dass sich jede periodische Funktion durch Überlagerung von sin(t) und cos(t) darstellen

Mehr

Zusammenfassung der 1. Vorlesung

Zusammenfassung der 1. Vorlesung Zusammenfassung der 1. Vorlesung Einordnung und Motivation Grundlegende Definitionen Kontinuierliches Signal Zeitdiskretes Signal Quantisiertes Signal Digitales Signal Kontinuierliches System Abtastsystem

Mehr

Biosignalverarbeitung (Schuster)

Biosignalverarbeitung (Schuster) Biosignalverarbeitung (Schuster) 9. FOURIER - TRANSFORMATION: 4 Ausprägungen der Transformation: Zeitbereich Frequenzbereich Laplace-Transformation Fourier-Transformation kontinuierlicher Signale (FT,

Mehr

Musterlösung zur Klausur Signale und Systeme

Musterlösung zur Klausur Signale und Systeme Musterlösung zur Klausur Signale und Systeme Arbeitsgruppe Digitale Signalverarbeitung Ruhr-Universität Bochum Herbst 005 Aufgabe : Kontinuierliche und diskrete Signale..a) y t ).b) y t ) -3T -T -T T T

Mehr

Überblick zu Kapitel 2

Überblick zu Kapitel 2 Überblick zu Kapitel 2 Im Folgenden werden periodische Signale betrachtet und diese sowohl im Zeit als auch im Frequenzbereich mathematisch beschrieben. Dieses Kapitel beinhaltet im Einzelnen: einige Grundbegriffe

Mehr

1 Allgemeine Grundlagen

1 Allgemeine Grundlagen Allgemeine Grundlagen. Gleichstromkreis.. Stromdichte Die Stromdichte in einem stromdurchflossenen Leiter mit der Querschnittsfläche A ist definiert als: j d d :Stromelement :Flächenelement.. Die Grundelemente

Mehr

Spektrum zeitdiskreter Signale

Spektrum zeitdiskreter Signale Spektrum zeitdiskreter Signale 1 Aufgabenstellung Mithilfe der Fouriertransformation können zeitkontinuierliche Signale in den Frequenzbereich transformiert werden, um die im Signal enthaltenen Frequenzanteile

Mehr

Laplace-Transformation

Laplace-Transformation Laplace-Transformation Gegeben: Funktion mit beschränktem Wachstum: x(t) Ke ct t [, ) Definition: Laplace-Transformation: X(s) = e st x(t) dt = L{x(t)} s C Re(s) >c Definition: Inverse Laplace-Transformation:

Mehr