12.6 Aufgaben zur Laplace-Transformation

Größe: px
Ab Seite anzeigen:

Download "12.6 Aufgaben zur Laplace-Transformation"

Transkript

1 Aufgaben zu linearen Gleichungen 12.6 Aufgaben zur Laplace-Tranformation A B C D Man löe die folgenden Anfangwertprobleme durch Laplace-Tranformation: 1) ẍ ẋ x = ; x() = ẋ() = 1 2) x (3) 6ẍ + 12ẋ 8x = e 2t ; x() = ẋ() = ẍ() = 3) ẍ + 4x = H(t π) ; x() = ẋ() = Man löe die folgenden Syteme durch Laplace-Tranformation: 1) 2) ẋ + 2y = e t ẏ + 2x = e t ; x() = y() = ẍ + ẏ + 3x = 1 ÿ 4ẋ + 3y = ; x() = y() = ẋ() = ẏ() = Man löe die Euler-Gleichung tẍ ẋ = durch Laplace-Tranformation. Sei f: [, [ IR in jedem endlichen Intervall abolut integrierbar und höchten von exponentiellem Wachtum. D.h. e gibt Kontanten M, k IR mit f(t) M e kt für alle t ab einem T >. Man beweie: 1) f(t) it L-tranformierbar und da Laplace-Integral konvergiert für > k abolut. 2) Konvergiert da Laplace-Integral für abolut, o konvergiert e im Intervall [, [ gleichmäßig. 3) Die L-Tranformierte von f(t) trebt gegen für. E Laplace-Tranformation periodicher Funktionen: Sei f: [, [ IR L-tranformierbar und periodich mit der Periode T >. Zeigen Sie, daß dann L{f(t)} = F () = F Beweien Sie den Differentiationatz 6.2.(8). G 1 1 e T e t f(t) dt. Finden Sie außerdem ein Beipiel einer L-tranformierbaren Funktion f(t), deren Ableitung nicht L-tranformierbar it. Grenzwerte von Bild und Urbild: Sei f(t) für t > differenzierbar. Man beweie: 1) It f (t) L-tranformierbar, o gilt lim F () = lim f(t) =: f(+). t + 2) It f (t) in [, [ abolut integrierbar, o gilt lim F () = lim t f(t).

2 12.6 Laplace-Tranformation 293 H Sei f(t) := { für t < ln ln 3 ( 1) n e et /2 für ln ln n t < ln ln(n + 1) (n 3) Zeigen Sie, daß da Laplace-Integral und für alle IR abolut divergiert. Löungen: e t f(t) dt für alle IR konvergiert A Zur Laplace-Tranformation iehe Abchnitt 6. Eine kleine Tabelle von L- Tranformierten finden Sie im Anhang. (A.1) ẍ ẋ x = ; y() = ẋ() = 1 Laplace-Tranformation liefert L{ẍ ẋ x} = L{ẍ} L{ẋ} L{x} = ( 2 X() x() ẋ() ) ( X() x() ) X() = ( 2 1) X() =. Mit a 1 := 1 2 (1 + 5) und a 2 := 1 2 (1 5) gilt 2 1 = ( a 1 )( a 2 ). Auflöen nach X() und Rücktranformation nach Tabelle liefert: X() = 2 1 = = 1 1 (5 + 5) }{{} =:A 1 x(t) = A 1 e a1t + A 2 e a2t. ( a 1 )( a 2 ) 1 a (5 5) }{{} =:A 2 1 a 2 Hier gibt e übrigen einen Zuammenhang mit den Fibonacci-Zahlen F k (iehe z.b. [RA 1, E]). Für die Löung x(t) gilt ẍ = ẋ+x. n-malige Differenzieren liefert x (n+2) = x (n+1) + x (n). Wegen x() = ẋ() = 1 folgt F k = x (k) (). Anderereit it x (k) (t) = A 1 a k 1 e a1t + A 2 a k 2 e a2t und daher F k = x (k) () = A 1 a k 1 + A 2 a k 2. (A.2) x (3) 6ẍ + 12ẋ 8x = e 2t ; x() = ẋ() = ẍ() = E ind homogene Anfangbedingungen gegeben. L-Tranformation liefert: 3 X() 6 2 X() + 12 X() 8 X() = L{ e 2t } ( 2) 3 X() = 1 2 ; X() = x(t) = 1 3! t3 e 2t. 1 ( 2) 4

3 Aufgaben zu linearen Gleichungen (A.3) ẍ + 4x = H(t π) ; x() = ẋ() = Dabei it H(t) die Heaviide-Funktion. Laplace-Tranformation nach Tabelle und Verchiebungatz ergibt X() = e π 1 co 2(t π) x(t) = 4 H(t π) = in2 t 2 H(t π). B (B.1) ẋ + 2y = e t ẏ + 2x = e t ; x() = y() = Wegen der homogenen Anfangbedingungen ergibt Laplace-Tranformation da Sytem X() + 2 Y () = L{ e t } = X() + Y () = L{ e t } = 1 +1 Auflöen und Partialbruchzerlegung liefert X() = 2 +2 ( 2 1)( 2 4) = 1 ( ) 2 Y () = ( 2 1)( 2 4) = 1 ( ) 2 Rücktranformation liefert die Löung de Sytem: x(t) = 1 ( 3 2 e t e t 2 e 2t + e 2t) y(t) = 1 ( 3 e t + 2 e t 2 e 2t e 2t). (B.2) ẍ + ẏ + 3x = 1 ÿ 4ẋ + 3y = ; x() = y() = ẋ() = ẏ() = Laplace-Tranformation ergibt da Gleichungytem ( 2 + 3) X() + Y () = 1 4 X() + ( 2 + 3)Y () = Auflöung, Partialbruchzerlegung und Rücktranformation liefert X() = 2 +3 ( 2 +9)( 2 +1) = 1/3 / /4 2 +1

4 12.6 Laplace-Tranformation 295 Y () = 4 ( 2 +9)( 2 +1) = 1/ / x(t) = co 3t 1 4 co t y(t) = 1 6 in 3t in t C tẍ ẋ = L-Tranformation liefert mit Regeln (6.2.1) und (6.2.9) d d L{ẍ} L{ẋ} = d ( d 2 X() x() ẋ() ) ( X() x() ) = 2X() 2 X () + x() X() + x() = 3X() 2 X () + 2x() = Diee lineare Differentialgleichung für X() beitzt die allgemeine Löung X() = x() + C 3 (C IR) Rücktranformation liefert die allgemeine Löung der Auganggleichung x(t) = x() + C 2 t2. Man hätte diee Dgl natürlich auch ander löen können, etwa al Euler-Dgl oder durch Reduktion auf eine lineare Dgl 1. Ordnung mit Hilfe der Subtitution u(t) := ẋ(t). D Nach Vorauetzung it f: [, [ IR in jedem endlichen Intervall abolut integrierbar und e gibt Kontanten M, k IR mit f(t) M e kt für alle t ab einem T >. (D.1) Für > k gilt dann e t f(t) dt e t f(t) dt + M f(t) dt + M k <. T e t e kt dt Beachte, daß f(t) in endlichen Intervallen [, T ] abolut integrierbar it. Alo it da Laplace-Integral von f(t) für > k abolut konvergent und die L- Tranformierte F () von f(t) exitiert mindeten im Intervall ]k, [.

5 Aufgaben zu linearen Gleichungen (D.2) Sei f(t) L-tranformierbar und da Laplace-Integral von f(t) konvergiere für = abolut. Dann gibt e zu vorgegebenem ε > ein T > mit alle T > T. Dann gilt für alle >, T > T : e t f(t) dt < e t f(t) dt < ε. T T T e t f(t) dt < ε für Alo konvergiert da L-Integral von f(t) gleichmäßig im Intervall [, [. Da Reultat gilt unter chwächeren Vorauetzungen (iehe Doetch). (D.3) Für > zerlegen wir da L-Integral von f(t) in F () = 1 e t f(t) dt + 2 e t f(t) dt + e t f(t) dt. T 1 T 2 Zu vorgegebenem ε > wähle man T 1 > o klein, daß für gilt 1 1 e t f(t) dt f(t) dt ε 3. Nach Teil (D.2) kann man T 2 > T 1 o groß wählen, daß für > e t f(t) dt ε 3. T 2 Schließlich wähle man 1 > o groß, daß für 1 gilt 2 2 e t f(t) dt f(t) dt ε e 1T1 3. T 1 T 1 Alo it F () < ε für > 1. E Laplace-Tranformation periodicher Funktionen: Sei f: [, [ IR L-tranformierbar und periodich mit der Periode T >. Sei f(t) : für t <. Nach dem Verchiebungatz 6.2.(4) it dann mit f(t) auch f(t T ) tranformierbar und e gilt L{f(t)} = F () = L{f(t T )} = e T F (). { f(t) für t < T Nun it f(t) f(t T ) = und daher für t T ( 1 e T ) F () = L{f(t) f(t T )}() = Die Behauptung folgt. e t f(t).

6 12.6 Laplace-Tranformation 297 F Bewei de Differentiationatze: Sei f(t) im Intervall ], [ differenzierbar und die Ableitung f (t) L-tranformierbar. Nach Definition it dann f (t) in jedem endlichen Intervall [, T ] (ogar abolut) integrierbar und e gilt f (t) dt = lim ε + ε f (t) dt = lim f(t ) f(ε) = f(t ) lim f(ε). ε + ε + Alo exitiert der Grenzwert f( + ) := lim f(t). t + Setzt man vorau, daß f(t) höchten exponentielle Wachtum hat, o folgt für alle hinreichend großen mit partieller Integration: e t f (t) dt = e t f(t) t + t= }{{} = e t f(t) dt. Allgemeiner kann man o chließen: Sei > und da L-Integral Sei ψ(x) := x e t f (t) dt der Ableitung konvergent. e t f(t) dt, g(x) := e x ψ(x) und h(x) := e x. Zu zeigen it: Der Grenzwert F () = lim gilt F () + f( + ) = e t f (t) dt. x g(x) ψ(x) = lim x h(x) exitiert und e ψ, g und h ind differenzierbar, denn f it tetig. E gilt h (x) und h(x) für x. Ferner gilt g (x) h (x) = 1 [ ψ(x) + ψ (x) ] = 1 [ x ] e t f(t) dt + e x f(x) = 1 [ x ] e t f(t) t=x + e t f (t) dt + e x f(x) t= = 1 [ x ] e t f (t) dt + f( + ) 1 [ ] e t f (t) dt + f( + ). l Hopital liefert die Behauptung. Zuätzlich erhält man lim x ψ (x) = lim x e x f(x) =. Unter den gemachten Vorauetzungen kann alo f(t) nur von höchten exponentiellem Wachtum ein.

7 Aufgaben zu linearen Gleichungen G Beipiel 1: f(t) := ln t it L-tranformierbar, denn f(t) it in jedem endlichen Intervall [, T ] abolut integrierbar und der Logarithmu wächt nicht mal linear, gechweige denn exponentiell. Die Ableitung f (t) = 1/t it nicht L-tranformierbar, da da uneigentliche Integral 1 e t /t dt für alle IR divergiert. Beipiel 2: Für f(t) := 1 e t it f (t) = e t. Da Laplace-Integral von f (t) konvergiert für > 1, da L-Integral von f(t) nur für >. Beipiel 3: Für f(t) := e t in t 2 it f (t) = e t (in t 2 + 2t co t 2 ). Da Laplace-Integral von f(t) konvergiert für = 1, da L-Integral von f (t) divergiert für = 1. Beipiel 4: Für f(t) := e et in e et it f (t) = e t e et (in e et + e et co e et ). Da Laplace-Integral von f(t) konvergiert für > 1, da L-Integral von f (t) divergiert für alle. Grenzwerte von Bild und Urbild: f(t) erfüllt in beiden Auagen die Vorauetzungen de Differentiationatze 6.2.(8). Inbeondere exitiert lim t + f(t) =: f(+ ) und e it L{f (t)}() = e t f (t) dt = F () f( + ). (1) Nach Aufgabe 12.6.D.3 gilt L{f (t)}() für. Alo folgt die Behauptung (G.1): lim Exitiert zuätzlich da Laplace-Integral e t f (t) dt für =, o exitiert der Grenzwert f( ) := F () = lim f(t) =: f(+). t + lim f(t) = t t lim f (τ) dτ. t Nach dem Differentiationatz konvergiert da Laplace-Integral F () von f(t) für >. Nach Aufgabe 12.6.D.2 konvergiert da Laplace Integral von f (t) für ogar gleichmäßig. Man kann in Gleichung (1) den Lime für + mit dem Integral vertauchen und erhält lim + e t f (t) dt = Alo wie behauptet f (t) dt = f( ) f( + ) = lim F () = lim t f(t). lim F () f( + ). +

8 12.6 Laplace-Tranformation 299 H Sei f(t) := { für t < ln ln 3 ( 1) n e et /2 für ln ln n t < ln ln(n + 1) (n 3). Da Laplace-Integral von f(t) it icherlich für kein IR abolut konvergent, denn e t f(t) dt = exp ( t + e t /2 ) dt und e it e t /2 > t für alle t ab einem gewien t. Zur Unteruchung der einfachen Konvergenz betrachten wir zunächt I n := = ln ln(n+1) ln ln n n+1 n exp ( t + e t /2 ) dt (ln x) 1 x 1/2 dx. Dabei wurde ln x = e t ubtituiert. Der Integrand nimmt ab einer Stelle monoton gegen Null ab. Alo gilt I n für n und I n > I n+1 ab einem n. Die alternierende Reihe der Integrale ( 1) n I n konvergiert daher nach dem n=3 Leibnizkriterium. Dann konvergiert auch da Integral für ln ln n < u < ln ln(n + 1) gilt e t f(t) dt, denn u e t f(t) dt = = ln ln n n 1 ( 1) k I k + k=3 u e t f(t) dt + u ln ln n ln ln n e t f(t) dt e t f(t) dt und da letzte Integral it betragmäßig kleiner al I n. Für die Beipiel it die Konvergenzabzie σ = und die Abzie der aboluten Konvergenz σ a = +.

Laplace Transformation

Laplace Transformation Department Mathematik der Univerität Hamburg SoSe 29 Dr. Hanna Peywand Kiani Laplace Tranformation Die in Netz getellten Kopien der Anleitungfolien ollen nur die Mitarbeit während der Verantaltung erleichtern.

Mehr

Übungsmaterial. Lösen von Anfangswertproblemen mit Laplacetransformation

Übungsmaterial. Lösen von Anfangswertproblemen mit Laplacetransformation Prof. Dr. W. Roenheinrich 30.06.2009 Fachbereich Grundlagenwienchaften Fachhochchule Jena Übungmaterial Löen von Anfangwertproblemen mit Laplacetranformation Nachtehend ind einige Anfangwertprobleme zu

Mehr

13.1 Die Laplace-Transformation

13.1 Die Laplace-Transformation 13.1 Die Laplace-ranformation 565 13.1 Die Laplace-ranformation Die Laplace-ranformation it eine Integraltranformation, die jeder Zeitfunktion f(t), t, eine Bildfunktion F () gemäß 13.1 F () = f (t) e

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 15. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 15. Übungsblatt Karlruher Intitut für Technologie (KIT) Intitut für Analyi Dr. A. Müller-Rettkowki Dipl.-Math. M. Uhl WS 9/ Höhere Mathematik I für die Fachrichtungen Elektroingenieurween, Phyik und Geodäie Löungvorchläge

Mehr

Verschiebungssatz: Ist F (s) die Laplace-Transformierte von f (t), dann gilt für t 0 > 0

Verschiebungssatz: Ist F (s) die Laplace-Transformierte von f (t), dann gilt für t 0 > 0 3.6 Tranformationätze 853 3.6 Tranformationätze In dieem Abchnitt werden weitere Eigenchaften der Laplace-Tranformation vorgetellt, die in vielen technichen Bechreibungen ihre Anwendung finden. Oftmal

Mehr

Anleitung zu Blatt 5 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 5 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Univerität Hamburg WiSe / Dr. Hanna Peywand Kiani 4..2 Anleitung zu Blatt 5 Differentialgleichungen I für Studierende der Ingenieurwienchaften Stabilität, Laplace-Tranformation

Mehr

D-HEST, Mathematik III HS 2017 Prof. Dr. E. W. Farkas M. Nitzschner. Lösung 7. Bitte wenden!

D-HEST, Mathematik III HS 2017 Prof. Dr. E. W. Farkas M. Nitzschner. Lösung 7. Bitte wenden! D-HEST, Mathematik III HS 27 Prof. Dr. E. W. Farka M. Nitzchner Löung 7 Bitte wenden! . Wir betrachten ein Sytem linearer Differentialgleichungen erter Ordnung mit kontanten Koeffizienten der Form y (t)

Mehr

Z-Transformation. Laplace-Transformation. Laplace-Transformation der Delta-Funktion

Z-Transformation. Laplace-Transformation. Laplace-Transformation der Delta-Funktion Z-Tranformation Laplace-Tranformation Laplace-Tranformation der Delta-Funktion Z-Tranformation Für eine Differenengleichung wie.b. f(n+) f(n) = n n (alternative Schreibweie n+ n = n n ) it eine expliite

Mehr

Laplace Transformation

Laplace Transformation Prof. Dr. Michael Eiermann Höhere Mathematik 3 (vertieft Kapitel L Laplace Tranformation Die Laplace Tranformation verwandelt Anfangwertprobleme für lineare Differentialgleichungen mit kontanten Koeffizienten

Mehr

Verschiebung und Skalierung bei Laplace-Transformation

Verschiebung und Skalierung bei Laplace-Transformation Verchiebung und Skalierung bei Laplace-Tranformation Bezeichnet man, wie in der Abbildung illutriert, mit u( a) die um a nach recht verchobene Funktion, o gilt für die Laplace-Tranformation u(t a) L exp(

Mehr

9. Die Laplace Transformation

9. Die Laplace Transformation H.J. Oberle Differentialgleichungen I WiSe 212/13 9. Die Laplace Transformation Die Laplace Transformation gehört zur Klasse der so genannten Integraltransformationen. Diese ordnen einer vorgegebenen Funktion

Mehr

Differentialgleichungen

Differentialgleichungen Differentialgleichungen Teilnehmer: Phili Bannach Heinrich-Hertz-Oberchule) Levin Keller Herder-Oberchule) Phili Kende Herder-Oberchule) Carten Kubbernuh Andrea-Oberchule) Giang Nguyen Herder-Oberchule)

Mehr

Klausur Höhere Mathematik I für die Fachrichtung Physik

Klausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Institut für Technologie (KIT Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 4.3.3 Klausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((4+3+3 Punkte a Welche

Mehr

Analysis I Lösung von Serie 14. Um die Inhomogene DGl zu lösen, müssen wir partikuläre Lösungen finden. (a) Wir machen den Ansatz:

Analysis I Lösung von Serie 14. Um die Inhomogene DGl zu lösen, müssen wir partikuläre Lösungen finden. (a) Wir machen den Ansatz: d-infk Lösung von Serie 4 FS 07 4.. Inhomogene Lineare Differentialgleichungen Das charakteristische Polynom der homogenen DGl y (4) + y + y = 0 ist λ 4 + λ + = (λ + ). Seine Wurzeln sind ±i und jede hat

Mehr

Fourier-Reihen. Definition. Eine auf R definierte Funktion f heißt periodisch mit der Periode T 0, wenn f(x + T ) = f(x) x R.

Fourier-Reihen. Definition. Eine auf R definierte Funktion f heißt periodisch mit der Periode T 0, wenn f(x + T ) = f(x) x R. Fourier-Reihen Sehr häufig in der Natur begegnen uns periodische Vorgänge, zb beim Lauf der Gestirne am Nachthimmel In der Physik sind Phänomene wie Schwingungen und Wechselströme periodischer Natur Zumeist

Mehr

D-ITET Analysis II FS 13 Prof. Horst Knörrer. Musterlösung 1. 3xy 2 = 2 x 2. y y. 3 y y. 3 x v x + v = 2 3 v v.

D-ITET Analysis II FS 13 Prof. Horst Knörrer. Musterlösung 1. 3xy 2 = 2 x 2. y y. 3 y y. 3 x v x + v = 2 3 v v. D-ITET Analysis II FS 3 Prof. Horst Knörrer Musterlösung. a) Es gilt: dy d 3 + y 3 3y 3 y + y 3. Dies ist eine homogene Differentialgleichung, das heisst y hängt nur von y ab. Setze v : y y() v() y v +

Mehr

30 Die Gammafunktion und die Stirlingsche Formel

30 Die Gammafunktion und die Stirlingsche Formel 3 Die Gammafunktion und die Stirlingsche Formel 35 Charakterisierung der Gammafunktion 36 Darstellung der Gammafunktion 38 Beziehung zwischen der Gammafunktion und der Zetafunktion 3 Stirlingsche Formel

Mehr

Lösungen zu Übungs-Blatt Differentialgleichungen 2. Ordnung und PBZ

Lösungen zu Übungs-Blatt Differentialgleichungen 2. Ordnung und PBZ Prof.Dr. B.Grabowki Mathematik III/MST Übung Löungen Löungen zu Übung-Blatt Differentialgleichungen. Ordnung und PBZ Zu Aufgabe ) Geben Sie jeweil mindeten eine Löung folgender Differentialgleichung an

Mehr

Formelsammlung Mathematik (ET053)

Formelsammlung Mathematik (ET053) Forelalung Matheatik (ET053) Änderunghitorie 07..2006 Differenzialgleichungen, Ordnung, Separierbarkeit, Hoogenität, Linearität, Löungen, Löunganatz Trennen der Variablen, Löunganatz Subtitution, Lineare

Mehr

Aufgabe 1 Bestimmen Sie die Laplace-Transformierte der Rampenfunktion

Aufgabe 1 Bestimmen Sie die Laplace-Transformierte der Rampenfunktion Übung /Grundgebiete der Elektrotechnik 3 (WS7/8 aplace-tranformation Dr Alexander Schaum, ehrtuhl für vernetzte elektroniche Syteme Chritian-Albrecht-Univerität zu Kiel Aufgabe Betimmen Sie die aplace-tranformierte

Mehr

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist:

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist: Musterlösung Aufgabe a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [, ] R, die folgendermaßen definiert ist: f(x) := { für x R \ Q für x Q f ist offensichtlich beschränkt. Wir zeigen,

Mehr

Höhere Mathematik II. Variante A

Höhere Mathematik II. Variante A Lehrstuhl II für Mathematik Prof Dr E Triesch Höhere Mathematik II SoSe 5 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder- und Rückseite

Mehr

Musterlösung Klausur zu Analysis II. Verständnisteil

Musterlösung Klausur zu Analysis II. Verständnisteil Technische Universität Berlin SS 2009 Institut für Mathematik 20.07.2009 Prof. Dr. R. Schneider Fritz Krüger Sebastian Holtz Musterlösung Klausur zu Analysis II Verständnisteil 1. (a) Sei D R n konvex

Mehr

Höhere Mathematik für Ingenieure 2

Höhere Mathematik für Ingenieure 2 Höhere Mathematik für Ingenieure 2 Prof. Dr. Swanhild Bernstein Sommersemester 218 Institut für Angewandte Analysis Kurven- und Parameterintegrale Parameterintegrale Typische Beispiele für Parameterintegrale

Mehr

Kapitel C. Integrale und Grenzwerte

Kapitel C. Integrale und Grenzwerte Kapitel C Integrale und Grenzwerte Inhalt dieses Kapitels C000 1 Der Satz von Fubini 2 Der Transformationssatz 1 Vertauschen von Integral und eihe 2 Vertauschen von Integral und Limes 3 Vertauschen von

Mehr

Lösungsvorschläge zum 9. Übungsblatt.

Lösungsvorschläge zum 9. Übungsblatt. Übung zur Anali III W / Löungvorchläge zum 9. Übungblatt. Wir zeigen zunächt, da die u.u. au Vorleung/Übung noch nicht bekannt it: It A BR p und B BR q, o it A B BR p+q. Die läßt ich z.b. wie in Aufgabe

Mehr

Übungsklausur Höhere Mathematik I für die Fachrichtung Physik

Übungsklausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Institut für Technologie (KIT) Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 6..3 Übungsklausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((3++5) Punkte)

Mehr

Aufgabe V1. Ermitteln Sie, ob folgende Grenzwerte existieren und berechnen Sie diese gegebenenfalls. n 2n n 3 b) lim. n n 7 c) lim 1 1 ) 3n.

Aufgabe V1. Ermitteln Sie, ob folgende Grenzwerte existieren und berechnen Sie diese gegebenenfalls. n 2n n 3 b) lim. n n 7 c) lim 1 1 ) 3n. Blatt 1 V 1 Grenzwerte von Folgen Aufgabe V1 Ermitteln Sie, ob folgende Grenzwerte existieren und berechnen Sie diese gegebenenfalls. n 2 ( n! a) lim n 2n n 3 b) lim n n 7 c) lim 1 1 ) 3n n n Marco Boßle

Mehr

Autonome Mobile Systeme

Autonome Mobile Systeme Autonome Mobile Syteme Teil II: Sytemtheorie für Informatiker Dr. Mohamed Oubbati Intitut für Neuroinformatik Univerität Ulm SS 2007 Warum Sytemtheorie? Informatiker werden zunehmend mit Sytemen konfrontiert,

Mehr

Höhere Mathematik I: Klausur Prof Dr. Irene Bouw

Höhere Mathematik I: Klausur Prof Dr. Irene Bouw Höhere Mathematik I: Klausur Prof Dr. Irene Bouw Es gibt 5 Punkte pro Teilaufgabe, also insgesamt 85 Punkte. Die Klausureinsicht findet am Montag, den 5..8 ab : Uhr im H3 statt. Aufgabe. (a) Lösen Sie

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 13 Dr. Ana Cannas Serie 13: Online Test Einsendeschluss: 31. Januar 214 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

Nachklausur Analysis 2

Nachklausur Analysis 2 Nachklausur Analysis 2. a) Wie ist der Grenzwert einer Folge in einem metrischen Raum definiert? Antwort: Se (a n ) n N eine Folge in dem metrischen Raum (M, d). Diese Folge besitzt den Grenzwert g M,

Mehr

Lösungsvorschlag zur Übungsklausur zur Analysis I

Lösungsvorschlag zur Übungsklausur zur Analysis I Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 NWF I - Mathematik 9..9 Universität Regensburg Lösungsvorschlag zur Übungsklausur zur Analysis I Frage 1 Vervollständigen Sie die folgenden

Mehr

Übungen zu Analysis, SS 2015

Übungen zu Analysis, SS 2015 Übungen zu Analysis, SS 215 Ulisse Stefanelli 15. Juni 215 1 Wiederholung 1. Untersuchen Sie das Verhalten der folgenden Folgen a n = n 2 cosh(1/n), b n = ln(ln(n))/n, c n = (2 n n 2 )/n!, 2. Stellen Sie

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Berechnen Sie die folgenden unbestimmten Integrale.

Mehr

Prof. Schneider Höhere Mathematik I/II Musterlösung A = x 1 = 6x 1 + x 3 x 2 = 2x 2 x 3 = x 1 + 6x 3

Prof. Schneider Höhere Mathematik I/II Musterlösung A = x 1 = 6x 1 + x 3 x 2 = 2x 2 x 3 = x 1 + 6x 3 Aufgabe ( Punkte) a) Bestimmen Sie die Eigenwerte und Eigenvektoren der Matrix 6 A = 6 b) Bestimmen Sie die allgemeine Lösung des Differentialgleichungssystems x = 6x + x 3 x = x x 3 = x + 6x 3 c) Bestimmen

Mehr

12 Gewöhnliche Differentialgleichungen

12 Gewöhnliche Differentialgleichungen 2 2 Gewöhnliche Differentialgleichungen 2. Einleitung Sei f : D R wobei D R 2. Dann nennt man y = f(x, y) (5) eine (gewöhnliche) Differentialgleichung (DGL) erster Ordnung. Als Lösung von (5) akzeptiert

Mehr

2. Integration. {x : f(x) <a+ 1 n }

2. Integration. {x : f(x) <a+ 1 n } 9 2.1. Definition. 2. Integration in Maß ist eine nichtnegative, abzählbar additive Mengenfunktion. in Maßraum ist ein Tripel (X,,µ) bestehend aus einem messbaren Raum X mit der -lgebra und einem auf definierten

Mehr

Spezieller Ansatz bei spezieller Inhomogenität.

Spezieller Ansatz bei spezieller Inhomogenität. Spezieller Ansatz bei spezieller Inhomogenität. Bei Inhomogenitäten der Form h(t) = e µt kann man spezielle Ansätze zur Bestimmung von y p (t) verwenden: Ist µ keine Nullstelle der charakteristischen Gleichung

Mehr

Staatsexamen Herbst 2017 Differential- und Integralrechnung, Thema I

Staatsexamen Herbst 2017 Differential- und Integralrechnung, Thema I Staatsexamen Herbst 17 Differential- und Integralrechnung, Thema I 1. a) Die Aussage ist wahr! Sei s R der Reihenwert der Reihe k=1 Da a n = s n s n 1 für n, ist also b) Die Aussage ist falsch! a k, also

Mehr

2 k k 1 k(k + 1) = 2n+1. n = 0 = k(k + 1) = 2n+1 n n. = 2 n+1 n + 2 (n + 1)(n + 2) + n. (n + 1)(n + 2)

2 k k 1 k(k + 1) = 2n+1. n = 0 = k(k + 1) = 2n+1 n n. = 2 n+1 n + 2 (n + 1)(n + 2) + n. (n + 1)(n + 2) Prof. Hesse Höhere Mathematik I und II Musterlösung 7. 0. 0, 80min Aufgabe (3 Punkte) Zeigen Sie mit vollständiger Induktion: Für alle n N gilt n k= k k k(k + ) = n+ n +. Induktionsanfang: k= Induktionsschluss

Mehr

Prof. Steinwart Höhere Mathematik I/II Musterlösung A =

Prof. Steinwart Höhere Mathematik I/II Musterlösung A = Prof. Steinwart Höhere Mathematik I/II Musterlösung 7..7 Aufgabe ( Punkte) (a) Bestimmen Sie die Eigenwerte und Eigenräume der Matrix A mit 3 3 A = 3 Ist die Matrix A diagonalisierbar? (b) Die Matrix A

Mehr

Hörsaalübung 2 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Hörsaalübung 2 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2018/2019 Dr. Hanna Peywand Kiani Hörsaalübung 2 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Separierbare und lineare Differentialgleichungen

Mehr

MATHEMATIK 1 VERSION 17. Dezember f(t)e st dt. F (s) = f(t)e st dt =

MATHEMATIK 1 VERSION 17. Dezember f(t)e st dt. F (s) = f(t)e st dt = MATHEMATIK VERSION 7. Dezember 28 ISIBACH ANDRÉ 4. aplacetranformation 4.. Definition. Sei f(t gegeben. Die Funktion F ( f(te t dt heit aplacetranformation der Funktion f(t. Symbolich chreiben wir F (

Mehr

Grundlagen der Mathematik (BSc Maschinenbau)

Grundlagen der Mathematik (BSc Maschinenbau) Priv.-Doz. Dr. J. Ruppenthal Wuppertal, 5.9.7 Grundlagen der Mathematik (BSc Maschinenbau) Aufgabe. (6+8+6 Punkte) a) Zeigen Sie durch Induktion nach n N: n (k ) = n k= b) Stellen Sie die folgenden Mengen

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 11. Übungsblatt. { wachsend fallend

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 11. Übungsblatt. { wachsend fallend UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl WS 8/9 Aufgabe Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Sytemtheorie Teil A - Zeitkontinuierliche Signale und Syteme - Muterlöungen Manfred Strohrmann rban Brunner Inhalt 5 Muterlöungen Syteme im Laplace-Bereich 3 5. Löen einer homogenen linearen Differentialgleichung...

Mehr

Zwischenprüfung, Gruppe A Analysis I/II. Bestimmen Sie bei jeder der folgenden Aussagen, ob sie wahr oder falsch ist. ist eine Nullfolge.

Zwischenprüfung, Gruppe A Analysis I/II. Bestimmen Sie bei jeder der folgenden Aussagen, ob sie wahr oder falsch ist. ist eine Nullfolge. Multiple Choice. Die folgenden acht Aufgaben sind Multiple Choice-Aufgaben. Bei jeder Aufgabe gibt es 4 Aussagen, die wahr oder falsch sind. Für 4 korrekte Antworten gibt es 4 Punkte, für 3 korrekte Antworten

Mehr

Mathematik 1 für Bauingenieurwesen

Mathematik 1 für Bauingenieurwesen Mathematik 1 für Bauingenieurwesen Name (bitte ausfüllen): Prüfung am 5.5.2017 Reinhard Winkler Matrikelnummer (bitte ausfüllen): Wichtige Hinweise bevor Sie beginnen: Die Prüfung besteht aus vier Aufgaben

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 25/6): Differential und Integralrechnung 3 3. (Herbst 2, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende Tatsachen

Mehr

8 Martingaldarstellung und Doob-Meyer Zerlegung

8 Martingaldarstellung und Doob-Meyer Zerlegung 8 Martingaldartellung und Doob-Meyer Zerlegung 8.1 Der Martingaldartellungatz In Kapitel 3 haben wir gezeigt, da da Ito-Integral eine H -Integranden ein tetige Martingal it. Der Martingaldartellungatz

Mehr

Modulprüfung Hm 1 & Hm 2

Modulprüfung Hm 1 & Hm 2 Seite von 9 Modulprüfung Hm & Hm Hinweise: - Es gibt 9 Aufgaben. Die jeweilige Punktzahl ist angegeben. - Die Maximalpunktzahl ist 56. Zum Bestehen der Klausur sind 4 Punkte hinreichend. - Die Bearbeitungszeit

Mehr

A1: Diplomvorprüfung HM II/III WS 2007/

A1: Diplomvorprüfung HM II/III WS 2007/ A: Diplomvorprüfung HM II/III WS 7/8 6..8 Aufgabe. (+68 Punkte) a) Ist die Reihe k+ k k 5k konvergent oder divergent? Begründen Sie ihre Aussage! b) Führen Sie eine Partialbruchzerlegung für n+ durch und

Mehr

1.1 Vorbemerkung: Konvergenz von Reihen. g = lim. n=0. n=0 a n sei konvergent und schreibt. a n = g. (2) n=0

1.1 Vorbemerkung: Konvergenz von Reihen. g = lim. n=0. n=0 a n sei konvergent und schreibt. a n = g. (2) n=0 1 Taylor-Entwicklung 1.1 Vorbemerkung: Konvergenz von Reihen Gegeben sei eine unendliche Folge a 0,a 1,a,... reeller Zahlen a n R. Hat der Grenzwert g = lim k a n (1) einen endlichen Wert g R, so sagt

Mehr

5.4 Uneigentliche Integrale

5.4 Uneigentliche Integrale 89 Wir dividieren die Potenzreihe von sin(t) gliedweise durch t und erhalten sint t = t (t t3 3! + t5 5! + ) = t2 3! + t4 5! +. Diese Reihe ist konvergent für alle t R. Nun integrieren wir gliedweise.

Mehr

2. Fourier-Transformation

2. Fourier-Transformation 2. Fourier-Transformation Die Fourier-Transformation ist ein wichtiges Hilfsmittel für die dynamische Analyse linearer Systeme: Die Fourier-Transformierte der Antwort ist gleich dem Produkt der Fourier-Transformierten

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende

Mehr

PRÜFUNG AUS ANALYSIS F. INF.

PRÜFUNG AUS ANALYSIS F. INF. Zuname: Vorname: Matrikelnummer: PRÜFUNG AUS ANALYSIS F. INF. (GITTENBERGER) Wien, am 2. Juli 2013 (Ab hier freilassen!) Arbeitszeit: 100 Minuten 1) 2) 3) 4) 5) 1)(8 P.) Sei f : R 2 R mit f(x, y) = e x

Mehr

Lösungsvorschlag zur Nachklausur zur Analysis

Lösungsvorschlag zur Nachklausur zur Analysis Prof Dr H Garcke, D Depner SS 09 NWF I - Mathematik 080009 Universität Regensburg Lösungsvorschlag zur Nachklausur zur Analysis Aufgabe Untersuchen Sie folgende Reihen auf Konvergenz und berechnen Sie

Mehr

7 Laplace-Transformation

7 Laplace-Transformation 7 Laplace-Tranformation In dieem Kapitel wird die Laplace-Tranformation eingeführt, eine der wichtigten Tranformationen in der linearen Sytemtheorie. Eine Verwendung olcher Tranformationen it, eine mathematiche

Mehr

Prof. Steinwart Höhere Mathematik I/II Musterlösung A =

Prof. Steinwart Höhere Mathematik I/II Musterlösung A = Prof. Steinwart Höhere Mathematik I/II Musterlösung 9.8.6 Aufgabe Punkte a Berechnen Sie die Eigenwerte der folgenden Matrix: A 3 b Es sei 4 A. 8 5 Bestimmen Sie P, P M, und eine Diagonalmatrix D M, so,

Mehr

Analysis I. Guofang Wang Universität Freiburg

Analysis I. Guofang Wang Universität Freiburg Universität Freiburg 31.1.2017 Definition 2.2 (uneigentliches Riemann-Integral) Sei I = [a, b) mit a < b. Die Funktion f : I R sei Riemann-integrierbar auf [a, b ] für alle b < b. Falls x lim x b a f(ξ)

Mehr

Kapitel 3. Lineare Differentialgleichungen

Kapitel 3. Lineare Differentialgleichungen Kapitel 3. Lineare Differentialgleichungen 3.4 Die Laplace Transformation Sei F : R C eine reell oder komplexwertige Funktion auf R. Die Laplace Transformierten von F ist gegeben durch die Integraltransformation

Mehr

Leitfaden a tx t

Leitfaden a tx t Leitfaden -0.7. Potenz-Reihen. Definition: Es sei (a 0, a, a 2,...) eine Folge reeller Zahlen (wir beginnen hier mit dem Index t 0). Ist x R, so kann man die Folge (a 0, a x, a 2 x 2, a 3 x 3,...) und

Mehr

Hörsaalübung 4, Analysis II

Hörsaalübung 4, Analysis II Fachbereich Mathematik der Universität Hamburg Dr. H. P. Kiani Hörsaalübung 4, Analysis II SoSe 6, 3/4. Mai Uneigentliche und parameterabhängige Integrale, Rotationskörper Die ins Netz gestellten Kopien

Mehr

Seminar Gewöhnliche Differentialgleichungen

Seminar Gewöhnliche Differentialgleichungen Seminar Gewöhnliche Differentialgleichungen Dynamische Systeme I 1 Einleitung 1.1 Nichtlineare Systeme In den vorigen Vorträgen haben wir uns mit linearen Differentialgleichungen beschäftigt. Nun werden

Mehr

Analysis II - 1. Klausur

Analysis II - 1. Klausur Analysis II -. Klausur Sommersemester 25 Vorname: Name: Aufgabe Aufgabe 2 Aufgabe 3 Aufgabe 4 Aufgabe 5 Aufgabe 6 Aufgabe 7 Aufgabe 8 Aufgabe 9 Summe Analysis II -. Klausur 2.5.25 Aufgabe 2 Punkte Berechnen

Mehr

e sx y(x)dx 2. Direkt gemäss der Definition unter Verwendung der in der Vorlesung angeführten Eigenschaften

e sx y(x)dx 2. Direkt gemäss der Definition unter Verwendung der in der Vorlesung angeführten Eigenschaften Kapiel LAPLACE Tranformaion Die Laplace Tranformaion erwei ich al nüzlich zur Löung von linearen Dgln und Dgl- Syemen mi konanen Koeffizienen Dabei werden die Anfangbedingungen gleich miberückichig Definiion

Mehr

4 Die Laplace-Transformation

4 Die Laplace-Transformation 4 Die Laplace-ransformation 4. Definitionen, Beispiele und Regeln In der Wirklichkeit hat man es meist mit Signalen zu tun, die erst zu einem bestimmten Zeitpunkt ausgelöst werden. Um solche Einschaltvorgänge

Mehr

PROBEPRÜFUNG MATHEMATIK I UND II

PROBEPRÜFUNG MATHEMATIK I UND II PROBEPRÜFUNG MATHEMATIK I UND II für die Studiengänge Agrar-, Erd-, Lebensmittelund Umweltnaturwissenschaften Für diese Probeprüfung sind ca 4 Stunden vorgesehen. Die eigentliche Prüfung wird signifikant

Mehr

g(x) := (x 2 + 2x + 4) sin(x) für z 1 := 1 + 3i und z 2 := 1 + i. Geben Sie das Ergebnis jeweils

g(x) := (x 2 + 2x + 4) sin(x) für z 1 := 1 + 3i und z 2 := 1 + i. Geben Sie das Ergebnis jeweils . Aufgabe Punkte a Berechnen Sie den Grenzwert n + n + 3n. b Leiten Sie die folgenden Funktionen ab. Dabei ist a R eine Konstante. fx : lnx e a, gx : x + x + 4 sinx c Berechnen Sie z z und z z in der Form

Mehr

e x e x x e x + e x (falls die Grenzwerte existieren), e x e x 1 e 2x = lim x 1

e x e x x e x + e x (falls die Grenzwerte existieren), e x e x 1 e 2x = lim x 1 Aufgabe a Hier kann man die Regel von de l Hospital zweimal anwenden (jeweils und die Ableitung des Nenners ist für hinreichend große x ungleich. Dies führt auf e x e x e x + e x e x + e x e x e x e x

Mehr

22 Charakteristische Funktionen und Verteilungskonvergenz

22 Charakteristische Funktionen und Verteilungskonvergenz 22 Charakteristische Funktionen und Verteilungskonvergenz Charakteristische Funktionen (Fourier-Transformierte liefern ein starkes analytisches Hilfsmittel zur Untersuchung von W-Verteilungen und deren

Mehr

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert.

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. SS 6 Höhere Mathematik für s Studium der Physik. Juli 6 Probeklausur Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. Fragen Sei (X, d) ein metrischer Raum. Beantworten Sie die nachfolgenden

Mehr

1 Diskrete Wahrscheinlichkeitstheorie

1 Diskrete Wahrscheinlichkeitstheorie Prof. A. Sapozhnikov Wahrcheinlichkeittheorie I INHALTSVERZEICHNIS 1 Dikrete Wahrcheinlichkeittheorie 1.1 Laplace-Wahrcheinlichkeit. Urnenmodelle. N! Begriffe: Ziehen ohne Zurücklegen, mit Reihenfolge,

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Sytemtheorie eil - Zeitkontinuierliche Signale und Syteme - Muterlöungen Manfred Strohrmann Urban Brunner Inhalt Muterlöungen - Laplace-ranformation zeitkontinuierlicher Signale... 3. Berechnung der Laplace-ranformierten

Mehr

Wenn man eine Folge gegeben hat, so kann man auch versuchen, eine Summe. a 0 + a 1 + a 2 +

Wenn man eine Folge gegeben hat, so kann man auch versuchen, eine Summe. a 0 + a 1 + a 2 + 8 Reihen 38 8 Reihen Wenn man eine Folge gegeben hat, so kann man auch versuchen, eine Summe a 0 + a + a 2 + zu bilden. Wir wollen nun erklären, was wir darunter verstehen wollen. Zunächst kann man die

Mehr

Lösungen zu Übungsblatt 9

Lösungen zu Übungsblatt 9 Analysis : Camillo de Lellis HS 007 Lösungen zu Übungsblatt 9 Lösung zu Aufgabe 1. Wir müssen einfach das Integral 16 (x + y d(x, y x +y 4 ausrechnen. Dies kann man einfach mittels Polarkoordinaten, da

Mehr

Konversatorium zu Lineare Algebra und Analysis Analysis - Übungsbeispiele

Konversatorium zu Lineare Algebra und Analysis Analysis - Übungsbeispiele Univ.-Prof. Dr. Radu Ioan Boţ, Axel Böhm Konversatorium zu Lineare Algebra und Analysis Analysis - Übungsbeispiele SS18 A1. Sei f : [, + ) R so, dass und dass ein M existiert mit Zeigen Sie, dass f(s +

Mehr

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Kapitel 8 Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Wir hatten im Beispiel 5. gesehen, dass die Wärmeleitungsgleichung t u u = f auf Ω (0, ) (8.1) eine parabolische Differentialgleichung

Mehr

Stroppel Musterlösung , 180min. Aufgabe 1 (4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte.

Stroppel Musterlösung , 180min. Aufgabe 1 (4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte. Stroppel Musterlösung 3908, 80min Aufgabe 4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte a) 4n 3 9 lim b) lim n n + n) n + )5n 4) c) lim x 0 sinlnx + )) sinhx) a) Es ist lim

Mehr

Das Integral T e (x+iω)t := 1

Das Integral T e (x+iω)t := 1 1 Das Integral T e (+i)t := 1 t t e τ t e (+i)τ dτ. 1) I. Es sei die Funktion ei : IR IR definiert durch ei(z) := z e y dy. (1) Dann gilt für IR und t > Satz 1: F () : = e cos d = e, () G() : = e sin d

Mehr

Block I: Integration und Taylorentwicklung in 1D

Block I: Integration und Taylorentwicklung in 1D Wiederholungsübungen zur Ingenieur-Mathematik III WS 5/6 Blatt 3..6 Block I: Integration und Taylorentwicklung in D Aufgabe : Berechnen Sie die Integrale: a) π sin x cos x dx b) ( x) +x dx c) x e x dx

Mehr

Bericht zur Mathematischen Zulassungsprüfung im Mai 2010

Bericht zur Mathematischen Zulassungsprüfung im Mai 2010 Bericht zur Mathematischen Zulassungsprüfung im Mai 2 Heinz-Willi Goelden, Wolfgang Lauf, Martin Pohl Am 5. Mai 2 fand die Mathematische Zulassungsprüfung statt. Die Prüfung bestand aus einer 9-minütigen

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Wiederholungsklausur Mathematik für Physiker 3 (Analysis 2) I... II...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Wiederholungsklausur Mathematik für Physiker 3 (Analysis 2) I... II... ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

3. Übungsblatt zur Analysis II

3. Übungsblatt zur Analysis II Fachbereich Mathematik Prof. Dr. Steffen Roch Nada Sissouno WS 9/ 9..9 3. Übungsblatt zur Analysis II Gruppenübung Majorantenkriterium für uneigentliche Riemann-Integrale: Es seien f : [, ) [, ) und g

Mehr

Mathematik 2 (Master Sicherheitstechnik)

Mathematik 2 (Master Sicherheitstechnik) Priv.-Doz. Dr. J. Ruppenthal Wuppertal, 4.6.8 Mathematik Master Sicherheitstechnik) Übungsblatt 8 Aufgabe 5. Konvergenz von Fourierreihen) Der Sinus Hyperbolicus ist die Funktion sinhx) = e x e x). Es

Mehr

H. Schmidli Mathematik für Physiker WS 10/11. Lösung der Klausur

H. Schmidli Mathematik für Physiker WS 10/11. Lösung der Klausur H. Schmidli Mathematik für Physiker WS / Lösung der Klausur. a) Zähler und Nenner konvergieren gegen. Somit verwenden wir die Regel von L Hospital e sin x x x e cos x (cos x)e sin x x (sin x)e cos x x

Mehr

4. Folgen und Grenzwerte 4.2 Grenzwertsätze für Folgen

4. Folgen und Grenzwerte 4.2 Grenzwertsätze für Folgen 4. Folgen und Grenzwerte 4.2 Grenzwertsätze für Folgen Rechenregeln für konvergente Folgen Satz 4.11 Die Folgen (a n ) und (b n ) seien konvergent mit dem Grenzwert a bzw. b. Dann gilt: 1 lim (a n + b

Mehr

L 2 -Theorie und Plancherel-Theorem

L 2 -Theorie und Plancherel-Theorem L -Theorie und Plancherel-Theorem Seminar Grundideen der Harmonischen Analysis bei Porf Dr Michael Struwe HS 007 Vortrag von Manuela Dübendorfer 1 Wiederholung aus der L 1 -Theorie Um die Fourier-Transformation

Mehr

Periodische Funktionen, Fourier Reihen

Periodische Funktionen, Fourier Reihen Kapitel 1: Periodische Funktionen, Fourier Reihen 1.1 Grundlegende Begriffe Periodische Funktionen Definition: Eine Funktion f : R R oder f : R C) heißt periodisch mit der Periode T, falls für alle t R

Mehr

Errata zu Goebbels, Ritter: Mathematik verstehen und anwenden

Errata zu Goebbels, Ritter: Mathematik verstehen und anwenden Errata zu Goebbels, Ritter: Mathematik verstehen und anwenden Stand 20. Februar 203 Wir danken allen Lesern, die uns auf Fehler hingewiesen haben. Seite Position gedruckt korrekt 36 Beispiel.26 = 0,22+

Mehr

9. Gruppenübung zur Vorlesung. Höhere Mathematik 2. Sommersemester x 3 + 4x 2 + 4x + 1 d x (d) x ln(x) d x. lim tan(a/2) + 1

9. Gruppenübung zur Vorlesung. Höhere Mathematik 2. Sommersemester x 3 + 4x 2 + 4x + 1 d x (d) x ln(x) d x. lim tan(a/2) + 1 O. Alaya, R. Bauer M. Fetzer, K. Sanei Kashani, F. Kissling B. Krinn, J. Schmid 9. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 3 Lösungshinweise zu den Hausaufgaben: π Dr. M. Künzer Prof.

Mehr

7 Integralrechnung für Funktionen einer Variablen

7 Integralrechnung für Funktionen einer Variablen 7 Integralrechnung für Funktionen einer Variablen In diesem Kapitel sei stets D R, und I R ein Intervall. 7. Das unbestimmte Integral (Stammfunktion) Es sei f : I R eine Funktion. Eine differenzierbare

Mehr

Die Fourier-Transformierte

Die Fourier-Transformierte Die Fourier-Transformierte Proseminar Analysis Sommersemester 008 Natalia Dück 6.06.08 Inhaltsverzeichnis Einleitung/Fourier-Transformierte. Definition..................................... Beispiele......................................3

Mehr

Lösungsvorschläge für das 5. Übungsblatt

Lösungsvorschläge für das 5. Übungsblatt Lösungsvorschläge für das 5. Übungsblatt Aufgabe 6 a) Sei = [0, ], f(x) := [e x ] für x. Hierbei ist [y] := maxk Z k y} für y. Behauptung: f ist messbar und es ist f(x) dx = 2 log 2. falls x [0, log 2),

Mehr

1 Verbandstheorie. Aufgabensammlung. Höhere Mathematik für Physiker III Wintersemester 2014

1 Verbandstheorie. Aufgabensammlung. Höhere Mathematik für Physiker III Wintersemester 2014 Aufgabensammlung Höhere Mathematik für Physiker III Wintersemester 2014 1 Verbandstheorie 1. Aufgabe: (a) Sei f C(R) eine stetige Funktion. Wenn Rf(x)φ(x)dx = 0 für alle Testfunktionen φ Cc (R) gilt, dann

Mehr

HOCHSCHULE RAVENSBURG-WEINGARTEN

HOCHSCHULE RAVENSBURG-WEINGARTEN Prof. Dr.-Ing. Tim J. Noper Mathematik Lapace-Tranformation Aufgabe : Betimmen ie mit Hife der Definitiongeichung der Lapace-Tranformation die Bidfunktionen fogender Originafunktionen: f(t) co( ωt) b)

Mehr

Konvergenz und Stetigkeit

Konvergenz und Stetigkeit Mathematik I für Biologen, Geowissenschaftler und Geoökologen 10. Dezember 2012 Konvergenz Definition Fourierreihen Geometrische Reihe Definition: Eine Funktion f : D R d heißt beschränkt, wenn es ein

Mehr