Physik I Musterlösung 2

Größe: px
Ab Seite anzeigen:

Download "Physik I Musterlösung 2"

Transkript

1 Physik I Musterlösung 2 FS 08 Prof. R. Hahnloser Aufgabe 2.1 Flugzeug im Wind Ein Flugzeug fliegt nach Norden und zwar so dass es sich zu jedem Zeitpunkt genau über einer Autobahn befindet welche in Richtung Süd-Nord verläuft. Seine Geschwindigkeit relativ zur Luft beträgt 500km/h. Der Pilot bekommt über Funk mitgeteilt dass die Windgeschwindigkeit 50km/h beträgt kann aber infolge starken Funkverkehrs die Angabe der Windrichtung nicht verstehen. Trotzdem stellt er fest dass er nach einer Stunde 500km entlang der Autobahn zurückgelelgt hat. (a) In welcher Richtung weht der Wind? (b) Wie ist die Flugzeugachse bezüglich der Autobahn ausgerichtet? Wir bezeichnen die Geschwindigkeit des Flugzeuges über Grund mit v relativ zur Luft mit ṽ sowie die Windgeschwindigkeit über Grund mit w. Es gilt nun v = w + ṽ da ṽ bezüglich des mit dem Wind bewegten Koordinatensystems gemessen ist welches sich mit w gegenüber Grund bewegt (vgl. Skizze). (a) Für das Dreieck dieser Vektoren gilt somit der Kosinussatz ṽ 2 = v 2 + w 2 2vw cos ω cos ω = v2 + w 2 ṽ 2 2vw wobei v 2 w 2 ṽ 2 die Betragsquadrate der jeweiligen Geschwindigkeiten und ω den Winkel zwischen w und v d.h zwischen der Wind- und der Süd-Nord-Richtung bezeichnen. Im konkreten Fall ergibt sich cos ω = 0.05 d.h ω 87. Der Wind kommt also aus einer Richtung die etwas südlicher als genau Westen oder Osten ist. Ob es sich um Westen oder Osten handelt ist unbestimmt. (b) Analog gilt der entsprechende Kosinussatz für den Winkel ϕ zwischen Süd-Nord- Richtung und ṽ (d.h der Flugzeugachse denn das Flugzeug bewegt sich in Richtung seiner Achse relativ zur Luft): w 2 = v 2 + ṽ 2 2v ṽ cos ϕ cos ϕ = v2 + ṽ 2 w 2 2v ṽ wobei ṽ den Betrag der Flugzeuggeschwindigkeit relativ zur Luft bezeichne. 1

2 Dies ergibt hier cos ϕ = d.h ϕ 6. Die Flugzeugachse weicht also um etwa 6 von der Süd-Nord-Richtung ab (ob nach Westen oder Osten ist erneut unbestimmt). Da hier die Beträge von v und ṽ gleich sind könnte man auch geometrisch folgern dass die Winkel zwischen w und v sowie zwischen w und ṽ gleich gross sein müssen und weil ihre Summe 180 ϕ beträgt gilt für ϕ = Aufgabe 2.2 Zeitgewinn durch erhöhte Geschwindigkeit Wir fahren nachts auf der regennassen Autobahn eine D = 200km lange Strecke. Weil wir es eilig haben beschliessen wir statt mit einer den Umständen angemessenen Geschwindigkeit von v 0 = 100km/h mit (unzulässigen) v 1 = 130km/h zu fahren. (a) Mit v 1 benötigen wir die Zeit t 1 = D v 1 statt = D v 0 d.h die Zeitersparnis beträgt ( 1 t = t 1 = D 1 ) v 0 v 1 was im konkreten Fall 0.46h oder etwa 28min entspricht. (b) Relativ gesehen gewinnen wir t d.h t = t 1 = 1 t 1 = 1 v 0 v 1 oder im konkreten Fall etwa 23% d.h ein knappes Viertel der Zeit. Aufgabe 2.3 Vektorsumme und -differenz Seien zwei Vektoren a und b gegeben deren Summe senkrecht zu ihrer Differenz steht d.h. ( a + b) ( a b) = 0. Hieraus folgt unmittelbar a a + a b b a b b = 0 a a b b = 0 a 2 = b 2 a = b Die Vektoren müssen also den gleichen Betrag haben. Aufgabe 2.4 Satellit auf kreisförmiger Umlaufbahn Ein Satellit bewege sich mit einer Periode von T = 98.0min auf einer kreisförmigen Umlaufbahn in einer Höhe von h = 640km über der Erdoberfläche. (a) Wie gross sind die Beträge seiner Geschwindigkeit v und seiner Zentripetalbeschleunigung a? (b) Wie gross ist die Winkelgeschwindigkeit φ mit welcher ein Beobachter direkt unter dem Satelliten diesen vorbeiziehen sieht? 2

3 (a) Die Frequenz des Satellitenumlaufes ist gegeben zu f = 1. Die Winkelgeschwindigkeit T des Satelliten ist somit ω = 2πf = 2π und der Betrag seiner Geschwindigkeit T v = rω = (R + h)ω = 2(R + h)π T wobei der Radius r = R + h der Umlaufbahn die Summe des Erdradius R 6370km und der Bahnhöhe h ist. Für die angegeben Werte ergibt sich v 450km/min 7.5km/s oder etwa 27000km/h. Die Zentripetalbeschleunigung beträgt a = rω 2 = (R + h)ω 2 = 4(R + h)π2 T 2 was für den konkreten Fall etwa 8m/s 2 ergibt. (b) Bei gegebenem Betrag der Geschwindigkeit v und unterschiedliche Radien r r 1 gilt v = rω = r 1 ω 1 mit entsprechenden Winkelgeschwindigkeiten ω ω 1. Somit ist die Winkelgeschwindigkeit für einen Beobachter auf der Erdoberfläche (wobei r 1 = h ist) bei senkrechtem Überflug gegeben als ω 1 = r h ω = 2πr ht was hier etwa 0.011/s ergibt (11mrad/s). Aufgabe 2.5 Kletteraffe am beweglichen Seil Ein Affe der Masse m = 10kg klettert ein masseloses Seil hinauf das über einen reibungsfreien Ast läuft und an einer auf dem Boden stehenden Kiste der Masse M = 15kg befestigt ist (siehe Abbildung). (a) Wie gross muss der Betrag der Beschleunigung des Affen mindestens sein damit er die Kiste vom Boden anheben kann? Nachdem er die Kiste angehoben hat hört der Affe auf zu klettern und hält sich am Seil fest. (b) Wie lauten dann Betrag und Richtung seiner Beschleunigung? (c) Wie gross ist die Zugspannung im Seil? 3

4 Wir setzen sowohl für den Affen als auch die Kiste die Richtung +y nach oben fest. (a) Die Stärke der Kraft mit der der Affe nach unten zieht sei F. Gemäss Newtons drittem Gesetz zieht das Seil den Affen mit derselben Stärke nach oben womit Newtons zweites Gesetz für die Kräfte auf den Affen F mg = ma a ergibt wobei m die Masse des Affen und a a seine Beschleunigung bezeichne. Unter der Annahme das Seil sei masselos ist die Spannung des Seiles T = F. Das Seil zieht die Kiste mit der Kraft F nach oben wodurch Newtons zweites Gesetz für die Kiste F + N Mg = Ma k ergibt wobei M und a k Masse und Beschleunigung der Kiste sowie N die Normalkraft durch den Boden auf die Kiste bedeute. Falls nun F die minimale Kraft sei die benötigt wird um die Kiste hochzuheben dann sind N = 0 und a k = 0. Gemäss der Gleichung für die Kräfte auf die Kiste ergibt sich hieraus F = Mg. Indem Mg anstelle von F in der Gleichung für die Kräfte auf den Affen eingesetzt wird lässt sich diese nach a a auflösen: a a = F mg m (M m)g = m was im konkreten Fall etwa 4.9m/s 2 ergibt. (b) Aus den Gleichungen (für N = 0) F m ak g = m ak a ak lässt sich die Kraft F eliminieren wodurch man (g + a a )m = (g + a k )M = (g a a )M erhält da a a = a k ist. Nun kann man nach a a auflösen: gm + a a m = gm a a M (m + M)a a = (M m)g a a = M m M + m g oder in unserem Falle etwa 2.0m/s 2. Da dies positiv ist wird der Affe nach oben beschleunigt. 4

5 (c) Da T = F kann die Zugspannung berechnet werden zu konkret etwa 118N. F = (a a + g)m = ( M m 2mM + 1)gm = M + m m + M g Aufgabe 2.6 Fallobjekt und Geschoss Ein hungriger Pirat möchte mit seiner Bordkanone einen Affen erlegen der sich auf einer Palme in Höhe h = 10m und Abstand d = 30m zur Kanone befindet (siehe Abbildung). Der Pirat zielt mitten auf den Affen. Der Affe habe eine Länge von l = 0.6m die Mündungsgeschwindigkeit der Kanonenkugel betrage v 0 = 100m/s. (a) Berechnen sie die Flugbahn der Kugel. Trifft der Pirat den hängenden Affen? (b) Angenommen der Affe lässt vor Schreck los sobald er den Mündungsblitz der Kanone sieht. Rettet er damit sein Leben? (a) Wir zerlegen die Geschwindigkeit v 0 in horizontale und vertikale Komponenten v 0x v 0y d.h ( v0x v 0y = h = tan α (1) v 0x d ) ( ) v0 cos α = (2) v 0 sin α v 0y Legt man den Koordinatenursprung in die Mündung der Kanone so gilt für die Komponenten des Bahnvektors der Kugel: x(t) = v 0x t (3) y(t) = v 0y t g 2 t2. (4) Die Kugel erreicht die horizontale Koordinate x = d des Affens zur Zeit t f = d/v 0x. Wegen Gl.1 gilt aber v 0y t f = v 0xh = h d.h d d v 0x y(t f ) = h g 2 t2 f. (5) 5

6 Für die angegebenen Werte erhält man α 18.4 und v 0x 95m/s somit t f 0.32s und schliesslich y(t f ) h 49cm. Weil aber der Affe eine Körperlänge von l = 60cm besitzt verfehlt ihn die Kugel knapp da der Pirat auf die Mitte des Affen zielte und somit nur ein Fehler von l/2 erlaubt wäre. (b) Für die y-koordinate des Affen gilt zu jedem Zeitpunkt nach dem Loslassen y a (t) = h g 2 t2 d.h insbesondere (da der Affe zu dem Zeitpunkt loslässt als die Kugel aus der Kanone fliegt) y a (t f ) = h g 2 t2 f = y(t f ). Da zu diesem Zeitpunkt jedoch die x-koordinate der Kugel gleich jener des Affen ist (denn t f wurde so berechnet) und offenbar auch die y-koordinate trifft sie ihn genau. Dies sieht man auch ohne Rechnung wenn man sich überlegt dass die Bewegung der Kugel aus der Überlagerung einer gleichförmigen linearen Bewegung in Richtung des ursprünglich hängenden Affen sowie einer gleichmässig beschleunigten nach unten besteht. Infolge der linearen Bewegung würde die Kugel den Affen im schwerelosen Raum immer treffen und wegen der für Kugel und Affe gleich starken Beschleunigung durch das Schwerefeld der Erde bewegen sich Affe und Kugel in gleicher Weise nach unten treffen also auch in diesem Falle aufeinander. 6

Lösung III Veröentlicht:

Lösung III Veröentlicht: 1 Projektil Bewegung Lösung Ein Ball wird von dem Dach eines Gebäudes von 80 m mit einem Winkel von 80 zur Horizontalen und mit einer Anfangsgeschwindigkeit von 40 m/ s getreten. Sei diese Anfangsposition

Mehr

Experimentalphysik I: Mechanik

Experimentalphysik I: Mechanik Ferienkurs Experimentalphysik I: Mechanik Wintersemester 15/16 Übung 1 - Lösung Technische Universität München 1 Fakultät für Physik 1 Stein fällt in Brunnen Ein Stein fällt in einen Brunnen. Seine Anfangsgeschwindigkeit

Mehr

Experimentalphysik 1

Experimentalphysik 1 Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 16/17 Lösung 1 Ronja Berg (ronja.berg@tum.de) Katharina Scheidt (katharina.scheidt@tum.de) Aufgabe 1: Superposition

Mehr

Solution V Published:

Solution V Published: 1 Reibungskraft I Ein 25kg schwerer Block ist zunächst auf einer horizontalen Fläche in Ruhe. Es ist eine horizontale Kraft von 75 N nötig um den Block in Bewegung zu setzten, danach ist eine horizontale

Mehr

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie November 2012 Abzugeben bis zum 16. November

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie November 2012 Abzugeben bis zum 16. November Übungen zur Physik - Wintersemester 22/23 Serie 4 5. November 22 Abzugeben bis zum 6. November Aufgabe : Ein Apfel hängt in einem Baum an der Position r = (; ; m). Zum Zeitpunkt t = löst sich der Apfel

Mehr

Übungen zu Experimentalphysik 1 für MSE

Übungen zu Experimentalphysik 1 für MSE Physik-Department LS für Funktionelle Materialien WS 015/16 Übungen zu Experimentalphysik 1 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. Volker Körstgens, Dr. Neelima Paul, Nitin Saxena, Daniel Moseguí

Mehr

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Massenpunkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf

Mehr

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Punkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf einem

Mehr

Betrachtet man einen starren Körper so stellt man insgesamt sechs Freiheitsgrade der Bewegung

Betrachtet man einen starren Körper so stellt man insgesamt sechs Freiheitsgrade der Bewegung Die Mechanik besteht aus drei Teilgebieten: Kinetik: Bewegungsvorgänge (Translation, Rotation) Statik: Zusammensetzung und Gleichgewicht von Kräften Dynamik: Kräfte als Ursache von Bewegungen Die Mechanik

Mehr

Test 2 Musterlösung. Name, Nummer: Datum: 17. Juni 2017

Test 2 Musterlösung. Name, Nummer: Datum: 17. Juni 2017 Test 2 Musterlösung Brückenkurs Physik donat.adams@fhnw.ch www.adams-science.org Name, Nummer: Datum: 17. Juni 2017 1. Citroën 2CV C5H817 Ein elektrifizierter Döschwo (Citroën 2CV) überholt mit 202.73

Mehr

Lösung IV Veröffentlicht:

Lösung IV Veröffentlicht: Fx = mg sin θ = ma x 1 Konzeptionelle Frage I Welche der der folgenden Aussagen über Kraft Bewegung ist korrekt? Geben sie Beispiele an (a) Ist es für ein Objekt möglich sich zu bewegen, ohne dass eine

Mehr

1 Die drei Bewegungsgleichungen

1 Die drei Bewegungsgleichungen 1 Die drei Bewegungsgleichungen Unbeschleunigte Bewegung, a = 0: Hier gibt es nur eine Formel, nämlich die für den Weg, s. (i) s = s 0 + v t s ist der zurückgelegte Weg, s 0 der Ort, an dem sich der Körper

Mehr

Musterlösung 2. Klausur Physik für Maschinenbauer

Musterlösung 2. Klausur Physik für Maschinenbauer Universität Siegen Sommersemester 2010 Fachbereich Physik Musterlösung 2. Klausur Physik für Maschinenbauer Prof. Dr. I. Fleck Aufgabe 1: Freier Fall im ICE Ein ICE bewege sich mit der konstanten Geschwindigkeit

Mehr

Übungen zur Vorlesung PN1 Lösung zu Blatt 5

Übungen zur Vorlesung PN1 Lösung zu Blatt 5 Aufgabe 1: Geostationärer Satellit Übungen zur Vorlesung PN1 Lösung zu Blatt 5 Ein geostationärer Satellit zeichnet sich dadurch aus, dass er eine Umlaufdauer von einem Tag besitzt und sich folglich seine

Mehr

Vorkurs Mathematik-Physik, Teil 8 c 2016 A. Kersch

Vorkurs Mathematik-Physik, Teil 8 c 2016 A. Kersch Aufgaben Dynamik Vorkurs Mathematik-Physik, Teil 8 c 6 A. Kersch. Ein D-Zug (Masse 4t) fährt mit einer Geschwindigkeit von 8km/h. Er wird auf einer Strecke von 36m mit konstanter Verzögerung zum Stehen

Mehr

1.2 Räumliche Bewegung. Aufgaben

1.2 Räumliche Bewegung. Aufgaben Technische Mechanik 3 1.2-1 Prof. Dr. Wandinger Aufgabe 1 1.2 Räumliche Bewegung Aufgaben Ein Flugzeug fliegt mit der Geschwindigkeit v F gegenüber der Luft einen angezeigten Kurs von 30. Der Wind weht

Mehr

Übungen zu Physik I für Physiker Serie 2 Musterlösungen

Übungen zu Physik I für Physiker Serie 2 Musterlösungen Übungen zu Physik I für Physiker Serie 2 Musterlösungen Allgemeine Fragen 1. Ein Auto fährt entlang einer Strasse von A nach D (vgl. Abb. 1). Zeichne für die Punkte 1 bis 7 den Beschleunigungsvektor (ungefähr)

Mehr

E1 Mechanik Lösungen zu Übungsblatt 2

E1 Mechanik Lösungen zu Übungsblatt 2 Ludwig Maimilians Universität München Fakultät für Physik E1 Mechanik en u Übungsblatt 2 WS 214 / 215 Prof. Dr. Hermann Gaub Aufgabe 1 Drehbewegung einer Schleifscheibe Es werde die Schleifscheibe (der

Mehr

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert WS 015/16 Übungsblatt 6 Übungsblatt 6 Lösung Aufgabe 1 Gravitation. a) Berechnen Sie die Beschleunigung g auf der Sonnenoberfläche. Gegeben

Mehr

ÜBUNGSAUFGABEN PHYSIK KAPITEL M MECHANIK ZUR. Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl. IEUT 10/05 Kohl

ÜBUNGSAUFGABEN PHYSIK KAPITEL M MECHANIK ZUR. Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl. IEUT 10/05 Kohl ÜBUNGSAUFGABEN ZUR PHYSIK KAPITEL M MECHANIK Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl IEUT 10/05 Kohl I. Kinematik 10/2005 koh Bewegung auf gerader Bahn; Geschwindigkeit, Beschleunigung

Mehr

Grundlagen der Physik 1 Lösung zu Übungsblatt 2

Grundlagen der Physik 1 Lösung zu Übungsblatt 2 Grundlagen der Physik Lösung zu Übungsblatt 2 Daniel Weiss 23. Oktober 29 Aufgabe Angaben: v F = 4 km h α = 58 β = 95 v W = 54 km h Abbildung : Skizze zu Aufgabe a Wie aus Abbildung leicht ersichtlich

Mehr

Teilnehmer-Nr: Integrierter Kurs I. 2. Klausur, WiSe 2010/ März 2011

Teilnehmer-Nr: Integrierter Kurs I. 2. Klausur, WiSe 2010/ März 2011 Integrierter Kurs I 2. Klausur, WiSe 2010/2011 03. März 2011 Name: Gruppenleiter: Aufgabe Punkte 1 / 5 2 /16 3 /10 4 /13 5 /10 6 /12 7 / 8 8 / 6 insgesamt (max. 80) 1. Gravitationskraft (5 Punkte) Im Jahr

Mehr

Kinematik von Punktmassen. Aufgabe 1. Die durchschnittliche Geschwindigkeit eines Elfmeters im Fußball ist 120 km/h.

Kinematik von Punktmassen. Aufgabe 1. Die durchschnittliche Geschwindigkeit eines Elfmeters im Fußball ist 120 km/h. Kinematik von Punktmassen Aufgabe 1. Die durchschnittliche Geschwindigkeit eines Elfmeters im Fußball ist 120 km/h. a. Wie lange braucht der Ball bis ins Tor? Lsg.: a) 0,333s Aufgabe 2. Ein Basketball-Spieler

Mehr

Nachklausur 2003 Physik I (Mechanik)

Nachklausur 2003 Physik I (Mechanik) Institut für Experimentelle Kernphysik WS2003, 8-10-03, 10 00 13 00 Nachklausur 2003 Physik I (Mechanik) Priv. Dozent Dr. M. Erdmann, Dr. G. Barker Name/Vorname : Matrikelnummer : Fachsemester : Übungsgruppe

Mehr

Rotierende Bezugssysteme

Rotierende Bezugssysteme Rotierende Bezugssysteme David Graß 13.1.1 1 Problematik Fährt ein Auto in eine Kurve, so werden die Innsassen nach außen gedrückt, denn scheinbar wirkt eine Kraft auf die Personen im Innern des Fahrzeuges.

Mehr

Wiederholung Physik I - Mechanik

Wiederholung Physik I - Mechanik Universität Siegen Wintersemester 2011/12 Naturwissenschaftlich-Technische Fakultät Prof. Dr. M. Risse, M. Niechciol Department Physik 9. Übungsblatt zur Vorlesung Physik II für Elektrotechnik-Ingenieure

Mehr

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Fakultät für Physik Wintersemester 2016/17 Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Dr. Andreas K. Hüttel Blatt 4 / 9.11.2016 1. May the force... Drei Leute A, B, C ziehen

Mehr

Massenträgheitsmomente homogener Körper

Massenträgheitsmomente homogener Körper http://www.youtube.com/watch?v=naocmb7jsxe&feature=playlist&p=d30d6966531d5daf&playnext=1&playnext_from=pl&index=8 Massenträgheitsmomente homogener Körper 1 Ma 1 Lubov Vassilevskaya Drehbewegung um c eine

Mehr

Hinweis: Geben Sie für den Winkel α keinen konkreten Wert, sondern nur für sin α und/oder cos α an.

Hinweis: Geben Sie für den Winkel α keinen konkreten Wert, sondern nur für sin α und/oder cos α an. 1. Geschwindigkeiten (8 Punkte) Ein Schwimmer, der sich mit konstanter Geschwindigkeit v s = 1.25 m/s im Wasser vorwärts bewegen kann, möchte einen mit Geschwindigkeit v f = 0.75 m/s fließenden Fluß der

Mehr

Fakultät für Physik der LMU

Fakultät für Physik der LMU Fakultät für Physik der LMU 11.04.2013 Nachholklausur zur Vorlesung E1: Mechanik für Studenten der Physik für das Lehramt an Gymnasien und im Nebenfach (6 ECTS) Wintersemester 2012/13 Prof. Dr. Joachim

Mehr

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am )

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am ) Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: 14.09.11, Abgabe am 1.09.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.

Mehr

E1 Mechanik WS 2017 / 2018 Lösungen zu Übungsblatt 5

E1 Mechanik WS 2017 / 2018 Lösungen zu Übungsblatt 5 Ludwig Maximilians Universität München Fakultät für Physik E1 Mechanik WS 017 / 018 Lösungen zu Übungsblatt 5 Prof. Dr. Hermann Gaub, Dr. Martin Benoit und Dr. Res Jöhr Verständnisfragen ( i.) Sie drehen

Mehr

Dynamik der gkb: die Zentripetalkraft

Dynamik der gkb: die Zentripetalkraft PD Dr. N.Grinberg - Physik, Kl.0, Zentripetalkraft Dynamik der gkb: die Zentripetalkraft Eine Kraft, egal welcher Natur, die einen Körper auf eine kreisförmige Laufbahn zwingt, nennt man Zentripetalkraft.

Mehr

Tutorium Physik 2. Rotation

Tutorium Physik 2. Rotation 1 Tutorium Physik 2. Rotation SS 16 2.Semester BSc. Oec. und BSc. CH 2 Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 12. Radioaktivität 3 8. ROTATION 8.1 Rotation: Lösungen a

Mehr

Eine allumfassende, No!iistische Formelsammlung. Ferdinand Ihringer

Eine allumfassende, No!iistische Formelsammlung. Ferdinand Ihringer Eine allumfassende, No!iistische Formelsammlung Ferdinand Ihringer 2. Juni 2004 Inhaltsverzeichnis I Physik 3 1 Mechanik des Massenpunktes 4 1.1 Grundlagen............................................ 4

Mehr

Lösungen zu Übungsblatt 4

Lösungen zu Übungsblatt 4 PN1 - Physik 1 für Chemiker und Biologen Prof. J. Lipfert WS 017/18 Übungsblatt 4 Lösungen zu Übungsblatt 4 Aufgabe 1 actio=reactio. Käptn Jack Sparrow wird mit seinem Schiff Black Pearl in eine Seeschlacht

Mehr

Brückenkurs Physik SS11. V-Prof. Oda Becker

Brückenkurs Physik SS11. V-Prof. Oda Becker Brückenkurs Physik SS11 V-Prof. Oda Becker Überblick Mechanik 1. Kinematik (Translation) 2. Dynamik 3. Arbeit 4. Energie 5. Impuls 6. Optik SS11, BECKER, Brückenkurs Physik 2 Beispiel Morgens um 6 Uhr

Mehr

Kursstufe Physik / Aufgaben / 04 Teilchenbahnen im E Feld Kopetschke 2011 Teilchenbahnen im elektrischen Querfeld

Kursstufe Physik / Aufgaben / 04 Teilchenbahnen im E Feld Kopetschke 2011 Teilchenbahnen im elektrischen Querfeld Kursstufe Physik / Aufgaben / 04 Teilchenbahnen im E Feld Kopetschke 011 Teilchenbahnen im elektrischen Querfeld 1) Elektronen starten an der negativen Platte eines Kondensators (d = 5 mm, U = 300 V) und

Mehr

1.2 Räumliche Bewegung. Aufgaben

1.2 Räumliche Bewegung. Aufgaben Technische Mechanik 3 1.-1 Prof. Dr. Wandinger Aufgabe 1 1. Räumliche Bewegung Aufgaben Ein Flugzeug fliegt mit der Geschwindigkeit v F gegenüber der Luft einen angezeigten Kurs von 30. Der Wind weht mit

Mehr

5. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 10. November 2009

5. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 10. November 2009 5. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 10. November 009 Aufgabe 5.1: Trägheitskräfte Auf eine in einem Aufzug stehende Person (Masse 70 kg) wirken

Mehr

Klausur zur Vorlesung Physik I für Chemiker (WS 2017/18)

Klausur zur Vorlesung Physik I für Chemiker (WS 2017/18) Universität Siegen Wintersemester 2017/18 Naturwissenschaftlich-Technische Fakultät Department Physik Klausur zur Vorlesung Physik I für Chemiker (WS 2017/18) Datum: Dienstag, 13.02.2017, 10:00-12:00 Prof.

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Prof. Dr. Wandinger 1. Kinematik des Punktes TM 3 1.2-1 2. Räumliche Bewegung Wenn die Bahn des Punkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort

Mehr

Aufgabe 34 (Mechanik, Drehbewegung) Die Spitze des Minutenzeigers einer Turmuhr hat die Geschwindigkeit 1,50 mms -1. Wie lang ist der Zeiger?

Aufgabe 34 (Mechanik, Drehbewegung) Die Spitze des Minutenzeigers einer Turmuhr hat die Geschwindigkeit 1,50 mms -1. Wie lang ist der Zeiger? zu 2.2 / IV. Wiederholung zur Drehbewegung (Rotation) Aufgabe 31 (Mechanik, Drehbewegung) Fach: Physik/ L. Wenzl Datum:. Der Erdradius beträgt etwa 6370 km. Mit welcher Geschwindigkeit bewegt sich ein

Mehr

1. Grundlagen der ebenen Kinematik

1. Grundlagen der ebenen Kinematik Lage: Die Lage eines starren Körpers in der Ebene ist durch die Angabe von zwei Punkten A und P eindeutig festgelegt. Die Lage eines beliebigen Punktes P wird durch Polarkoordinaten bezüglich des Bezugspunktes

Mehr

Übungen zu Theoretischer Mechanik (T1)

Übungen zu Theoretischer Mechanik (T1) Arnold Sommerfeld Center Ludwig Maximilians Universität München Prof. Dr. Viatcheslav Mukhanov Sommersemester 08 Übungen zu Theoretischer Mechanik T Übungsblatt 8, Besprechung ab 04.06.08 Aufgabe 8. Lineare

Mehr

Brückenkurs Höhere Mathematik

Brückenkurs Höhere Mathematik Vorkurse der Hochschule Aalen Brückenkurs Höhere Mathematik Aufgabensammlung März 209 Das Grundlagenzentrum (GLZ) wird aus Mitteln des Bundesministeriums für Bildung und Forschung (BMBF) unter dem Förderkennzeichen

Mehr

Physik I - Integrierter Kurs -

Physik I - Integrierter Kurs - Physik I - Integrierter Kurs - Klausur I, WS 2006/07 13. Dezember 2006 Name: Übungsgruppe/Betreuer: Aufgabe V1 V2 V3 V4 A1 A2 A3 A4 A5 A6 Summe (max. 50) Punkte Name: Betreuer/Übungsgruppe: 1 Verständnis

Mehr

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T) im SoSe 20 Blatt 0. Hamilton-Formalismus- Lösungsvorschlag Aufgabe 0.. Hamilton-Formalismus

Mehr

Übungen zu Experimentalphysik 2

Übungen zu Experimentalphysik 2 Physik Department, Technische Universität München, PD Dr. W. Schindler Übungen zu Experimentalphysik 2 SS 13 - Lösungen zu Übungsblatt 4 1 Schiefe Ebene im Magnetfeld In einem vertikalen, homogenen Magnetfeld

Mehr

Quadratische Gleichungen

Quadratische Gleichungen 1 Quadratische Gleichungen ax 2 + bx + c = 0 1. Löse folgende Gleichungen: a) x 2 + 2x 15 = 0 b) x 2 6x + 7 = 0 c) x 2 + 15x + 54 = 0 d) x 2 + 12x 64 = 0 e) x 2 34x + 64 = 0 f) x 2 + 15x 54 = 0 g) x 2

Mehr

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Fakultät für Physik Wintersemester 16/17 Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Dr. Andreas K. Hüttel Blatt 8 / 7.1.16 1. Schwerpunkte Berechnen Sie den Schwerpunkt in

Mehr

Liebe Schülerin, lieber Schüler,

Liebe Schülerin, lieber Schüler, Liebe Schülerin, lieber Schüler, Wir gratulieren herzlich, dass Sie in die zweite Runde weitergekommen sind. Der erste Teil der zweiten Runde des Wettbewerbs besteht darin, dass Sie einen Test, wie in

Mehr

Physik 1, WS 2015/16 Musterlösung 8. Aufgabenblatt (KW 50)

Physik 1, WS 2015/16 Musterlösung 8. Aufgabenblatt (KW 50) Physik 1, WS 015/16 Musterlösung 8. Aufgabenblatt (KW 50) Aufgabe (Bleistift) Ein dünner Bleistift der Masse m und der Länge L steht zunächst mit der Spitze nach oben zeigend senkrecht auf einer Tischplatte.

Mehr

Berechnen Sie die Ersatzfedersteifigkeiten für die Gruppierungen, die am oberen (c o ) und am unteren (c u ) Seil befestigt sind.

Berechnen Sie die Ersatzfedersteifigkeiten für die Gruppierungen, die am oberen (c o ) und am unteren (c u ) Seil befestigt sind. Aufgabe 1 (Seite 1 von 3) a) Das nebenstehende System besteht aus einer um den Punkt A drehbar gelagerten Stufenrolle (Radien r und R = 2r). Die Massenträgheitsmomente der beiden Stufen bezogen auf den

Mehr

Physik A3. 2. Mechanik

Physik A3. 2. Mechanik Physik A3 Prof. Dieter Suter WS 02 / 03 2. Mechanik 2.1 Kinematik 2.1.1 Grundbegriffe Die Mechanik ist der klassischste Teil der Physik, sie umfasst diejenigen Aspekte die schon am längsten untersucht

Mehr

Übungsblatt 3 ( ) mit Lösungen

Übungsblatt 3 ( ) mit Lösungen Experimentalphysik für Naturwissenschaftler 1 Universität Erlangen Nürnberg WS 2011/12 Übungsblatt 3 (25.11.2011) mit Lösungen Vorlesungen: Mo, Mi, jeweils 08:15-09:50 HG Übungen: Fr 08:15-09:45 oder Fr

Mehr

Beispiel 1:Der Runge-Lenz Vektor [2 Punkte]

Beispiel 1:Der Runge-Lenz Vektor [2 Punkte] Übungen Theoretische Physik I (Mechanik) Blatt 9 (Austeilung am: 1.9.11, Abgabe am 8.9.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 3: Dynamik und Kräfte Dr. Daniel Bick 09. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 09. November 2016 1 / 25 Übersicht 1 Wiederholung

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Prof. Dr. Wandinger 1. Kinematik des Punktes TM 3 1.2-1 2. Räumliche Bewegung Wenn die Bahn des Punkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort

Mehr

(no title) Ingo Blechschmidt. 13. Juni 2005

(no title) Ingo Blechschmidt. 13. Juni 2005 (no title) Ingo Blechschmidt 13. Juni 2005 Inhaltsverzeichnis 0.1 Tests............................. 1 0.1.1 1. Extemporale aus der Mathematik...... 1 0.1.2 Formelsammlung zur 1. Schulaufgabe..... 2 0.1.3

Mehr

Fallender Stein auf rotierender Erde

Fallender Stein auf rotierender Erde Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 4 vom 13.05.13 Abgabe: 27. Mai Aufgabe 16 4 Punkte allender Stein auf rotierender Erde Wir lassen einen Stein der Masse m in einen

Mehr

Theoretische Physik I Mechanik Blatt 1

Theoretische Physik I Mechanik Blatt 1 PD Dr. S. Mertens S. Falkner, S. Mingramm Theoretische Physik I Mechanik Blatt 1 WS 27/28 8. 1. 27 1. Parabelbahn. Ein Punkt bewege sich auf der Kurve, die durch die Gleichung y 2 = 4ax + 4a 2 a > beschrieben

Mehr

2. Vorlesung Wintersemester

2. Vorlesung Wintersemester 2. Vorlesung Wintersemester 1 Mechanik von Punktteilchen Ein Punktteilchen ist eine Abstraktion. In der Natur gibt es zwar Elementarteilchen (Elektronen, Neutrinos, usw.), von denen bisher keine Ausdehnung

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2013 Probeklausur Technische Universität München 1 Fakultät für Physik 1 Kurze Fragen [20 Punkte] Beantworten Sie folgende Fragen. Für jede richtige Antwort

Mehr

Lösungen zur Theoretischen Physik 1 für das Lehramt L3 Blatt 1

Lösungen zur Theoretischen Physik 1 für das Lehramt L3 Blatt 1 H. van Hees Wintersemester 18/19 Lösungen zur Theoretischen Physik 1 für das Lehramt L3 Blatt 1 Schul-Mathe-Test Ziel dieses Mathe-Tests ist es, dass wir (Dozent und Tutoren) Ihre Vorkenntnisse in der

Mehr

Kapitel 2. Kinematik des Massenpunktes. 2.1 Einleitung. 2.2 Massenpunkt. 2.3 Ortsvektor

Kapitel 2. Kinematik des Massenpunktes. 2.1 Einleitung. 2.2 Massenpunkt. 2.3 Ortsvektor Kapitel 2 Kinematik des Massenpunktes 2.1 Einleitung In diesem Kapitel behandeln wir die Bewegung von einem oder mehreren Körpern im Raum. Wir unterscheiden dabei zwischen Kinematik und Dynamik. Die Kinematik

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 3: Dynamik und Kräfte Dr. Daniel Bick 09. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 09. November 2016 1 / 25 Übersicht 1 Wiederholung

Mehr

Lösungen zu Übungsblatt 2

Lösungen zu Übungsblatt 2 PN1 - Physik 1 für Chemiker und Biologen Prof. J. Lipfert WS 2017/18 Übungsblatt 2 Lösungen zu Übungsblatt 2 Aufgabe 1 Koppelnavigation. a) Ein Schi bestimmt seine Position bei Sonnenuntergang durch den

Mehr

Klassische und Relativistische Mechanik

Klassische und Relativistische Mechanik Klassische und Relativistische Mechanik Othmar Marti 30. 11. 2007 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik

Mehr

Aufgaben zur Übungsklausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS2013/

Aufgaben zur Übungsklausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS2013/ Aufgaben zur Übungsklausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS013/14 18.1.013 Diese Aufgaben entsprechen der Abschlußklausur, für die 1 ¾ Stunden

Mehr

Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am werden sie von Herrn

Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am werden sie von Herrn Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am 4.11. werden sie von Herrn Hofstaetter in den Übungen vorgerechnet. Vom Weg zu

Mehr

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Fakultät für Physik Wintersemester 26/7 Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Dr. Andreas K. Hüttel Blatt 7 / 3..26. Wegintegral Gegeben sei das Vektorfeld A( r) = ay

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD

Mehr

Newton-Beschreibung: Bewegung eines Massenpunkts auf einer Oberfläche

Newton-Beschreibung: Bewegung eines Massenpunkts auf einer Oberfläche Newton-Beschreibung: Bewegung eines Massenpunkts auf einer Oberfläche R. Mahnke (Univ. Rostock), J. Kaupužs (Lettische Univ. Riga) 3. Mai 24 Zusammenfassung Ziel dieses Kommentars ist es, die Newtonschen

Mehr

Aufgabe 1: Klausur Physik für Maschinenbauer (SS 2009) Lösungen 1. (10 Punkte)

Aufgabe 1: Klausur Physik für Maschinenbauer (SS 2009) Lösungen 1. (10 Punkte) Klausur Physik für Maschinenbauer (SS 2009) Lösungen 1 Aufgabe 1: Schiefe Ebene Auf einer reibungsfreien, schiefen Ebene mit dem Winkel 30 befindet sich eine Kiste der Masse m = 100 kg zunächst in Ruhe.

Mehr

Theoretische Physik I: Lösungen Blatt Michael Czopnik

Theoretische Physik I: Lösungen Blatt Michael Czopnik Theoretische Physik I: Lösungen Blatt 2 15.10.2012 Michael Czopnik Aufgabe 1: Scheinkräfte Nutze Zylinderkoordinaten: x = r cos ϕ y = r sin ϕ z = z Zweimaliges differenzieren ergibt: ẍ = r cos ϕ 2ṙ ϕ sin

Mehr

Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte

Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte Aufgaben 4 Translations-Mechanik Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte Lernziele - die Grössen zur Beschreibung einer Kreisbewegung und deren Zusammenhänge kennen. - die Frequenz, Winkelgeschwindigkeit,

Mehr

Theoretische Mechanik

Theoretische Mechanik Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 2008 Theoretische Mechanik 9. Übung 9.1 d alembertsches Prinzip: Flaschenzug Wir betrachten

Mehr

Übungen zur Einführung in die Astrophysik I. Musterlösung Blatt 2

Übungen zur Einführung in die Astrophysik I. Musterlösung Blatt 2 Übungen zur Einführung in die Astrophysik I Musterlösung Blatt 2 Aufgabe 1(a) Das Gravitationspotential der Erde ist ein Zentralpotential. Es gilt somit: γ Mm r 2 = m v2 r wobei γ die Gravitationskonstante,

Mehr

Drei Flugzeuge unterwegs

Drei Flugzeuge unterwegs Anwendungsaufgaben: R. 3. 1 Drei Flugzeuge unterwegs Um die Bewegungen dreier Flugzeuge zu analysieren, wird ein räumliches kartesisches Koordinatensystem gewählt, das an die Navigation auf bzw. über der

Mehr

5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 203. Abbildung 5.12: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text)

5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 203. Abbildung 5.12: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text) 5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 03 ρ α r α R Abbildung 5.1: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text) 5.4 Kinetische Energie eines Starren Körpers In diesem

Mehr

Übungen zu Lagrange-Formalismus und kleinen Schwingungen

Übungen zu Lagrange-Formalismus und kleinen Schwingungen Übungen zu Lagrange-Formalismus und kleinen Schwingungen Jonas Probst 22.09.2009 1 Teilchen auf der Stange Ein Teilchen der Masse m wird durch eine Zwangskraft auf einer masselosen Stange gehalten, auf

Mehr

Übungsblatt 9. a) Wie groß ist der Impuls des Autos vor und nach der Kollision und wie groß ist die durchschnittliche Kraft, die auf das Auto wirkt?

Übungsblatt 9. a) Wie groß ist der Impuls des Autos vor und nach der Kollision und wie groß ist die durchschnittliche Kraft, die auf das Auto wirkt? Aufgabe 32: Impuls Bei einem Crash-Test kollidiert ein Auto der Masse 2000Kg mit einer Wand. Die Anfangsund Endgeschwindigkeit des Autos sind jeweils v 0 = (-20m/s) e x und v f = (6m/s) e x. Die Kollision

Mehr

II. Kinematik - Geschwindigkeit und Beschleunigung

II. Kinematik - Geschwindigkeit und Beschleunigung EXPERIMENTALPHYSIK I - 1 Übungsblatt I Physikalische Größen und Einheiten Zur Bearbeitung der folgenden Aufgaben schlagen Sie bitte in den Standard-Physik-Lehrbüchern nach (Gerthsen, Tipler, Bergmann-Schaefer,

Mehr

Lösung VII Veröffentlicht:

Lösung VII Veröffentlicht: 1 Konzeptionelle Fragen (a) Kann Haftreibung Arbeit verrichten? Wenn Haftreibung intern ist, ist sie eine verlustfreie Kraft und leistet keine Arbeit am gewählten System. Als externe Kraft kann Haftreibung

Mehr

Deutschsprachiger Wettbewerb 2012/2013 Physik Jahrgang 1 2. Runde

Deutschsprachiger Wettbewerb 2012/2013 Physik Jahrgang 1 2. Runde Deutschsprachiger Wettbewerb 2012/2013 Physik Jahrgang 1 2. Runde Liebe Schülerin, lieber Schüler, diese Runde des Wettbewerbs hat 20 Fragen, Sie sollen von den vorgegebenen Lösungsmöglichkeiten immer

Mehr

Abitur 2011 G8 Abitur Mathematik Geometrie V

Abitur 2011 G8 Abitur Mathematik Geometrie V Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 211 G8 Abitur Mathematik Geometrie V In einem kartesischen Koordinatensystem sind die Punkte A( 6 ), B( 8 6 6) und C( 8 6) gegeben. Teilaufgabe 1a (8

Mehr

2. Translation und Rotation

2. Translation und Rotation 2. Translation und Rotation 2.1 Rotation eines Vektors 2.2 Rotierendes ezugssystem 2.3 Kinetik Prof. Dr. Wandinger 2. Relativbewegungen Dynamik 2 2.2-1 2.1 Rotation eines Vektors Gesucht wird die zeitliche

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Seite 1 Theoretische Physik: Mechanik Blatt 4 Fakultät für Physik Technische Universität München 27.09.2017 Inhaltsverzeichnis 1 Trägheitsmoment & Satz von Steiner 2 2 Trägheitstensor einer dünnen Scheibe

Mehr

2. Geschwindigkeit einer Gewehrkugel

2. Geschwindigkeit einer Gewehrkugel Aufgaben Zentripetalbeschleunigung und -kraft 1. Hubschrauber Der Rotor eines Hubschraubers hat den Radius r = 7,00 m. Er rotiert mit der Frequenz f = 1,00 Hz. a) Welchen Weg legt die Rotorspitze in einer

Mehr

Kraft und Bewegung. a. Zeichnen Sie einen Freischnitt für den Block.

Kraft und Bewegung. a. Zeichnen Sie einen Freischnitt für den Block. Kraft und Bewegung Aufgabe 1 Ein Block der Masse 4 kg liegt auf einem waagrechten Tisch mit rauer Oberfläche. Wenn eine horizontale Kraft von 10N angelegt wird, ist die Beschleunigung 2 m/s 2. a. Zeichnen

Mehr

Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen! Kein zusätzliches Papier zugelassen!

Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen! Kein zusätzliches Papier zugelassen! Physik 1 / Klausur Anfang SS 0 Heift / Kurtz Name: Vorname: Matrikel-Nr.: Unterschrift: Formeln siehe letzte Rückseite! Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen!

Mehr

Die grasende Ziege am Seil

Die grasende Ziege am Seil ) H F * Die grasende Ziege am Seil von Ingmar Rubin 4. Oktober 003 Eine Ziege befindet sich auf einer eingezäunten Weideläche, die von einem Wassergraben durchzogen wird. In den Punkten A und B befindet

Mehr

Prof. Liedl Übungsblatt 4 zu PN1. Übungen zur Vorlesung PN1 Lösungsblatt 4 Besprochen am

Prof. Liedl Übungsblatt 4 zu PN1. Übungen zur Vorlesung PN1 Lösungsblatt 4 Besprochen am Aufgabe 1: Verschlafen Übungen zur Vorlesung PN1 Lösungsblatt 4 Besprochen am 13.11.2012 Um pünktlich in die Uni zu kommen fahren sie mit dem Auto. a Sie fahren aus der Tiefgarage und beschleunigen danach

Mehr

Physikalisches Praktikum M 7 Kreisel

Physikalisches Praktikum M 7 Kreisel 1 Physikalisches Praktikum M 7 Kreisel Versuchsziel Quantitative Untersuchung des Zusammenhangs von Präzessionsfrequenz, Rotationsfrequenz und dem auf die Kreiselachse ausgeübten Kippmoment Literatur /1/

Mehr

Vorkurs Mathematik Intensiv. Geraden, Ebenen und lineare Gleichungssysteme - Musterlösung

Vorkurs Mathematik Intensiv. Geraden, Ebenen und lineare Gleichungssysteme - Musterlösung Prof. Dr. J. Dorfmeister und Tutoren Vorkurs Mathematik Intensiv TU München WS 06/07 Geraden, Ebenen und lineare Gleichungssysteme - Musterlösung. Gegeben seien die Gerade G und die Ebene E : G : x (0,

Mehr

Musterlösung Probeklausur Physik I, FS 2008

Musterlösung Probeklausur Physik I, FS 2008 Musterlösung Probeklausur Physik I, FS 8 May 7, 8 Schaukel Es soll betont werden, dass wir nur Rotationen der Unterschenkel am Knie betrachten. Vereinfacht kann man ansetzen, dass es sich um ein gekoppeltes

Mehr

c) Berechnen Sie die Nullstelle der Ableitung ṡ(t) der Funktion s(t) = C 1 e λ1t + tc 2 e λ1t. (Bem.: Wir nehmen C 2 0 und λ 1 0 an.

c) Berechnen Sie die Nullstelle der Ableitung ṡ(t) der Funktion s(t) = C 1 e λ1t + tc 2 e λ1t. (Bem.: Wir nehmen C 2 0 und λ 1 0 an. Aufgaben Nr.1 Ein Satellit der Masse 600 kg wird auf eine stabile kreisförmige Umlaufbahn um die Erde (Bewegung in der Äquatorebene) gebracht. Der Satellit hat eine Höhe von 10 000 km über der Erdoberfläche.

Mehr

Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3

Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3 Differenziation und Integration von Vektorfunktionen Der Ortsvektor: Man kann einen Punkt P im Raum eindeutig durch die

Mehr

Aufgabe 1: (18 Punkte)

Aufgabe 1: (18 Punkte) MODULPRÜFUNG TECHNISCHE MECHANIK IV (PO 2004) VOM 26.07.2011 Seite 1 Aufgabe 1: (18 Punkte) Zwei Massenpunkte m 1 = 5 kg und m 2 = 2 kg sind durch ein dehnstarres und massenloses Seil über eine reibungsfrei

Mehr