Musterlösungen zur Linearen Algebra II Weihnachtszettel

Größe: px
Ab Seite anzeigen:

Download "Musterlösungen zur Linearen Algebra II Weihnachtszettel"

Transkript

1 Musterlösungen zur Linearen Algebra II Weihnachtszettel Aufgabe. Welche der folgenden Matrizen A = 0 4, B = 3, C = sind über R und welche über C diagonalisierbar? Bestimmen Sie dazu jeweils die charakteristischen Polynome, die Eigenwerte und die algebraischen und geometrischen Vielfachheiten der Eigenwerte. Beweis. Da A eine obere Dreiecksmatrix ist, kann man das charakteristische Polynom direkt ablesen als χ A (x) = (x )(x 4)(x 6). Damit hat also A die Eigenwerte, 4 und 6 mit algebraischer Vielfachheit jeweils =. Da die geometrische Vielfachheit eines Eigenwertes stets ist, und die Summe der geometrischen Vielfachheiten stets n ist, haben also auch alle Eigenwerte die geometrische Vielfachheit. Da also die jeweiligen Vielfachheiten übereinstimmen, ist A diagonalisierbar über R (und damit natürlich auch über C). Durch Entwickeln nach der zweiten Zeile erhält man χ B (x) = (x ) (x ), d.h. die Eigenwerte von B sind und mit algebraischer Vielfachheit bzw.. Damit ist auch die geometrische Vielfachheit vom Eigenwert gleich, und da dim ker( I 3 B) =, ist die geometrische Vielfachheit von gerade. Daher ist B weder über R noch über C diagonalisierbar. Das charakteristische Polynom von C berechnet sich als χ C (x) = x(x +9), d.h. C hat den Eigenwert 0 mit geometrischer Vielfachheit gleich gleich algebraischer Vielfachheit (über R oder C) und über C zusätzlich die beiden Eigenwerte ±i3 (jeweils mit beiden Vielfachheiten =). Damit ist C über C diagonalisierbar, da es über C 3 = dimc 3 paarweise verschiedene Eigenwerte gibt. Notwendig dafür, dass eine Matrix über einem Körper K diagonalisierbar ist, ist die Bedingung, dass das charakteristische Polynom über K in Linearfaktoren zerfällt; also kann C nicht über R diagonalisiert werden. Die Matrix C ist schiefsymmetrisch. Man kann ähnlich zu einer früheren Übungsaufgabe zeigen, dass das charakteristische Polynom von C kein Zufall ist: Für schiefsymmetrische Matrizen M gilt χ M (x) = x p(x) für ein Polynom p in x. Aufgabe. Bestimmen Sie eine obere Dreiecksmatrix, die ähnlich zu 3 0 A = 0 0

2 ist. Beweis. Die Jordan-Normalform ist insbesondere eine obere Dreiecksmatrix; diese berechnen wir im Folgenden. Das charakteristische Polynom von A ist χ A (x) = (x ) 3. Da A I 3, besteht die Jordan-Normalform von A entweder aus einem Block der Länge und einem der Länge oder aus einem der Länge 3. Man rechnet aus, dass dim Eig(A, ) = dim ker(i 3 A) =, womit die erste Möglichkeit ausgeschlossen ist, da es in diesem Fall zwei linear unabhängige Eigenvektoren zum Eigenwert gäbe. Also gilt für die Jordan-Normalform J von A J = was (eine) gesuchte obere Dreiecksmatrix ist, zu der A ähnlich ist. Aufgabe 3. Sei V ein endlichdimensionaler K-Vektorraum und seien ϕ, ψ End(V ). Zeigen Sie, dass jeder Eigenwert von ϕ ψ auch Eigenwert von ψ ϕ ist. Beweis. Sei 0 v ein Eigenvektor zum Eigenwert λ von ϕ ψ. Dann gilt ψ ϕ ψ(v) = ψ(λv) = λψ(v). Ist also ψ(v) 0, so ist ψ(v) Eigenvektor von ψ ϕ zum Eigenwert λ, d.h. λ ist auch Eigenwert von ψ ϕ. Ist andererseits ψ(v) = 0, so folgt λv = ϕ ψ(v) = 0, also λ = 0, und es ist zu zeigen, dass 0 ein Eigenwert von ψ ϕ ist, d.h. dass ker ψ ϕ 0. Da V endlichdimensional ist, ist dies gleichbedeutend damit, dass rk ψ ϕ < n := dim V ist. Da ψ(v) = 0, hat aber ψ nicht Vollrang, und damit auch nicht ψ ϕ, was zu zeigen war. Allgemeiner kann man zeigen, dass ψ χ und χ ψ das gleiche charakteristische Polynom haben. Aufgabe 4. Die Abbildung mit, x, y : R 3 R 3 K, x, y = x t Ay 0 3 A = ist ein Skalarprodukt. Bestimmen Sie eine Orthonormalbasis von R 3 bezüglich dieses Skalarprodukts.

3 Beweis. Dass die genannte Abbildung tatsächlich ein Skalarprodukt ist, ist bis auf die positive Definitheit klar. Ist v = (x, y, z), so ist v, v = x 6xz + z + y = (x 3 z) + z + y 0 mit Gleichheit genau dann, wenn y = 0, z = 0 und damit auch x = 0, d.h. wenn v = 0. Um die gesuchte Orthonormalbasis von R 3 zu finden, wenden wir das Gram- Schmidt-Verfahren auf die Standardbasis E von R 3 an. Man berechnet e, e = v := e e = e, w := e e, v = e v := w = e, w 3 := e 3 e 3, v e 3, v = e 3 +3v, w 3 = 4 9 v 3 := 4 9 w 3. Also bildet ( e, e, (e e )) ein Orthonormalsystem für R 3 bezüglich des Skalarproduktes,. Aufgabe. Bestimmen Sie die Jordan-Normalformen der folgenden Matrizen über Q: ( ) A =, B = 0, C = Beweis. Das charakteristische Polynom von A ist χ A (x) = (x ), und da der Eigenwert die geometrische Vielfachheit hat, ist die Jordan-Normalform gegeben durch ( ) J A =. Das charakteristische Polynom von B ist χ B (x) = (x ) (x 3), und da der Eigenwert die geometrische Vielfachheit hat, ist die Jordan-Normalform gegeben durch J B =. 3 3

4 Das charakteristische Polynom von C ist χ C (x) = (x ) (x ), und da der Eigenwert die geometrische Vielfachheit hat, der Eigenwert die geometrische Vielfachheit hat, ist die Jordan-Normalform gegeben durch J C =. Aufgabe 6. Finden Sie eine komplexe Matrix in Jordannormalform, die die folgenden Eigenwerte hat: mit algebraischer Vielfachheit 3 und geometrischer Vielfachheit, mit algebraischer Vielfachheit 4 und geometrischer Vielfachheit 3, mit algebraischer Vielfachheit und geometrischer Vielfachheit. Beweis. Die Matrix A := hat die gewünschten Eigenschaften. Aufgabe 7. Sei V ein endlichdimensionaler reeller Vektorraum und f End(V ). Zeigen Sie, dass ein f-invarianter Unterraum U von V mit dim U {, } existiert. Beweis. Sei A := B f B R n n die Darstellungsmatrix von f bezüglich einer Basis B von V. Dann kann man A auch als komplexe Matrix auffassen, d.h. A C n n. Sei nun v C n ein Eigenvektor zum Eigenwert a + bi von A und v := v r + iv i die Zerlegegung von v in Real- und Imaginärteil für gewisse Vektoren v r, v i R n. Dann ist der von v i und v r aufgespannte Unterraum U einoder zweidimensional (denn v 0); und dieser ist auch A invariant: Es reicht zu zeigen, dass Av r U und Av i U. Nun gilt Av r + iav i = Av = (a + bi)(v r + iv i ) = (av r bv i ) + i(av i + bv r ), und nach Trennen in Real- und Imaginärteil erhält man Av r = av r bv i U und Av i = av i +bv r U. Damit ist U also auch f invariant, was zu zeigen war. 4

5 Aufgabe 8. Sei V ein endlichdimensionaler euklidischer oder unitärer Vektorraum und seien u, w V. Zeigen Sie, dass die folgenden drei Aussagen äquivalent sind: a) u = w; b) u, v = w, v für alle v V ; c) Ist {v, v,... v n } eine Orthonormalbasis von V, dann gilt u, v i = w, v i für alle i =,,..., n. Beweis. (i) (ii) ist genauso klar wie (ii) (iii), zu zeigen ist also nur (iii) (i). Dies ist aber auch klar nach dem Satz über Koordinaten bez gulich einer Orthonormalbasis, vgl. den entsprechenden Satz aus der Vorlesung.

Musterlösungen zur Linearen Algebra II Übungsklausur

Musterlösungen zur Linearen Algebra II Übungsklausur Musterlösungen zur Linearen Algebra II Übungsklausur Aufgabe. Sei A R 3 3. Welche der folgenden Aussagen sind richtig? a Ist det(a =, dann ist A eine orthogonale Matrix. b Ist A eine orthogonale Matrix,

Mehr

Henning Krause Lineare Algebra Julia Sauter SS 2017 Klausur mit Lösungsvorschlag Jan Geuenich

Henning Krause Lineare Algebra Julia Sauter SS 2017 Klausur mit Lösungsvorschlag Jan Geuenich Henning Krause Lineare Algebra Julia Sauter SS 27 Klausur 2.9.27 mit Lösungsvorschlag Jan Geuenich Aufgabe (4 Punkte: Sei n N und seien A und B zwei (n n-matrizen über einem Körper K. Wahr Falsch (a Es

Mehr

Klausur zur Vorlesung Lineare Algebra II, SoSe 2016,

Klausur zur Vorlesung Lineare Algebra II, SoSe 2016, Klausur zur Vorlesung Lineare Algebra II, SoSe 6, 6.7.6 Vokabelbuch In diesem Teil soll getestet werden, inwieweit Sie in der Lage sind, wichtige Definitionen und Sätze aus der Vorlesung korrekt zu formulieren

Mehr

Lineare Algebra für Physiker 11. Übungsblatt

Lineare Algebra für Physiker 11. Übungsblatt Lineare Algebra für Physiker 11. Übungsblatt Fachbereich Mathematik SS 01 Prof. Dr. Matthias Schneider./. Juli 01 Dr. Silke Horn Dipl.-Math. Dominik Kremer Gruppenübung Aufgabe G1 (Minitest) (a) Welche

Mehr

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

Lösungsskizzen der Klausur zur Linearen Algebra im Herbst 2015

Lösungsskizzen der Klausur zur Linearen Algebra im Herbst 2015 sskizzen der Klausur zur Linearen Algebra im Herbst 5 Aufgabe I. Es sei (G, ) eine Gruppe mit neutralem Element e und M {x G x x e}. Zeigen Sie: (a) Ist G kommutativ, so ist M eine Untergruppe von G. (b)

Mehr

Musterlösung der Klausur zur linearen Algebra II

Musterlösung der Klausur zur linearen Algebra II David Blottière SS 7 Patrick Schützdeller Universität Paderborn Julia Sauter Musterlösung der Klausur zur linearen Algebra II Aufgabe 1 Bestimmen Sie Jordan-Normalformen der folgenden Matrizen, und schreiben

Mehr

6.3 Eigenwerte. γ ist Eigenwert von T [T] B B γi ist nicht invertierbar.

6.3 Eigenwerte. γ ist Eigenwert von T [T] B B γi ist nicht invertierbar. Um zu zeigen, dass die irreduziblen Teiler eines reellen Polynoms höchstens den Grad 2 haben, fassen wir nun (x γ) und (x γ) zusammen und stellen fest, dass (x (a + b i))(x ((a b i)) = x 2 2a + (a 2 +

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 25): Lineare Algebra und analytische Geometrie 2 2. (Frühjahr 29, Thema 3, Aufgabe 3) Gegeben sei die reelle 3 3 Matrix 4 2 A = 2 7 2 R 3 3. 2 2 a)

Mehr

Klausur Lineare Algebra I & II

Klausur Lineare Algebra I & II Prof. Dr. G. Felder, Dr. Thomas Willwacher ETH Zürich, Sommer 2010 D MATH, D PHYS, D CHAB Klausur Lineare Algebra I & II Bitte ausfüllen! Name: Vorname: Studiengang: Bitte nicht ausfüllen! Aufgabe Punkte

Mehr

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10)

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Kapitel 15: Eigenwerte und -vektoren Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 5. November 2009) Diagonalisierbarkeit

Mehr

a b Q = b a 0 ) existiert ein Element p Q, so dass gilt: q 1 q 2 = 2 b 1 b 2 a 1 b 2 a 2 b 1 a 1 a 2 b 1 b 2 a 1 b 2 a 2 b 1 a b p = 1 det(q) C 2 2,

a b Q = b a 0 ) existiert ein Element p Q, so dass gilt: q 1 q 2 = 2 b 1 b 2 a 1 b 2 a 2 b 1 a 1 a 2 b 1 b 2 a 1 b 2 a 2 b 1 a b p = 1 det(q) C 2 2, Aufgabe I Es sei Q die folgende Teilmenge von C 2 2 : { ( ) a b Q a, b C b a Hier bezeichnet der Querstrich die komplexe Konjugation Zeigen Sie: (a) Mit den üblichen Verknüpfungen + und für Matrizen ist

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

7.2 Die adjungierte Abbildung

7.2 Die adjungierte Abbildung 7.2 Die adjungierte Abbildung Definition 7.2.1 Eine lineare Abbildung f : V K heißt lineares Funktional oder Linearform. (Diese Definition gilt für beliebige K-Vektorräume, nicht nur für innere Produkträume.)

Mehr

Lösung zu Serie 18. Lineare Algebra D-MATH, HS Prof. Richard Pink

Lösung zu Serie 18. Lineare Algebra D-MATH, HS Prof. Richard Pink Lineare Algebra D-MATH, HS 201 Prof. Richard Pink Lösung zu Serie 18 1. Sei V,, ein endlich-dimensionaler unitärer Vektorraum. Zeige, dass zu jeder Sesquilinearform f : V V C eine eindeutige lineare Abbildung

Mehr

Übungen zum Ferienkurs Lineare Algebra 2015/2016: Lösungen

Übungen zum Ferienkurs Lineare Algebra 2015/2016: Lösungen Übungen zum Ferienkurs Lineare Algebra 5/6: Lösungen Darstellungsmatrizen. Bestimme die Darstellungsmatrix M B,B (f ) für die lineare Abbildung f : 3, die durch f (x, y, z) = (4x + y z, y + z) definiert

Mehr

1 Die Jordansche Normalform

1 Die Jordansche Normalform Matthias Tischler Karolina Stoiber Ferienkurs Lineare Algebra für Physiker WS 4/5 A Die Jordansche Normalform Vierter Tag (9.03.205) Im Zusammenhang mit der Lösung komplexer Differentialgleichungssysteme

Mehr

Lineare Algebra 2 (SS 13) Blatt 13: Musterlösung

Lineare Algebra 2 (SS 13) Blatt 13: Musterlösung Prof. Dr. B. Hanke Dr. J. Bowden Lineare Algebra 2 (SS ) Blatt : Musterlösung Aufgabe. Es sei C (R) der R-Vektorraum der unendlich oft differenzierbaren Funktionen auf R und : C (R) C (R), f f die Abbildung,

Mehr

23. Die Jordan sche Normalform

23. Die Jordan sche Normalform Chr.Nelius, Lineare Algebra II (SS 2005) 1 23. Die Jordan sche Normalform Wir suchen für einen trigonalisierbaren Endomorphismus unter seinen dreiecksförmigen Darstellungsmatrizen eine Darstellungsmatrix,

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS. Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF

TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS. Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF 07.03.2016-11.03.2016 Inhaltsverzeichnis Inhaltsverzeichnis 1 Darstellungsmatrizen 2 2 Diagonalisierbarkeit

Mehr

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive

Mehr

Lineare Algebra II 6. Übungsblatt

Lineare Algebra II 6. Übungsblatt Lineare Algebra II 6 Übungsblatt Fachbereich Mathematik SS 2011 Prof Dr Kollross 18/19 Mai 2011 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minimalpolynom) Bestimmen Sie das Minimalpolynom der

Mehr

Lineare Algebra I/II LVA ,

Lineare Algebra I/II LVA , Lineare Algebra I/II LVA 401-1151-00,401-1152-00 Prof. G. Wüstholz, C. Fuchs Lösungen zur Basisprüfung, HS08/FS09 09.02.2010 1. a) (1 Punkt) Wir beginnen mit dem charakteristischen Polynom der Matrix A:

Mehr

Übungen zum Ferienkurs Ferienkurs Lineare Algebra für Physiker WiSe 2017/18 Blatt 3 - Lösung

Übungen zum Ferienkurs Ferienkurs Lineare Algebra für Physiker WiSe 2017/18 Blatt 3 - Lösung Technische Universität München Physik Department Pablo Cova Fariña, Claudia Nagel Übungen zum Ferienkurs Ferienkurs Lineare Algebra für Physiker WiSe 207/8 Blatt 3 - Aufgabe : Darstellungsmatrizen Sei

Mehr

4 Lineare Abbildungen Basisdarstellungen

4 Lineare Abbildungen Basisdarstellungen 4 Lineare Abbildungen Basisdarstellungen (4.1) Seien V,W endlich dimensionale K-Vektorräume, und sei T : V W linear. Sei {v 1,...,v } Basis von V und {w 1,...,w M } Basis von W. Sei T (v j ) = M a kj w

Mehr

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009 I. (4 Punkte) Gegeben sei die Menge Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 9 G := { a c b a, b, c R }. (a) Zeigen Sie, dass G zusammen mit der Matrizenmultiplikation eine Gruppe

Mehr

a) Ein Gruppenhomomorphismus von G nach H ist eine Abbildung Φ : G H, sodass für alle g 1, g 2 G die Gleichung Φ(g 1 g 2 ) = Φ(g 1 ) Φ(g 2 )

a) Ein Gruppenhomomorphismus von G nach H ist eine Abbildung Φ : G H, sodass für alle g 1, g 2 G die Gleichung Φ(g 1 g 2 ) = Φ(g 1 ) Φ(g 2 ) I. (4 Punkte) Es seien (G, ) eine Gruppe mit neutralem Element e G und (H, ) eine weitere Gruppe. a) Geben Sie die Definition eines Gruppenhomomorphismus Φ : G H an und beweisen Sie, dass für solch einen

Mehr

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen Orthonormalisierung Wie schon im Falle V = R n erwähnt, erhalten wir durch ein Skalarprodukt eine zugehörige Norm (Länge) eines Vektors und in weiterer Folge eine Metrik (Abstand zwischen zwei Vektoren).

Mehr

Lineare Algebra II Lösungen zu ausgewählten Aufgaben

Lineare Algebra II Lösungen zu ausgewählten Aufgaben Lineare Algebra II Lösungen zu ausgewählten Aufgaben Blatt 2, Aufgabe 3 a) Wir zeigen, daß das Ideal (2, X) kein Hauptideal in Z[X] ist. (Dieses Ideal besteht aus allen Elementen in Z[X], die von der Form

Mehr

Ausgewählte Lösungen zu den Übungsblättern 9-10

Ausgewählte Lösungen zu den Übungsblättern 9-10 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Dezember Ausgewählte Lösungen zu den Übungsblättern 9- Übungsblatt

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 12

Technische Universität München Zentrum Mathematik. Übungsblatt 12 Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 12 Hausaufgaben Aufgabe 12.1 Sei f : R 3 R 3 gegeben durch f(x) :=

Mehr

Lineare Algebra II. Inhalt und Begriffe. Lineare Algebra II p. 1

Lineare Algebra II. Inhalt und Begriffe. Lineare Algebra II p. 1 Lineare Algebra II Inhalt und Begriffe Lineare Algebra II p. 1 Inhaltsverzeichnis Kapitel II Grundlagen der Linearen Algebra... Lineare Algebra II p. 2 Inhaltsverzeichnis Kapitel II Grundlagen der Linearen

Mehr

Klausur zur Vorlesung Lineare Algebra II

Klausur zur Vorlesung Lineare Algebra II Universität zu Köln Sommersemester 06 Mathematisches Institut 9. Juli 06 Prof. Dr. P. Littelmann Dr. Teodor Backhaus Klausur zur Vorlesung Lineare Algebra II Bearbeitungszeit 80 Minuten Bitte geben Sie

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

Mathematik I. Vorlesung 18. Vielfachheiten und diagonalisierbare Abbildungen. µ λ = dim(eig λ (ϕ))

Mathematik I. Vorlesung 18. Vielfachheiten und diagonalisierbare Abbildungen. µ λ = dim(eig λ (ϕ)) Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 18 Vielfachheiten und diagonalisierbare Abbildungen Satz 18.1. Es sei K ein Körper und es sei V ein endlichdimensionaler K- Vektorraum.

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 0/06 Lineare Algebra und analytische Geometrie I Vorlesung... und ein guter Lehrer kann auch einem schlechten Schüler was beibringen Beziehung zwischen Eigenräumen Wir

Mehr

Probeklausur Lineare Algebra für Physiker

Probeklausur Lineare Algebra für Physiker Fachbereich Mathematik Prof. Dr. K. Grosse-Brauckmann D. Frisch Probeklausur Lineare Algebra für Physiker SS 8 26./27.6.27 Name:..................................... Vorname:.................................

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 34 Die Diagonalisierbarkeit von Isometrien im Komplexen Satz 34.1. Es sei V ein endlichdimensionaler C-Vektorraum

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 2016

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 2016 Name, Vorname Matrikel-Nr. Aufg. Aufg.2 Aufg.3 Aufg.4 Σ Note bzw. Kennzeichen Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 206 Bearbeiten Sie bitte

Mehr

Lineare Algebra und Analytische Geometrie I für die Fachrichtung Informatik

Lineare Algebra und Analytische Geometrie I für die Fachrichtung Informatik Universität Karlsruhe (TH) Institut für Algebra und Geometrie Dr. Klaus Spitzmüller Dipl.-Inform. Wolfgang Globke Lineare Algebra und Analytische Geometrie I für die Fachrichtung Informatik Lösungen zum

Mehr

5. Übung zur Linearen Algebra II -

5. Übung zur Linearen Algebra II - 5. Übung zur Linearen Algebra II - en Kommentare an Hannes.Klarner@Fu-Berlin.de FU Berlin. SS 2. Aufgabe 7 5 A := 2. 3 2 (i) Berechne die Eigenwerte und Eigenvektoren von A. (ii) Ist A diagonalisierbar?

Mehr

Lineare Algebra II, Lösungshinweise Blatt 9

Lineare Algebra II, Lösungshinweise Blatt 9 Prof Dr Katrin Wendland Priv Doz Dr Katrin Leschke Christoph Tinkl SS 27 Lineare Algebra II, Lösungshinweise Blatt 9 Aufgabe (4 Punkte) Sei 2 3 4 A = 5 6 Berechnen Sie A k für alle k N und verifizieren

Mehr

5 Diagonalisierbarkeit

5 Diagonalisierbarkeit 5 Diagonalisierbarkeit Sei V ein K Vektorraum mit einer Basis B = (v 1,..., v n ) Wiederholung aus 2: Sei f : V V K linear. Stelle f(v j ) für j = 1,..., n dar in der Form a 1j Das n Tupel a j =. a nj

Mehr

D-Math/Phys Lineare Algebra II FS 2017 Dr. Meike Akveld. Clicker Fragen

D-Math/Phys Lineare Algebra II FS 2017 Dr. Meike Akveld. Clicker Fragen D-Math/Phys Lineare Algebra II FS 2017 Dr. Meike Akveld Clicker Fragen Frage 1 Wenn eine reelle Matrix einen Eigenvektor hat, so hat es unendlich viele Eigenvektoren Sei u K n einen Eigenvektor von A M

Mehr

6 Hauptachsentransformation

6 Hauptachsentransformation 6 Hauptachsentransformation A Diagonalisierung symmetrischer Matrizen (6.1) Satz: Sei A M(n n, R) symmetrisch. Dann gibt es eine orthogonale n n-matrix U mit U t AU = D Diagonalmatrix Es folgt: Die Spalten

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 53 Norm von Endomorphismen und Matrizen Definition 53.1. Es seien V und W endlichdimensionale normierte K-

Mehr

Übungen zur Vorlesung Lineare Algebra II, SoSe 2016, Blatt 12

Übungen zur Vorlesung Lineare Algebra II, SoSe 2016, Blatt 12 Übungen zur Vorlesung Lineare Algebra II, SoSe 2016, Blatt 12 Schriftliche Aufgaben Aufgabe 1. Sei A M(n n, C). Zeigen Sie: (1) exp(a) ist invertierbar mit exp(a) 1 = exp( A). (2) Ist A M(n n, C) selbstadjungiert

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA II 19. Juli 2008

KLAUSUR ZUR LINEAREN ALGEBRA II 19. Juli 2008 KLAUSUR ZUR LINEAREN ALGEBRA II 19. Juli 2008 MUSTERLÖSUNG Name: Studiengang: Aufgabe 1 2 3 4 5 6 Summe Punktzahl /50 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter die Aufgabenstellung

Mehr

(a) Bestimmen Sie die Matrixdarstellung dieser Abbildung bzgl. einer möglichst einfachen Basis von P n - (b) Bestimmen Sie die zu F duale Abbildung F.

(a) Bestimmen Sie die Matrixdarstellung dieser Abbildung bzgl. einer möglichst einfachen Basis von P n - (b) Bestimmen Sie die zu F duale Abbildung F. Übung. Wiederholen Sie die folgenden Begriffe und geben sie jeweils Beispiele (a) Vektorraum (b) Vektorraumhomomorphismus mit Spezialfällen (c) Basis (d) Dualraum (e) Duale Basis (f) Koordinatenabbildung

Mehr

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Musterlösung 13. (A ± I)x = 0 Ax ± x = 0 Ax = ±x Ax = λx

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Musterlösung 13. (A ± I)x = 0 Ax ± x = 0 Ax = ±x Ax = λx D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung Musterlösung 13 1. Die Matrix A±I ist singulär falls es einen Vektor x 0 gibt der die Gleichung (A±I)x = 0 erfüllt, d.h. wenn A ± I als

Mehr

KAPITEL 8. Normalformen. 1. Blockmatrizen. ,C K m 2 n 1. X = K (m 1+m 2 ) (n 1 +n 2 ) K L. und Y = M N Blockmatrizen mit.

KAPITEL 8. Normalformen. 1. Blockmatrizen. ,C K m 2 n 1. X = K (m 1+m 2 ) (n 1 +n 2 ) K L. und Y = M N Blockmatrizen mit. KAPITEL 8 Normalformen Definition 8.1 (Blockmatrizen). Sind 1. Blockmatrizen A K m 1 n 1,B K m 1 n 2,C K m 2 n 1 und D K m 2 n 2 so nennet man die Matrix X = ( A B C D ) K (m 1+m 2 ) (n 1 +n 2 ) eine Blockmatrix

Mehr

Klausur zu. Lineare Algebra II. Viel Erfolg! Fachbereich Mathematik WS 2012/13 Dr. habil. Matthias Schneider. Bonus Note. Aufgabe

Klausur zu. Lineare Algebra II. Viel Erfolg! Fachbereich Mathematik WS 2012/13 Dr. habil. Matthias Schneider. Bonus Note. Aufgabe Klausur zu Lineare Algebra II Fachbereich Mathematik WS 0/3 Dr. habil. Matthias Schneider Aufgabe 3 4 5 6 7 Bonus Note Punktzahl 4 3 3 3 3 0 erreichte Punktzahl Es sind keine Hilfsmittel zugelassen. Die

Mehr

10 Unitäre Vektorräume

10 Unitäre Vektorräume 10 Unitäre Vektorräume Pink: Lineare Algebra 2014/15 Seite 98 10 Unitäre Vektorräume Die Theorie komplexer Vektorräume mit Skalarprodukt folgt denselben Linien wie die Theorie reeller Vektorräume mit Skalarprodukt;

Mehr

Serie 1: Eigenwerte & Eigenvektoren

Serie 1: Eigenwerte & Eigenvektoren D-MATH Lineare Algebra II FS 2017 Dr. Meike Akveld Serie 1: Eigenwerte & Eigenvektoren 1. Beweisen oder widerlegen Sie, dass die folgenden Paare von Matrizen über dem angegebenen Körper zueinander ähnlich

Mehr

3.5 Trigonalisierbarkeit, verallgemeinerte Eigenräume und Jordansche Normalform

3.5 Trigonalisierbarkeit, verallgemeinerte Eigenräume und Jordansche Normalform LinAlg II Version 1 29. Mai 2006 c Rudolf Scharlau 219 3.5 Trigonalisierbarkeit, verallgemeinerte Eigenräume und Jordansche Normalform Das Problem der Normalformen für Endomorphismen handelt kurz gesprochen

Mehr

Musterlösungen zur Linearen Algebra II Blatt 2

Musterlösungen zur Linearen Algebra II Blatt 2 Musterlösungen zur Linearen Algebra II Blatt 2 Aufgabe. Sei R ein nullteilerfreier kommutativer Ring mit. Setze K := R R\{0}/ mit der Äquivalenzrelation definiert durch (a, b) (a, b ) genau dann, wenn

Mehr

12 Lineare Algebra - Übersicht. Themen: Unterräume Lineare Abbbildungen Gauß-Algorithmus Eigenwerte und Normalformen

12 Lineare Algebra - Übersicht. Themen: Unterräume Lineare Abbbildungen Gauß-Algorithmus Eigenwerte und Normalformen 12 Lineare Algebra - Übersicht Themen: Unterräume Lineare Abbbildungen Gauß-Algorithmus Eigenwerte und Normalformen Unterräume Sei X ein Vektorraum über Ã. Eine Teilmenge M X heißt Unterraum von X, wenn

Mehr

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen Fachbereich Mathematik/Informatik 6. Juni 0 Prof. Dr. H. Brenner Mathematik für Anwender II Testklausur mit Lösungen Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Ein Skalarprodukt

Mehr

Tutorium 2. 1 Der Polynomring

Tutorium 2. 1 Der Polynomring 1 Der Polynomring Tutorium 2 Wiederholung. Eine Einheit eines Rings ist ein multiplikativ invertierbares Element. Zum Beispiel sind {1, 1} die Einheiten in Z, und alle Zahlen außer der 0 in jedem Körper.

Mehr

Nachholklausur zur Linearen Algebra I, WS 03/04

Nachholklausur zur Linearen Algebra I, WS 03/04 16.4.2004 Nachholklausur zur Linearen Algebra I, WS 03/04 Prof. Dr. H. Pahlings Tragen Sie bitte auf diesem Deckblatt leserlich und in Blockbuchstaben Ihren Namen und Ihre Matrikelnummer ein und unterschreiben

Mehr

Kapitel 11 Eigenwerte und Eigenvektoren

Kapitel 11 Eigenwerte und Eigenvektoren Kapitel Eigenwerte und Eigenvektoren. Problem der Diagonalisierbarkeit Es sei wieder K gleich R oder. Eine n n)-matrix A mit Koeffizienten aus K wird als diagonalisierbar bezeichnet, wenn es eine invertierbare

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I UND II 2. Oktober 2008 MUSTERLÖSUNG

KLAUSUR ZUR LINEAREN ALGEBRA I UND II 2. Oktober 2008 MUSTERLÖSUNG KLAUSUR ZUR LINEAREN ALGEBRA I UND II 2. Oktober 2008 MUSTERLÖSUNG Aufgabe 1 Es sei K ein Körper, V ein K-Vektorraum, und seien v 1,..., v n V (n N). (a) Definieren Sie, wann die endliche Familie v 1,...,

Mehr

Lineare Algebra II 12. Übungsblatt

Lineare Algebra II 12. Übungsblatt Lineare Algebra II 12. Übungsblatt Fachbereich Mathematik SS 2011 Prof. Dr. Kollross 13. / 14. Juli 2011 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Probeklausur) Sprechen Sie über die Probeklausur

Mehr

Steilkurs Lineare Algebra 1 einige wichtige Stationen

Steilkurs Lineare Algebra 1 einige wichtige Stationen Steilkurs Lineare Algebra 1 einige wichtige Stationen Für einen Körper K ist ein K-Vektorraum V eine Menge mit einer kommutativen und assoziativen Verknüpfung + : V V V, für die es ein neutrales Element

Mehr

Aufgabe I.1 (4 Punkte) Gegeben seien die Matrix H := und die Menge L := {A R 4 4 A HA = H} Zeigen Sie:

Aufgabe I.1 (4 Punkte) Gegeben seien die Matrix H := und die Menge L := {A R 4 4 A HA = H} Zeigen Sie: Aufgabe I (4 Punkte Gegeben seien die Matrix und die Menge Zeigen Sie: H := L := {A R 4 4 A HA = H} a L ist bezüglich der Matrizenmultiplikation eine Gruppe b Die Matrizen der Form ( E O, O B wobei E R

Mehr

Lösungsskizze zur Wiederholungsserie

Lösungsskizze zur Wiederholungsserie Lineare Algebra D-MATH, HS Prof. Richard Pink Lösungsskizze zur Wiederholungsserie. [Aufgabe] Schreibe die lineare Abbildung f : Q Q 5, x +x +x x x +x +6x f x := x +x +8x x x +x +x. x +x +5x als Linksmultiplikation

Mehr

Proseminar Lineare Algebra II, SS 11. Blatt

Proseminar Lineare Algebra II, SS 11. Blatt Blatt 1 1. Berechnen Sie die Determinante der Matrix 0 0 4 1 2 5 1 7 1 2 0 3 1 3 0 α. 2. Stellen Sie folgende Matrix als Produkt von Elementarmatrizen dar: 1 3 1 4 2 5 1 3 0 4 3 1. 3 1 5 2 3. Seien n 2

Mehr

Lineare Algebra II 3. Übungsblatt

Lineare Algebra II 3. Übungsblatt Lineare Algebra II 3. Übungsblatt Fachbereich Mathematik SS 2011 Prof. Dr. Kollross 27./28. April 2011 Susanne Kürsten Tristan Alex Minitest Aufgabe M1 (Formale Polynome) Betrachten Sie die folgenden Polynome

Mehr

Mat(2 2, R) Wir bestimmen das charakterische Polynom 1 f A (t) = t 2 t 2 = (t 2)(t + ( 1). ) 2 2. Eigenvektor zu EW 2 ist v 2 = 1 1

Mat(2 2, R) Wir bestimmen das charakterische Polynom 1 f A (t) = t 2 t 2 = (t 2)(t + ( 1). ) 2 2. Eigenvektor zu EW 2 ist v 2 = 1 1 Aufgabe. Bestimmen Sie das Exponential expa) der Matrix ) 5 6 A = Mat, R). 4. Wir bestimmen das charakterische Polynom f A t) = t t = t )t + ). ). Eigenvektor zu EW ist v = ). Eigenvektor zu EW ist v =

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4 Lineare Algebra/Analytische Geometrie II SoSe 2016

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4 Lineare Algebra/Analytische Geometrie II SoSe 2016 Name, Vorname Matrikel-Nr. Aufg.1 Aufg.2 Aufg.3 Σ Note bzw. Kennzeichen Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4 Lineare Algebra/Analytische Geometrie II SoSe 2016 Bearbeiten Sie bitte zwei

Mehr

Klausur Lineare Algebra I am Es sind insgesamt 60 Punkte bei der Klausur zu erreichen.

Klausur Lineare Algebra I am Es sind insgesamt 60 Punkte bei der Klausur zu erreichen. Klausur Lineare Algebra I am 03.02.10 Es sind insgesamt 60 Punkte bei der Klausur zu erreichen. Aufgabe 1. (6 Punkte insgesamt) a.) (3P) Definieren Sie, was eine abelsche Gruppe ist. b.) (3P) Definieren

Mehr

Rückblick auf die letzte Vorlesung

Rückblick auf die letzte Vorlesung Rückblick auf die letzte Vorlesung Lineare Differentialgleichungen Ausblick auf die heutige Vorlesung Lineare autonome Differentialgleichungen 2 Bestimmung des Fundamentalsystems 3 Jordansche Normalform

Mehr

Berechnung der Determinante

Berechnung der Determinante Berechnung der Determinante Verhalten der Determinante unter elementaren Zeilenoperationen: Das Vertauschen zweier Zeilen/Spalten der Matrix A ändert nur das Vorzeichen der Determinante, d.h: i, j {1,...,

Mehr

LINEARE ALGEBRA II (LEHRAMT GYMNASIUM) SOMMERSEMESTER 2017

LINEARE ALGEBRA II (LEHRAMT GYMNASIUM) SOMMERSEMESTER 2017 LINEARE ALGEBRA II (LEHRAMT GYMNASIUM) SOMMERSEMESTER 2017 CAROLINE LASSER Inhaltsverzeichnis 1. Euklidische Vektorräume 2 1.1. Skalarprodukte und Normen (26.4.) 2 1.2. Orthonormalisierung (3.5.) 2 1.3.

Mehr

Alle Vektoren sind hier Spaltenvektoren. Eine Matrix besteht aus nebeneinandergeschrie-

Alle Vektoren sind hier Spaltenvektoren. Eine Matrix besteht aus nebeneinandergeschrie- 1 Vorbemerkungen Alle Vektoren sind hier Spaltenvektoren. Eine Matrix besteht aus nebeneinandergeschrie- benen Vektoren. Wird die Matrix A = ( a 1,..., a n ) mit dem Vektor c = c 1. c n multipliziert,

Mehr

3 Vektorräume abstrakt

3 Vektorräume abstrakt Mathematik I für inf/swt Wintersemester / Seite 7 Vektorräume abstrakt Lineare Unabhängigkeit Definition: Sei V Vektorraum W V Dann heißt W := LH(W := Menge aller Linearkombinationen aus W die lineare

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 205/6): Lineare Algebra und analytische Geometrie 3 3. (Herbst 997, Thema 3, Aufgabe ) Berechnen Sie die Determinante der reellen Matrix 0 2 0 2 2

Mehr

6 Symmetrische und hermitesche Matrizen

6 Symmetrische und hermitesche Matrizen Mathematik für Physiker II, SS Freitag 4.6 $Id: quadrat.tex,v.8 /6/4 4:44:39 hk Exp hk $ 6 Symmetrische und hermitesche Matrizen 6. Prä-Hilberträume Wir sind gerade mit der Diskussion der sogenannten Ausgleichsgerade

Mehr

Eigenwerttheorie. Martin Gubisch Lineare Algebra I WS 2007/2008

Eigenwerttheorie. Martin Gubisch Lineare Algebra I WS 2007/2008 Eigenwerttheorie Martin Gubisch Lineare Algebra I WS 27/28 Motivation Gegeben seien ein K-Vektorraum V der Dimension n < und eine K-lineare Abbildung f : V V Wir suchen eine Basis V = v 1,, v n von V,

Mehr

Lina II - Aufgaben zur Vorbereitung für die Klausur (Teil 1) - Lösungen

Lina II - Aufgaben zur Vorbereitung für die Klausur (Teil 1) - Lösungen Lina II - Aufgaben zur Vorbereitung für die Klausur (Teil 1) - en Kommentare an HannesKlarner@FU-Berlinde FU Berlin SS 1 Dia- und Trigonalisierbarkeit Aufgabe (1) Gegeben seien A = i i C 3 3 und B = 1

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Linearen Algebra 1 Wintersemester 2014/2015 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 10 Abgabetermin: Freitag, 16.01.2015, 11 Uhr Auf diesem

Mehr

Die wichtigste Klasse von Funktionen zwischen Vektorräumen sind die linearen Abbildungen.

Die wichtigste Klasse von Funktionen zwischen Vektorräumen sind die linearen Abbildungen. Definition: Lineare Abbildung Lineare Abbildungen Die wichtigste Klasse von Funktionen zwischen Vektorräumen sind die linearen Abbildungen. 8.1 Definition: Lineare Abbildung Eine Funktion f : V Ñ W zwischen

Mehr

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni.

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni. Lineare Algebra II Prof. Dr. M. Rost Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni http://www.math.uni-bielefeld.de/~rost/la2 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung: Eigenvektoren

Mehr

Kapitel 11. Bilinearformen über beliebigen Bilinearformen

Kapitel 11. Bilinearformen über beliebigen Bilinearformen Kapitel 11 Bilinearformen über beliebigen Körpern Wir können in diesem Kapitel rasch vorgehen, weil die meisten Konzepte im Zusammenhang mit Sesquilinearformen bereits eingeführt wurden. In diesem Abschnitt

Mehr

Übungen zur Vorlesung Lineare Algebra

Übungen zur Vorlesung Lineare Algebra Übungen zur Vorlesung Lineare Algebra Institut für Reine Mathematik WS 2009/10 & SS 2010 Kapitel 1. Vektorräume Was ist ein Vektorraum? Sei X und K ein Körper. Wie macht man Abb (X, K) zu einem K -Vektorraum?

Mehr

Abschnitt 1. Jordan Normalform

Abschnitt 1. Jordan Normalform Abschnitt Jordan Normalform Beispiel & Eigenschaften λ λ λ λ 2 λ 2 λ 2 λ 3 Voraussetzung: χ zerfällt Dann: ex. Basis, s.d. Darstellungsmatrix Jordan-Form hat Minimalpolynom µ hat Faktor zu jedem EW in

Mehr

Jordansche Normalform - Beispielrechnung. 1 Beispielrechnung an einer komplexen Matrix

Jordansche Normalform - Beispielrechnung. 1 Beispielrechnung an einer komplexen Matrix Jordansche Normalform - Beispielrechnung Dieses kurze Skript soll die jordansche Normalform erklären die auch oft als Trigonalisierung von Matrizen bezeichnet wird da man die Matrix auf eine bestimmte

Mehr

Lösungen Serie 6 (Vektorräume, Skalarprodukt)

Lösungen Serie 6 (Vektorräume, Skalarprodukt) Fachhochschule Nordwestschweiz (FHNW Hochschule für Technik Institut für Geistes- und Naturwissenschaft Lösungen Serie 6 (Vektorräume, Skalarprodukt Dozent: Roger Burkhardt Klasse: Studiengang ST Büro:

Mehr

9 Eigenwerte und Eigenvektoren

9 Eigenwerte und Eigenvektoren 92 9 Eigenwerte und Eigenvektoren Wir haben im vorhergehenden Kapitel gesehen, dass eine lineare Abbildung von R n nach R n durch verschiedene Darstellungsmatrizen beschrieben werden kann (je nach Wahl

Mehr

9 Eigenwerte und Eigenvektoren

9 Eigenwerte und Eigenvektoren 92 9 Eigenwerte und Eigenvektoren Wir haben im vorhergehenden Kapitel gesehen, dass eine lineare Abbildung von R n nach R n durch verschiedene Darstellungsmatrizen beschrieben werden kann (je nach Wahl

Mehr

und Unterdeterminante

und Unterdeterminante Zusammenfassung: Determinanten Definition: Entwicklungssätze: mit und Unterdeterminante (streiche Zeile i & Spalte j v. A, bilde dann die Determinante) Eigenschaften v. Determinanten: Multilinearität,

Mehr

und Unterdeterminante

und Unterdeterminante Zusammenfassung: Determinanten Definition: Entwicklungssätze: mit und Unterdeterminante (streiche Zeile i & Spalte j v. A, bilde dann die Determinante) Eigenschaften v. Determinanten: Multilinearität,

Mehr

2.11 Eigenwerte und Diagonalisierbarkeit

2.11 Eigenwerte und Diagonalisierbarkeit 2.11. EIGENWERTE UND DIAGONALISIERBARKEIT 127 Die Determinante eines Endomorphismus Wir geben uns jetzt einen endlichen erzeugten K-Vektorraum V und einen Endomorphismus ϕ : V V vor. Wir wollen die Determinante

Mehr

Ferienkurs zur Linearen Algebra Bilinearformen, Euklidische Vektorräume und Endomorphismen Musterlösungen zu den Übungen

Ferienkurs zur Linearen Algebra Bilinearformen, Euklidische Vektorräume und Endomorphismen Musterlösungen zu den Übungen Technische Universität München Department of Physics Ferienkurs zur Linearen Algebra Bilinearformen, Euklidische Vektorräume und Endomorphismen Musterlösungen zu den Übungen Freitag, 6.. Sascha Frölich

Mehr

Musterlösung Donnerstag - Determinanten und Eigenwerte

Musterlösung Donnerstag - Determinanten und Eigenwerte Musterlösung Donnerstag - Determinanten und Eigenwerte 6. März Aufgabe : Zum Aufwärmen () Zeige, dass eine nilpotente Endomorphismus nur die Null als Eigenwert hat. Hinweis: Ein Endomorphismus heißt nilpotent,

Mehr

Satz. Wie wirkt sich ein Basiswechsel auf die Darstellungsmatrix einer linearen Abbildung F : V n V n aus?

Satz. Wie wirkt sich ein Basiswechsel auf die Darstellungsmatrix einer linearen Abbildung F : V n V n aus? Wie wirkt sich ein Basiswechsel auf die Darstellungsmatrix einer linearen Abbildung F : V n V n aus? Seien [F] B und [F] B die Darstellungsmatrizen von F bezüglich zweier Basen B und B. Weiter sei T die

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 25 J ai décidé d être heureux parce que c est bon pour la santé Voltaire Trigonalisierbare Abbildungen

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 206 Lineare Algebra und analytische Geometrie II Vorlesung 33 Das Kreuzprodukt Eine Besonderheit im R 3 ist das sogenannte Kreuzprodukt, das zu zwei gegebenen Vektoren

Mehr

Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom

Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom Eine Fragestellung, die uns im weiteren beschäftigen wird, ist das Finden eines möglichst einfachen Repräsentanten aus jeder Äquivalenzklasse

Mehr

Lineare Algebra Vordiplomsprotokoll

Lineare Algebra Vordiplomsprotokoll Lineare Algebra Vordiplomsprotokoll Datum: 20.09.2006 Prüfer: Prof. Dr. Peter Müller Note: 1.0 Wie misst man die Gröÿe eines Vektorraums? Die Gröÿe eines Vektorraums ist die Dimension, d.h. die Anzahl

Mehr