Das negative Zweierkomplementzahlensystem. Ines Junold 23. Februar 2010

Größe: px
Ab Seite anzeigen:

Download "Das negative Zweierkomplementzahlensystem. Ines Junold 23. Februar 2010"

Transkript

1 Das negative Zweierkomplementzahlensystem Ines Junold 23. Februar

2 Inhaltsverzeichnis 1 Einleitung 3 2 Das konventionelle Zweierkomplement Definition Addition und Subtraktion Multiplikation Das negative Zweierkomplementsystem Definition Addition und Subtraktion Multiplikation Booth-Verfahren Baugh-Wooly-Verfahren Zusammenfassung 10 5 Literaturverzeichnis 11 2

3 1 Einleitung Das Zweierkomplement wird bei gebrochenen Festkommazahlen zur Implementierung der digitalen Signalverarbeitung auf VLSI-Chips verwendet. Allerdings wird bei der digitalen Signalverarbeitung häufig der Wert 1 benötigt. Das Problem hierbei ist jedoch, dass im konventionellen Zweierkomplement diese Zahl nicht dargestellt werden kann. Dies führt zu dem Problem, dass 1 1 das Resultat +1 ergibt, welches nicht als gebrochene Zweierkomplementzahl dargestellt werden kann. Es bedeutet auch, dass der Absolutwert von 1 nicht dargestellt werden kann. Aus diesem Grund entwickelte Swartzlander (vgl. Swartzlander 2007) das sogenannte negative Zweierkomplement (Abb. 1). Seit 1990 unterrichtet er an der Universität von Texas in Austin als Professor für Elektrotechnik und Computer Engineering. Er besitzt einen Abschluss in Elektrotechnik an der Purdue Universität, der Universität von Colorado und der Universität von Kalifornien. Bei seiner Forschung liegt der Schwerpunkt auf einem anwendungsspezifischen Prozessordesign mit einer Hochgeschwindigkeitscomputerarithmetik. 1 Abbildung 1: Earl E. Swartzlander, jr. 1 vgl. 3

4 2 Das konventionelle Zweierkomplement 2.1 Definition Durch das konventionelle Zweierkomplement besteht die Möglichkeit, auch negative Zahlen im Dualsystem darstellen zu können. Der Wertebereich liegt in (2 n 1 ),..., 0,..., 2 n 1 1, wobei n der Anzahl der Bits entspricht. Stehen beispielsweise 8 Bit zur Verfügung, dann erstreckt sich der Zahlenbereich von 128 (10) bis +127 (10). Darstellung und Umwandlung der Binärzahlen in das konventionelle Zweierkomplement sind sehr einfach zu implementieren. Zuerst muss ein Vorzeichenbit festgelegt werden. Handelt es sich bei der umzuwandelnden Zahl x um eine positive, so wird das Vorzeichenbit auf 0 gesetzt. Ist es jedoch negativ, also x < 0, so werden alle Bits invertiert bzw. gekippt. Danach muss nur noch der Wert der Quantisierungsstufe 2 k addiert werden. Die Quantisierungsstufe wird auch als Least Significant Bit (LSB) bezeichnet. Am Beispiel der Zahl wird die Umwandlung nun gezeigt = Umwandlung vom Dezimal- ins Binärzahlensystem [010.01] 2 = Invertierung der einzelnen Bitstellen 2 2 = = Berechnung der Quantisierungsstufe = Addieren der Quantisierungsstufe 2.2 Addition und Subtraktion Bei Addition und Subtraktion muss keine Fallunterscheidung vorgenommen werden, da die Subtraktion auf die Addition zurückgeführt werden kann. S = A B = A + ( B) Die Summe S = (s n 1, s n 2,..., s 0 ) besteht aus den zwei Summanden A = (a n 1, a n 2,..., a 0 ) und B= (b n 1, b n 2,..., b 0 ). Somit ergibt sich die folgende Bildungsvorschrift: s i = a i b i c i Die Variable c i bezeichnet den Übertrag an der Stelle i. Die Bildungsvorschrift hierfür lautet: c i+1 = (a i b i ) (a i c i ) (b i c i ), wobei c 0 = 0 Der entsprechende Schaltkreis, ein Volladdierer, ist in Abbildung 2 dargestellt. 2.3 Multiplikation Im Gegensatz zur Addition und Subtraktion muss bei der Multiplikation eine Erweiterung des Wertebereichs vorgenommen werden, da das Ergebnis meist nicht im Wertebereich der Faktoren liegt. Die Stellenanzahl wird dabei verdoppelt und der Wert des Most Significant Bit (MSB) entsprechend oft vor den ersten Faktor gesetzt. Somit ist die neue Stellenanzahl bei einem Faktor mit n Bit Stellen 2n. Hierfür eignet sich ein Serienoder Parallelmultiplizierer. Die Funktionsweise der verschiedenen Multiplizierer wird im Kapitel 3.2 Rechenoperationen dargestellt. 4

5 Abbildung 2: Volladdierer 3 Das negative Zweierkomplementsystem 3.1 Definition Das negative Zweierkomplement ist im Grunde genommen nur eine Spiegelung des bekannten und in Kapitel 2 beschriebenen konventionellen Zweierkomplements. Aus Abbildung 3 geht hervor, dass die Umwandlung ins negative Zweierkomplement über das Invertieren aller Bits außer dem Vorzeichenbit möglich ist. Die resultierenden Zahlen sind der Größe nach geordnet (zum Beispiel die Kleinste ist 0000, die Größte 1111 und die Zwischenwerte sind intuitiv geordnet). Die Schwierigkeit besteht darin, die n 1 Bits für jede Zahl zu kippen. Eine Alternative zum Invertieren ist nur das Vorzeichenbit zu invertieren. Dann sind die Zahlen invers der Größe nach geordnet. Nach dem Vergleich ist das Ergebnis invertiert (zum Beispiel wenn der Vergleich A > B ergibt, ist das korrekte Ergebnis A < B). Das negative Zweierkomplement einer Zahl kann durch die nachfolgende Formel berechnet werden. R = r n 1 n 2 r i 2 i n+1 i=0 Die umzuwandelnde, gebrochene n Bit lange Zahl besitzt das Vorzeichenbit r n 1, wobei R die gegebene Zahl im negativen Zweierkomplement beschreibt. Dies soll am folgenden Beispiel gezeigt werden. Die zu berechnende Zahl sei 5 8. R = 1 (0 2 0 (4+1) (4+1) (4+1) ) R = R = 1 0, , 125 R = 1 0, 375 R = Addition und Subtraktion Die Rechenoperationen Addition und Subtraktion sind im negativen Zweierkomplement gleich den Rechenregeln im konventionellen Zweierkomplement. Darum soll ein Beispiel für die Addition genügen. 5

6 Abbildung 3: Vergleich vom negativen Zweierkomplement mit dem konventionellen Zweierkomplement = = 7 8 Auch die Subtraktion kann - wie beim konventionellen Zweierkomplement - auf die Addition zurückgeführt werden. Nur muss auch hier der Divisor negiert werden. Dies geschieht äquivalent zum konventionellen Zweierkomplement am Beispiel von = Umwandlung vom Dezimal- ins Binärzahlensystem [1.110] 2 = Invertierung der einzelnen Bitstellen = am LSB addieren 3.3 Multiplikation Es gibt zwei Arten von gebräuchlichen Multiplikatoren, die sequenziellen und die parallelen Multiplikatoren. Für beide Versionen kann man die Implementierung im negativen Zweierkomplement zeigen Booth-Verfahren Die sequenzielle Multiplikation ist im Allgemeinen im Booth-Verfahren (oder im modifizierten Booth-Verfahren) realisiert. Diese werden durch Sequenzen von Additionen, Subtraktionen und Shift- Operationen verwirklicht. Da bereits äquivalente Operationen für Addition und Subtraktion gezeigt wurden, ist das negative Zweierkomplement mit Booth-Verfahren ähnlich dem konventionellen Booth-Verfahren. Der einzige Unterschied sind die vertauschten Additions- und Subtraktionsoperationen. 6

7 Multiplikator Bits konventionelle Zweierkomplement Bemerkung 00 P = P laufende Folge von Nullen 01 P = P + B Ende einer Folge von Einsen 10 P = P B Anfang einer Folge von Einsen 11 P = P laufende Folge von Einsen Operationen des Booth-Verfahrens im konventionellen Zweierkomplement Multiplikator Bits negative Zweierkomplement Bemerkung 00 P = P laufende Folge von Nullen 01 P = P B Ende einer Folge von Einsen 10 P = P + B Anfang einer Folge von Einsen 11 P = P laufende Folge von Einsen Operationen des Booth-Verfahrens im negativen Zweierkomplement Dies wird am folgenden Beispiel deutlich. Zunächst werden die Operationen anhand der Zweiersequenzen bestimmt: A B = = Addieren und Shift No-OP und Shift Subtrahieren und Shift Addieren (und Shift) Danach müssen die einzelnen Arbeitsschritte des Multiplikators betrachtet werden. Mit Hilfe der einzelnen Additions-, Subtraktions- und Shift-Operationen wird aus dem Multiplikand und dem Multiplikator das Produkt errechnet: Initialisierung P = : ADD A Shift P : No-OP Shift P : SUB A Shift P : ADD A No-Shift Dies soll als Nachweis der sequentiellen Multiplikation im negativen Zweierkomplements genügen. 7

8 3.3.2 Baugh-Wooly-Verfahren Die parallelen Multiplizierer hingegen werden durch eine die modifizierte Variante des Baugh-Wooly-Verfahrens. Es werden dabei Regeln zur Vereinfachung des Multiplikationsschemas angewandt 2. Daraus ergibt sich folgendes Bild: Zweierkomplement Baugh- Wooly- Multiplizierer A 5 A 4 A 3 A 2 A 1 A 0 B 5 B 4 B 3 B 2 B 1 B 0 A 5 B 0 A 4 B 0 A 3 B 0 A 2 B 0 A 1 B 0 A 0 B 0 A 5 B 1 A 4 B 1 A 3 B 1 A 2 B 1 A 1 B 1 A 0 B 1 A 5 B 2 A 4 B 2 A 3 B 2 A 2 B 2 A 1 B 2 A 0 B 2 A 5 B 3 A 4 B 3 A 3 B 3 A 2 B 3 A 1 B 3 A 0 B 3 A 5 B 4 A 4 B 4 A 3 B 4 A 2 B 4 A 1 B 4 A 0 B 4 A 5 B 5 A 4 B 5 A 3 B 5 A 2 B 5 A 1 B 5 A 0 B 5 P 10 P 9 P 8 P 7 P 6 P 5 P 4 P 3 P 2 P 1 P 0 Änlich wie bei den Seriellen Multiplizierern wird die Umwandlung in das negative Zweierkomplement nur durch eine Vertauschung der Vorzeichen erreicht. Der daraus resultierende Multiplizier sieht dann folgendermaßen aus: Negatives Zweierkomplement Baugh- Wooly- Multiplizierer A 5 A 4 A 3 A 2 A 1 A 0 B 5 B 4 B 3 B 2 B 1 B 0 A 5 B 0 A 4 B 0 A 3 B 0 A 2 B 0 A 1 B 0 A 0 B 0 A 5 B 1 A 4 B 1 A 3 B 1 A 2 B 1 A 1 B 1 A 0 B 1 A 5 B 2 A 4 B 2 A 3 B 2 A 2 B 2 A 1 B 2 A 0 B 2 A 5 B 3 A 4 B 3 A 3 B 3 A 2 B 3 A 1 B 3 A 0 B 3 A 5 B 4 A 4 B 4 A 3 B 4 A 2 B 4 A 1 B 4 A 0 B 4 A 5 B 5 A 4 B 5 A 3 B 5 A 2 B 5 A 1 B 5 A 0 B 5 P 10 P 9 P 8 P 7 P 6 P 5 P 4 P 3 P 2 P 1 P 0 2 vgl. Rechnerarithmetik handout.pdf S. 18ff. 8

9 Anhand eines 4 Bit Multiplizierers kann man die Funktionalität verdeutlichen: = Zusammenfassung Im Kapitel»Einleitung«wurde beschrieben, dass besonders in der digitalen Signalverarbeitung der Wert 1 benötigt wird. Swartzlander (vgl. Swartzlander 2007) stellt diese Zahl durch sein negatives Zweierkomplement zur Verfügung, jedoch ist in diesem Zahlensystem der Wert 1 nicht verfügbar. Dies würde bedeuten, dass jedes Mal, wenn in einer Rechnung der Wert 1 oder 1 benötigt wird, die erforderlichen Zahlen in das jeweilige Zahlensystem umgewandelt werden müssen. Und somit ist das negative Zweierkomplement nur dann sinnvoll, wenn die 1 häufiger benötigt wird als die 1. 9

10 5 Literaturverzeichnis 1. Swartzlander, E.: The Negative Two?s Complement Number System. Austin Zehendner, E.: Rechnerarithmetik. Jena

Das negative Zweierkomplementzahlensystem

Das negative Zweierkomplementzahlensystem Das negative Zweierkomplementzahlensystem Ines Junold 07. Dezember 2009 1 / 21 Inhaltsverzeichnis 1 Einleitung 2 Das konventionelle Zweierkomplement 3 Das negative Zweierkomplementsystem 4 Zusammenfassung

Mehr

Rückblick. Zahlendarstellung zu einer beliebigen Basis b. Umwandlung zwischen Zahlendarstellung (214) 5 = (278) 10 =(?) 8

Rückblick. Zahlendarstellung zu einer beliebigen Basis b. Umwandlung zwischen Zahlendarstellung (214) 5 = (278) 10 =(?) 8 Rückblick Zahlendarstellung zu einer beliebigen Basis b (214) 5 = Umwandlung zwischen Zahlendarstellung (278) 10 =(?) 8 25 Rückblick Schnellere Umwandlung zwischen Binärdarstellung und Hexadezimaldarstellung

Mehr

Zahlensysteme und Kodes. Prof. Metzler

Zahlensysteme und Kodes. Prof. Metzler Zahlensysteme und Kodes 1 Zahlensysteme und Kodes Alle üblichen Zahlensysteme sind sogenannte Stellenwert-Systeme, bei denen jede Stelle innerhalb einer Zahl ein besonderer Vervielfachungsfaktor in Form

Mehr

2.Vorlesung Grundlagen der Informatik

2.Vorlesung Grundlagen der Informatik Christian Baun 2.Vorlesung Grundlagen der Informatik Hochschule Darmstadt WS1112 1/16 2.Vorlesung Grundlagen der Informatik Christian Baun Hochschule Darmstadt Fachbereich Informatik christian.baun@h-da.de

Mehr

Multiplizierer. Beispiel komplexer arithmetischer Schaltung. Langsamer als Addition, braucht mehr Platz. Sequentielle Multiplikation

Multiplizierer. Beispiel komplexer arithmetischer Schaltung. Langsamer als Addition, braucht mehr Platz. Sequentielle Multiplikation Multiplizierer 1 Beispiel komplexer arithmetischer Schaltung Langsamer als Addition, braucht mehr Platz Sequentielle Multiplikation Kompakte kombinatorische Variante mit Carry-Save-Adders (CSA) Vorzeichenbehaftete

Mehr

Informationsmenge. Maßeinheit: 1 Bit. 1 Byte. Umrechnungen: Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit

Informationsmenge. Maßeinheit: 1 Bit. 1 Byte. Umrechnungen: Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit Informationsmenge Maßeinheit: 1 Bit Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit 1 Byte Zusammenfassung von 8 Bit, kleinste Speichereinheit im Computer, liefert

Mehr

Wandeln Sie die folgenden Zahlen in Binärzahlen und Hexadezimalzahlen. Teilen durch die Basis des Zahlensystems. Der jeweilige Rest ergibt die Ziffer.

Wandeln Sie die folgenden Zahlen in Binärzahlen und Hexadezimalzahlen. Teilen durch die Basis des Zahlensystems. Der jeweilige Rest ergibt die Ziffer. Digitaltechnik Aufgaben + Lösungen 2: Zahlen und Arithmetik Aufgabe 1 Wandeln Sie die folgenden Zahlen in Binärzahlen und Hexadezimalzahlen a) 4 D b) 13 D c) 118 D d) 67 D Teilen durch die Basis des Zahlensystems.

Mehr

Musterlösung 1. Mikroprozessortechnik und Eingebettete Systeme 1 WS2015/2016

Musterlösung 1. Mikroprozessortechnik und Eingebettete Systeme 1 WS2015/2016 Musterlösung 1 Mikroprozessortechnik und Eingebettete Systeme 1 WS2015/2016 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den

Mehr

BSZ für Elektrotechnik Dresden. Zahlenformate. Dr.-Ing. Uwe Heiner Leichsenring www.leichsenring-homepage.de

BSZ für Elektrotechnik Dresden. Zahlenformate. Dr.-Ing. Uwe Heiner Leichsenring www.leichsenring-homepage.de BSZ für Elektrotechnik Dresden Zahlenformate Dr.-Ing. Uwe Heiner Leichsenring www.leichsenring-homepage.de Gliederung 1 Überblick 2 Grundaufbau der Zahlensysteme 2.1 Dezimalzahlen 2.2 Binärzahlen = Dualzahlen

Mehr

6. Zahlendarstellungen und Rechnerarithmetik

6. Zahlendarstellungen und Rechnerarithmetik 6. Zahlendarstellungen und Rechnerarithmetik... x n y n x n-1 y n-1 x 1 y 1 x 0 y 0 CO Σ Σ... Σ Σ CI z n z n-1 z 1 z 0 Negative Zahlen, Zweierkomplement Rationale Zahlen, Gleitkommazahlen Halbaddierer,

Mehr

1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen:

1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen: Zahlensysteme. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis darstellen: n n n n z a a... a a a Dabei sind die Koeffizienten a, a, a,... aus der

Mehr

Rechnergrundlagen SS Vorlesung

Rechnergrundlagen SS Vorlesung Rechnergrundlagen SS 2007 3. Vorlesung Inhalt Zahlensysteme Binäre Darstellung von Integer-Zahlen Vorzeichen-Betrag Binary Offset 1er-Komplement 2er-Komplement Addition und Subtraktion binär dargestellter

Mehr

Rechnergrundlagen SS Vorlesung

Rechnergrundlagen SS Vorlesung Rechnergrundlagen SS 27 4. Vorlesung Inhalt Binäre Darstellung von Integer-Zahlen Vorzeichen-Betrag 2er-Komplement BCD Addition und Subtraktion binär dargestellter Zahlen Carry und Overflow Little Endian

Mehr

Algorithmen zur Integer-Multiplikation

Algorithmen zur Integer-Multiplikation Algorithmen zur Integer-Multiplikation Multiplikation zweier n-bit Zahlen ist zurückführbar auf wiederholte bedingte Additionen und Schiebeoperationen (in einfachen Prozessoren wird daher oft auf Multiplizierwerke

Mehr

01 - Zahlendarstellung

01 - Zahlendarstellung 01 - Zahlendarstellung Technische Grundlagen der Informatik Automation Systems Group E183-1 Institute of Computer Aided Automation Vienna University of Technology email: tgi@auto.tuwien.ac.at Zahlendarstellung

Mehr

Computer rechnen nur mit Nullen und Einsen

Computer rechnen nur mit Nullen und Einsen Computer rechnen nur mit Nullen und Einsen Name: Unser bekanntes Dezimalsystem mit 10 Ziffern Ein wesentliches Merkmal eines Zahlensystems ist die verwendete Anzahl der Ziffern. Im Dezimalsystem gibt es

Mehr

Inhalt. Zahlendarstellungen

Inhalt. Zahlendarstellungen Inhalt 1 Motivation 2 Integer- und Festkomma-Arithmetik Zahlendarstellungen Algorithmen für Integer-Operationen Integer-Rechenwerke Rechnen bei eingeschränkter Präzision 3 Gleitkomma-Arithmetik Zahlendarstellungen

Mehr

Rechnernetze und Organisation

Rechnernetze und Organisation Arithmetic Logic Unit ALU Professor Dr. Johannes Horst Wolkerstorfer Cerjak, 9.2.25 RNO VO4_alu Übersicht Motivation ALU Addition Subtraktion De Morgan Shift Multiplikation Gleitkommazahlen Professor Dr.

Mehr

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation nach der Schulmethode Gegeben seien die Binärzahlen A und B. Was ist a * b? Beispiel: Multiplikand A: 1 1 0 1 0 Multiplikator

Mehr

Aufgabe 1. Aufgabe 2. Abbildung 1: Schaltung für die Multiplikation mit 4

Aufgabe 1. Aufgabe 2. Abbildung 1: Schaltung für die Multiplikation mit 4 Aufgabe 1 Eine Zahl a ist mit 8 Bits vorzeichenlos (8 bit unsigned) dargestellt. Die Zahl y soll die Zahl a multipliziert mit 4 sein (y = a 4 D ). a) Wie viele Bits benötigen Sie für die Darstellung von

Mehr

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation nach der Schulmethode Gegeben seien die Binärzahlen A und B. Was ist a * b? Beispiel: Multiplikand A: 1 1 0 1 0 Multiplikator

Mehr

1. 4-Bit Binärzahlen ohne Vorzeichen 2. 4-Bit Binärzahlen mit Vorzeichen 3. 4-Bit Binärzahlen im 2er Komplement 4. Rechnen im 2er Komplement

1. 4-Bit Binärzahlen ohne Vorzeichen 2. 4-Bit Binärzahlen mit Vorzeichen 3. 4-Bit Binärzahlen im 2er Komplement 4. Rechnen im 2er Komplement Kx Binäre Zahlen Kx Binäre Zahlen Inhalt. Dezimalzahlen. Hexadezimalzahlen. Binärzahlen. -Bit Binärzahlen ohne Vorzeichen. -Bit Binärzahlen mit Vorzeichen. -Bit Binärzahlen im er Komplement. Rechnen im

Mehr

There are only 10 types of people in the world: those who understand binary, and those who don't

There are only 10 types of people in the world: those who understand binary, and those who don't Modul Zahlensysteme In der Digitaltechnik haben wir es mit Signalen zu tun, die zwei Zustände annehmen können: Spannung / keine Spannung oder 1/ oder 5V / V oder beliebige andere Zustände. In diesem Modul

Mehr

Vorlesung Programmieren

Vorlesung Programmieren Vorlesung Programmieren Zahlendarstellung Prof. Dr. Stefan Fischer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Agenda Zahlendarstellung Oder: wie rechnen

Mehr

E Zahlendarstellungen und Rechnerarithmetik

E Zahlendarstellungen und Rechnerarithmetik E Zahlendarstellungen und Rechnerarithmetik Einordnung in das Schichtenmodell: 1. Darstellung positiver ganzer Zahlen 2. binäre Addition 3. Darstellung negativer ganzer Zahlen 4. binäre Subtraktion 5.

Mehr

Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen

Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen Großübung 1: Zahlensysteme Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen Lehrender: Dr. Klaus Richter, Institut für Informatik; E-Mail: richter@informatik.tu-freiberg.de

Mehr

Inhaltsangabe 3.1 Zahlensysteme und Darstellung natürlicher Zahlen Darstellung ganzer Zahlen

Inhaltsangabe 3.1 Zahlensysteme und Darstellung natürlicher Zahlen Darstellung ganzer Zahlen 3 Zahlendarstellung - Zahlensysteme - b-adische Darstellung natürlicher Zahlen - Komplementbildung - Darstellung ganzer und reeller Zahlen Inhaltsangabe 3.1 Zahlensysteme und Darstellung natürlicher Zahlen......

Mehr

Motivation 31. Mai 2005

Motivation 31. Mai 2005 Motivation 31. Mai 25 Zuletzt behandelt: Zahlendarstellung und Rechnerarithmetik Festkommazahlen: Vorzeichen/Betrag-Darstellung Einerkomplement, Zweierkomplement Rückführung der Subtraktion auf die Addition

Mehr

6.2 Kodierung von Zahlen

6.2 Kodierung von Zahlen 6.2 Kodierung von Zahlen Neue Begriffe é Festkommadarstellungen é Zahlendarstellung durch Betrag und Vorzeichen é Einer-/Zweierkomplement-Darstellung é Gleitkommadarstellung é IEEE-754 Format BB TI I 6.2/1

Mehr

Zahlen in Binärdarstellung

Zahlen in Binärdarstellung Zahlen in Binärdarstellung 1 Zahlensysteme Das Dezimalsystem Das Dezimalsystem ist ein Stellenwertsystem (Posititionssystem) zur Basis 10. Das bedeutet, dass eine Ziffer neben ihrem eigenen Wert noch einen

Mehr

Zahlendarstellungen und Rechnerarithmetik*

Zahlendarstellungen und Rechnerarithmetik* Zahlendarstellungen und Rechnerarithmetik* 1. Darstellung positiver ganzer Zahlen 2. Darstellung negativer ganzer Zahlen 3. Brüche und Festkommazahlen 4. binäre Addition 5. binäre Subtraktion *Die Folien

Mehr

Leseprobe. Taschenbuch Mikroprozessortechnik. Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-42331-2

Leseprobe. Taschenbuch Mikroprozessortechnik. Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-42331-2 Leseprobe Taschenbuch Mikroprozessortechnik Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-4331- Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-4331-

Mehr

21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer?

21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer? Vorlesung Programmieren Zahlendarstellung Prof. Dr. Stefan Fischer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Agenda Zahlendarstellung Oder: wie rechnen

Mehr

Computer Arithmetik. Computer Arithmetik Allgemein

Computer Arithmetik. Computer Arithmetik Allgemein Vortrag von René Grohmann und Mirwais Turjalei, 22.11.2000 Computer Arithmetik Computer Arithmetik Allgemein Die ALU: Die Alu ist die Einheit im Computer, die dazu bestimmt ist arithmetische und logische

Mehr

2.1.2 Gleitkommazahlen

2.1.2 Gleitkommazahlen .1. Gleitkommazahlen Überblick: Gleitkommazahlen Gleitkommadarstellung Arithmetische Operationen auf Gleitkommazahlen mit fester Anzahl von Mantissen- und Exponentenbits Insbesondere Rundungsproblematik:

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Mag. Christian Gürtler Programmierung Grundlagen der Informatik 2011 Inhaltsverzeichnis I. Allgemeines 3 1. Zahlensysteme 4 1.1. ganze Zahlen...................................... 4 1.1.1. Umrechnungen.................................

Mehr

Technische Grundlagen der Informatik Kapitel 8. Prof. Dr. Sorin A. Huss Fachbereich Informatik TU Darmstadt

Technische Grundlagen der Informatik Kapitel 8. Prof. Dr. Sorin A. Huss Fachbereich Informatik TU Darmstadt Technische Grundlagen der Informatik Kapitel 8 Prof. Dr. Sorin A. Huss Fachbereich Informatik TU Darmstadt Kapitel 8: Themen Zahlensysteme - Dezimal - Binär Vorzeichen und Betrag Zweierkomplement Zahlen

Mehr

Control Beispiel. Control wird als kombinatorische Schaltung realisiert. Hierzu die Wahrheitstabelle: Control

Control Beispiel. Control wird als kombinatorische Schaltung realisiert. Hierzu die Wahrheitstabelle: Control Control Beispiel Store R1 4 Bit Register R1 SUB 4 Bit Register R2 Store R2 R2 Bit 0 Control wird als kombinatorische Schaltung realisiert. Hierzu die Wahrheitstabelle: Eingabe R2 Bit 0 Zero 0 0 Ausgabe

Mehr

Rechnergrundlagen SS Vorlesung

Rechnergrundlagen SS Vorlesung Rechnergrundlagen SS 27 5. Vorlesung Inhalt Interpretation hexadezimal dargestellter Integer-Zahlen Little Endian / Big Endian Umrechnung in eine binäre Darstellung Ausführung von Additionen Optimierte

Mehr

Teil 2: Rechnerorganisation

Teil 2: Rechnerorganisation Teil 2: Rechnerorganisation Inhalt: Zahlendarstellungen Rechnerarithmetik Mikroprogrammierung schrittweiser Entwurf eines hypothetischen Prozessors mit Daten-, Adreß- und Kontrollpfad Speicherorganisation

Mehr

Teil 2: Rechnerorganisation

Teil 2: Rechnerorganisation Teil 2: Rechnerorganisation Inhalt: Zahlendarstellungen Rechnerarithmetik Mikroprogrammierung schrittweiser Entwurf eines hypothetischen Prozessors mit Daten-, Adreß- und Kontrollpfad Speicherorganisation

Mehr

Übungen zur Vorlesung Technische Informatik I, SS 2001 Strey / Guenkova-Luy / Prager Übungsblatt 4 Zahlendarstellung/Rechenarithmetik/Rechenwerke

Übungen zur Vorlesung Technische Informatik I, SS 2001 Strey / Guenkova-Luy / Prager Übungsblatt 4 Zahlendarstellung/Rechenarithmetik/Rechenwerke Übungen zur Vorlesung Technische Informatik I, SS 2001 Strey / Guenkova-Luy / Prager Übungsblatt 4 Zahlendarstellung/Rechenarithmetik/Rechenwerke Aufgabe 1: a) Bestimmen Sie die Darstellung der Zahl 113

Mehr

Einführung in die Informatik

Einführung in die Informatik Einführung in die Informatik Dipl.-Inf., Dipl.-Ing. (FH) Michael Wilhelm Hochschule Harz FB Automatisierung und Informatik mwilhelm@hs-harz.de http://www.miwilhelm.de Raum 2.202 Tel. 03943 / 659 338 FB

Mehr

Einführung in die Informatik

Einführung in die Informatik Einführung in die Informatik Dipl.-Inf., Dipl.-Ing. (FH) Michael Wilhelm Hochschule Harz FB Automatisierung und Informatik mwilhelm@hs-harz.de http://www.miwilhelm.de Raum 2.202 Tel. 03943 / 659 338 FB

Mehr

Grundlagen der Rechnerarchitektur. Binäre Logik und Arithmetik

Grundlagen der Rechnerarchitektur. Binäre Logik und Arithmetik Grundlagen der Rechnerarchitektur Binäre Logik und Arithmetik Übersicht Logische Operationen Addition, Subtraktion und negative Zahlen Logische Bausteine Darstellung von Algorithmen Multiplikation Division

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Arithmetische und bitweise Operatoren im Binärsystem Prof. Dr. Nikolaus Wulff Operationen mit Binärzahlen Beim Rechnen mit Binärzahlen gibt es die ganz normalen arithmetischen

Mehr

Basisinformationstechnologie I

Basisinformationstechnologie I Basisinformationstechnologie I Wintersemester 2012/13 24. Oktober 2012 Grundlagen III Universität zu Köln. Historisch-Kulturwissenschaftliche Informationsverarbeitung Jan G. Wieners // jan.wieners@uni-koeln.de

Mehr

Regeln zur Bruchrechnung

Regeln zur Bruchrechnung Regeln zur Bruchrechnung Brüche und Anteile Zur Beschreibung von Anteilen verwendet man Brüche (von gebrochen, z. B. eine Glasscheibe) wie 5 ; 5 oder 9. Die obere Zahl (über dem Bruchstrich) heißt Zähler,

Mehr

bereits in A,3 und A.4: Betrachtung von Addierschaltungen als Beispiele für Schaltnetze und Schaltwerke

bereits in A,3 und A.4: Betrachtung von Addierschaltungen als Beispiele für Schaltnetze und Schaltwerke Rechnerarithmetik Rechnerarithmetik 22 Prof. Dr. Rainer Manthey Informatik II Übersicht bereits in A,3 und A.4: Betrachtung von Addierschaltungen als Beispiele für Schaltnetze und Schaltwerke in diesem

Mehr

Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 14/15

Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 14/15 Rechnerstrukturen, Teil 1 Vorlesung 4 SWS WS 14/15 Prof. Dr Jian-Jia Chen Dr. Lars Hildebrand Fakultät für Informatik Technische Universität Dortmund lars.hildebrand@tu-.de http://ls1-www.cs.tu-.de Übersicht

Mehr

Darstellen, Ordnen und Vergleichen

Darstellen, Ordnen und Vergleichen Darstellen, Ordnen und Vergleichen negative Zahlen positive Zahlen 1_ 6 < 3,5 3 < +2 +1 2 < +5 Um negative Zahlen darstellen zu können, wird der Zahlenstrahl zu einer Zahlengeraden erweitert. Wenn zwei

Mehr

Zwischenklausur Informatik, WS 2014/15

Zwischenklausur Informatik, WS 2014/15 Zwischenklausur Informatik, WS /5.. Zugelassene Hilfsmittel: außer Stift und Papier keine Hinweis: Geben Sie bei allen Berechnungen den vollständigen Rechenweg mit an! Alle Aufgaben/Fragen sind unmittelbar

Mehr

Algorithmen zur Division

Algorithmen zur Division Algorithmen zur Division Umkehrung der Multiplikation: Berechnung von q = a / b durch wiederholte bedingte Subtraktionen und Schiebeoperationen in jedem Schritt wird Divisor b testweise vom aktuellen Rest

Mehr

Zum Nachdenken. Welche Eigenschaften einer Vorzeichendarstellung. erreichen? Wie könnte man Vorzeichenzahlen darstellen?

Zum Nachdenken. Welche Eigenschaften einer Vorzeichendarstellung. erreichen? Wie könnte man Vorzeichenzahlen darstellen? TECHNISCHE HOCHSCHULE NÜRNBERG GEORG SIMON OHM Zum Nachdenken Welche Eigenschaften einer Vorzeichendarstellung könnte man versuchen zu erreichen? Wie könnte man Vorzeichenzahlen darstellen? Grundlagen

Mehr

Faktorisierung bei Brüchen und Bruchtermen

Faktorisierung bei Brüchen und Bruchtermen Faktorisierung bei Brüchen und Bruchtermen Rainer Hauser Mai 2016 1 Einleitung 1.1 Rationale Zahlen Teilt man einen Gegenstand in eine Anzahl gleich grosse Stücke, so bekommt man gebrochene Zahlen, die

Mehr

Grundlagen der Technischen Informatik. 4. Übung

Grundlagen der Technischen Informatik. 4. Übung Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: +/-/*

Mehr

Übung Praktische Informatik II

Übung Praktische Informatik II Übung Praktische Informatik II FSS 2009 Benjamin Guthier Lehrstuhl für Praktische Informatik IV Universität Mannheim guthier@pi4.informatik.uni-mannheim.de 06.03.09 2-1 Heutige große Übung Allgemeines

Mehr

1 Dualsystem Dualzahlen mit Vorzeichen 4. 2 Hexadezimalsystem Hexadezimalzahlen mit Vorzeichen Oktalsystem 13 4 Zahlenring 14

1 Dualsystem Dualzahlen mit Vorzeichen 4. 2 Hexadezimalsystem Hexadezimalzahlen mit Vorzeichen Oktalsystem 13 4 Zahlenring 14 Zahlensysteme Inhalt: 1 Dualsystem 1 1.1 Dualzahlen mit Vorzeichen 4 2 Hexadezimalsystem 8 2.1 Hexadezimalzahlen mit Vorzeichen 10 3 Oktalsystem 13 4 Zahlenring 14 Definition: Ein polyadisches Zahlensystem

Mehr

Integrierte Schaltungen

Integrierte Schaltungen Integrierte Schaltungen Klassen von Chips: SSI (Small Scale Integrated) circuit: 1 bis 10 Gatter MSI (Medium Scale Integrated) circuit: 10 bis 100 Gatter LSI (Large Scale Integrated) circuit: 100 bis 100

Mehr

2. Negative Dualzahlen darstellen

2. Negative Dualzahlen darstellen 2.1 Subtraktion von Dualzahlen 2.1.1 Direkte Subtraktion (Tafelrechnung) siehe ARCOR T0IF Nachteil dieser Methode: Diese Form der Subtraktion kann nur sehr schwer von einer Elektronik (CPU) durchgeführt

Mehr

FAKULTÄT FÜR INFORMATIK

FAKULTÄT FÜR INFORMATIK FAKULTÄT FÜR INFORMATIK TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Rechnertechnik und Rechnerorganisation Prof. Dr. Arndt Bode Einführung in die Rechnerarchitektur Wintersemester 21/217 Lösungsvorschlag

Mehr

Kapitel 2. Zahlensysteme, Darstellung von Informationen

Kapitel 2. Zahlensysteme, Darstellung von Informationen Kapitel 2 Zahlensysteme, Darstellung von Informationen 1 , Darstellung von Informationen Ein Computer speichert und verarbeitet mehr oder weniger große Informationsmengen, je nach Anwendung und Leistungsfähigkeit.

Mehr

Arithmetik. Zahlendarstellung, Addition und Subtraktion Multiplikation, Division, Fest- und Gleitkommazahlen

Arithmetik. Zahlendarstellung, Addition und Subtraktion Multiplikation, Division, Fest- und Gleitkommazahlen Computer and Communication Systems (Lehrstuhl für Technische Informatik) Arithmetik Zahlendarstellung, Addition und Subtraktion Multiplikation, Division, Fest- und Gleitkommazahlen [TI] Winter 2013/2014

Mehr

Das Rechnermodell - Funktion

Das Rechnermodell - Funktion Darstellung von Zahlen und Zeichen im Rechner Darstellung von Zeichen ASCII-Kodierung Zahlensysteme Dezimalsystem, Dualsystem, Hexadezimalsystem Darstellung von Zahlen im Rechner Natürliche Zahlen Ganze

Mehr

Skript Zahlensysteme

Skript Zahlensysteme Skript Zahlensysteme Dieses Skript enthält die Themen meiner Unterrichtseinheit Zahlensysteme. Hier sollen die Grundlagen für das Verständnis der darauf folgenden Inhalte zu den Abläufen innerhalb des

Mehr

2 Darstellung von Zahlen und Zeichen

2 Darstellung von Zahlen und Zeichen 2.1 Analoge und digitale Darstellung von Werten 79 2 Darstellung von Zahlen und Zeichen Computer- bzw. Prozessorsysteme führen Transformationen durch, die Eingaben X auf Ausgaben Y abbilden, d.h. Y = f

Mehr

Computerarithmetik (1)

Computerarithmetik (1) Computerarithmetik () Fragen: Wie werden Zahlen repräsentiert und konvertiert? Wie werden negative Zahlen und Brüche repräsentiert? Wie werden die Grundrechenarten ausgeführt? Was ist, wenn das Ergebnis

Mehr

Das Maschinenmodell Datenrepräsentation

Das Maschinenmodell Datenrepräsentation Das Maschinenmodell Datenrepräsentation Darstellung von Zahlen/Zeichen in der Maschine Bit (0/1) ist die kleinste Informationseinheit Größere Einheiten durch Zusammenfassen mehrerer Bits, z.b. 8 Bit =

Mehr

Die Zahl ist: (z 2, z 1, z 0 ) (z ) : 7 = 0 Rest z 2

Die Zahl ist: (z 2, z 1, z 0 ) (z ) : 7 = 0 Rest z 2 Übungen zur Vorlesung Technische Informatik I, SS Hauck / Guenkova-Luy / Prager / Chen Übungsblatt 4 Rechnerarithmetik Aufgabe : a) Bestimmen Sie die Darstellung der Zahl 3 zur Basis 7. 3 = 7 (Sehen Sie

Mehr

Programmieren. Kapitel 3: Wie funktioniert ein moderner Computer? Wintersemester 2008/2009. Prof. Dr. Christian Werner

Programmieren. Kapitel 3: Wie funktioniert ein moderner Computer? Wintersemester 2008/2009. Prof. Dr. Christian Werner Institut für Telematik Universität zu Lübeck Programmieren Kapitel 3: Wie funktioniert ein moderner Computer? Wintersemester 8/9 Prof. Dr. Christian Werner 3- Überblick Typische Merkmale moderner Computer

Mehr

Übungsaufgaben. - Vorgehensweise entsprechend dem Algorithmus der schriftlichen Multiplikation

Übungsaufgaben. - Vorgehensweise entsprechend dem Algorithmus der schriftlichen Multiplikation Übungsaufgaben Anmerkung Allen Beispielen soll noch hinzugefügt sein, dass wertvolle Hinweise, also die Tipps und Tricks die der schnellen maschinellen Multiplikation zu Grunde liegen, neben dem toff zur

Mehr

Grundlagen der Technischen Informatik. 3. Übung. Christian Knell Keine Garantie für Korrekt-/Vollständigkeit

Grundlagen der Technischen Informatik. 3. Übung. Christian Knell Keine Garantie für Korrekt-/Vollständigkeit Grundlagen der Technischen Informatik 3. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 3. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Zahlendarstellungen

Mehr

Wertebereiche, Overflow und Underflow

Wertebereiche, Overflow und Underflow Wertebereiche, Overflow und Underflow s exponent fraction 1 Bit 8 Bits 23 Bits Kleinste darstellbare nicht negative Zahl annähernd 2,0 * 10 38 Größte darstellbare Zahl annähernd 2,0 * 10 38 Was, wenn die

Mehr

Lösungsvorschlag zu 1. Übung

Lösungsvorschlag zu 1. Übung Prof. Frederik Armknecht Sascha Müller Daniel Mäurer Grundlagen der Informatik 3 Wintersemester 09/10 Lösungsvorschlag zu 1. Übung 1 Präsenzübungen 1.1 Schnelltest a) Welche der Aussagen treffen auf jeden

Mehr

Grundlagen der Informatik I ATI / MB

Grundlagen der Informatik I ATI / MB Grundlagen der Informatik I ATI / MB Dipl.-Inf. Michael Wilhelm Hochschule Harz FB Automatisierung und Informatik mwilhelm@hs-harz.de Raum 2.202 Tel. 03943 / 659 338 FB Automatisierung / Informatik: Grundlagen

Mehr

Kapitel 5: Darstellung von Daten im Rechner

Kapitel 5: Darstellung von Daten im Rechner Kapitel 5: Darstellung von Daten im Rechner Kapitel 5 Darstellung von Daten im Rechner und Rechnerarithmetik Literatur: Oberschelp/Vossen, Kapitel 5 Kapitel 5: Darstellung von Daten im Rechner Seite Kapitel

Mehr

Binäre Darstellung ganzer Zahlen

Binäre Darstellung ganzer Zahlen Vorlesung Objektorientierte Softwareentwicklung Exkurse use Binäre Darstellung ganzer Zahlen Binärdarstellung natürlicher Zahlen Ganze Zahlen im Einerkomplement Ganze Zahlen im Zweierkomplement Elementare

Mehr

Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär

Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär Zahlensysteme Menschen nutzen zur Angabe von Werten und zum Rechnen vorzugsweise das Dezimalsystem Beispiel 435 Fische aus dem Teich gefischt, d.h. 4 10 2 + 3 10 1 +5 10 0 Digitale Rechner speichern Daten

Mehr

Grundstrukturen: Speicherorganisation und Zahlenmengen

Grundstrukturen: Speicherorganisation und Zahlenmengen Zahlendarstellung Zahlen und ihre Darstellung in Digitalrechnern Grundstrukturen: Speicherorganisation und Zahlenmengen Linear organisierter Speicher zu einer Adresse gehört ein Speicher mit 3 Bit-Zellen

Mehr

BERUFSREIFEPRÜFUNG INFORMATIK. Kursbeginn: 09. März mailme: Telefon: 0660/ mehr Chancen im Leben

BERUFSREIFEPRÜFUNG INFORMATIK. Kursbeginn: 09. März mailme: Telefon: 0660/ mehr Chancen im Leben BERUFSREIFEPRÜFUNG INFORMATIK Kursbeginn: 09. März 2009 Kursleiter: Peter Reichholf Mag. mailme: beda@beda.at Telefon: 0660/1234025 mehr Chancen im Leben Lehrplan für den Fachbereich INFORMATIK im Rahmen

Mehr

Übung Programmieren - Zahlendarstellung, SSH, SCP, Shellskripte -

Übung Programmieren - Zahlendarstellung, SSH, SCP, Shellskripte - Übung Programmieren - Zahlendarstellung, SSH, SCP, Shellskripte - Sebastian Ebers Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/users/ebers Zahlendarstellung 201010? 16 2010

Mehr

Grundlagen der Informatik I. Übung

Grundlagen der Informatik I. Übung Grundlagen der Informatik I Übung Studiengang Wirtschaftsingenieurwesen Wintersemester 1/13 Autor: Prof. Dr.-Ing. habil. Hans-Joachim Böhme HTW Dresden, Fachbereich Informatik/Mathematik Friedrich-List-Platz

Mehr

Mikro-Controller-Pass 1

Mikro-Controller-Pass 1 MikroControllerPass Lernsysteme MC 805 Seite: (Selbststudium) Inhaltsverzeichnis Vorwort Seite 2 Addition Seite 3 Subtraktion Seite 4 Subtraktion durch Addition der Komplemente Dezimales Zahlensystem:Neunerkomplement

Mehr

Algorithmen zur Division

Algorithmen zur Division Algorithmen zur Division Umkehrung der Multiplikation: Berechnung von q = a / b durch wiederholte bedingte Subtraktionen und Schiebeoperationen in jedem Schritt wird Divisor b testweise vom aktuellen Rest

Mehr

Vektorrechnung. Beispiele: (4 8) 2-Tupel (Zahlenpaar) (4 8 9) 3-Tupel (Zahlentrippel)

Vektorrechnung. Beispiele: (4 8) 2-Tupel (Zahlenpaar) (4 8 9) 3-Tupel (Zahlentrippel) Vektorrechnung Oftmals möchte man in der Mathematik mit mehreren Zahlen auf einmal rechnen. Dafür werde geordnete Listen verwendet. Eine Liste besteht aus n reellen Zahlen und wird n-tupel genannt. Beispiele:

Mehr

Informatik I Modul 5: Rechnerarithmetik (2)

Informatik I Modul 5: Rechnerarithmetik (2) Herbstsemester 2, Institut für Informatik IFI, UZH, Schweiz Informatik I Modul 5: Rechnerarithmetik (2) 2 Burkhard Stiller M5 Modul 5: Rechnerarithmetik (2) Grundrechenarten Arithmetisch-logische Einheit

Mehr

GTI ÜBUNG 4 BINÄR-, HEX- UND GLEITKOMMAZAHLEN-ARITHMETIK

GTI ÜBUNG 4 BINÄR-, HEX- UND GLEITKOMMAZAHLEN-ARITHMETIK 1 GTI ÜBUNG 4 BINÄR-, HEX- UND GLEITKOMMAZAHLEN-ARITHMETIK Aufgabe 1 Bin- und Hex Arithmetik 2 Führen Sie die folgenden Berechnungen im angegebenen Zahlensystem aus, ohne die Zahlen ins Dezimalsystem umzuwandeln:

Mehr

Terme und Gleichungen

Terme und Gleichungen Terme und Gleichungen Rainer Hauser November 00 Terme. Rekursive Definition der Terme Welche Objekte Terme genannt werden, wird rekursiv definiert. Die rekursive Definition legt zuerst als Basis fest,

Mehr

GTI ÜBUNG 12 KOMPARATOR UND ADDIERER

GTI ÜBUNG 12 KOMPARATOR UND ADDIERER 1 GTI ÜBUNG 12 KOMPARATOR UND ADDIERER Aufgabe 1 Komparator 2 Beschreibung Entwickeln Sie eine digitale Schaltung, die zwei Bits a und b miteinander vergleicht. Die Schaltung besitzt drei Ausgänge: ist

Mehr

Grundrechnungsarten mit Dezimalzahlen

Grundrechnungsarten mit Dezimalzahlen Grundrechnungsarten mit Dezimalzahlen Vorrangregeln Die Rechnungsarten zweiter Stufe haben Vorrang vor den Rechnungsarten erster Stufe. Man sagt: "Punktrechnung geht vor Strichrechnung" Treten in einer

Mehr

Grundlagen der Technischen Informatik. 3. Übung

Grundlagen der Technischen Informatik. 3. Übung Grundlagen der Technischen Informatik 3. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 3. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Zahlendarstellungen

Mehr

Grundlagen der Informatik 2 Grundlagen der Digitaltechnik. 1. Zahlensysteme

Grundlagen der Informatik 2 Grundlagen der Digitaltechnik. 1. Zahlensysteme Grundlagen der Informatik 2 Grundlagen der Digitaltechnik 1. Zahlensysteme Prof. Dr.-Ing. Jürgen Teich Dr.-Ing. Christian Haubelt Lehrstuhl für Hardware-Software Software-Co-Design Grundlagen der Digitaltechnik

Mehr

Begriffe, die auf eine Multiplikation oder Division hinweisen

Begriffe, die auf eine Multiplikation oder Division hinweisen Fachbegriffe der Addition und Subtraktion Bei der Addition werden Zahlen zusammengezählt: 2 + 4 = 6 1. Summand 2. Summand Summe Bei der Subtraktion wird eine Zahl von einer anderen abgezogen. 7 2 = 5 Minuend

Mehr

Übungsklausur - Beispiellösung

Übungsklausur - Beispiellösung Digitale Systeme Übungsklausur - Beispiellösung Aufgabe 1 (a) Benutzt man n Bit für die Darstellung im 2-Komplement, so deckt man den Wertebereich von 2 n 1 bis 2 n 1 1 ab. Also ergibt sich der abgedeckte

Mehr

BB/CS- SS00 Rechner im Überblick 1/1. Ein Stellenwertsystem (Zahlensystem) ist ein Tripel S = (b, Z, δ) mit den folgenden Eigenschaften:

BB/CS- SS00 Rechner im Überblick 1/1. Ein Stellenwertsystem (Zahlensystem) ist ein Tripel S = (b, Z, δ) mit den folgenden Eigenschaften: Neue Begriffe Festkommadarstellungen Zahlendarstellung durch Betrag und Vorzeichen Einer-/Zweierkomplement-Darstellung Gleitkommadarstellung IEEE-754 Format BB/CS- SS00 Rechner im Überblick 1/1! Definition

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Das Rechnen in Zahlensystemen zur Basis b=2, 8, 10 und 16 Prof. Dr. Nikolaus Wulff Zahlensysteme Neben dem üblichen dezimalen Zahlensystem zur Basis 10 sind in der Informatik

Mehr

Binäre Gleitkommazahlen

Binäre Gleitkommazahlen Binäre Gleitkommazahlen Was ist die wissenschaftliche, normalisierte Darstellung der binären Gleitkommazahl zur dezimalen Gleitkommazahl 0,625? Grundlagen der Rechnerarchitektur Logik und Arithmetik 72

Mehr

Dokumentation der Assemblerroutinen

Dokumentation der Assemblerroutinen Dokumentation der Assemblerroutinen für die Befehle MULT, MULTU, DIV & DIVU MulU Zum Multiplizieren, wurde die Methode der russischen Bauernmultiplikation benutzt, die prinzipiell nur ein schriftliches

Mehr

Rechnerarithmetik. Vorlesung im Sommersemester Eberhard Zehendner. FSU Jena. Thema: Addierschaltungen

Rechnerarithmetik. Vorlesung im Sommersemester Eberhard Zehendner. FSU Jena. Thema: Addierschaltungen Rechnerarithmetik Vorlesung im Sommersemester 2008 Eberhard Zehendner FSU Jena Thema: Addierschaltungen Eberhard Zehendner (FSU Jena) Rechnerarithmetik Addierschaltungen 1 / 19 Addierer für UInt 2 (l)

Mehr

G Zahlendarstellung und Rechnerarithmetik

G Zahlendarstellung und Rechnerarithmetik G Zahlendarstellung und Rehnerarithmetik G.1 1 Einordnung Ebene 6 Ebene 5 Ebene 4 Problemorientierte Sprahe Assemblersprahe Betriebssystem Ebene 3 ISA (Instrution Set Arhiteture) Ebene 2 Ebene 1 Ebene

Mehr